
 1 

Anomalous fading correction in luminescence dating – a mathematical 1 

reappraisal 2 

 3 

Benny Guralnik1*, Georgina E. King1 4 

 5 
1 Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland 6 
* Present address: KLA Corporation, Diplomvej 373, Kgs Lyngby DK-2800, Denmark 7 

 8 

Correspondence: benny.guralnik@gmail.com, georgina.king@unil.com  9 

 10 

Abstract 11 

Anomalous fading is a power law decay of trapped charge over time that is commonly 12 

observed in wide-bandgap semiconductors, leading to age underestimation in luminescence 13 

dating if unaccounted for. In this paper, we reappraise the mathematical foundations of 14 

luminescence signal correction and introduce two new closed-form analytical expressions for 15 

the two most commonly used age correction models, namely that of Huntley and Lamothe 16 

[Can. J. Earth Sci. 38, 1093-1106, 2001], and of Kars et al. [Radiat. Meas., 43, 786-790, 2008]. 17 

These expressions are amenable to straightforward uncertainty propagation, matching results 18 

from Monte-Carlo simulations at a fraction of the calculation cost. Additionally, we explore 19 

unorthodox combinations of signal fading and growth pathways, by coupling fading models to 20 

signal growth obeying general order kinetics, as well as the one-trap one-recombination center 21 

model.  22 

 23 

 24 

1. Introduction 25 

Anomalous fading is, to date, an undisputedly convoluted subdiscipline in 26 

luminescence dating that creates equal discomfort for students and professors alike. As a result, 27 

the community resorts to “black-box” solutions that include recirculation of measurement 28 

protocols, spreadsheets, and data analysis packages, all of which avoid reappraising the (often 29 

insecure) mathematical footing of the various correction approaches. Deviation from this “grey 30 

literature” can be challenging to justify, thereby stalling further progress. While we 31 

acknowledge the fundamental value of the various contributions on fading quantification and 32 

correction, the gaps in the mathematical clarity and self-consistency of the seminal papers in 33 

the field are nevertheless deep and chronic, and must be addressed transparently to allow 34 

meaningful progress going forward. The errors in prior studies generally fall into one of the 35 

following categories: 36 

 37 

1) Mathematically erroneous statements: Wintle’s (1973) seminal paper made an erroneous 38 

and misleading assertion with respect to its very central finding (Fig. 1a) by claiming that 39 

“the shape of the decay curve does not, however, conform to any simple time dependence”, 40 

despite the fact that a simple time dependence (inset in Fig. 1a) was already well established 41 

in that context (cf. Hoogenstraaten, 1958; Thomas et al., 1965). Similarly, Huntley and 42 

Lamothe (2001) put forth a demonstrably incorrect claim that their fading correction 43 

scheme is “restricted to the low-dose, linear portion of the dose response” (see Section 5) 44 

– which nevertheless became a legitimate excuse for when corrected ages fall short of their 45 

independent constraints. 46 

 47 
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 48 
Figure 1. Characteristic problems with anomalous fading literature. a) Erroneous statements: ”the shape of the decay curve 49 
does not […] conform to any simple time dependence” (Wintle, 1973); inset: same data on a linear signal time vs. logarithmic 50 
time axes, exhibiting a simple logarithmic decay at a ~29% fading rate (reference time of 2 days). b) Erroneous derivation: 51 
negative concentrations in the model of Visocekas (1985) are inevitable (continuous lines), but can be easily mitigated via a 52 
more informed integration (dashed lines, see text). c) Missing formulas from the literature: three examples of seminal formulas, 53 
whose building blocks are scattered across their corresponding papers but never brought together in a meaningful manner. The 54 
parameters are 𝐷̇ for dose rate (with subscripts “nat” and “lab” corresponding to natural and laboratory, respectively), 𝐷𝑒 and 55 
𝐷0 for equivalent and characteristic dose (respectively), 𝑡 for time and 𝑇𝑐𝑜𝑟𝑟  for corrected age, 𝑛 for the trapped electrons 56 
concentration evolving from initial 𝑛0 to saturation 𝑁, 𝑔 for the fading rate (g-value, unitless) for a reference time 𝑡𝑐 , 𝜌′ for 57 
rescaled g-value assuming escape frequency 𝑠, 𝑟′ a dimensionless electron-hole separation distance. 58 
 59 
 60 

2) Inadequate derivations: Visocekas (1976) made the first quantitative reinterpretation of 61 

Wintle’s (1973) data (inset in Fig. 1a), however, his definition of the logarithmic decay 62 

constant (Visocekas, 1985) is at odds with his subsequent derivation, reflecting a faulty 63 

integration that not only led to wrong units but also invoked an unphysical model 64 

(continuous lines in Fig. 1b). As we show in Section 2, a self-consistent integration 65 

instantaneously leads to more meaningful results (dashed lines in Fig. 1b; see Section 3), 66 

precluding negative concentrations and foreshadowing the model of Huntley (2006). 67 

Similarly, the “−1” term in Eq. A4 of Huntley and Lamothe (2001) does not follow from 68 

𝑇𝐿 ≪ 𝑇 as claimed but rather stems from a totally different assumption of 𝑇𝐿 = 𝑡𝑐 , the 69 

relaxation of which could lead to any other arbitrary “−𝑇𝐿/𝑡𝑐” offset in their age correction 70 

formula. 71 

 72 

3) Misleading equations: The age correction formula of Huntley and Lamothe (2001, Eq. 73 

[A5]) lacks a key step, namely the rescaling of 𝜅, which the authors do describe in the text 74 
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but omit from their arithmetic. As trivial as it may be, the rescaling of a g-value from one 75 

reference time 𝑡1 to another 𝑡2, via 𝑔2 = [𝑔1
−1 − log10(𝑡2/𝑡1)]

−1 is not reported in Huntley 76 

and Lamothe (2001) or any later publication. Our confidence in restating their formula 77 

arises from our successful reverse-engineering of their numerical examples. A similar 78 

failure to mathematically express the paper’s central result repeats itself in Huntley (2006) 79 

which failed to formally define 𝑟eff
′  (Fig. 1c) prior to its approximation. Furthermore, Kars 80 

et al. (2008) only provided a bare rate equation, leaving the reader to imagine how to 81 

combine it with the spatial distribution of electron-hole separation distances, even though 82 

a semi-analytical solution is straightforward (Fig. 1c). 83 

 84 

The compound effect of these mathematical shortcomings, only partially listed above and 85 

illustrated in Fig. 1, has been chronic and additive: 1) erroneous statements curb the 86 

practitioners’ understanding and stall further progress, sometimes for decades; 2) the few and 87 

far between mathematical derivations are taken as unquestionable truths rather than as steps 88 

towards better formulations; 3) the theoretical gaps lead to the proliferation of “grey” literature, 89 

spreadsheets and software, and of divergent practical implementations, each patching the 90 

shortcomings to the best of its authors’ understanding, while still all referring to the method as 91 

one and the same. Our current contribution is written out of deep respect for all the fields’ 92 

trailblazers, but recognises the need for mathematical clarity for the treatment of fading 93 

quantification and correction. We therefore proceed to give the shortest possible mathematical 94 

reappraisal of anomalous fading, followed by its verification, and finally some unforeseen and 95 

unprecedented variations on this rather old theme. 96 

 97 

2. Exponential, logarithmic, and power-law decay  98 

To define radioactive decay, Rutherford (1900) designated 𝜆 as the proportionality 99 

constant between concentration 𝑛 and its decay rate with time 𝑑𝑛/𝑑𝑡. Rearranging for  𝜆 and 100 

keeping its sign convention, we can express the decay constant as: 101 

𝜆 = −
𝑑𝑛/𝑛

𝑑𝑡 
. (1) 

where the right-hand side corresponds to fractional loss of concentration (−𝑑𝑛/𝑛) per unit time 102 

(𝑑𝑡). Separation of variables and integration leads to the familiar 𝑛(𝑡)/𝑛0 = exp (−𝜆𝑡), in 103 

which 𝑡 = 𝜆−1 is the amount of time it takes concentration to e-fold (i.e. reduce to 1/𝑒 of its 104 

initial value at 𝑡 = 0). 105 

Visocekas (1976, 1985) both coined the term “logarithmic decay”, and defined the 106 

associated decay constant as “the slope of the TL light sum vs. ln t”, which following our 107 

nomenclature of 𝑛 for concentration (=the light sum in TL), and utilizing the identity 𝑑(ln 𝑡) =108 

𝑑𝑡/𝑡, can be formally written as: 109 

𝜂 = −
𝑑𝑛

𝑑𝑡/𝑡 
. (2) 

which should have had units of concentration. However, a few lines following his definition, 110 

