
1 

 

Dear editors and reviewers, 

We sincerely appreciate your constructive comments and suggestions to improve this 

manuscript. We have revised the manuscript and addressed these comments point by 

point. We hope that this revised manuscript fulfills the editor’s and reviewers’ high 

standards for the Hydrology and Earth System Sciences. 

The reviewers’ comments are shown in black, our responses are highlighted in blue, 

and the revised text in the manuscript is highlighted in orange.  

We look forward to your feedback. 

Yours sincerely, 

Yao Li 
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This study is interesting, lake water storage and water depth estimation is important for 

water resources research, but it is also difficult to get the high accuracy water depth 

except in situ measurement. This study provided a method to estimate the water depth 

using the topography similarity, but this method also has a large error comparing with 

in situ bathymetric data. I suggest that this manuscript need a major revision, and the 

primary comments as followed. 

Response: We sincerely appreciate the reviewer’s valuable and constructive comments 

on our manuscript. In response, we have carefully revised the manuscript to address 

these suggestions. The key revisions include highlighting the methodological 

innovation, providing details on the maximum water depth, and updating the requested 

figures and tables. Please find our detailed responses to each comment below. 

1. Line 75, Figure 7 shows a large difference between simulate water depth and in 

situ water depth with a large uncertainty, and the ratio of sediment accumulation is slow, 

but the authors said that this approach provides a more accurate representation of 

underwater topography, I had a doubt about it. 

Response 1: Thank you for this insightful comment. We agree that Fig. 7 shows non-

negligible differences between the simulated depths and the in situ data. Although our 

method seeks to derive reasonably reliable water depths from limited data, uncertainties 

in the input data and in parts of the workflow can lead to error accumulation. 

First, despite the uncertainty in depth estimation, the overall agreement remains 

acceptable (r = 0.72, NRMSE = 19.08%). This performance compares favorably with 

similar topography-based extrapolation or interpolation approaches. 

Second, regarding sediment accumulation, we agree that sedimentation can be slow on 

annual to decadal timescales. However, the “sediment deposition” component in our 

framework is intended as a morphological correction that reflects the long-term 

tendency for deep-water zones to become flatter due to sustained infilling, rather than 

an attempt to simulate short-term sedimentation rates. In particular, the slope-correction 

term in Eq. (6) increases from the shoreline toward the lake bottom, indicating that its 

primary influence is concentrated in deeper areas. Moreover, a synthesis of Tibetan 

Plateau lake-core records suggests sediment accumulation rates of approximately 0.05–

0.06 cm yr⁻¹ (Holocene mean) (Yu et al., 2023), implying that sediment infilling is 

geomorphologically meaningful over centennial to millennial timescales. 

In response to your comment, we have revised the manuscript to include the following 

text: “This approach provides a more effective representation of underwater topography, 

and supports improved lake volume estimates.” (Lines 76–77) 
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2. Line 75, actually, the similar method had been used in Fang et al. (2023), what the 

difference between this study and Fang et al. (2023), and point out the real novel of this 

study. 

Response 2: Thanks for this comment. The main differences of our method can be 

summarized as follows: 

(1) A new shoreline-slope estimation strategy. When computing terrain slope, we first 

calculate directional slopes along specific orientations within an eight-neighbor 

framework. We then rescale the resulting directional-slope values within the buffer 

zone to match the slope map's value range generated with a conventional 3×3 

window. The rationale is to obtain a slope estimate that better represents the shore-

to-underwater direction. However, when focusing on a single direction, the slope 

derived from elevation pixels along that direction may be biased high or low. 

Rescaling the preliminary directional slopes using the overall slope range in the 

buffer mitigates this bias, while still retaining stronger directionality than the 3×3 

window slope. 

(2) A modified implementation of the “lake recession” concept with adaptive 

drawdown steps. In fact, the strongest commonality between our approach and Fang 

et al. (2023) is the use of the recession-based idea (Zhu et al., 2019) to represent the 

underlying process, as noted in Section 2 (Line 142). In our implementation, each 

drawdown iteration is constrained by the minimum elevation of the “current 

shoreline” identified at the beginning of that iteration. The iteration continues until 

all computed elevations in that loop meet this constraint, rather than imposing a 

fixed water-level drop at each step. This allows the drawdown magnitude to be 

determined dynamically at each iteration, making the search for newly exposed 

pixels during water-level lowering more consistent with a natural drawdown 

process. 

