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Abstract. Snow settlement under gravity is primarily driven by the slow creep of its ice matrix, which exhibits a viscoplastic

behaviour. Knowledge of the viscoplastic properties of snow is thus crucial for understanding and predicting the snowpack

seasonal and perennial evolution. However, different approaches have yielded disparate constitutive viscoplastic laws. Field

experiments and snowpack models typically described snow settlement with a linear model and an apparent compaction viscos-

ity. Dedicated laboratory experiments exhibited non-linear relationships between stress and strain rate, with a stress exponent5

ranging from 1.8 to 4. Microstructure-based simulations showed that the viscoplastic behaviour likely results from the interac-

tion of glides on various intra-crystalline slip systems within ice crystals, yielding an exponent between 2 and 3. The paper aims

to reconcile these approaches. To do so, we conducted microstructure-based simulations on 37 three-dimensional snow images

and established that the viscoplastic behaviour follows a power-law relation, with a stress exponent almost constant around

2.15, and a reference stress that depends mostly on the solid fraction. Analysing a dataset from previous viscoplastic tests (17810

points) revealed that applying the stress exponent from the simulations significantly reduces variability in the reference stress

between independent studies and led to a simplified constitutive relation. Lastly, we showed that the linear settlement laws

of snowpack models, such as Crocus, align with the proposed constitutive relation under natural loading conditions typically

encountered on alpine sites, due to correlations between stress and density. However, considerable differences emerge under

"non-standard" scenarios, such as elevated loads on light snow or reduced loads on dense snow, where our model demonstrates15

superior qualitative performance.
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1 Introduction

Under its weight, snow naturally settles from an initial density of approximately 100 kg m−3 just after deposition on the ground

to about 500 kg m−3 at the end of the winter season, and up to the ice density for perennial snow on glaciers and ice sheets.20

Snow settlement is a key process of the snowpack evolution (Brun et al., 1992; Lehning et al., 2002; Simson et al., 2021).

Predicting snow density is thus essential for many applications such as avalanche forecasting (Morin et al., 2020), hydrology

(Barnett et al., 2008), surface mass balance in polar regions (Morris and Wingham, 2014), or paleoclimatology (Barnola et al.,

1987; Goussery et al., 2004).

Dry snow is a two-phase material made of sintered ice crystals and air (Roscoat et al., 2011). Its settlement is primarily25

driven by the slow viscoplastic deformation of its ice skeleton, leading to a progressive reduction in pore volume (e.g., Yosida,
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1955). Indeed, snow is an open-pore material and the viscous flow of air during deformation can be neglected at low strain rates

(e.g., Bergen, 1968; Colbeck, 1989). Snow settlement thus depends solely on the spatial arrangement of the ice crystals and

the deformation mechanisms they undergo. Two main mechanisms are generally considered for ice in snow: intra-crystalline

deformation, also known as dislocation glide (Duval et al., 1983; Louchet, 2004; Weikusat et al., 2017), and inter-crystalline30

deformation, also known as grain boundary sliding (Alley, 1987; Lundin et al., 2017). At macroscale, the viscoplastic behaviour

of snow, or more widely of porous polycrystals, is generally modelled by a power-law (Glen’s law) relating stress σ to strain

rate ϵ̇ (Glen, 1955):

ϵ̇ = ϵ̇0

(
σ

σ0

)n

(1)

with ϵ̇0 = 1 s−1, n the stress exponent and σ0 the reference stress. This model is extremely sensitive to n, which quantifies the35

dependence of the viscous deformation to the applied stress.

To interpret experimental compression tests on snow, the concept of compaction viscosity has often been employed (Bader,

1954, 1962; Mellor, 1974; Navarre, 1975; Gray and Morland, 1995; Kominami et al., 1998; Sturm and Holmgren, 1998;

Scapozza and Bartelt, 2003a). The compaction viscosity η linearly relates the two directly-measurable macroscopic quantities,

i.e., stress σ and strain rate ϵ̇:40

ϵ̇ =
σ

η
. (2)

This model implicitly assumes that n = 1 in Eq. 1 and corresponds to a Newtonian compressible viscous fluid. Several au-

thors have encapsulated into η various processes presumably contributing to snow creep, such as gravitational settling, grain

rearrangement, water infiltration, and refreezing (Shinojima, 1967; Kojima, 1967; Bergen, 1968; Keeler, 1969). Rheological

models, for instance, the Maxwell, Kelvin, or Burger models (a combination of linear springs and dampers in parallel or se-45

ries), have been the most popular to describe snow behaviour at low strain rates (Bader, 1962; Mellor, 1974; McClung and

Larsen, 1989; Bartelt and Christen, 1999; Chandel et al., 2007; Gorynina et al., 2024; Bahaloo et al., 2024; Huo et al., 2024)

. Nevertheless, these models apply to a wide range of conditions only if η does not depend on σ and ϵ̇, which remains ques-

tionable. Consequently, non-linear extensions of these viscoelastic models have been proposed (Desrues et al., 1980; Stoffel

and Bartelt, 2003; O’Connor and Haehnel, 2020). Besides, in line with this historical data and models, the settlement laws50

currently implemented in snowpack models, such as Crocus (Brun et al., 1992; Vionnet et al., 2012) and Snowpack (Lehning

et al., 2002; Simson et al., 2021), are also linear. In these models, the compaction viscosity is parametrized as a function of

temperature and snow microstructure (primarily its density) and has been calibrated and evaluated under specific conditions

(Ganju et al., 1999). Again, it is questionable whether the implemented models apply to conditions that deviate from the cali-

bration conditions, typically a natural snowpack evolving under alpine conditions. For instance, Royer et al. (2021); Woolley55

et al. (2024) have tuned the standard settlement laws to represent the evolution of snowpack density under arctic conditions,

but they lack a physical basis and a wealth of calibration data.

Different laboratory experiments have focused on characterizing n on snow. Narita (1980, 1984) reported a stress exponent

of n = 4± 1 which appeared independent of temperature. Scapozza and Bartelt (2003a, b) conducted strain rate-controlled
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triaxial experiments on alpine snow and identified two distinct regimes: regime I with an exponent of approximately n≈ 1.860

for low-density snow, and regime II with n≈ 3.5 for higher density snow, with a transition density depending on temperature.

In line with this finding, Schleef et al. (2014a) reported n≈ 2 for compression experiments on low-density samples. Delmas

(2013) observed a sensitivity of n to snow types: n = 4.1 for faceted grains compared to n = 3.2 for rounded grains, at −15◦.