Visocekas (1985) arbitrarily rescaled the denominator from 𝑑 ln 𝑡 to 𝑑 log10 𝑡 (invoking the 111 

familiar “per decade of time”), and further assigned units of [%] to 𝜂‘s numerator, thus 112 

disclosing a miscommunicated normalization of 𝜂 by some arbitrary concentration 𝑛𝑐. It is the 113 

proliferation of these faux units in the literature (“% per decade”), and their hardcoding into all 114 

subsequent formulas (cf. Visocekas, 1985; Huntley and Lamothe, 2001; cf. Slater et al., 2001), 115 

that leaves little doubt that Visocekas’ “logarithmic decay” (Eq. 2) was in fact a misnomer, and 116 

that the proper naming should have invoked the concept of a power-law decay: 117 
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𝜅 = −
𝑑𝑛/𝑛

𝑑𝑡/𝑡 
. (3) 

where fractional concentration loss −𝑑𝑛/𝑛 is scaled by fractional (rather than absolute, cf. Eq. 118 

1) progression in time 𝑑𝑡/𝑡. Note that our new expression for 𝜅 (sensu Huntley and Lamothe, 119 

2001) is a classic example of “dimensionless sensitivity” (Beck, 1970; Smith, 1994; 120 

Smertenko, 2020), defined as the “fractional change in [a] calculated observable divided by 121 

the corresponding fractional change in the [corresponding] parameter of the model” (Smith, 122 

1994). Below we show that it is specifically Eq. (3), that all familiar results can be easily 123 

derived from. Visocekas’ (1985) own seminal decay formula (straight lines in Figs. 1a-b): 124 

𝑛(𝑡)

𝑛𝑐
= 1 − 𝜅 ln (

𝑡

𝑡𝑐
) (4) 

may be understood as integration of Eq. (3) subject to a fixed scaling concentration, namely 125 

∫𝑑𝑛/𝑛𝑐 = −∫𝜅 𝑑𝑡/𝑡 (cf. Eq. 2) with 𝑛𝑐 = 𝑛(𝑡𝑐) = 𝑐𝑜𝑛𝑠𝑡 as the boundary condition. Serving 126 

as the starting point for the age correction of Huntley and Lamothe (2001), Eq. (4) is however 127 

unphysical, since 𝑛 must inevitably, sooner or later, plunge into negative concentrations. This 128 

“feature” of the model bothered Visocekas (1985; one must drop the second term of his Eq. 7 129 

to reproduce 𝐹 in his Fig. 3). However, the negative concentrations can be overcome by 130 

integrating Eq. (3) as written, with no fixed scaling, to obtain: 131 

𝑛(𝑡)

𝑛𝑐
= exp [−𝜅 ln (

𝑡

𝑡𝑐
)] (5) 

Eq.  (5) is the physical model that Visocekas probably strived for, where concentration remains 132 

positive 𝑛 > 0 at all times (for a demonstration of its successful application, see Section 4). 133 

Note that the more familiar Eq. (4) may be considered as a special case of Eq. (5) in its linear 134 

region, where exp(−𝑥) ≈ 1 − 𝑥. For typical laboratory conditions, the curvature of Eq. (5) is 135 

unnoticeable: consider the dashed green curve in Fig. 1b (g=5%), which could easily be 136 

mistaken for a logarithmic decay (Eq. 2) over 6-7 orders of magnitude of time. Let us reiterate, 137 

that 𝜅 in Eqs. (3-5) is just a unitless number, whose arbitrary rescaling and association with 138 

faux units (“% per decade”) might have resulted in more confusion than enlightenment. 139 

If 𝜅 (or the more commonly used g-value, defined as 𝑔 = 𝜅 ln10) is obtained by fitting 140 

Eq. (4), one must report the vicinity of 𝑡 around which it has been derived. This is known as 141 

the “reference time” 𝑡𝑐, which is conventionally set to 2 days (reflecting the typical timescale 142 

of a laboratory experiment). Although few laboratories take the trouble to report their 𝑡𝑐 143 

duration, and even fewer provide its units (i.e. is it 2 days but in units of [ka]?), 𝑡𝑐 is a crucial 144 

parameter for validating one’s data analysis. Due to the logarithm in the denominator of Eq. 145 

(4), the decay constant (whether 𝜅 or 𝑔) is only weakly dependent on the choice of the reference 146 

time 𝑡𝑐 (see Eq. 6 below). Rescaling from one 𝑡𝑐 to another is trivial. Consider a first triplet 147 

(𝜅1, 𝑡1,𝑛1) consisting of a decay constant 𝜅1, defined at the reference time 𝑡1 and corresponding 148 

to concentration 𝑛1. Consider a second triplet (𝜅2, 𝑡2,𝑛2) obeying the very same definition. 149 

Cross-referencing the concentrations via two instances of Eq. (4): 150 
𝑛2
𝑛1
= 1 − 𝜅1 ln (

𝑡2
𝑡1
) ,

𝑛1
𝑛2
= 1 − 𝜅2 ln (

𝑡1
𝑡2
).  

we notice that the product of these two expressions cancels the concentrations, leaving us with 151 
[1 − 𝜅1 ln(𝑡2/𝑡1)][1 − 𝜅2 ln(𝑡1/𝑡2)] = 1, which after rearrangement and isolation of 𝜅2 152 

yields: 153 

𝜅2 = [𝜅1
−1 − ln (

𝑡2
𝑡1
)]
−1

, 𝑔2 = [𝑔1
−1 − log10 (

𝑡2
𝑡1
)]
−1

. (6) 

Conceptually we notice that for 𝑡2 = 𝑡1, no rescaling should occur as expected. To verify the 154 

validity of Eq. (6), we successfully apply it to rescale 𝑔1 = 5% from 𝑡1 = 2 days to 𝜅2 =155 
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0.0231 at 𝑡2 = 30 (Appendix A of Huntley and Lamothe, 2001). It is easy to show that with a 156 

factor 15 increase of the reference time, the rescaled 𝑔2 = 1/(20 − 1.17) = 5.31% is only 157 

marginally shifted by factor 1.06 from its initial value (as a rule of thumb, an order of 158 

magnitude change in time exerts a g-value change in the g-value itself). Note that the above 159 

rescaling applies for logarithmic decay only (Eq. 4), since for decay obeying true power-law 160 

(Eq. 5), 𝜅 remains constant over the entire range of times – which finally brings us to the 161 

nearest-neighbour distribution model as discussed next. 162 

A physical model approximating power-law decay, which we will henceforth refer to 163 

as nearest-neighbor distribution (NND) trap decay, entered mainstream luminescence dating 164 

due to the combined efforts of Huntley (2006), who popularized rather ancient results in an 165 

accessible manner, and Kars et al. (2008) who coupled Huntley’s catchy formulation to a 166 

realistic trap repopulation model. The NND trap decay model, nowadays most often ascribed 167 

to Tachiya and Mozumder (1974), in fact stems from Hoogenstraaten’s (1958) theory of 168 

centres. In fact, Hoogenstraaten’s numerically-exhaustive Eqs. (12.18a-b) immediately lead to 169 

Huntley’s (2006) formulation under the approximations 𝑡 ≅ 𝜃𝑧 and 𝑓 ≅ ln3 𝑧 (which 170 

Hoogenstraaten must himself have resorted to for the calculation of his Fig. 8; cf. Fig. 2 in 171 

Huntley, 2006). In a nutshell, the NND trap decay model assumes a distribution of electron-172 

hole separation distances, where the probability of finding a nearest neighbor at 𝑟′ is given by 173 

𝑝(𝑟′) = 3𝑟′
2
exp(−𝑟′3). The tunneling rate to a center at 𝑟′ is 𝐾(𝑟′) = 𝑠 exp(−𝜌′

−1/3
𝑟′), in 174 

which 𝑠 is the tunneling frequency (s-1), and 𝜌′ (dimensionless) the nearest-neighbour 175 

distribution density. NND trap decay presumes that trapped electrons are lost via electron 176 

tunneling to the nearest available recombination centres, that gradually become situated farther 177 

and farther away as each progressive spherical shell of available centres is consumed. To 178 

calculate the surviving trapped charge concentration, one integrates over the remaining 179 

recombination centre population over all distances, or alternatively only from the effective 180 

“shell” at radius 𝑟eff
′  at which fading is maximal at time 𝑡: 181 

𝑛(𝑡)

𝑛0
= ∫ 3𝑟′2 exp(−𝑟′3) 𝑒−𝑠 exp(−𝜌

′−1/3𝑟′)𝑡𝑑𝑟′
∞

0

= ∫ 3𝑟′2 exp(−𝑟′3)𝑑𝑟′
∞

𝑟eff
′

≅ exp[−𝜌′ ln3(1.8 𝑠 𝑡)]. (7) 