(3) A new profile model for underwater elevation. We adopt a quadratic function as the 

basic profile form and define a hypothetical lowest point based on the ratio of the 

two bank slopes, establishing the coordinate system around this point. Using the 
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assumptions that the lowest point has zero slope and its distance to the shoreline 

can be inferred, we derive closed-form expressions for slope variations on both 

sides of the lowest point. A key advantage is that these expressions remain valid 

throughout the iterative drawdown process, even when the water surface has not yet 

reached the same level across the profile. In the method of Fang et al. (2023), the 

underwater elevation profile is derived from Zhu et al. (2019), thereby bypassing 

the need to explicitly locate the lowest point. However, when water levels are not 

yet consistent during iteration—especially under highly variable terrain, the 

underlying assumptions are not fully satisfied, which may amplify errors and 

impose certain limitations. 

In summary, our study introduces (1) a slope estimation approach that balances 

directionality and robustness, (2) an improved recession-based drawdown procedure 

with adaptive step size, and (3) a new underwater profile model for elevation 

reconstruction. We have also revised the relevant statements in the Introduction to 

highlight these novel contributions more clearly. 

In response to your comment, we have revised the manuscript to include the following 

text: “To better capture the representative shore-to-lake gradient, we estimated shore 

slope using a directional and robust scheme. Directional slopes were first computed 

along multiple orientations (eight-neighbor directions) and then rescaled within the 

buffer zone to match the magnitude range of a conventional 3×3-window slope map, 

thereby preserving directionality while reducing biases associated with single-direction 

calculations.” (Lines 138–142). 

“These elevations were estimated using a new profile-based underwater elevation 

model. This model adopts a quadratic function as the base form and defines an assumed 

lowest point based on the relative slopes of the two banks. Closed-form expressions 

then describe slope and elevation variations on both sides of this point, remaining 

applicable throughout the iterative drawdown.” (Lines 148–151). 
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Water, 11, 1151, https://doi.org/10.3390/w11061151, 2019. 

 

 

3. Line 105, how did you get the lake boundary? From the results of interpolation? 

Why did you get the lake boundary from Landsat image, which the time of Landsat is 

consistent with the measured time of these in situ data. 

Response 3: Thanks for this comment. As noted at Line 106, we processed the in situ 

data by identifying points at 0 m depth to delineate the lake boundary. We used this 

boundary as the spatial extent for calculating lake depth and volume. This is because 

our accuracy assessment essentially treats the in situ bathymetry as the reference. In 

contrast, the boundary used in the underwater-terrain reconstruction step is derived 

from the DEM (Line 159), because we first need to identify the water-covered area 

represented in the DEM. 

In addition, before conducting the experiments, we compared the boundary extracted 

from the in situ data with the contemporaneous boundary extracted from satellite 

imagery. The lake-boundary extraction from imagery is briefly described as follows: 

we used Sentinel-2 data, applied the QA60 mask to remove cloud-contaminated pixels, 

and calculated NDWI. We then generated a monthly composite using the mean NDWI 

and applied Otsu thresholding to segment the water body. Here we present two 

examples (Angzicuo and Guomangcuo). Results show that the boundary derived from 

in situ data is generally consistent with that extracted from Sentinel-2, and both are 

larger than the lake boundary in the DEM. As an enhanced version of the SRTM DEM, 

NASADEM only represents the lake extent around the year 2000. However, lakes on 

the Tibetan Plateau have expanded continuously over the past three decades (Xu et al., 

2024), which explains why the lake boundaries derived from the in situ data and 

Sentinel-2 are both larger than those from the DEM. 

In practice, our workflow first computes and replaces underwater elevations within the 

DEM-derived lake extent. We then extract the final depth map using the lake boundary 

corresponding to the target period. Therefore, even when the boundary used to extract 

the lake depth map is larger than the DEM-derived boundary, the accuracy evaluation 

remains reliable as long as the spatial extent of the simulated depth map matches that 

of the in situ bathymetry used for validation. Based on these considerations, we directly 

adopted the lake boundary derived from the in situ dataset for depth and volume 

calculation. 
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Fig. R1. Comparison of lake boundaries from different data sources. (a) Lake boundary 

of Angzicuo. (b) Lake boundary of Guomangcuo. The blue outline denotes the lake 

extent from the DEM data, the black outline denotes the lake extent from the in situ 

data, and the red outline denotes the lake extent extracted from Sentinel-2 imagery. 
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4. Table 1, suggest to add the measured date, because the water depth of these lakes 

is changing in recent years. 

Response 4: Thanks for this suggestion. The measurement date has been added to Table 

1. It should be noted that the exact measurement date for Mangcuo is unavailable. 

However, the lake area of Mangcuo has remained stable in recent years, so these 

available measurements still provide useful reference information. 

 

Table 1. Overview of the sample lakes on the Tibetan Plateau.  

