Dear editors and reviewers,

We sincerely appreciate your constructive comments and suggestions to improve this
manuscript. We have revised the manuscript and addressed these comments point by
point. We hope that this revised manuscript fulfills the editor’s and reviewers’ high

standards for the Hydrology and Earth System Sciences.

The reviewers’ comments are shown in black, our responses are highlighted in blue,

and the revised text in the manuscript is highlighted in
We look forward to your feedback.
Yours sincerely,

Yao Li



This study is interesting, lake water storage and water depth estimation is important for
water resources research, but it is also difficult to get the high accuracy water depth
except in situ measurement. This study provided a method to estimate the water depth
using the topography similarity, but this method also has a large error comparing with
in situ bathymetric data. I suggest that this manuscript need a major revision, and the
primary comments as followed.

Response: We sincerely appreciate the reviewer’s valuable and constructive comments
on our manuscript. In response, we have carefully revised the manuscript to address
these suggestions. The key revisions include highlighting the methodological
innovation, providing details on the maximum water depth, and updating the requested
figures and tables. Please find our detailed responses to each comment below.

1. Line 75, Figure 7 shows a large difference between simulate water depth and in
situ water depth with a large uncertainty, and the ratio of sediment accumulation is slow,
but the authors said that this approach provides a more accurate representation of
underwater topography, I had a doubt about it.

Response 1: Thank you for this insightful comment. We agree that Fig. 7 shows non-
negligible differences between the simulated depths and the in situ data. Although our
method seeks to derive reasonably reliable water depths from limited data, uncertainties
in the input data and in parts of the workflow can lead to error accumulation.

First, despite the uncertainty in depth estimation, the overall agreement remains
acceptable (r = 0.72, NRMSE = 19.08%). This performance compares favorably with
similar topography-based extrapolation or interpolation approaches.

Second, regarding sediment accumulation, we agree that sedimentation can be slow on
annual to decadal timescales. However, the “sediment deposition” component in our
framework 1is intended as a morphological correction that reflects the long-term
tendency for deep-water zones to become flatter due to sustained infilling, rather than
an attempt to simulate short-term sedimentation rates. In particular, the slope-correction
term in Eq. (6) increases from the shoreline toward the lake bottom, indicating that its
primary influence is concentrated in deeper areas. Moreover, a synthesis of Tibetan
Plateau lake-core records suggests sediment accumulation rates of approximately 0.05—
0.06 cm yr' (Holocene mean) (Yu et al., 2023), implying that sediment infilling is
geomorphologically meaningful over centennial to millennial timescales.

In response to your comment, we have revised the manuscript to include the following
text: “This approach provides a more effective representation of underwater topography,

and supports improved lake volume estimates.” (Lines 76—77)
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codetermine the increased carbon burial rates in Tibetan Plateau lakes during the
Holocene, Quaternary Science Reviews, 310, 108118,
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2. Line 75, actually, the similar method had been used in Fang et al. (2023), what the
difference between this study and Fang et al. (2023), and point out the real novel of this
study.

Response 2: Thanks for this comment. The main differences of our method can be

summarized as follows:

(1) A new shoreline-slope estimation strategy. When computing terrain slope, we first
calculate directional slopes along specific orientations within an eight-neighbor
framework. We then rescale the resulting directional-slope values within the buffer
zone to match the slope map's value range generated with a conventional 3x3
window. The rationale is to obtain a slope estimate that better represents the shore-
to-underwater direction. However, when focusing on a single direction, the slope
derived from elevation pixels along that direction may be biased high or low.
Rescaling the preliminary directional slopes using the overall slope range in the
buffer mitigates this bias, while still retaining stronger directionality than the 3x3
window slope.

(2) A modified implementation of the “lake recession” concept with adaptive
drawdown steps. In fact, the strongest commonality between our approach and Fang
et al. (2023) is the use of the recession-based idea (Zhu et al., 2019) to represent the
underlying process, as noted in Section 2 (Line 142). In our implementation, each
drawdown iteration is constrained by the minimum elevation of the “current
shoreline” identified at the beginning of that iteration. The iteration continues until
all computed elevations in that loop meet this constraint, rather than imposing a
fixed water-level drop at each step. This allows the drawdown magnitude to be
determined dynamically at each iteration, making the search for newly exposed
pixels during water-level lowering more consistent with a natural drawdown
process.