Note that the effective radius 𝑟eff
′ ≅ 𝜌′

1/3
ln(1.8 𝑠 𝑡) is obtained by setting the time to the 182 

inverse of the decay constant 𝑡 = 1/𝐾(𝑟𝑒𝑓𝑓
′ ) and inverting for 𝑟𝑒𝑓𝑓

′ ; note that 1.8 is a totally 183 

arbitrary constant, that improved the approximation in the few scenarios considered by Huntley 184 

(2006). Note also that the resulting 𝑛(𝑡)/𝑛0 ≅ exp[−𝜌
′ ln3(1.8 𝑠 𝑡)] is conspicuously similar 185 

to our Eq. (5), where the roles of 𝜌′ and 𝑠 are analogous to those of 𝜅 and 𝑡𝑐
−1, respectively. 186 

Yet unlike in the heuristic Eq. (5), the logarithm of time in Eq. (7) is cubed, disclosing the 187 

effect of volumetric integration (Hoogenstraaten, 1958; Tachiya and Mozumder, 1974). To 188 

show that 𝜌′ is merely a rescaled g-value, we differentiate Eq. (7) with respect to time, scale 189 

by 𝑡/𝑛 (cf. Eq. 3), and rearrange to obtain: 190 

𝜌′ =
log10 𝑒

3 ln2(1.8 𝑠 𝑡𝑐)
∙ 𝑔. (8) 

Just like Eq. (6), Eq. (8) is also an extremely useful relationship that has so far not been spelled 191 

out in the literature. 192 

 193 

3. Common age corrections  194 

3.1 Huntley and Lamothe, 2001 195 

The Huntley and Lamothe (2001) age correction is a direct utilization of Visocekas’ 196 

logarithmic decay law (Eq. 4), hinted at a decade and a half earlier in Aitken (1985) yet never 197 

put into a practical mathematical formulation. Below, we break down the numerical example 198 
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from Appendix A of Huntley and Lamothe (2001) and use it to rewrite their formulas in a more 199 

meaningful manner.  200 

a) First, one conducts laboratory fading experiments, and best fits them via Eq. (4) to obtain 201 

a decay constant 𝜅 referenced to a common 𝑡𝑐 across all samples to allow for 202 

straightforward comparison (𝜅 = 5%/ln 10 = 0.0217 for 𝑡𝑐 = 2 days).  203 

b) Next, one must use Eq. (6) to rescale 𝜅 from a common 𝑡𝑐 to a sample-specific 𝑡𝑙𝑎𝑏  via 204 

𝜅𝑙𝑎𝑏 = [𝜅
−1 − ln(𝑡𝑙𝑎𝑏/𝑡𝑐)]

−1. The laboratory time 𝑡𝑙𝑎𝑏 can be defined as time spent by the 205 

sample to attain its equivalent dose, 𝐷𝑒 , in the laboratory; such a definition is broad enough 206 

to both contain the straightforward 𝑡𝑙𝑎𝑏 = 𝐷𝑒/𝐷̇𝑙𝑎𝑏 in which 𝐷̇𝑙𝑎𝑏 is the laboratory dose rate, 207 

as well as an arbitrary prescribed amount of fading time to correct for (e.g. 𝑡𝑙𝑎𝑏 = 30 days 208 

from irradiation to measurement, leading to 𝜅𝑙𝑎𝑏 = 0.0231; Huntley and Lamothe, 2001).  209 

c) Finally, one uses Eq. (4) again to write 𝑛(𝑡)/𝑛0 = 1 − 𝜅𝑙𝑎𝑏 ln(𝑡/𝑡𝑙𝑎𝑏), and solves for the 210 

initial concentration to obtain 𝑛0 = 𝑛(𝑡)/[1 − 𝜅𝑙𝑎𝑏 ln(𝑡/𝑡𝑙𝑎𝑏)]. Granted linearity between 211 

concentration and apparent age, we replace 𝑛(𝑡)/𝑛0 = 𝑡𝑓𝑎𝑑𝑒𝑑/𝑡𝑐𝑜𝑟𝑟 , obtaining: 212 

𝑡𝑐𝑜𝑟𝑟 =
𝑡𝑓𝑎𝑑𝑒𝑑

1 − [𝜅−1 − ln (
𝑡𝑙𝑎𝑏
𝑡𝑐
)]
−1

ln (
𝑡𝑐𝑜𝑟𝑟
𝑡𝑙𝑎𝑏

+ 𝐶)

. 
 

4) where 𝐶 is a contested offset (Lamothe et al., 2003), set to 𝐶 = −1 in Huntley and Lamothe 213 

(2001) even though their 𝑇𝐿 ≪ 𝑇 assumption should have led to 𝐶 = −𝑇𝐿/𝑡𝑐 in the 214 

equation above. Note that in the equation above, 𝑡𝑐𝑜𝑟𝑟 may be obtained via fixed-point 215 

iteration. Given 𝑡𝑓𝑎𝑑𝑒𝑑  of 102, 103, and 104 years, and complying with 𝐶 = −1, we set 216 

𝑡𝑐𝑜𝑟𝑟 = 𝑡𝑓𝑎𝑑𝑒𝑑  in the right hand side, recalculate 𝑡𝑐𝑜𝑟𝑟 on the left hand side, and repeat 2-3 217 

iterations to converge to 𝑡𝑐𝑜𝑟𝑟 of 116.9, 1248.6, and 13402 years, in accordance with 218 

Huntley and Lamothe (2001). 219 

 220 

Since long delayed-readout experiments (Auclair et al., 2003) have never entered the 221 

mainstream due to their impracticality, we feel entitled to substitute 𝑡𝑓𝑎𝑑𝑒𝑑 = 𝐷𝑒/𝐷̇𝑛𝑎𝑡 in 222 

which 𝐷̇𝑛𝑎𝑡 is the natural dose rate, 𝑡𝑙𝑎𝑏 = 𝐷𝑒/𝐷̇𝑙𝑎𝑏 as already mentioned before, and rewrite 223 

Huntley and Lamothe’s (2001) age equation as: 224 

𝑡corr =
𝐷𝑒/𝐷̇𝑛𝑎𝑡

1 − [𝜅−1 − ln(
𝐷𝑒/𝐷̇𝑙𝑎𝑏
𝑡𝑐

)]
−1

ln (
𝑡corr

𝐷𝑒/𝐷̇𝑙𝑎𝑏
− 1)

. 
(9) 

keeping the familiar “−1” offset for historical rather than mathematical reasons. Noticing that 225 

a dual occurrence of an unknown (here 𝑡corr) across both sides of an equation, one raw and one 226 

logarithmic, is the hallmark of problems amenable to a solution via Lambert’s W function 227 

(Corless, 1996), we find that the implicit Eq. (9) has an exact, explicit solution that reads: 228 
 229 

𝑡corr =
𝐷𝑒/𝐷̇𝑙𝑎𝑏

exp (𝑊−1 {−
𝐷̇𝑙𝑎𝑏
𝐷̇𝑛𝑎𝑡

([1 +
1
𝜅 − ln (

𝐷𝑒
𝐷̇𝑙𝑎𝑏𝑡𝑐

)] − 1) 𝑒
−[1+

1
𝜅
−ln(

𝐷𝑒
𝐷̇𝑙𝑎𝑏𝑡𝑐

)]
} + [1 +

1
𝜅 − ln (

𝐷𝑒
𝐷̇𝑙𝑎𝑏𝑡𝑐

)])

.  
(10) 

 230 

where 𝑊−1(𝑥) is the −1 branch of Lambert’s W function, and the term 𝐷̇𝑙𝑎𝑏/𝐷̇𝑛𝑎𝑡 has been 231 

foreshadowed by Lamothe et al. (2003). Despite the lengthy expression, the derivation of Eq. 232 

(10) from Eq. (9) becomes trivial upon the following reparameterization: 233 

 234 

𝑡corr =
𝐷𝑒/𝐷̇𝑛𝑎𝑡

𝑓
, 𝑓 =

𝐷̇𝑙𝑎𝑏

𝐷̇𝑛𝑎𝑡
𝑒−𝑞−𝑝, 𝑝 = 1 +

1

𝜅
− ln (

𝐷𝑒

𝐷̇𝑙𝑎𝑏𝑡𝑐
) , 𝑞 = 𝑊−1 [−

𝐷̇𝑙𝑎𝑏

𝐷̇𝑛𝑎𝑡
(𝑝 − 1)𝑒−𝑝].  
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where 𝑓 is a fading correction factor, whose associated uncertainty with respect to 𝜅 can be 235 

obtained via the chain rule, namely 
𝑑𝑓

𝑑𝑝
= 𝑓 [1 −

(𝑝−2)𝑞

(𝑝−1)(𝑞+1)
], 
𝑑𝑝

𝑑𝜅
= −𝜅−2, 

𝑑𝑓

𝑑𝜅
=

𝑑𝑓

𝑑𝑝

𝑑𝑝

𝑑𝜅
, to yield a 236 

fully analytical propagation of all uncertainties in Eq. (10) as follows: 237 

 238 

𝜎𝑡corr = √(
𝜎𝐷𝑒
𝐷𝑒

)
2

+ (
𝜎𝐷̇𝑛𝑎𝑡

𝐷̇𝑛𝑎𝑡
)