Recently, Sundu et al. (2024b) performed cyclic loadings on snow samples and derived n from the loading and relaxation

phases. They found a transition of n as a function of the geometrical grain size: from n≈ 1.9 for small grains to n≈ 4.4 for65

large grains. They attributed this transition to a transition from grain boundary sliding to dislocation creep at a critical grain

size. In general, the reported scatter of n between 1.8 and 4 was often attributed to the driving mechanisms at the micro-scale,

whose activation may depend on density, optical diameter, or snow type. However, experimental evidence for the reasons

behind this sensitivity is still lacking (Ignat and Frost, 1987; Meyssonnier et al., 2009). Moreover, repeated experiments under

perfectly controlled conditions (e.g., changing the applied stress without altering any parameter that affects the reference stress70

σ0) are seldom conducted and are challenging on snow.

An approach to understanding the mechanisms of snow viscoplasticity and predicting the overall behaviour relies on numer-

ical experiments. The key idea is to model snow based on its porous and crystalline microstructure and to incorporate the local

deformation mechanisms. The numerical solver then simulates the macroscopic behaviour of the sample. Thanks to higher

computing power and easier access to microstructural data, various studies have followed this approach in the recent years75

for snow viscoplasticity, with different assumptions regarding the geometry of the ice skeleton and the driving mechanisms

(Johnson and Hopkins, 2005; Theile et al., 2011; Wautier et al., 2017; Védrine et al., 2024, 2025). Johnson and Hopkins (2005)

modelled snow creep with a snow microstructure described with a set of cylinders with hemispherical ends and inter-granular

viscoplastic contact law. Theile et al. (2011); Wautier et al. (2017) employed a more accurate representation of the microstruc-

ture based on tomographic data, and considered only intracrystalline deformation. These studies simulated an exponent n = 380

and achieved reasonable agreement with experimental data. However, the validation data were either too far from the numerical

conditions to perform a 1:1 evaluation (Wautier et al., 2017) or too scarce to validate the model assumptions definitely (Theile

et al., 2011). In addition, a number of their modelling assumptions are now questionable a priori. Theile et al. (2011) modelled

the snow microstructure as a collection of interconnected finite element beams, which inadequately captured the deformation

obstacles present at the crystal boundaries. Conversely, Wautier et al. (2017) treated the ice in snow as a homogeneous isotropic85

polycrystalline material, neglecting the fact that ice in snow is a collection of ice crystals surrounded by air. Indeed, Védrine

et al. (2024) recently demonstrated that ice in snow cannot be modelled as an isotropic material, and that the crystalline nature

of ice must be explicitly considered. In general, Védrine et al. (2025) showed that, for porous polycrystals like snow, the stress

exponent is sensitive to density and intracrystalline surface area. They showed that the homogenized stress exponent varies

between the exponent of the weakest (basal) slip system (n = 2, (Duval et al., 1983; Chevy, 2008)) and the stress exponent of90

dense polycrystalline ice (n∼ 3), depending on the frustration of the crystals.

In summary, three different approaches have been used to understand and model the viscoplastic behaviour of snow, which

is essential to predict its settlement:
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– Field and laboratory experiments focusing on conditions typically encountered by natural snowpacks in alpine regions

have described snow settlement by a linear model (n = 1) and an apparent compaction viscosity η (Eq. 2). This law is95

implemented in detailed snowpack models.

– Laboratory experiments focusing on the generic material properties of snow reported a non-linear relationship between

stress and strain rate (Eq. 1) with a stress exponent n between 1.8 and 4.

– Microstructure-based simulations suggested that the macroscopic viscoplastic behaviour results from the complex inter-

play between glides on different ice intra-crystalline slip systems, which yields an exponent n between 2 and 3.100

Our paper aims to show that, despite these apparently contradictory results, these three approaches can be reconciled. Our

starting point is the simulations of the effective viscoplastic behaviour of numerous snow microstructures with the state-of-the-

art 3D model by Védrine et al. (2025). Then, we re-interpret previously published experimental data by searching for the model

with the minimal scatter. We show that the model ends up very close to the one derived from microstructure-based simulations.

Eventually, we analyse the difference between the latter model and the settlement law implemented in Crocus and show that105

they coincide under the conditions typically encountered by natural snowpacks in the Alps.

2 Material and Methods

2.1 Microstructure-based simulations

We conducted numerical full-field simulations on three-dimensional porous microstructures, using a crystal plasticity model

to describe the local deformation mechanisms of ice. These simulations are then homogenized to derive the stress exponent n110

and reference stress σ0 (Eq. 1) of a given snow microstructure.

2.1.1 Input snow microstructures

The input of our microstructure-based viscoplastic model is a 3D image of the snow microstructure partitioned into individual

crystals. We used 37 different X-ray tomographic images acquired from previously published studies (Hagenmuller et al.,

2016; Peinke et al., 2020; Hagenmuller and Carmagnola, 2020; Fourteau et al., 2022; Bernard et al., 2023). These binary ice-115

air images encompass the majority of snow types encountered in seasonal snowpacks and span a wide range of density and

specific surface area (Fig. 1). X-ray attenuation images do not distinguish between ice crystals. We thus numerically partitioned

the ice skeleton into individual grains based on geometrical criteria, following the algorithm of Hagenmuller et al. (2014b);

Peinke et al. (2020). We assumed that the detected grains correspond to the ice crystals, which is a reasonable assumption

for most types of snow according to Arnaud et al. (1998). Then, each crystal was associated with a crystalline orientation120

(c-axis) randomly sampled in an isotropic distribution. Note that Védrine et al. (2024) showed that the exact random draw

does not significantly affect the overall mechanical behaviour. To reduce computation time, simulations were not performed on

the entire scanned volume at the nominal image resolution. The resolution was downscaled while ensuring that the equivalent
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optical radius, 3/(SSAρice), remains between 6 and 12 voxels. A cubic sub-volume of 250× 250× 250 voxels was extracted

from the image. This volume contains at least 20 crystals along each edge, which ensures the sample is representative (Védrine125

et al., 2024). Some input 3D images are shown as 2D slices in Figure 2. All details on these images are given in supplementary

material and associated publications.
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Figure 1. Characteristics of the 3D microstructures used in this study. The snow types are described and coloured according to the Inter-

national Classification for Seasonal Snow on the Ground (Fierz et al., 2009): Precipitation Particles (PP), Decomposing and Fragmented

Precipitation Particles (DF), Rounded Grains (RG), Large Rounded Grains (RGlr) Faceted Crystals (FC), Depth Hoar (DH), Machine Made

(MM).The microstructures enclosed by a black circle correspond to those shown in Figure 2.