(3) A new profile model for underwater elevation. We adopt a quadratic function as the
basic profile form and define a hypothetical lowest point based on the ratio of the

two bank slopes, establishing the coordinate system around this point. Using the
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assumptions that the lowest point has zero slope and its distance to the shoreline
can be inferred, we derive closed-form expressions for slope variations on both
sides of the lowest point. A key advantage is that these expressions remain valid
throughout the iterative drawdown process, even when the water surface has not yet
reached the same level across the profile. In the method of Fang et al. (2023), the
underwater elevation profile is derived from Zhu et al. (2019), thereby bypassing
the need to explicitly locate the lowest point. However, when water levels are not
yet consistent during iteration—especially under highly variable terrain, the
underlying assumptions are not fully satisfied, which may amplify errors and
impose certain limitations.
In summary, our study introduces (1) a slope estimation approach that balances
directionality and robustness, (2) an improved recession-based drawdown procedure
with adaptive step size, and (3) a new underwater profile model for elevation
reconstruction. We have also revised the relevant statements in the Introduction to
highlight these novel contributions more clearly.
In response to your comment, we have revised the manuscript to include the following
text: “To better capture the representative shore-to-lake gradient, we estimated shore
slope using a directional and robust scheme. Directional slopes were first computed
along multiple orientations (eight-neighbor directions) and then rescaled within the
buffer zone to match the magnitude range of a conventional 3x3-window slope map,
thereby preserving directionality while reducing biases associated with single-direction
calculations.” (Lines 138—142).
“These elevations were estimated using a new profile-based underwater elevation
model. This model adopts a quadratic function as the base form and defines an assumed
lowest point based on the relative slopes of the two banks. Closed-form expressions
then describe slope and elevation variations on both sides of this point, remaining

applicable throughout the iterative drawdown.” (Lines 148—-151).
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Water, 11, 1151, https://doi.org/10.3390/w11061151, 2019.

3. Line 105, how did you get the lake boundary? From the results of interpolation?
Why did you get the lake boundary from Landsat image, which the time of Landsat is
consistent with the measured time of these in situ data.

Response 3: Thanks for this comment. As noted at Line 106, we processed the in situ
data by identifying points at 0 m depth to delineate the lake boundary. We used this
boundary as the spatial extent for calculating lake depth and volume. This is because
our accuracy assessment essentially treats the in situ bathymetry as the reference. In
contrast, the boundary used in the underwater-terrain reconstruction step is derived
from the DEM (Line 159), because we first need to identify the water-covered area
represented in the DEM.

In addition, before conducting the experiments, we compared the boundary extracted
from the in situ data with the contemporaneous boundary extracted from satellite
imagery. The lake-boundary extraction from imagery is briefly described as follows:
we used Sentinel-2 data, applied the QA60 mask to remove cloud-contaminated pixels,
and calculated NDWI. We then generated a monthly composite using the mean NDWI
and applied Otsu thresholding to segment the water body. Here we present two
examples (Angzicuo and Guomangcuo). Results show that the boundary derived from
in situ data is generally consistent with that extracted from Sentinel-2, and both are
larger than the lake boundary in the DEM. As an enhanced version of the SRTM DEM,
NASADEM only represents the lake extent around the year 2000. However, lakes on
the Tibetan Plateau have expanded continuously over the past three decades (Xu et al.,
2024), which explains why the lake boundaries derived from the in situ data and
Sentinel-2 are both larger than those from the DEM.

In practice, our workflow first computes and replaces underwater elevations within the
DEM-derived lake extent. We then extract the final depth map using the lake boundary
corresponding to the target period. Therefore, even when the boundary used to extract
the lake depth map is larger than the DEM-derived boundary, the accuracy evaluation
remains reliable as long as the spatial extent of the simulated depth map matches that
of the in situ bathymetry used for validation. Based on these considerations, we directly
adopted the lake boundary derived from the in situ dataset for depth and volume

calculation.
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Fig. R1. Comparison of lake boundaries from different data sources. (a) Lake boundary
of Angzicuo. (b) Lake boundary of Guomangcuo. The blue outline denotes the lake
extent from the DEM data, the black outline denotes the lake extent from the in situ

data, and the red outline denotes the lake extent extracted from Sentinel-2 imagery.
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4. Table 1, suggest to add the measured date, because the water depth of these lakes
is changing in recent years.

Response 4: Thanks for this suggestion. The measurement date has been added to Table
1. It should be noted that the exact measurement date for Mangcuo is unavailable.
However, the lake area of Mangcuo has remained stable in recent years, so these

available measurements still provide useful reference information.

Table 1. Overview of the sample lakes on the Tibetan Plateau.