2

+ ([
(𝑝 − 2)𝑞

(𝑝 − 1)(𝑞 + 1)
− 1]

𝜎𝜅
𝜅2
)

2

.  (11) 

 239 

 240 

 241 
Figure 2. a) comparison of our new explicit Eqs. (10) and (11) to former approaches, as demonstrated on the data of Thiel et 242 
al., 2015. a) age from the explicit Eq. (10) vs. the implicit age from Eq. (9) both as a single-instance (black dots) and averaged 243 
Monte-Carlo simulations (blue crosses), and published results (red circles). b) age uncertainty from the explicit Eq. (11) vs. 244 
standard deviation from Monte-Carlo simulations (blue crosses), and published results (red circles). See appendix B for 245 
tabulated values. 246 
 247 

 We test our new formulas on the extensive sedimentary archive of Thiel et al. (2015), 248 

consisting of 25 feldspar pIR-IR225 ages from Oga peninsula (Japan), where 𝐷𝑒, 𝑔, and 𝐷̇𝑛𝑎𝑡  249 

and their uncertainties have all been measured and reported (Appendix A). To evaluate 𝑊−1(𝑥) 250 

in Eq. (10), we use the recent and high-precision algorithm of Lóczi (2022). Our Eqs. (9-10) 251 

yield identical results within 16-digit numerical precision (Fig. 2a), whose relative sub-percent 252 

deviation (-0.9% on average) from Thiel et al.’s ages is the direct result of the latter’s reporting 253 

of ages in [ka] units with zero significant digits. The negligible deviation of Monte-Carlo age 254 

estimates (-0.66% on average) from the analytical equations confirms that the effects of 255 

measurement uncertainties (𝜎𝐷𝑒, 𝜎𝑔, and 𝜎𝐷̇𝑛𝑎𝑡) propagate linearly into the age correction.  256 

Fig. 2b demonstrates that Eq. (11) matches Monte-Carlo estimates of age uncertainties across 257 

almost an octave of 𝜎𝑡corr within high accuracy (2.6% on average). Conversely, the age 258 

uncertainties reported by Thiel et al. (2015) (red circles Fig. 2b) are not only visibly rounded 259 

to the nearest integers, but they progressively underestimate (by up to a factor of 2) the actual 260 

age uncertainties with younger age. The latter artefact arises from the community’s most 261 

popular fading-correction spreadsheet, which is almost never given credit to (see Jaiswal et al., 262 

2009 for a refreshing exception). In that otherwise excellent spreadsheet, propagation of age 263 

uncertainties is done via a finite number of calculated end-member scenarios, which may be 264 

insufficient for younger ages vis-à-vis the analytical approach of Eq. 11. 265 

 266 

3.2 Kars et al., 2008 267 
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Kars et al. (2008) coupled the model of Huntley (2006) to trap repopulation via the 268 

environmental dose rate 𝐷̇𝑛𝑎𝑡 under the effect of a saturating exponential growth, where the 269 

filling of a finite number of traps 𝑁 is limited by the characteristic dose 𝐷0, which can be 270 

thought of as the e-folding radiation dose absent any fading effects. Recasting Kars’ model into 271 

a single semi-analytical equation, one obtains: 272 

 273 

𝑛(𝑡)

𝑁
= ∫

3𝑟′
2
exp(−𝑟′3)

1 +
𝐷0
𝐷̇
𝑠 exp(−𝜌′−1/3𝑟′)

{1 − 𝑒−[𝐷̇/𝐷0+𝑠 exp(−𝜌
′−1/3𝑟′)]𝑡} 𝑑𝑟′.

∞

0

 (12) 

 274 

If one wishes to be pedantic, the age correction due to Kars can be formally written as: 275 

∫
3𝑟′2 exp(−𝑟′3)

1 +
𝐷0
𝐷̇𝑙𝑎𝑏

𝑠 exp(−𝜌′−1/3𝑟′)
{1 − 𝑒−[𝐷̇𝑙𝑎𝑏/𝐷0+𝑠exp(−𝜌

′−1/3𝑟′)]𝐷𝑒/𝐷̇𝑙𝑎𝑏} 𝑑𝑟′
∞

0

= ∫
3𝑟′2 exp(−𝑟′3)

1 +
𝐷0
𝐷̇𝑛𝑎𝑡

𝑠 exp(−𝜌′−1/3𝑟′)
{1 − 𝑒−[𝐷̇𝑛𝑎𝑡/𝐷0+𝑠 exp(−𝜌

′−1/3𝑟′)]𝑡corr} 𝑑𝑟′
∞

0

 

(13) 

 276 

where on the left-hand side we have fading-affected signal growth in the laboratory, to be 277 

matched by the term on the right-hand side, where fading affected growth to the same level 278 

occurs at an environmental dose rate during an unknown duration 𝑡corr. As we show below, 279 

Eqs. (12-13) lack an exact solution, but are amenable to approximation if we extend the concept 280 

of effective radius 𝑟eff
′  as follows. A foreshadowing of our new approximation is to be found 281 

in King et al. (2016), who multiplied the laboratory dose response curve (1 − 𝑒−𝐷̇𝑙𝑎𝑏𝑡/𝐷0) by 282 

Eq. (7) to obtain: 283 

𝑛(𝑡)

𝑁
= [1 − exp (−

𝐷̇𝑡

𝐷0
)] ∫ 3𝑟′2 exp(−𝑟′3)𝑑𝑟′

∞

𝑟eff
′

≅ [1 − exp(−
𝐷̇𝑡

𝐷0
)]exp[−𝜌′ ln3(1.8 𝑠 𝑡∗)] (14) 

where 𝑡∗ was taken to be half the irradiation time (Aitken 1985, p.279-280). The approximation 284 

in Eq. (14) is typically satisfactory for 𝑡 < 104 s, but at longer times often results in an 285 

unphysical artefact of signal decay (e.g. Supplementary Fig. S2B and S3B in King et al., 2016; 286 

Fig. 3B and 3E in Bouscary and King, 2024), arising from the last exponential term in Eq. (14), 287 

which at long enough times brings 𝑛(𝑡)/𝑁 to zero (no such term exists on the exact, left-hand 288 

side of Eq. 14). This artefact can be easily mitigated if we approximate 𝑟eff
′ ≅289 

𝜌′
1/3

ln (1.8 𝑠 
𝐷0

𝐷̇
 [1 − exp (−

𝐷̇𝑡

𝐷0
)] ), from which it follows that at short times, 𝑟eff

′ (𝑡 → 0) ≅290 

𝜌′
1/3

ln(1.8 𝑠 𝑡 ), reducing 𝑟eff
′  to Huntley’s formulation (2006), while at long times, 291 

𝑟eff
′ (𝑡 → ∞) ≅ 𝜌′

1/3
ln(1.8 𝑠 𝐷0/𝐷̇), representing a “frozen” fading front counteracted by trap 292 

refilling at a commensurate rate. Substituting our alternative definition of 𝑟eff
′  into Eq. (13) we 293 

get: 294 

 295 
𝑛(𝑡)

𝑁
≅ [1 − exp (−

𝐷̇𝑡

𝐷0
)] exp(−𝜌′ ln3 {1.8 𝑠

𝐷0

𝐷̇
[1 − exp (−

𝐷̇𝑡

𝐷0
)]}) . (15) 

which for typical parameters matches numerical integration of Eq. (12) to within sub-percent 296 

accuracy. By equating two instances of Eq. (15), one for natural 𝐷̇ = 𝐷̇nat, and the other for 297 

laboratory 𝐷̇ = 𝐷̇lab growth (cf. Eq. 13), we obtain: 298 

 299 
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𝑡𝑐𝑜𝑟𝑟 = −
𝐷0

𝐷̇nat
ln

{
 
 

 
 

1 − (1 − 𝑒
−
𝐷e
𝐷0)

exp [−𝜌′ ln3 (1.8 𝑠
𝐷0
𝐷̇lab

 (1 − 𝑒
−
𝐷e
𝐷0))]

exp [−𝜌′ ln3 (1.8 𝑠
𝐷0
𝐷̇nat

 (1 − 𝑒
−
𝐷e
𝐷0))]

}
 
 

 
 

. (16) 

 300 

As with Eq. (10), we rewrite Eq. (16) more compactly, which allows us to derive its analytical 301 

uncertainty propagation more easily: 302 

 303 

𝑡𝑐𝑜𝑟𝑟 = −
𝐷0

𝐷̇nat
ln(1 − 𝑟𝑛𝑒), 𝑟 = 𝑒

−𝜌′[ln3(1.8 𝑠
𝐷0
𝐷̇lab

 𝑛𝑒)−ln
3(1.8 𝑠

𝐷0
𝐷̇nat

 𝑛𝑒)]
, 𝑛𝑒 = (1− 𝑒

−
𝐷e
𝐷0) .  