2.1.2 Elasto-viscoplastic simulations

We performed elasto-viscoplastic simulations using the model developed by Védrine et al. (2024, 2025). We recall here its

main assumptions. Details can be found in the appendix A and associated references.130

Air was modelled as an infinitely soft elastic medium. An elasto-viscoplastic law modelled the mechanical behaviour of

each ice crystal. The elasticity tensor was assumed isotropic transverse in the crystal frame and defined according to Gammon

et al. (1983). The viscoplastic part follows the crystal plasticity law proposed by Castelnau et al. (2008); Lebensohn et al.

(2009); Suquet et al. (2012). Ice crystals deform through slip on three soft basal systems, three hard prismatic systems, and six

hard pyramidal systems (Montagnat et al., 2014). Each slip system (k) is governed by a Norton-type flow law, characterised135

by a prefactor, the reference shear rate γ̇
(k)
0 , a stress exponent n(k), and a critical shear stress τ

(k)
0 . Different parametrizations

of the slip systems have been proposed in the literature for different purposes: to investigate the viscoplastic development

of texture (Castelnau et al., 1996), to model the viscoplastic behaviour and heterogeneous intracrystalline deformation of

columnar ice polycrystals (Lebensohn et al., 2009), or to simulate the transient regime (Suquet et al., 2012; Castelnau et al.,
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Figure 2. Example of the C-axis orientation of different samples: (a) PP, (b) RG, (c) DF, (d) RGlr, (e) DH, (f) MM. Each colour represents

a specific c-axis orientation, as indicated by the accompanying colour wheel. The black background corresponds to the original air pores

within the snow microstructure. Note that the simulation volumes are 3D. Here only 2D slices are shown.

2008). However, as shown by Védrine et al. (2025), a key point for modelling snow behaviour is to set the exponent for140

the basal system equal to 2, as extensively experimentally observed (Duval et al., 1983; Schulson and Duval, 2009). We

therefore used the stationary parametrization of Suquet et al. (2012), calibrated to reproduce the viscoplastic behaviour of

dense polycrystalline ice (σ0(Φ = 1) = 272 MPa and nsuquet = 2.94) as proposed by Budd and Jacka (1989) and Castelnau

et al. (1996) at T0 = 263K. To account for temperature effects, we used the Arrhenius relation proposed by Mellor and Testa

(1969a), i.e., γ̇
(k)
0 (T ) = γ̇

(k)
0 (T0)A(T ) with145

A(T ) = exp
[
−Q

R

(
1
T
− 1

T0

)]
, (3)

where Q = 69.1kJmol−1 is the activation energy of polycrystalline ice (Mellor and Testa, 1969b), R = 8.3Jmol−1K−1 is the

universal gas constant, T is the absolute temperature (in kelvin), and T0 = 263K denotes the reference temperature at which

the parameters are defined.

For the boundary conditions, we prescribed vertical uniaxial compression with periodic boundary conditions (Fig. 3). We150

imposed a positive average vertical strain rate ε̇zz > 0 and zero average lateral stresses, σxx = σyy = 0, and zero average shear
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σxx=0 and σyz =0 σyy=0 and σxz =0

Imposed strain-rate 
 εzz and  σxy=0
 

1 mm

Figure 3. Numerical boundary conditions: uniaxial compression test with imposed strain rate.

stresses, σxy = σyz = σxz = 0. Here, the macroscopic strain and stress tensors are defined as volume average on the sample:

ε = 1
|V |
∫

V
ε(x)dV and σ = 1

|V |
∫

V
σ(x)dV , respectively (Hill, 1963). These boundary conditions mimic the conditions of

snowpack densification, where gravity is the primary driving force and the influence of confining pressure is negligible (Wautier

et al., 2017). We measured the resulting average vertical stress σzz from the simulations.155

The simulations were conducted using the Fast Fourier Transform (FFT)-based solver AMITEX_FFTP (Gelebart et al.,

2020), using the small perturbation assumption. The crystal plasticity model was implemented using the MFront code generator

(Helfer et al., 2015). The numerical integration of crystal plasticity is computationally expensive, but the solver benefits from

the MPI implementation.

2.1.3 Homogenized model160

The mechanical behaviour of heterogeneous materials, such as snow, can often be modelled by replacing the material with an

equivalent homogeneous medium. This approximation, also know as homogenization, requires that the characteristic length

scale of the material microstructure is small relative to the macroscopic scale of interest (Dormieux and Bourgeois, 2002;

Auriault et al., 2010). In the case of snow, this separation of scales is typically satisfied, which allows for the macroscopic

mechanical behaviour to be deduced from the mesoscopic structure obtained through X-ray tomography. Previous studies have165

shown that snow samples on the order of a few millimeters can be considered representative elementary volumes (REVs) for

modelling the mechanical behaviour of snow (Wautier et al., 2015; Srivastava et al., 2016; Védrine et al., 2024; Sundu et al.,

2024a).
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Figure 3 illustrates the uniaxial compression of the exemplary microstructure shown in Fig. 3, under strain rates ranging

from 10−7 to 10−5 s−1. We observe three different regimes of the stress-strain response (Fig. 4). First, the axial stress σzz170

increases linearly with strain in an elastic regime. Then, σzz deviates from the elasticity, and the viscoplasticity is progressively

activated. After this transient regime, σzz eventually reaches a constant value, the yield stress σY , where the microstructure

flows perfectly (stationary creep). The yield stress depends on the microstructure and the applied strain rate. The permanent

viscoplastic regime is reached after a typical strain of 0.5%. Consequently, we conduct simulations up to 1% strain to determine

σY .175

σY

n

Figure 4. Evolution of the vertical stress σzz as the function of the strain ϵzz for different strain rates. Inset: Evolution of axial yield stress

rate as a function of the imposed strain rate. The tested sample is composed of Decomposing and Fragmented snow particles (DF) with a

solid fraction Φ = 0.48, and is shown in Figure 3.

The evolution of yield stress with strain rate follows a power-law over a wide range of strain, encompassing typical strain

rates for snow settlement (Fig. 4 inset). Consequently, we can model the constitutive behaviour using the power-law of Eq. 1

by fitting two parameters n and σ0. The sensitivity to temperature implemented on the microscopic slip systems, A(T ) (Eq. 3),

directly scales out at the macroscopic scale. In other words, the microstructure-based simulations yields the following model:

ε̇ = ε̇0(T0)A(T )
(

σ

σ0

)n

(4)180
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with n and σ0 two fitting parameters depending on the tested microstructure.