Lake ID Lake name 
Measurement 

time 
Area (km²) 

Average 

elevation (m)  

Depth (m) 

Average  Maximum 

I Angzicuo 2018.09 495.42  4693  9.70  18.83  

II Buruocuo 2013.10 92.67  5171  41.63  100.55  

III Dongcuo 2019.07 106.79  4397  2.06  3.99  
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IV Guomangcuo 2019.07 113.63  4634  15.48  39.49  

V Laangcuo 2017.09 252.56  4571  21.90  49.19  

VI Longmucuo 2015.09 106.80  5009  25.27  67.52  

VII Mangcuo - 19.39  4299  9.41  22.28  

VIII Mapang 

Yongcuo 

2017.09 
413.22 4585 41.62 79.45 

IX Ngangla 

Ringco 

2017.09 
498.06  4715  18.26  74.94  

X Salt Lake 2019.11 209.90  4469  13.13  32.78  

XI Siling Co 2014.08 2389.11  4539  22.07  52.50  

XII Taro Co 2012.06 487.49  4570  57.48  130.95  

 

5. Why did the author select a USA lake, and an artificial reservoir to assess the 

method’s applicability? Maybe the reservoir had a large different with natural lakes, 

especially for Tibetan Plateau. 

Response 5: Thanks for this comment. Lake Mead was formed by impoundment behind 

the Hoover Dam on the Colorado River, with the dam located at the southwestern end 

of the lake. As noted in the manuscript, it is a typical river-type reservoir. Although our 

experiments on the Tibetan Plateau include lakes spanning a range of sizes and 

morphologies, they do not adequately represent this elongated reservoir geometry. 

Although Lake Mead is an artificial reservoir, it was created by damming a natural river 

channel. Therefore, its submerged topography still retains a degree of linkage to the 

surrounding riverbank terrain. However, as you pointed out, its underwater 

geomorphology differs substantially from the tectonically formed lakes that dominate 

the Tibetan Plateau. For this reason, we adjusted part of the computation workflow 

when applying the method to Lake Mead (Line 470). Our purpose in testing the method 

in a completely different setting was to explore potential limitations and identify 

directions for future improvement. 

We designed the workflow in a modular manner (see Code availability) so that 

individual components can be replaced as the method evolves. In this sense, the Lake 

Mead case should be regarded as an initial step toward broader applications of the 

proposed method. 
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6. Figure 7, whether the authors could redraw this figure with density of these points 

for different color. Besides, the error of this method for many points is too large, so that 

I doubt whether this method could provide a more accuracy water depth for water 

storage estimation or other research. For instance, for a lake, parts of these water depth 

are overestimation, and parts of these water depth are underestimation, leading to a high 

accuracy of water storage estimation comparing with in situ bathymetric data, therefore, 

whether this method is meaningful? 

Response 6: Thank you for the helpful suggestions. We have revised Figures 7 and 12 

to improve readability by visualizing point density with a color scale (rather than 

plotting all points with a single color), thereby alleviating overplotting and making the 

distribution of residuals more interpretable. The evaluation still uses 2,500 randomly 

generated validation points within each lake boundary, and the 1:1 line and regression 

line are retained for consistency with the original assessment. 

Regarding the concern that large errors may undermine the usefulness of the method 

for water storage estimation. We agree that local overestimation and underestimation 

exist, especially in lakes with complex bathymetry or weak shoreline constraints. Our 

results already show that errors tend to increase with depth (e.g., MAE is strongly 

correlated with lake depth), indicating higher uncertainty in deeper central areas where 

the correlation between underwater terrain and shoreline features weakens. 

This behavior is also consistent with our discussion that simulation errors can 

accumulate from the shoreline toward the lake center, making nearshore depths 

generally more reliable than deep-lake estimates. 



9 

 

 

Figure 7. Scatter plots comparing simulated lake depths with in situ measurements. The 

dashed line represents the 1:1 line, and the red line represents the linear regression fit.  

 

Figure 12. In situ and simulated bathymetry maps of Lake Mead, along with accuracy 

evaluation results. (a) In situ bathymetry map. (b) Simulated bathymetry map. (c) Error 
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map between simulated and in situ results, accompanied by a histogram of error 

distribution. (d) Scatter plot comparing simulated and in situ bathymetric values. 

 

7. Table 2, whether the maximum depth for one lake is located in same location 

between in situ bathymetric data and simulated water depth? 

Response 7: Thanks for this critical comment. The “maximum depth” is extracted 

independently as the largest depth value within each bathymetry map. Indeed, our 

method estimates underwater elevations by propagating shoreline-derived information 

inward, and uncertainties may accumulate toward the lake center. Given this limitation, 

we consider it more appropriate to compare the maximum-depth area rather than a 

single maximum-depth point. 

Here, we illustrate this using two representative lakes: Mangcuo, with a relatively 

fragmented/complex shoreline, and Longmucuo, with a more intact and regular 

shoreline. The red outline delineates the region where water depths exceed the 95th 

percentile (i.e., the deepest 5% of pixels). We use this region as a proxy for the 

“maximum-depth area” in both the in situ and simulated bathymetry maps. As shown, 

the maximum-depth areas do not perfectly overlap in either lake; however, the deepest 

zone inferred from the simulated bathymetry still exhibits a meaningful spatial 

correspondence with the in situ data, indicating that the predicted location of the 

maximum-depth area can serve as a useful reference. 