𝑑𝑡𝑐𝑜𝑟𝑟
𝑑𝜌′

=
−𝐷0𝑛𝑒𝑟

𝐷̇nat(1 − 𝑛𝑒𝑟)
[ln3 (1.8 𝑠

𝐷0

𝐷̇lab
 𝑛𝑒) − ln

3 (1.8 𝑠
𝐷0

𝐷̇nat
 𝑛𝑒)]. 

 
𝑑𝑡𝑐𝑜𝑟𝑟
𝑑𝐷0

= −
ln(1 − 𝑛𝑒𝑟)

𝐷̇nat
−

𝐷𝑒(1 − 𝑛𝑒)𝑟

𝐷0𝐷̇nat(1 − 𝑛𝑒𝑟)

− 3 𝜌′𝑟
𝑛𝑒 − 𝐷𝑒(1 − 𝑛𝑒) 

𝐷0𝐷̇nat(1 − 𝑛𝑒𝑟)
[ln2 (1.8 𝑠

𝐷0

𝐷̇lab
 𝑛𝑒) − ln

2 (1.8 𝑠
𝐷0

𝐷̇nat
 𝑛𝑒)]. 

 

 304 

𝜎𝑡𝑐𝑜𝑟𝑟 = √𝑡𝑐𝑜𝑟𝑟2 [(
𝜎𝐷𝑒
𝐷𝑒

)
2

+ (
𝜎𝐷̇𝑛𝑎𝑡

𝐷̇𝑛𝑎𝑡
)

2

] + (
𝑑𝑡𝑐𝑜𝑟𝑟
𝑑𝜌′

⋅ 𝜎𝜌′)
2

+ (
𝑑𝑡𝑐𝑜𝑟𝑟
𝑑𝐷0

⋅ 𝜎𝐷0)
2

. (17) 

 305 

 306 

 307 
Figure 3. a) comparison of our new explicit Eqs. (16) and (17) to former approaches, as demonstrated on the data of Thiel et 308 
al., 2015. a) age from the explicit Eq. (16) vs. the implicit age from Eq. (13) both as a single-instance (black dots) and averaged 309 
Monte-Carlo simulations (blue crosses), and published results (red circles). b) age uncertainty from the explicit Eq. (17) vs. 310 
standard deviation from Monte-Carlo simulations (blue crosses), and published results (red circles). See appendix B for 311 
tabulated values. 312 
 313 

 We test our new formulas on the same dataset as before, using an “unfaded” estimate 314 

of 𝐷0 =476 Gy (cf. Fig 5b in Section 4 below). The relative accuracy of the Kars model 315 

approximation (Eq. 16) vis-à-vis the exact numerical quadrature of the Kars et al. (2008) model 316 

(Eq. 13) is 0.5%. As in Fig. 2, only a negligible deviation of Monte-Carlo age estimates (-317 

0.79% on average) from the analytical equations is detectable. A systematic model-to-model 318 

offset, whereby the Kars et al. (2008) yields 9.3±1.9% older ages than the Huntley and Lamothe 319 

(2001), is apparent. For discussion on age accuracy vis-à-vis independent constraints (“which 320 
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model is right?”), we refer the reader to Section 4.4. Furthermore, Fig. 3b demonstrates that 321 

𝜎𝑡corr values obtained using Eq. (17) underestimate Monte-Carlo estimates by 5.0±2.8%, 322 

which we still consider as an excellent achievement, given that until now, there existed no 323 

alternatives to Monte-Carlo simulations for the estimation of the age uncertainties of the Kars 324 

et al. (2008) age correction. 325 

 326 

4. Unorthodox age corrections  327 

By disentangling the fundamental concepts related to quantification of fading rates 328 

(Section 2) and their derivative age corrections (Section 3), we recognize two straightforward 329 

model combinations that for some reason have never been put together before. 330 

 331 

4.1. Age correction from NND decay 332 

The following correction is similar to that of Huntley & Lamothe (2001) in that it uses 333 

the quantified fading rate to roll the time back to estimate 𝑛0, yet instead of using logarithmic 334 

decay, the apparent faded age 𝐷𝑒/𝐷̇𝑛𝑎𝑡 is divided by Eq. (7): 335 

𝑡𝑐𝑜𝑟𝑟 =
𝐷𝑒/𝐷̇𝑛𝑎𝑡

exp[−𝜌′ ln3(1.8 𝑠 𝑡𝑐𝑜𝑟𝑟)]
. (18) 

Eq. (18) is analogous to Eq. (9), without rescaling of the g-value (since 𝜌′ is a global 336 

parameter). Like Eq. (9), Eq. (18) too is implicit with respect to 𝑡𝑐𝑜𝑟𝑟, but converges quickly 337 

via fixed-point iteration (i.e. an iterative procedure, where the left-hand side is updated by 338 

substituting its previous value into the right-hand side; initial guess for 𝑡𝑐𝑜𝑟𝑟 is 𝐷𝑒/𝐷̇𝑛𝑎𝑡). 339 

 340 

4.2. Saturating exponential signal growth, coupled to power law decay 341 

The following correction is similar to that of Kars et al. (2008) in that it combines both 342 

signal growth and decay, yet instead of using a distribution of traps in combination with the 343 

NND model, here charge accumulates in a single trap (first term in parentheses), and decays 344 

from it following power law (Eq. 5): 345 

𝑛(𝑡)

𝑁
= (1 − 𝑒

−
𝐷̇
𝐷0
𝑡
)exp [−𝜅 ln (

𝑡

𝑡𝑐
)]. (19) 

Note the conceptual similarity of Eq. (19) with Eq. (15). To use Eq. (19) to correct an age, one 346 

equates between the signal obtained in the laboratory (left hand side below) and in nature (left 347 

hand side below), and solves for 𝑡𝑐𝑜𝑟𝑟: 348 

(1 − 𝑒
−
𝐷𝑒
𝐷0) exp [−𝜅 ln (

𝐷𝑒/𝐷̇𝑙𝑎𝑏
𝑡𝑐

)] = (1 − 𝑒
−
𝐷̇𝑛𝑎𝑡
𝐷0

𝑡𝑐𝑜𝑟𝑟)exp [−𝜅 ln (
𝑡𝑐𝑜𝑟𝑟
𝑡𝑐

)].  

 349 

4.3. Non-first order signal growth, coupled to NND decay 350 

Starting with the model of Kars et al. (2008), we can replace their first-order rate 351 

equation to the one-trap one-recombination center (OTOR) model (Pagonis et al., 2020), 352 

yielding: 353 

𝑛(𝑡)

𝑁
= ∫ 3𝑟′2 exp(−𝑟′3) 𝑛̂𝑟′𝑑𝑟

′,
𝑑𝑛̂𝑟′

𝑑𝑡
=
𝐷̇

𝐷0
⋅

(1 − 𝑛̂𝑟′)

𝑅 + (1 − 𝑛̂𝑟′)(1 − 𝑅)
 − 𝑠 exp(−𝜌′

−1/3𝑟′) 𝑛̂𝑟′

∞

0

 (20) 

where 𝑅 is a dimensionless retrapping ratio (Pagonis et al., 2020). Note that since a special 354 

case of Eq. (20) with 𝑅 = 1 amounts to the Kars et al. (2008) correction (cf. Eq. 12), Eq. (20) 355 

can be considered as a direct extension of the Kars et al. (2008) age correction scheme for cases 356 

where signal growth complies with the OTOR model. As a counterpart for Eq. (20), and purely 357 

for completeness (rather than novelty), we note an earlier and similar attempt at replacing first-358 

order behavior with the general order kinetics (GOK) model (cf. Guralnik et al., 2015): 359 
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𝑛(𝑡)

𝑁
= ∫ 3𝑟′

2
exp(−𝑟′3) 𝑛̂𝑟′𝑑𝑟

′,
𝑑𝑛̂𝑟′

𝑑𝑡
=
𝐷̇

𝐷0
(1 − 𝑛̂𝑟′)

𝛼 − 𝑠 exp(−𝜌′
−1/3

𝑟′) 𝑛̂𝑟′

∞

0

 (21) 

which conveniently reduces to the Kars et al. (2008) scheme given 𝛼 = 1. Note that while Eq. 360 