Measurement Average Depth (m)
Lake ID Lake name Area (km?)
time elevation (m)  Average Maximum
I Angzicuo 2018.09 495.42 4693 9.70 18.83
I Buruocuo 2013.10 92.67 5171 41.63 100.55
111 Dongcuo 2019.07 106.79 4397 2.06 3.99



IV Guomangcuo  2019.07 113.63 4634 15.48 39.49

v Laangcuo 2017.09 252.56 4571 21.90 49.19
VI Longmucuo  2015.09 106.80 5009 25.27 67.52
VII Mangcuo - 19.39 4299 9.41 22.28

VIII Mapang 2017.09
413.22 4585 41.62 79.45
Yongcuo
IX Ngangla 2017.09
498.06 4715 18.26 74.94
Ringco

X Salt Lake 2019.11 209.90 4469 13.13 32.78
XI Siling Co 2014.08 2389.11 4539 22.07 52.50
XII Taro Co 2012.06 487.49 4570 57.48 130.95

5. Why did the author select a USA lake, and an artificial reservoir to assess the
method’s applicability? Maybe the reservoir had a large different with natural lakes,
especially for Tibetan Plateau.

Response 5: Thanks for this comment. Lake Mead was formed by impoundment behind
the Hoover Dam on the Colorado River, with the dam located at the southwestern end
of the lake. As noted in the manuscript, it is a typical river-type reservoir. Although our
experiments on the Tibetan Plateau include lakes spanning a range of sizes and
morphologies, they do not adequately represent this elongated reservoir geometry.
Although Lake Mead is an artificial reservoir, it was created by damming a natural river
channel. Therefore, its submerged topography still retains a degree of linkage to the
surrounding riverbank terrain. However, as you pointed out, its underwater
geomorphology differs substantially from the tectonically formed lakes that dominate
the Tibetan Plateau. For this reason, we adjusted part of the computation workflow
when applying the method to Lake Mead (Line 470). Our purpose in testing the method
in a completely different setting was to explore potential limitations and identify
directions for future improvement.

We designed the workflow in a modular manner (see Code availability) so that
individual components can be replaced as the method evolves. In this sense, the Lake
Mead case should be regarded as an initial step toward broader applications of the

proposed method.



6. Figure 7, whether the authors could redraw this figure with density of these points
for different color. Besides, the error of this method for many points is too large, so that
I doubt whether this method could provide a more accuracy water depth for water
storage estimation or other research. For instance, for a lake, parts of these water depth
are overestimation, and parts of these water depth are underestimation, leading to a high
accuracy of water storage estimation comparing with in situ bathymetric data, therefore,
whether this method is meaningful?

Response 6: Thank you for the helpful suggestions. We have revised Figures 7 and 12
to improve readability by visualizing point density with a color scale (rather than
plotting all points with a single color), thereby alleviating overplotting and making the
distribution of residuals more interpretable. The evaluation still uses 2,500 randomly
generated validation points within each lake boundary, and the 1:1 line and regression
line are retained for consistency with the original assessment.

Regarding the concern that large errors may undermine the usefulness of the method
for water storage estimation. We agree that local overestimation and underestimation
exist, especially in lakes with complex bathymetry or weak shoreline constraints. Our
results already show that errors tend to increase with depth (e.g., MAE is strongly
correlated with lake depth), indicating higher uncertainty in deeper central areas where
the correlation between underwater terrain and shoreline features weakens.

This behavior is also consistent with our discussion that simulation errors can
accumulate from the shoreline toward the lake center, making nearshore depths

generally more reliable than deep-lake estimates.
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Figure 7. Scatter plots comparing simulated lake depths with in situ measurements. The

dashed line represents the 1:1 line, and the red line represents the linear regression fit.
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Figure 12. In situ and simulated bathymetry maps of Lake Mead, along with accuracy
evaluation results. (a) In situ bathymetry map. (b) Simulated bathymetry map. (c) Error
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map between simulated and in situ results, accompanied by a histogram of error
distribution. (d) Scatter plot comparing simulated and in situ bathymetric values.

7. Table 2, whether the maximum depth for one lake is located in same location
between in situ bathymetric data and simulated water depth?

Response 7: Thanks for this critical comment. The “maximum depth” is extracted
independently as the largest depth value within each bathymetry map. Indeed, our
method estimates underwater elevations by propagating shoreline-derived information
inward, and uncertainties may accumulate toward the lake center. Given this limitation,
we consider it more appropriate to compare the maximum-depth area rather than a
single maximum-depth point.

Here, we illustrate this using two representative lakes: Mangcuo, with a relatively
fragmented/complex shoreline, and Longmucuo, with a more intact and regular
shoreline. The red outline delineates the region where water depths exceed the 95th
percentile (i.e., the deepest 5% of pixels). We use this region as a proxy for the
“maximum-depth area” in both the in situ and simulated bathymetry maps. As shown,
the maximum-depth areas do not perfectly overlap in either lake; however, the deepest
zone inferred from the simulated bathymetry still exhibits a meaningful spatial
correspondence with the in situ data, indicating that the predicted location of the
maximum-depth area can serve as a useful reference.