2.2 Revisiting previous viscoplastic tests

In this section, we describe how to compare previously published viscoplastic tests and gather them into a common framework.

To characterize the viscoplastic behaviour of snow, two types of mechanical tests are commonly employed: load-controlled

tests (creep tests) (Mellor and Testa, 1969b; Desrues et al., 1980; Bartelt and Christen, 1999; Kirchner et al., 2001; Scapozza185

and Bartelt, 2003b, a; Moos et al., 2003) and strain rate controlled tests (Scapozza and Bartelt, 2003a; Bernard, 2023). We

selected experimental data from such tests, where the initial density, temperature, stress, and strain rate were measured during

the experiments. To focus exclusively on the viscoplastic behaviour, only tests with a strain rate lower than 4× 10−4 s−1

were selected (Kirchner et al., 2001; Barraclough et al., 2017; Löwe et al., 2020; Bernard, 2023). Our dataset comprises 92

measurements obtained from strain rate-controlled tests and 86 measurements obtained from stress-controlled tests (Scapozza190

and Bartelt, 2003b; Theile et al., 2011; Schleef et al., 2014b; Bernard, 2023; Bernard et al., 2023). One measurement comprises

the measured strain rate and stress (ϵ̇,σ) and essential information such as initial ice volume fraction Φ, temperature T and

loading conditions (load or strain-controlled). The data is summed up in Table 1 and fully available in the supplementary

material (Védrine and Hagenmuller, 2025).

Table 1. Characteristic of the experimental data of snow creep used.

References
Snow

type

Temperature

(◦C)

Density

(kg m−3)

Strain rate

(s−1)
Stress (kPa)

Scapozza and Bartelt

(2003b)
RG [-18.9, -2.1] [205, 429]

1.1× 10−6,

4.2× 10−6,

1.1× 10−5,

4.4× 10−5

[1.7, 258]

Theile et al. (2011) S1 S2 RG -11 [205, 345] [10−7,10−6] [2, 10]

Schleef et al. (2014b) PP [-18, -3] [ 55, 120] [10−6,10−5] 0.133, 0.215, 0.318

Bernard (2023) V1 DF/RG -18.5±0.5 [218, 467] 1.8× 10−6 [0, 300]

Bernard (2023) V3 V4 DF/RG -18.5±0.5 [225, 420] 3.1× 10−5 [0, 300]

Bernard et al. (2023) DF -8±0.5 [236, 260] [10−8,10−7] 2.1

The type of snow is defined according to Fierz et al. (2009). The numbers shown in brackets, e.g., [a, b], mean that the parameter ranges between, e.g., a and

b. Details can be found in the associated references.

It is impossible to derive two parameters, namely the reference stress σ0 and stress exponent n, from a individual measure-195

ment points (ϵ̇,σ). Moreover, the data points cannot be directly compared since they were obtained at various temperatures

in the range [-18, -2]°C. However, given a certain n in the range [1, 4] and assuming that the Arrhenius temperature scaling
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applies (Eq. 3), we rescale the data at a constant temperature of -10°C and we can calculate σ0(n) as:

σ0(n) = σ×
(

ϵ̇

ε̇0(T0)A(T )

)− 1
n

. (5)

If the power-law is well-formed, σ0 and n do not depend on the applied stress or strain rate but solely depend on the sample200

microstructure. Therefore, for a given microstructure, knowing the correct stress exponent n is equivalent to obtain the same

reference stress regardless of the test conducted (loading level or test type). In other words, finding the appropriate constitutive

law is equivalent to identifying the exponent n yielding the smallest scatter (defined as the relative standard deviation) of σ0(n)

for different experimental tests but similar microstructures.

In this study, we proposed a simplified but pragmatic application of this procedure by considering the solid fraction Φ as the205

sole characteristic of the microstructure. Indeed, the characterization of microstructures from data collected in the literature is

primarily limited to density. Therefore, we assumed σ0 = σ0(n,Φ) and n = n(Φ). Consequently, the exponent n(Φ) is the one

that minimizes the scatter σ0(n,Φ) for a given narrow range of Φ across multiple experiments. We will use this conceptual

procedure to derive the stress exponent from the presented experimental data (Sect. 3.2). This problem can be formulated as a

minimization problem:210

L(model parameters) =
1

Ndataset

∑

i∈dataset

(σ̃0(Φi)−σ0i)
2

σ2
0i

(6)

where σ0i
and σ̃0 denote the measured and model-predicted reference stress, respectively.

2.3 Snow settlement in detailed snowpack models

The settlement laws currently implemented in snowpack models such as Crocus (Brun et al., 1992; Vionnet et al., 2012) and

Snowpack (Lehning et al., 2002; Simson et al., 2021) (for vertical stresses lower than 0.4 MPa) are linear. For a given snow215

layer of thickness D, the vertical compaction under an overburden stress σ is expressed as:

dD

D
=−σ

η
dt (7)

where dt is the model time step and η (in MPa·s) denotes the compaction viscosity. The compaction viscosity is typically

parametrised as a function of temperature T (in ◦C) and density ρ (in kg·m−3).

In the Crocus model (Vionnet et al., 2012), for dry, non-faceted snow, the compaction viscosity follows the formulation of220

Brun et al. (1992) (hereafter referred to as BR92), derived from the work of Navarre (1975):

ηBR92 = 4η0
ρ

cη
exp(−aηT + bηρ) (8)

where η0 = 7.62237 MPa, aη = 0.1 C◦−1, bη = 0.023 m3kg−1, and cη = 250 kg·m−3.

The ensemble version of the French snowpack model Crocus (ESCROC) (Lafaysse et al., 2017) also includes the viscosity

parameterisation of Teufelsbauer (2011) (hereafter referred to as T11), derived from the observations of Narita (1984) and225
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corrected for low-density snow using the laboratory-based model of Abe (2001):

ηT11 = 5 · 10−8 ρ(−0.0371T+4.4)
(
10−4 exp(0.018ρ) + 1

)
(9)

In the Snowpack model (Lehning et al., 2002), for dry new snow (with dendricity greater than zero), the compaction viscosity

follows the empirical formulation of Kojima (1975) (hereafter referred to as K75), derived from field observations of the natural

settlement of seasonal snow:230

ηK75 = 7 · 10−9 ρ(4.75−T/40) (10)

Although viscosity is a material parameter that characterises deformation in a specific direction, it is commonly assumed

that for densities below 450 kg·m−3, boundary conditions have a negligible effect (Wautier et al., 2017). Consequently, free

and confined boundary conditions are not generally distinguished in these models.