(21) has been successfully used in luminescence thermochronology (cf. Section 5), we are 361 

unaware of its applications for age correction in a sedimentary dating context. To use Eqs. 20 362 

or 21 to correct an age, one equates two instances of the relevant equation (cf. Section 4.2), 363 

one expressing laboratory growth and the other growth in nature for an unknown duration 𝑡𝑐𝑜𝑟𝑟, 364 

that one then solves for. 365 
 366 

4.4. Benchmarking unorthodox vs. common age corrections vis-à-vis an independent age 367 

The stratigraphic section studied by Thiel et al. (2015) contains two independently 368 

dated tephra markers which are widespread in northern Japan, namely the Toya ash (dated by 369 

various U-Pb and U-Th methods to ~0.1 Ma with a ~10% relative uncertainty; see Ito, 2024, 370 

and references therein) and the Aso-4 tephra (whose radiometric K-Ar age is 89±7 ka; 371 

Matsumoto, 1990). The only sample in Thiel et al. (2015) with sufficiently documented raw 372 

luminescence data to enable full age recalculation using all the approaches presented in this 373 

paper, is sample 055231, directly capped by the Toya ash. The horizontal line in Fig. 4c is a 374 

Toya tephra age of 112–115 ka as assigned by Thiel et al. (2015), from the references that were 375 

available to these authors at the time of writing. While model fits to the anomalous decay data 376 

(circles in Fig. 4a) and dose response (circles in Fig. 4b) are barely distinguishable, there is a 377 

considerable variance in the resulting pIR225 ages (circles with error bars in Fig. 4c), spanning 378 

75–130 ka within 1σ uncertainties.  379 

 380 

 381 

 382 
Figure 4. a) laboratory decay and b) dose response curve of pIR225 signal of sample 055231 from Thiel et al. (2015). c) 383 
luminescence ages following corrections considered in this study. The horizontal line corresponds to the independent age of 384 
112-115 ka associated with the Toya tephra (Thiel et al., 2015 and references therein). 385 
 386 
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 387 

Within the methodological uncertainties of luminescence dating, the independent 112–388 

115 ka age is matched by any of the physical corrections of IRSL fading (i.e. all except Huntley 389 

and Lamothe, 2001, which is based on the problematic logarithmic signal loss – see Section 390 

2.) Note, that the fading corrected ages cluster into two groups, corresponding to the younger 391 

ages from non-NND models (Eqs. 9-11 and 19), in contrast to the older ages from the NND 392 

decay models (Eqs, 18, 20 and 21); the latter appear to yield results closer to the independent 393 

age constraint that Thiel et al. (2015) quoted. It is cautiously remarked that replacing the first-394 

order signal growth of Kars et al. (2008) with either GOK or OTOR (Eqs. 20-21) seems to 395 

further increase model accuracy vis-à-vis the 112–115 ka age reference.  396 

Regrettably, the exercise in Fig. 4c is too limited to draw any substantial conclusions 397 

regarding the validity of the anomalous fading corrections being tested, or lack thereof. Even 398 

for the reanalyzed sample (055231), Thiel et al.’s 112–115 ka age bracket is unrealistically 399 

narrow in light of the latest and most rigorous geochronological investigation of the Toya ash 400 

(Ito, 2024), which cautiously refers to that volcanic event as a ~0.1 Ma eruption with a 1σ age 401 

uncertainty of ~10% (cf. a U-Th isochron age of 110±14 ka, and weighted mean U-Pb age of 402 

103±14 ka). With this latter and more realistic age constraint, any of the fading-corrected 403 

luminescence ages in Fig. 4c are in accord with the best available independent chronology (Ito, 404 

2024). 405 

While we lack dose response data for samples 055255 and 055256 to be able to conduct 406 

a similar exercise to that presented in Fig. 4, their results are also of interest and are discussed 407 

below. These samples, which bracket the 89±7 ka Aso-4 tephra from just below and above, 408 

yield weighted luminescence mean ages of 91.5±10.6 ka using the Huntley and Lamothe 409 

(2001) correction, and 99.7±11.6 ka using the Kars et al. (2008) model (Appendix B). Just as 410 

with the Toya ash, the independent age constraint doesn’t allow discerning “which fading 411 

model is right”: within methodological uncertainties, they all are. To explicitly warn the reader 412 

against confirmation bias that the Huntley and Lamothe (2001) correction (91.5±10.6 ka) falls 413 

“closer” to the K-Ar age, a few caveats regarding age accuracy are given. A potential for a 414 

<5% systematic age underestimation of the K-Ar system relative to its more accurate 40Ar-39Ar 415 

successor (Renne, 2006), could easily raise the independent age of the Aso-4 ash to 93.5±7 ka. 416 

An analogous but significantly larger systematic overestimation of <20%, affecting the 417 

luminescence chronometry, is potentially due to severe uncertainties with respect to dose rate 418 

𝐷̇ (cf. last two columns in Table 1 of Thiel et al., 2015, with Fig. S5 and Table S5 in Guralnik 419 

et al., 2015). In fact, Thiel et al. (2015) explicitly concluded their paper emphasising “the 420 

importance of investigating the mineral composition in more detail in order to get better dose 421 

rate estimates”, and it is beyond all doubt that their mineralogical study (their Section 3.2 and 422 

Fig. 4) arose from an incipient mismatch of their feldspar IRSL ages with independent age 423 

control, when standard dose rate calculations led to severe (~20%) age underestimation vis-à-424 

vis tephrochronology. Increasing all dose rates in Appendix A by even 10%, the fading-425 

corrected pIR225 ages based on the Huntley and Lamothe (2001) and Kars et al. (2008) 426 

corrections would be ~82 ka and ~89 ka, respectively, with an opposite implication to that from 427 

before, i.e. that it is namely the Kars et al. (2008) model, which yields results which are “closer” 428 

to the independent K-Ar age.  429 

The analysis above, and the naiveté of some of the straw arguments presented (which 430 

model is “closer” to independent age control), demonstrates that the distinction between 431 

different luminescence fading models, even in a “perfect” sedimentary archive with an 432 

abundance of solid external chronological constraints, can very quickly run into circular 433 

arguments at best. Extreme caution is therefore needed when reconciling between different 434 

chronologies (e.g. Guralnik et al., 2011), let alone promoting or dismissing models of one 435 
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method against results from another – which we simply dare not partake in. In light of the 436 

above, we find it necessary to end Section 4.4 with a disclaimer, that the aim of the present 437 

work has been solely to state all the luminescence fading models in a mathematically literate 438 

manner, and present correct and transparent calculations; it is entirely the practitioner’s task to 439 

use these models responsibly, or as George Box once wittingly remarked, “all models are 440 

wrong, but some are useful”. 441 

 442 

5. Equilibrium ages 443 

Robust independent age controls for sedimentary deposits are often difficult to 444 

establish, because of limited materials available for alternative dating methods, as well as the 445 

limitations of those methods themselves (e.g. ~50 ka detection limit of 14C, potential open-446 

system behaviour of U/Th, etc.). In contrast, a thermochronological constraint may offer a 447 

simpler case study, for rocks that have experienced isothermal storage of the luminescence 448 

system at a temperature, 𝑇nat, for a period greatly exceeding the response time of that system. 449 

Due to its tectonic quiescence during the Quaternary, the KTB borehole offers an ideal setting 450 

for validation of trapped charged thermochronometers (Guralnik et al., 2015, and references 451 

therein). Eq. (22) below is a crude approximation of combining athermal and thermal losses of 452 

a luminescence system to predict its age (cf. Guralnik and Sohbati, 2019):  453 

𝑡model = −
𝐷0

𝐷̇nat
 ln(1 − 𝑓𝑥𝜃) , 𝜃 =

[1 +
𝑠𝑡ℎ exp(−𝐸𝑒𝑓𝑓/𝑘𝐵𝑇nat)

𝐷0/𝐷̇nat
]

−1

[1 +
𝑠𝑡ℎ exp(−𝐸𝑒𝑓𝑓/𝑘𝐵𝑇lab)

𝐷0/𝐷̇lab
]

−1 . (22) 

Where 𝑡model is the model age, 𝑓𝑥 is the athermal equilibrium factor, extracted from either Eq. 454 

(10) or (16): 455 

𝑓𝐻&𝐿 =
𝐷̇𝑙𝑎𝑏

𝐷̇𝑛𝑎𝑡
𝑒−𝑞−𝑝, 𝑝 = 1 +

1

𝜅
− ln (

𝐷𝑒

𝐷̇𝑙𝑎𝑏𝑡𝑐
) , 𝑞 = 𝑊−1 [−

𝐷̇𝑙𝑎𝑏

𝐷̇𝑛𝑎𝑡
(𝑝 − 1)𝑒−𝑝] (23) 

𝑓𝐾𝑎𝑟𝑠 =
exp[−𝜌′ ln3(𝑧𝑠𝐷0/𝐷̇nat)]

exp[−𝜌′ ln3(𝑧𝑠𝐷0/𝐷̇lab)]
 (24) 

while 𝜃 is a conceptually identical expression to 𝑓𝑥, yet accounting for thermal equilibrium (cf. 456 