In response to your concern, we have revised the manuscript to include the following 

text: “The maximum water depth was derived as the maximum pixel value in the 

bathymetry map. It should be noted that, in the simulated bathymetry maps, the location 

of the maximum depth pixel does not necessarily coincide with that in the in situ 

bathymetry map; nevertheless, the simulated deepest zone remains informative and 

provides a useful reference (Fig. S3).” (Lines 369–372) 
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Fig. S3. Bathymetry maps derived from the in situ dataset and from our simulations. (a) 

In situ bathymetry map of Mangcuo. (b) Simulated bathymetry map of Mangcuo. (c) In 

situ bathymetry map of Longmucuo. (d) Simulated bathymetry map of Longmucuo. 

 

8. If all simulated points also had a large error, I doubt that the water storage 

estimation is not meaningful. For instance, Taro Co, the error of many points is large 

than 50% or 100%, therefore, whether the authors think that the results of water depth 

will affect the results of water storage estimation. 

Response 8: Thanks for this comment. Lake water storage is computed from the entire 

bathymetry map, so both local overestimation and underestimation can affect the 

storage estimate. We have already highlighted this issue in Section 3.1 using Ngangla 

Ringco as a representative example (Line 355), where positive and negative depth 

errors in different parts of the lake may partially offset each other in the integrated 

volume. We acknowledge that this phenomenon cannot be fully avoided with a DEM-

driven approach, and it should be treated as an important factor in future work—

especially when interpreting volume agreement in relation to errors at individual 

locations. 

Because our method relies heavily on surrounding topography, localized geomorphic 

changes can also affect simulation performance. For example, post-formation processes, 

such as glacial erosion along lake margins, may modify nearshore terrain in ways that 

are not fully consistent with present-day underwater morphology, potentially leading to 
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local mismatches. 

Despite these limitations, a large proportion of lakes on the Tibetan Plateau are 

associated with tectonically controlled basins, for which basin-scale geomorphology 

can still provide meaningful constraints on overall depth patterns. This is also consistent 

with existing large-scale datasets and empirical approaches: for instance, products such 

as HydroLAKES estimate lake depth using geomorphic predictors (e.g., slope, lake area) 

(Messager et al. 2016), and Han et al. (2024) summarized empirical relationships for 

lake volume based on geological/tectonic settings derived from in situ observations. In 

this sense, our volume estimation can be viewed as a more explicit and spatially detailed 

use of lake geometric properties and topographic factors. Therefore, we consider the 

regional-scale water storage results useful as a general reference, while clearly 

acknowledging their limitations for local depth accuracy. 
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9. I suggest that the elevation profiles for each lakes should marked in Figure 1. 

Response 9: Thanks for this suggestion. We have marked the profiles for each lake in 

Figure 1, which are also shown in Figure S2. 
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Figure 1. Overview of the 12 sample lakes on the Tibetan Plateau. (a) Distribution of 

lakes larger than 1 km² across the Tibetan Plateau, with the sample lakes in this study 

highlighted by red rectangles. (b) Shape characteristics of the 12 sample lakes, with 

colors indicating differences in mean lake depth. The red line denotes the transect used 

for validation in Figure 8. 

 

10. Figure 11, the error for Mead lake is also large, many points are underestimation 

or overestimation. I also think that the accuracy of water depth is much more important 

than that of water storage estimation. 

Response 10: We agree that the results for Lake Mead are less stable than those for 

natural lakes on the Tibetan Plateau. As shown in Figure 11, the overall error is centered 

around 0, but there are substantial local areas of overestimation and underestimation. 

Furthermore, the dispersion of the scatter plots increases at deeper water (lower 

elevations), and the simulation performance decreases with increasing depth. This is 

related to the characteristics of Lake Mead as a channel-type reservoir, the strong spatial 

heterogeneity of underwater topography in different river sections, and the fact that 

sediments are mainly concentrated in the central channel. 
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As you pointed out, the accuracy of water-depth estimation is crucial and forms the 

foundation for applications of bathymetry maps. We fully agree with this. However, 

because water depth is inferred primarily from topographic information, the proposed 

approach is subject to inherent limitations and uncertainties, and thus still exhibits 

unavoidable errors in some cases (e.g., in deeper waters or areas with complex 

geomorphology). To further improve the simulation accuracy of the water-depth maps, 

we are actively exploring new strategies. For example, we are currently investigating 

the use of surface water occurrence information to complement a sole topography-

driven constraint, which could substantially improve the general applicability and 

robustness of the approach. We will incorporate these improvements in future work. 