3 Results and discussion235

3.1 Microstructure-based model
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Figure 5. Parameters of the homogenized model: (a) stress exponent n and (b) reference stress σ0 as a function of the solid fraction Φ.

Figure 5 presents the results from the microstructure-based simulations conducted on the 37 tested samples.

Figure 5a shows the evolution of the stress exponent n with the solid fraction Φ. The stress exponent ranges between 2.1

and 2.2 for the considered microstructures with Φ between 0.1 and 0.6. These values are lower than the exponent of dense
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ice (nicesuquet = 2.94) and are close to the basal slip exponent (nbasal = 2). As shown by Védrine et al. (2025) on synthetic240

polycrystals, the homogenized exponent depends on the activity of the slip systems. Specifically, as the incompatibility of

deformation between crystals decreases, the activity of the softer slip systems increases and the stress exponent n tends towards

2. We do not observe a large sensitivity of n to Φ, it is rather constant with an average value of nµCT =2.15. Indeed, the surface

ratio between the inter-crystalline surfaces and the free surfaces is almost constant and remains small (approximately 0.1, see

supplementary material (Védrine and Hagenmuller, 2025) and Figure B1), which yields a low frustration of the basal slip245

systems (Védrine et al., 2025). Consequently, we do not observe an increase of n with Φ.

The reference stress σ0 increases with the solid fraction Φ (Fig. 5b). Indeed, when the solid fraction increases, the stress

supported by the ice skeleton (for a given macroscopic stress σ averaged in air and ice) decreases, leading to an increase of the

reference stress. Following Védrine et al. (2025), we fitted the evolution of σ0 with Φ with a power-law:

σ0 = σ0(Φ = 1)Φm
r . (11)250

with Φr the rescaled solid fraction (Green, 1998; Holman and Leuenberger, 1988; Stauffer and Aharony, 2018) defined as:

Φr =
Φ−Φt

1−Φt
(12)

The quantity σ0(Φ = 1) = 272 MPa represents the reference stress of dense polycrystalline ice, m is the solid fraction expo-

nent, and Φt is the percolation threshold. By fitting the data obtained through homogenization, we found Φt ≈ 0, m = 3.96, and

a scatter of L= 1.68 (Eq. 6) around this model. The very low value for Φt suggests that the snow microstructure can maintain255

connectivity (i.e., percolate) even at very low solid fractions. The solid fraction sensitivity m relates to the heterogeneity of

viscoplastic deformations within the sample. More generally, the value of m can be computed for different snow properties,

such a thermal conductivity, Young’s modulus, and strength. It serves as an indicator of the heterogeneity of the local driving

processes: higher values of m reflects higher heterogeneity (modulated by both the process type and microstructure) (Bruno

et al., 2011). The fitted value of m = 3.96 for snow viscoplasticity is similar to the ones computed for other snow physical260

properties. For thermal conductivity, m typically ranges between 1 and 2 (Calonne et al., 2011, 2019). For the elastic modulus,

m usually falls between 2.5 and 3.5 (Gaume et al., 2017; Sundu et al., 2024a). For strength, Ritter et al. (2020) found values

of 3.59 in compression and 3.09 in tension. Overall, the pseudo-linear viscosity η scales with ϕ−nm (Eq. 2). This extreme

sensitivity to solid fraction emphasizes the challenges in characterizing the viscoplastic behaviour of snow. For example, a 5%

relative error in measuring the solid fraction, which is common (e.g. Proksch et al., 2015; Hagenmuller et al., 2016) leads to a265

relative error of about 20% error in the reference stress σ0 and a relative error of around 50% for the compaction viscosity η.

The scatter observed in the loss value, L= 1.68, can be attributed to the fact that only density is considered as a predic-

tive indicator. However, it is evident that RGlr exhibits a reference stress approximately four times lower than that of other

snow types. Similarly, the DF series studied by Bernard (2023) transitions from being underestimated to overestimated by the

model, suggesting that under loading, the microstructure tends to optimize itself. These two examples suggest the influence of270

additional geometric parameters, such as bond size (Hagenmuller et al., 2014a) which are currently not accounted for in the

model.
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3.2 Experimental data-driven model

To reinterpret previous experimental data, our idea was to determine the value of n that minimizes the scatter of the reference

stress σ0 for "similar" solid fractions Φ across different experiments (see Sect. 3.1 and Eq. 11). The microstructure-based275

simulations showed that the reference stress is likely to be very sensitive to Φ: σ0 ∼ Φ3.96. It is thus impossible from the

collected data (178 points) to gather enough points within a narrow range of [Φ, Φ+∆Φ] with ∆Φ≪ 1 to accurately quantify

the scatter of σ0 and the value n(Φ). However, the microstructure-based simulations also revealed that n is relatively constant

for snow and σ0 follows a power-law of Φ. We use these two results from the microstructure-based simulations as additional

assumptions to reinterpret previous experimental data. In other words, we want to find a constant n that minimizes the relative280

scatter L(n) (defined as the relative standard deviation, see Eq. 6) of σ0 around a power-law of Φ of the form σ̃0(n) = σ0(Φ =

1)Φm
r , with Φr the rescaled solid fraction (Eq. 12) and, m and Φt two optimal fitting parameters depending on n.

We tested this procedure with three different values for the stress exponent: n = 1, n = 3, and n = 2.15 (Fig. 6):

– n=1 (Fig. 6a). When the viscoplastic behaviour is assumed to be linear, we observe significant dispersion in the reference

stress σ0 (L= 0.87), particularly at solid fractions exceeding 0.2. Notably, the dataset divides into two distinct groups:285

the tests with imposed strain rates are located in the lower part of the scatter plot, while the creep tests are located in the

upper part. This dispersion and the separation into two groups indicate that a linear model fails to adequately reproduce

the variety of experimental data. Figure 6 also includes the linear models from Brun et al. (1992), Teufelsbauer (2011)

and Kojima (1975) at a temperature of −10◦C. The Br92 model overestimates all experimental reference stresses and

thus appears too fluid. Moreover, it reaches the viscosity of ice for an ice volume fraction of about 0.5. The T11 model290

also tends to overestimate the reference stress but aligns more closely with the experimental values for low-density snow

measured by (Schleef et al., 2014b). Finally, the K75 model reproduces the experiments of Schleef et al. (2014b) with

good fidelity and lies near the centre of the experimental data set.