Guralnik and Sohbati, 2019). 457 

 458 

 459 

 460 
Figure 5: Equilibrium system at the KTB borehole, Germany. a) Athermal equilibrium factors from Eqs. (23-24), alongside 461 
thermal equilibrium (continuous curve), as a function of sample depth. b) observed vs. modelled ages vs. depth. 462 
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 463 

Fig. 5 demonstrates that Eq. (22) can be successfully used to quantitatively predict the 464 

observed ages of samples from the KTB borehole (Guralnik et al., 2015) across a broad range 465 

of 𝑔2𝑑=0 – 7 %/decade, and ~1.5 orders of magnitudes of apparent age (Appendix C). Note, 466 

that in Fig. 5b, the underground and laboratory temperatures obey 𝑇𝑛𝑎𝑡(𝑧) = 7.5 + 27.5 𝑧 [°C] 467 

and  𝑇𝑙𝑎𝑏=15 °C, respectively, while the thermal stability of the IRSL50 system is approximated 468 

as (a) uniform throughout the borehole (cf. Bouscary and King, 2024), and (b) as a first-order 469 

system with activation energy of 𝐸𝑒𝑓𝑓=0.92 eV and thermal escape frequency 𝑠𝑡ℎ=55 s-1 (cf. 470 

Guralnik and Sohbati, 2019). Such thermal stability parameters are obviously a generous 471 

approximation, given that significant differences in sample-specific 𝐸 and 𝑠𝑡ℎ have been 472 

documented (Guralnik et al., 2015), and given that the mentioned 𝐸𝑒𝑓𝑓  and 𝑠𝑡ℎ are only 473 

“apparent” values, averaging over several kinetic processes to and from the excited state of the 474 

IRSL electron trap (cf. Guralnik and Sohbati, 2019). Nevertheless, the novelty of Eq. (22) is 475 

that it is the first explicit and to-date the most compact model, that can quantitatively predict 476 

the observed IRSL50 data at 12 different depths of the KTB site (Appendix D) with a minimum 477 

of parameters and input data (Appendix C). The latter is achieved via convolution of two 478 

equilibrium factors, one thermal (𝜃) and one athermal (𝑓), which appears powerful in replacing 479 

extensive Monte-Carlo simulations (Guralnik et al., 2015) with a single and straightforward 480 

one-line expression (Eq. 22). 481 

 482 
 483 

5. Discussion and conclusions 484 

The primary aim of the present contribution is the disentanglement of the mathematical 485 

treatment of anomalous fading, where historical inaccuracies have resulted in rather convoluted 486 

calculation schemes, that even seasoned practitioners have a hard time navigating. Our paper 487 

demonstrates that the two most popular fading corrections (Huntley and Lamothe, 2001; Kars 488 

et al., 2008) are amenable to a closed-form explicit solutions, which reduce practitioner 489 

dependence on computational brute force, and provide mathematical clarity and intuition 490 

regarding sensitivity of the fading correction to the various model parameters involved. The 491 

validity of our mathematics has been demonstrated via comparison of our new equations vis-492 

à-vis legacy Monte-Carlo approaches in two classic archives, one from a sedimentary sequence 493 

(Section 4) and another from a thermochronological context (Section 5). 494 

While this paper is not aimed at answering the commonly posed question regarding 495 

“which model is right”, our present exercise does allow us to make cautious remarks about 496 

model validity and applicability. Here, it appears that ages corrected using the Huntley and 497 

Lamothe (2001) scheme are systematically younger than those obtained by the Kars et al. 498 

(2008) correction, and although this is not a new observation, our analysis highlights that this 499 

offset has little to do with linearity of signal growth, but rather stems from (a) the unphysical 500 

nature of logarithmic loss (Eq. 4), and (b) reflects an arbitrary offset arising from the “–1” term 501 

in Eq. (9). These effects (a and b) diminish as soon as the Huntley and Lamothe (2001) core 502 

scheme is upgraded to a power-law decay (Eq. 18), which is an overlooked yet necessary 503 

outcome of Visocekas’ (1976, 1985) own quantification of anomalous fading. 504 

Unlike the empirical/heuristic expressions for logarithmic (Eq. 4) or “power law” (Eq. 505 

5) decays, nearest-neighbor distribution decay (Eq. 7) is a physically-driven model, traceable 506 

to the now seemingly forgotten research on electron traps in ZnS phosphors (Hoogenstraaten, 507 

1958). In the limited example considered in Section 4, we demonstrated that all age corrections 508 

utilizing NND decay yielded age estimates consistent with the “conventional” independent age 509 

of the sedimentary unit in question. It is important to note, that NND-based models resulted in 510 

a cluster of corrected ages, regardless of whether charge retrapping is only implicit (Eq. 18), 511 

or whether NND decay was coupled to first-order (Eqs. 13/16-17) or higher-order (Eqs. 20-21) 512 
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charge retrapping models. The main takeaway from this exercise is that the choice of the 513 

particular retrapping model, as methodologically important as it might be, seems to exert only 514 

a second-order effect on the fading correction, while NND is the only truly physics-based 515 

“anomalous fading” model whose results are in line with independent age control. 516 

 From Figs. 4a-b, it is evident that standard laboratory experiments (including the dose 517 

response and the isothermal decay of the total target IRSL signal) appear insufficient for 518 

confirming or disproving the validity of the various decay and accumulation models discussed 519 

– as all the latter fit the available laboratory data equally well. The good news is that 520 

luminescence age correction seems to be overall resilient to varying formulations of the 521 

trapping-detrapping system (cf. King et al., 2018). The more challenging news is that in order 522 

to further increase the accuracy of fading-corrected IRSL ages via a better informed model 523 

choice, one will have to either conduct studies in archives where impeccable datasets of 524 

independent ages are available (cf. Section 4.4 for a cautionary tale), or that a more rigorous 525 

laboratory characterization of IRSL signal sub-components will become necessary to both 526 

justify and elucidate the parameters of the nonlinear signal growth models (e.g. Eqs. 20-21). 527 

 As a final remark, it appears that Eq. (18) is a plausible replacement for the legacy 528 

Huntley and Lamothe (2001) age correction, whenever no information on dose response is 529 

available, while variants of the Kars et al. (2008) model (Eqs. 13, 16-17, 20-21) can be utilized 530 

whenever the luminescence system is suspected to deviate from linear accumulation, en route 531 

to signal saturation (or more broadly, field steady-state). 532 

 533 

6. Supplementary information 534 

For full transparency and reproducibility of our mathematical results and all numerical 535 

exercises, commented Matlab scripts reproducing all tabulated and plotted results are provided 536 

as an online-only supplement. 537 
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Appendix A: Data for samples from Oga peninsula (MIS 5 Japanese marine deposits).  621 

 622 
Sample 𝐷̇𝑛𝑎𝑡 𝐷𝑒 𝑔2𝑑  Corrected age * 

ID (Gy/ka) (Gy) (%/decade) (ka) 

055257 1.77 ± 0.14 132 ± 8 2.0 ± 0.1 91 ± 6 

055256 1.58 ± 0.13 121 ± 11 1.9 ± 0.1 92 ± 8 

055255 1.64 ± 0.14 121 ± 8 2.2 ± 0.1 92 ± 6 

055254 1.99 ± 0.15 138 ± 10 1.7 ± 0.2 82 ± 6 

055253 1.90 ± 0.15 138 ± 9 1.9 ± 0.1 87 ± 6 

055252 2.00 ± 0.15 138 ± 12 2.3 ± 0.2 87 ± 8 

055251 1.78 ± 0.14 131 ± 9 2.2 ± 0.1 92 ± 6 

055250 1.84 ± 0.15 132 ± 8 1.8 ± 0.1 85 ± 5 

055249 1.73 ± 0.14 136 ± 10 2.1 ± 0.1 97 ± 7 

055248 2.10 ± 0.16 137 ± 7 2.0 ± 0.1 80 ± 4 

055247 2.04 ± 0.16 142 ± 10 1.8 ± 0.1 83 ± 6 

055246 1.94 ± 0.15 154 ± 9 1.3 ± 0.6 90 ± 8 

055245 1.95 ± 0.14 142 ± 9 2.3 ± 0.2 92 ± 6 

055244 2.00 ± 0.15 141 ± 9 1.8 ± 0.2 84 ± 5 

055242 1.97 ± 0.15 137 ± 7 2.1 ± 0.2 86 ± 5 

055243 1.88 ± 0.14 151 ± 8 1.7 ± 0.1 94 ± 5 

055241 1.97 ± 0.15 150 ± 10 2.0 ± 0.2 93 ± 7 

055240 1.98 ± 0.15 136 ± 9 2.0 ± 0.1 84 ± 5 

055239 1.88 ± 0.14 166 ± 8 2.0 ± 0.2 108 ± 6 

055237 1.93 ± 0.14 155 ± 10 2.3 ± 0.2 102 ± 7 

055231 1.78 ± 0.14 152 ± 11 1.4 ± 0.6 98 ± 12 

055232 1.66 ± 0.14 167 ± 12 2.3 ± 0.1 128 ± 14 

055233 1.75 ± 0.14 217 ± 10 1.5 ± 0.1 144 ± 13 

055234 1.95 ± 0.14 215 ± 9 2.1 ± 0.1 136 ± 12 

055236 1.85 ± 0.13 258 ± 16 1.9 ± 0.1 170 ± 16 
 623 
Feldspar post-IR IR225 measurements for the sedimentary samples from Thiel et al. (2015).  624 
* As published (reported using the Huntley and Lamothe, 2001 correction). 625 
  626 
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Appendix B: Simulated ages and uncertainties for Oga peninsula (all in units of ka).  627 