In response to your concern, we have revised the manuscript to include the following
text: “The maximum water depth was derived as the maximum pixel value in the
bathymetry map. It should be noted that, in the simulated bathymetry maps, the location
of the maximum depth pixel does not necessarily coincide with that in the in situ
bathymetry map; nevertheless, the simulated deepest zone remains informative and
provides a useful reference (Fig. S3).” (Lines 369-372)
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Fig. S3. Bathymetry maps derived from the in situ dataset and from our simulations. (a)
In situ bathymetry map of Mangcuo. (b) Simulated bathymetry map of Mangcuo. (c) In
situ bathymetry map of Longmucuo. (d) Simulated bathymetry map of Longmucuo.

8. If all simulated points also had a large error, I doubt that the water storage
estimation is not meaningful. For instance, Taro Co, the error of many points is large
than 50% or 100%, therefore, whether the authors think that the results of water depth
will affect the results of water storage estimation.

Response 8: Thanks for this comment. Lake water storage is computed from the entire
bathymetry map, so both local overestimation and underestimation can affect the
storage estimate. We have already highlighted this issue in Section 3.1 using Ngangla
Ringco as a representative example (Line 355), where positive and negative depth
errors in different parts of the lake may partially offset each other in the integrated
volume. We acknowledge that this phenomenon cannot be fully avoided with a DEM-
driven approach, and it should be treated as an important factor in future work—
especially when interpreting volume agreement in relation to errors at individual
locations.

Because our method relies heavily on surrounding topography, localized geomorphic
changes can also affect simulation performance. For example, post-formation processes,
such as glacial erosion along lake margins, may modify nearshore terrain in ways that

are not fully consistent with present-day underwater morphology, potentially leading to
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local mismatches.

Despite these limitations, a large proportion of lakes on the Tibetan Plateau are
associated with tectonically controlled basins, for which basin-scale geomorphology
can still provide meaningful constraints on overall depth patterns. This is also consistent
with existing large-scale datasets and empirical approaches: for instance, products such
as HydroLAKES estimate lake depth using geomorphic predictors (e.g., slope, lake area)
(Messager et al. 2016), and Han et al. (2024) summarized empirical relationships for
lake volume based on geological/tectonic settings derived from in situ observations. In
this sense, our volume estimation can be viewed as a more explicit and spatially detailed
use of lake geometric properties and topographic factors. Therefore, we consider the
regional-scale water storage results useful as a general reference, while clearly

acknowledging their limitations for local depth accuracy.
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9. Isuggest that the elevation profiles for each lakes should marked in Figure 1.

Response 9: Thanks for this suggestion. We have marked the profiles for each lake in

Figure 1, which are also shown in Figure S2.
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Figure 1. Overview of the 12 sample lakes on the Tibetan Plateau. (a) Distribution of
lakes larger than 1 km? across the Tibetan Plateau, with the sample lakes in this study
highlighted by red rectangles. (b) Shape characteristics of the 12 sample lakes, with
colors indicating differences in mean lake depth. The red line denotes the transect used

for validation in Figure 8.

10. Figure 11, the error for Mead lake is also large, many points are underestimation
or overestimation. I also think that the accuracy of water depth is much more important
than that of water storage estimation.

Response 10: We agree that the results for Lake Mead are less stable than those for
natural lakes on the Tibetan Plateau. As shown in Figure 11, the overall error is centered
around 0, but there are substantial local areas of overestimation and underestimation.
Furthermore, the dispersion of the scatter plots increases at deeper water (lower
elevations), and the simulation performance decreases with increasing depth. This is
related to the characteristics of Lake Mead as a channel-type reservoir, the strong spatial
heterogeneity of underwater topography in different river sections, and the fact that
sediments are mainly concentrated in the central channel.
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As you pointed out, the accuracy of water-depth estimation is crucial and forms the
foundation for applications of bathymetry maps. We fully agree with this. However,
because water depth is inferred primarily from topographic information, the proposed
approach is subject to inherent limitations and uncertainties, and thus still exhibits
unavoidable errors in some cases (e.g., in deeper waters or areas with complex
geomorphology). To further improve the simulation accuracy of the water-depth maps,
we are actively exploring new strategies. For example, we are currently investigating
the use of surface water occurrence information to complement a sole topography-
driven constraint, which could substantially improve the general applicability and

robustness of the approach. We will incorporate these improvements in future work.
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