– n=3 (Fig. 6b). The case n = 3 corresponds to the exponent of dense polycrystalline ice. It is commonly assumed that

this exponent of the dense material applies to its porous counterpart, snow (Kirchner et al., 2001; Wautier et al., 2017;295

Fourteau et al., 2023). In this case, the dispersion decreases to L= 0.19. This decrease is particularly visible for snow

with solid fractions above 0.2. However, the values of σ0 are still divided into two groups depending on the type of test.

– n=2.15 (Fig. 6c). Finally, when we assume that the stress exponent is equal to nµCT =2.15, the dispersion is reduced to

L= 0.14, with optimized parameters Φt = 0.025 and m = 3.195. Moreover, unlike the case with n = 3, the experiments

with imposed stress and strain rates are superposed, which indicates an appropriate underlying model.300

Figure C1 shows the evolution of the dispersion L as a function of n. L decreases when n increases from 1 to 2.35. For n

in [2.35, 2.59], L remains nearly constant with a weak minimum at n = 2.53. For n > 2.59, L increases with n. Interestingly,

the minimum dispersion error is obtained for a value of n close to the one obtained from microstructure-based simulations.

This parametrization significantly improves the modelling of the viscoplastic behaviour of snow. The exponent n = 2.15 is

consistent with the value derived by Scapozza and Bartelt (2003b) and Schleef et al. (2014b) on samples with low density305
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(a) n=1 (b) n=3

(c) n=2.15

Models

Load controlled tests

Strain-rate controlled tests

K75

-18.5 °C

-11 °C

-2 °C

(Eq. 11)

Figure 6. Experimental data on the evolution of the reference stress as a function of solid fraction, recalculated under various parametrisations

of n at a temperature of -10◦C.
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Figure 7. Comparison of the microstructure-based model and experimental data regarding the evolution of the reference stress as a function

of solid fraction, calculated with the assumption n = 2.15 at a temperature of -10◦C.

(Φ < 0.2). This agreement supports the idea that basal glide is the dominant mechanism at low density. Furthermore, this

suggests that the reduction of the stress exponent from dense ice to snow does not require introducing grain boundary sliding

as a new mechanism, in contrast to the intuition of Alley (1987) and Goldsby and Kohlstedt (1997).

The residual error obtained, L(n = 2.15) = 0.15 is not null and may be attributed to model error and experimental measure-

ment noise. First, the microstructure is simplified here to its solid fraction, Φ. Our model cannot account for other geometrical310

properties, such as bond size (Hagenmuller et al., 2014a) or connectivity (Schleef et al., 2014b; Schöttner et al., 2025), or

the inter-crystalline surface area, which affects the frustration of the basal glide (Védrine et al., 2025). Indeed, the residual

error computed on the microstructure-based simulations is also not null (L = 1.68), which tends to show that the variety of

microstructural patterns for a given Φ could be enriched by other microstructural descriptors. Last, we showed that σ0 varies

like Φm with m≃ 3. Therefore, a small error in measuring Φ, or a small heterogeneity of density in the prepared sample, may315

significantly affect the measured points and subsequent analysis. Second, the scaling to a constant temperature of -10°C might

be a source of uncertainty. For instance, the residual dispersion between appears more pronounced at solid fractions of 0.4 and

0.5 (Fig. 6c), corresponding to tests conducted by the same operator (Scapozza and Bartelt, 2003a) under the same conditions

except different temperatures ([∼−18.5,∼−11,∼−2]). Likely, the Arrhenius scaling around -10°C (Eq. 3) does not apply

to temperatures close to 0°C and below -15°C where different deformation mechanisms may take place (Mellor and Testa,320

1969b).
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Figure 7 illustrates the reference stress σ0 computed from microstructure-based simulations alongside the experimental re-

analysis, both with n = 2.15. We observe that the microstructure-based reference stress deviates from the data-driven reference

stress by a factor of 2. This difference indicates that the viscoplastic behaviour simulated by considering only intracrystalline

deformations might be too fluid. Thus, incorporating an additional deformation mechanism, such as grain boundary sliding,325

would likely render the behaviour even more fluid. One possible explanation for this lower viscosity may be the assumption that

a geometric grain corresponds to a crystal (Védrine et al., 2025). Finally, both fits to experimental data and microstructure-based

simulations tend to underestimate viscosity for a solid fraction around 0.4, suggesting a potential evolution of the morphology

parameter m, which is here assume constant for Φ in the range [Φt, 1]. Indeed, Coble (1961) showed that for Φ close to 1, i.e.

diluted pores in an ice matrix, the solid fraction exponent m is closer to 1.330

3.3 Difference between the data-driven non-linear model and the settlement law implemented in Crocus

In this section, we compare the predictions of the detailed snowpack model Crocus (referred to as Br92) to those of our

data-driven non-linear model (referred to as V25):

ϵ̇(σ,T ) = e
−Q
R

(
1
T − 1

T0

)(
σ

σ0(Φ=1)Φm
r

)n

, (13)

with Q = 69.1kJmol−1, T0 = 263 K, n = 2.15, m = 3.195 and Φr the rescaled solid fraction (Eq. 12) with Φt = 0.025. The335

evaluation is focused on stress - solid fraction (σ,Φ) couples, which are realistic for natural snowpacks. We recall that the

temporal evolution of the thickness h of a layer subjected to an overburden stress σ is related to strain rate as ϵ̇ = ḣ/h.

Figure 8 shows the relationship between the applied stress and the solid fraction for layers measured in natural seasonal

snowpacks at different locations: Cambridge Bay (High-Arctic, Canada, winter 2023-2024, ongoing ERC IVORI campaign),

Col de Porte (French Alps, 1325 m, winters 1993-1994 to 2017-2018, Lejeune et al. (2019)), and Weissflüjoch (Swiss Alps,340

2536 m, winter 2015-2016, Calonne et al. (2020)). The applied stress was calculated as the overburden at mid-layer. It mainly

ranges between 0.1 kPa and 4 kPa and generally increases with the solid fraction. The two alpine sites exhibit larger stresses

for a given solid fraction compared to the Arctic site. In the dry arctic region, densification is primarily driven by wind erosion-

deposition, whereas at the alpine sites, gravity-driven creep is the dominant settlement mechanism (Woolley et al., 2024).

The predictions of V25 and Br92 are compared in the stress - solid fraction diagram shown in Figure 8. The Br92 model345

exhibits a lower stress sensitivity due to its linear formulation. Consequently, our parametrisation V25 predicts higher strain

rates for large loads and lower strain rates for small loads, compared to Br92. Notably, the two models yield equivalent results

for the solid fraction–stress couples most commonly observed at the Col de Porte, where the Br92 model has been extensively

calibrated (Navarre, 1975; Brun et al., 1992). This agreement supports the validity of the V25 model. The linear model performs

well when the applied stress does not vary much beyond its calibration points or when the stress correlates with density. In350

this latter case, the non-linearity can be artificially introduced through the dependence of viscosity η on solid fraction Φ.