 628 
Model Huntley and Lamothe (2001) Kars et al. (2008) 

Solution* SA MC A SA MC A 

ID \ Eq. 9 10 11 13 16 17 

055257 90.237 90.861  ± 9.243 90.237  ± 9.038 98.060 98.625  ± 10.337 98.553  ± 9.923 

055256 91.820 92.308  ± 11.507 91.820  ± 11.297 98.977 100.137  ± 12.516 99.523  ± 12.285 

055255 91.178 91.756  ± 10.115 91.178  ± 9.890 99.409 100.181  ± 11.540 99.959  ± 10.888 

055254 81.344 81.836  ± 8.858 81.344  ± 8.656 87.391 87.967  ± 9.933 87.838  ± 9.519 

055253 86.948 87.530  ± 9.171 86.948  ± 8.946 94.224 95.314  ± 10.167 94.735  ± 9.798 

055252 85.980 86.371  ± 10.265 85.980  ± 10.031 94.750 95.644  ± 12.262 95.233  ± 11.280 

055251 90.881 91.548  ± 9.708 90.881  ± 9.537 99.476 100.741  ± 11.128 100.024  ± 10.547 

055250 85.044 85.489  ± 8.863 85.044  ± 8.681 91.622 92.557  ± 9.645 92.080  ± 9.446 

055249 96.124 96.660  ± 10.912 96.124  ± 10.556 105.051 105.286  ± 12.318 105.626  ± 11.653 

055248 78.807 79.326  ± 7.585 78.807  ± 7.273 85.685 86.102  ± 8.421 86.122  ± 7.998 

055247 82.449 83.082  ± 8.941 82.449  ± 8.729 89.083 89.572  ± 9.851 89.530  ± 9.526 

055246 89.573 90.338  ± 10.313 89.573  ± 10.115 95.041 96.379  ± 12.790 95.457  ± 12.412 

055245 90.774 91.041  ± 9.074 90.774  ± 8.893 100.256 101.263  ± 10.757 100.769  ± 10.093 

055244 83.520 83.989  ± 8.442 83.520  ± 8.392 90.221 90.511  ± 9.774 90.674  ± 9.302 

055242 84.916 85.498  ± 8.111 84.916  ± 7.975 92.743 93.272  ± 9.106 93.242  ± 8.962 

055243 94.271 94.709  ± 8.833 94.271  ± 8.666 101.775 102.656  ± 10.068 102.307  ± 9.471 

055241 92.053 92.510  ± 9.737 92.053  ± 9.500 100.704 101.089  ± 11.471 101.208  ± 10.667 

055240 83.021 83.707  ± 8.642 83.021  ± 8.393 90.278 90.536  ± 9.568 90.736  ± 9.221 

055239 106.818 107.453  ± 10.054 106.818  ± 9.720 117.728 118.717  ± 11.325 118.309  ± 11.094 

055237 100.145 100.778  ± 10.153 100.145  ± 9.940 111.342 111.530  ± 12.091 111.912  ± 11.375 

055231 97.350 98.308  ± 11.992 97.350  ± 11.865 103.801 104.619  ± 15.225 104.242  ± 14.377 

055232 125.697 126.567  ± 14.482 125.697  ± 13.989 140.837 142.939  ± 17.270 141.576  ± 15.848 

055233 142.821 143.995  ± 13.633 142.821  ± 13.261 156.118 157.663  ± 14.992 156.952  ± 14.723 

055234 134.763 135.567  ± 11.547 134.763  ± 11.285 152.695 153.363  ± 13.646 153.560  ± 13.036 

055236 167.156 168.130  ± 16.310 167.156  ± 15.758 191.021 192.282  ± 20.588 192.035  ± 18.357 

 629 
* SA: semianalytical; MC: Monte-Carlo simulation (N=1000); A: Analytical. 630 
  631 
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Appendix C: Data for samples from the KTB borehole.  632 

 633 
Sample Depth, z 𝐷̇𝑛𝑎𝑡

* 𝐷𝑒 
† 𝑔2𝑑  

◊ 𝐷0 
‡ 𝐷̇𝑙𝑎𝑏  

§ 

ID (km) (Gy/ka) (Gy) (%/decade) (Gy) (Gy/s) 

19B 0.146 1.50 275.2 35.2 1.845 171 0.18 

48B 0.334 1.03 302.5 82.5 0.004 82 0.18 

105B 0.566 2.92 365.2 56.2 1.107 179 0.18 

146A 0.726 2.84 201.1 17.9 4.036 259 0.18 

218A 0.911 2.96 239.6 20.8 3.089 241 0.18 

253F 1.175 1.58 128.0 12.7 3.921 235 0.18 

273G 1.300 1.07 96.1 13.3 4.230 201 0.18 

314B 1.499 1.07 62.8 11.2 6.271 298 0.27 

383C 1.730 3.02 89.3 18.9 1.987 200 0.25 

428B 1.892 3.44 93.5 7.4 2.045 225 0.18 

481B 2.097 3.57 56.9 11.9 2.216 229 0.25 

564A 2.329 3.30 32.9 2.9 2.564 236 0.18 
 634 
Subsurface bedrock samples from Guralnik et al. (2015).  635 
* assigned 15% relative uncertainty. 636 
† recalculated from the original publication via 𝐷𝑒 = −𝐷0 ln(1 − 𝐿𝑛𝑎𝑡/𝐿𝑙𝑎𝑏𝑚𝑎𝑥). 637 
◊ recalculated using Eq. (5a) from sample-dependent 𝜌′ and s values, and assigned 15% relative uncertainty.  638 
‡ assigned 3% relative uncertainty. 639 
§ the maximum laboratory dose rate (no uncertainties considered). 640 
 641 
 642 
Appendix D: Simulated values for the KTB borehole.  643 

 644 
Sample Calculated parameters Apparent ages in ka 

ID 𝜃 𝑓𝐻&𝐿 𝑓𝐾𝑎𝑟𝑠 Uncorrected Eqs. 22&23 Eqs. 22&24 

19B 1.01 0.84 ± 0.03 0.80 ± 0.03 183.5  ± 36.2 209.6  ± 38.1 185.3  ± 32.4 

48B 1.00 N/A* 1.00 ± 0.00 293.7  ± 91.4 N/A* 458.8  ± 70.2 

105B 0.99 0.90 ± 0.02 0.88 ± 0.02 125.1  ± 26.9 135.5  ± 22.5 123.1  ± 20.3 

146A 0.96 0.66 ± 0.07 0.62 ± 0.04 70.8  ± 12.4 92.0  ± 22.1 81.7  ± 15.7 

218A 0.92 0.74 ± 0.05 0.69 ± 0.04 81.0  ± 14.0 93.4  ± 18.6 83.3  ± 15.0 

253F 0.73 0.67 ± 0.07 0.62 ± 0.04 81.0  ± 14.6 99.5  ± 21.3 89.4  ± 16.3 

273G 0.60 0.64 ± 0.08 0.59 ± 0.05 89.8  ± 18.3 89.7  ± 19.8 81.1  ± 14.8 

314B 0.36 0.48 ± 0.14 0.45 ± 0.05 58.7  ± 13.7 52.5  ± 19.2 48.5  ± 9.8 

383C 0.54 0.83 ± 0.03 0.79 ± 0.03 29.6  ± 7.7 39.6  ± 6.4 37.1  ± 5.9 

428B 0.44 0.83 ± 0.03 0.79 ± 0.03 27.2  ± 4.6 29.3  ± 4.7 27.6  ± 4.4 

481B 0.32 0.81 ± 0.03 0.77 ± 0.03 15.9  ± 4.1 19.0  ± 3.0 17.9  ± 2.9 

564A 0.19 0.79 ± 0.04 0.74 ± 0.03 10.0  ± 1.7 11.4  ± 1.8 10.7  ± 1.7 

 645 
* results in numerical overflow of the Lambert W expression, signifying that the Huntley & Lamothe (2001) correction is 646 
degenerate due to a negligible fading rate. 647 
 648 
 649 
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