However, substantial discrepancies arise when moving beyond these "standard" conditions: Br92 over-estimates the strain rate

for Φ > 0.08 and stresses smaller than those observed at col de Porte, Br92 under-estimates the strain rate for very low density

samples (Φ < 0.08) and for stresses higher than the "standard" ones.
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between the V25 and Br92 model for varying solid fractions and stresses. The stress is

converted into its snow water equivalent.

We illustrated this discrepancy on three exemplary cases, which are out of the common conditions encountered at Col de355

Porte:

– Heavy snowfalls. We consider the bottom of a 25 cm thick layer of snow with a density of 70 kg m−3 (Φ = 0.076,

σ = 0.17 kPa, see green point on Fig. 8). This scenario typically corresponds to a layer formed during a heavy snowfall.

During the first day, the V25 model shows densification at a rate up to 33 times that predicted by the Br92 model (Fig. 9).

Interestingly, the two models converge after approximately 14 days, as the increase in density leads to a corresponding360

rise in viscosity. This finding aligns with field observations, which often indicate that densification is frequently underes-

timated in the immediate aftermath of snowfall (Lundy et al., 2001; Steinkogler et al., 2009; Wever et al., 2015) although

it has minimal impact in the long term. Higher strain rates thus naturally arise on recent snow in the V25 model without

introducing a distinct role for curvature-driven metamorphism (Chen et al., 2019).
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Figure 9. Evolution of the density at the bottom of 25 cm layer of new snow at 70 kg m−3 with the model Br92 et V25 at -10◦C.
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Figure 10. Evolution of the density at the bottom of 10 cm thick layer of snow at 250 kg m−3 with the model Br92 et V25 at -10◦C.

– Wind-packed surface layers. We consider the bottom of a 10 cm thick layer of snow with a density of 250 kg m−3 (Φ =365

0.22, σ = 0.25 kPa, see blue point on Fig. 8). This layer typically forms at the snowpack surface during a wind event.

The V25 model predicts a densification rate about six times slower in the first few days compared to the Br92 model (see

Fig. 10). This result aligns with observations of limited densification of basal layers in Arctic snowpacks—behaviour that

is not well captured by existing parametrisations. Nevertheless, our model does not distinguish snow types and cannot

predict the distinct densification rates observed between RG and DH at a given density (Fourteau et al., 2023).370

– Deep firn. We consider a layer of firn with a density of 450 kg m−3 buried beneath 2 m of snow with an average density

of 400 kg m−3 (Φ = 0.49, σ = 11.9 kPa, see yellow point on Fig. 8). This layer typically forms on an accumulation zone

on an alpine glacier. The V25 model predicts a densification rate that can be up to 30 times faster than that predicted by
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Figure 11. Evolution of the density of a layer of firn at 450 kg m−3 buried below 2 m of snow with an average density of 400 kg m−3) with

the model Br92 et V25 at -10◦C.

the Br92 model (Fig. 9). This result is consistent with field observations of the densification of dense snow and firn in

glacier accumulation zones (Touzeau et al., 2018; Verjans et al., 2019), where flow rates are frequently underestimated.375

For instance, Kappelsberger et al. (2024) tuned the viscosity of BR92 by a factor of 1.4 to model polar firn settlement.

Nevertheless, to broaden the applicability of the V25 model to firn at densities exceeding 450 kg m−3, we will need to

investigate the effects of lateral confinement in greater detail, which are negligible only for low-density snow (Wautier

et al., 2017).

3.4 Intrinsic limitations of the proposed settlement model380

We have integrated previously separate approaches into a cohesive, physically grounded framework, allowing us to reconcile

results that may initially appear contradictory. However, our framework (Eq. 13) cannot, at this stage, capture known features

of snow settlement because it over-simplifies the snow microstructure or the underlying processes. The limitations that would

need to be addressed in future work notably comprise:

– Accounting for morphology descriptors. Our model simplifies the snow microstructure to its ice fraction Φ. This common385

approach does not capture second-order effects of the microstructure on its mechanical behaviour (Hagenmuller, 2014).

Indeed, we observed scatter of the simulated reference stress at a given density (Fig. 5). We chose not to introduce any

additional microstructural descriptors to maintain compatibility with existing experimental data or detailed snowpack

models in which the microstructure is very roughly described. However, conducting the microstructure-based simulations

on a larger set of 3D images could help identify key additional descriptors of the microstructure (e.g. Hagenmuller et al.,390

2014a; Schöttner et al., 2025). These descriptors will need to be predicted by the next generation of snowpack models

(e.g. Brondex et al., 2023).
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– Accounting for the inter-crystalline surface area. Our microstructure-based simulations assume that one grain detected

with geometrical criteria (bond ∼ neck) corresponds to one crystal. This assumption is reasonable for rounded grains,

but is more questionable for faceted crystals or depth hoar. Védrine et al. (2025) showed that the value of the stress395

exponent n is sensitive to crystal frustration, which depends on the ratio between the free surface area and the inter-

crystalline surface area. Based on our assumption, the ratio of inter-crystalline to free surface area was found to be nearly

constant and small (approximately 0.1), implying a low degree of basal slip-system frustration. We believe that this inter-

crystalline surface area plays a key role in the observed differences in settlement rates between rounded grains and depth

hoar (Kojima, 1967; Armstrong, 1980; Sturm and Holmgren, 1998). In particular, we intuit that, for a given density,400

depth hoar is characterised by a higher frustration compared to rounded grains, which yields slower densification. This

lower settlement rate of depth hoar is not anecdotal. It is crucial in the formation of persistent weak layers, a prerequisite

for slab avalanches, or in capturing the thermal properties of widespread tundra snowpacks (Fourteau et al., 2023). Due

to the lack of knowledge about the exact crystalline structure, we cannot currently test this intuition. This idea thus

warrants further numerical investigations using the proposed 3D model associated with explicit crystal measurements405

via diffraction contrast tomography (Granger et al., 2021).

– Refining the temperature sensitivity (Arrhenius law). We assumed that the temperature dependence of the homogenised

Glen’s law follows an Arrhenius relationship with a single activation energy applied uniformly across all microstructures

and temperatures (Eq. 3). However, the activation energy in dense polycrystalline ice varies with temperature (Mellor and

Testa, 1969b), and each crystallographic slip system has its own activation energy (Mellor and Testa, 1969b; Ramseier,410

1975; Goldsby and Kohlstedt, 2001), affecting the relative activity of different systems. Consequently, a temperature

dependence of the stress exponent is to be expected, as noted by Scapozza and Bartelt (2003b). Besides, explicit mea-

surements of the activation energy for snow are seldom reported (Delmas, 2013; Schleef et al., 2014b) and can be affected

by microstructural changes between tests or during a single test. Knowledge of the temperature sensitivity of the driving

deformation mechanisms would help develop a unified settlement law applicable over a broad range of temperatures.415

– Extending the approach to a 3D constitutive model. We evaluated our model on snow with a solid fraction, Φ≤ 0.5,

but it could be extended to larger solid fractions, e.g., to capture the transition from snow to glacier ice. However, our

model is one-dimensional and assumes uniaxial compression with zero average horizontal stresses. Snow, firn or ice in

natural conditions may also be subjected to horizontal stresses. For snow with a low solid fraction, these stresses can

generally be neglected (Wautier et al., 2017), but this is not the case any more for firn or porous ice. Therefore, it would420

be necessary to develop a complete 3D constitutive model to capture this effect.

4 Conclusions and perspectives

We used three different sources of information to understand the viscoplastic behaviour of snow:
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– Microstructure-based simulations. We simulated the viscoplastic behaviour of snow based on its three-dimensional mi-

crostructure and a crystal-plasticity law for the ice matrix. Our simulations revealed, across a variety of microstructures,425

that the viscoplastic behaviour of snow followed a power-law ϵ̇ = ϵ̇0(σ/σ0)n. The stress exponent n ranged from 2.1 to

2.2. The reference stress σ0 was found to be a function of the solid fraction Φ, following the relationship σ0 ∼ Φm
r . The

values for n are consistent both with experimental results for low-density snow (Scapozza and Bartelt, 2003b; Schleef

et al., 2014b) and with generic predictions for porous polycrystals (Védrine et al., 2025). These values are close to the

stress exponent of the basal dislocation glide, since the ice crystals are poorly constrained by neighbours in snow.430

– Previous viscoplastic tests. We revisited a dataset comprising 178 measurement points (σ, ϵ̇) and found that linear mod-

els fail to reproduce the viscoplastic behaviour of snow under various loading conditions. In contrast, using the stress

exponent derived from microstructure-based simulations (n = 2.15) significantly reduces the variability of the reference

stress between independent measurement sets, especially between load-controlled and displacement-controlled tests.

Additionally, it was unnecessary to adjust n over a wide range (e.g., [1, 4], which exceeds the range predicted by the435

microstructure-based model [2, 3]) to consolidate previous datasets. We obtained a relatively simple constitutive relation

presumably valid across a broad range of loading conditions (Eq. 13).

– Detailed snowpack models. Snowpack models, such as Crocus, assume a linear relation between stress and strain rate

(n = 1) and are well-calibrated on field data. We showed that in typical natural seasonal alpine snowpacks, the applied

stress (or layer depth) is not independent of the ice fraction. Therefore, linear and non-linear models can coincide under440

these specific conditions. In fact, the linear viscosity η, a function of solid fraction (which itself is a function of stress),

can artificially introduce non-linearity between stress and strain rate. Indeed, we showed that Crocus and our model

yield equivalent predictions on conditions typically encountered on alpine sites. However, large deviations appear under

"non-standard" conditions, such as high loads on light snow or low loads on dense snow, where our model appears to

perform better qualitatively.445

We have thus unified previously disparate approaches within a single, physically grounded framework, thereby reconciling

results that might initially seem contradictory. This framework provides a robust basis for improving the representation of snow

settlement processes in numerical snowpack models.

Code and data availability. All materials used in this article (codes, geometric characteristic of the microstructure, numerical values, exper-

imental data etc.) are available at Zenodo repository (Védrine and Hagenmuller, 2025)450

Appendix A: Constitutive Law: Crystal plasticity model

The total strain rate tensor ε is decomposed into an elastic part (εe) and a viscoplastic part (εvp), such that: ε = εe + εvp.
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The elastic strain εe is related to the stress tensor σ and the fourth-order stiffness tensor C by the relation:

σ = C : εe. (A1)

The elasticity tensor C is assumed to be isotropic in the crystal reference frame and is defined according to Gammon et al.455

(1983) as follows: C11 = 13.9GPa, C33 = 15.0GPa, C44 = 3.0GPa, C12 = 7.1GPa, C13 = 5.8GPa.

For the viscoplastic part, at infinitesimal strains, the viscoplastic strain results from slips on a total of N different slip

systems:

ε̇vp =
N∑

k=1

γ̇
(k)
0 (T )

(
|τ (k)|
τ

(k)
0

)n(k)

sgn(τ (k))µ(k) (A2)

where n(k) is the stress exponent, γ̇
(k)
0 is the reference shear rate, τ

(k)
0 is the critical shear stress for slip system (k), and460

µ(k) = n(k)⊗s b(k) is the Schmid tensor defined by the (symmetric) dyadic product (⊗s) of the vector normal to the glide

plane n(k) and the Burgers vector b(k) for slip system (k). The critical shear stresses τ
(k)
0 are assumed to be constant (no

hardening), and the reference shear rate is set to γ̇
(k)
0 = 1s−1 at −10◦C. The parametrizations of the crystal plasticity model

are summarized in Table A1.

Table A1. Single crystal ice parameters of crystal plasticity models at −10 ◦C (Suquet et al., 2012).

Family Systems n(k) τ
(k)
0 (MPa)

Basal [0001] < 1120 > 3 2 35

Prismatic [0110] < 2110 > 3 2.85 166

Pyramidal [1122] < 1123 > 6 4 98

Appendix B: Evolution of the surface ratio between the inter-crystalline surfaces and the free surfaces with the465

microstructure

The evolution of the surface ratio between inter-crystalline surfaces and free surfaces, denoted as r, is plotted as a function of

the solid fraction for different microstructures (Figure B1). We observe that r increases only slightly with the solid fraction.

A plateau is reached at r = 0.1 for solid fractions ranging from 0.2 to 0.45, with only the MM and RGlr snow types deviating

from this trend. This low surface ratio leads to low frustration of the basal slip systems (Védrine et al., 2025).470
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Figure B1. Contiguity β and surface ratio r as the function of solid fraction Φ. The contiguity Underwood (1970) is defined as β =
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Figure C1. Evolution of the dispersion L as a function of stress exponent n at a temperature of -10◦C.

Appendix C: Evolution of L as a function of stress exponent n.
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