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Abstract. Wind forcing plays a pivotal role in driving upper-ocean physical and biogeochemical processes, yet 19 
direct wind observations remain sparse in many regions of the global ocean. While passive acoustic techniques 20 
have been used to estimate wind speed from moored and mobile platforms, their application to profiling floats has 21 
been demonstrated only in limited cases and remains largely unexplored. Here, we report on the first deployment 22 
of a profiling float equipped with a passive acoustic sensor, aimed at detecting wind-driven surface signals from 23 
depth. The float was deployed in the northwestern Mediterranean Sea near the DYFAMED meteorological buoy 24 
from February to April 2025, operating at parking depths of 500–1000 m. We demonstrate that wind speed can be 25 
successfully retrieved from subsurface ambient noise using established acoustic algorithms, with float-derived 26 
estimates showing good agreement with collocated surface observations from the DYFAMED buoy. To evaluate 27 
the potential for broader application, we simulate a remote deployment scenario by refitting the acoustic model of 28 
Nystuen et al. (2015) using ERA5 reanalysis as a proxy for surface wind. Refitting the model to ERA5 data 29 
demonstrates that the float–acoustic–wind relationship is generalizable in moderate conditions, but high-wind 30 
regimes remain systematically biased—especially above 10 m s-1. Finally, we apply a residual learning framework 31 
to correct these estimates using a limited subset of DYFAMED wind data, simulating conditions where only brief 32 
surface observations—such as those from a ship during float deployment—are available. The corrected wind time 33 
series achieved a 37% reduction in RMSE and improved the coefficient of determination (R2) from 0.85 to 0.91, 34 
demonstrating the effectiveness of combining reanalysis with sparse in-situ fitting. This framework enables the 35 
retrieval of fine-scale wind variability not captured by reanalysis alone, supporting a scalable strategy for float-36 
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based wind monitoring in data-sparse ocean regions—with important implications for quantifying air–sea 37 
exchanges, improving biogeochemical flux estimates, and advancing global climate observations. 38 

1 Introduction 39 

Wind plays a fundamental role in driving ocean dynamics, air–sea fluxes of gases and 40 
governing biological productivity and climate-related biogeochemical processes (Wanninkhof, 41 
2014; McGillicuddy, 2016). Recent modelling studies emphasize that wind-driven ocean 42 
circulation significantly influences regional climate trends, such as the North Atlantic Warming 43 
Hole phenomenon (McMonigal et al., 2025). Despite its critical importance, accurately 44 
quantifying oceanic wind variability remains challenging, particularly in remote and 45 
undersampled regions such as the Southern Ocean, where satellite retrievals are limited by 46 
coarse resolution, signal degradation from storms, heavy cloud cover, and sea ice (Bentamy et 47 
al., 2003; Chelton et al., 2007; Verhoef et al., 2012). Consequently, observational gaps persist, 48 
affecting our understanding of critical processes like air-sea carbon exchange during storm 49 
events (Carranza et al., 2024). 50 

Traditionally, oceanic wind observations have relied heavily on satellite scatterometry and 51 
surface-based platforms, including meteorological buoys. While scatterometers provide near-52 
global wind observations, their effectiveness diminishes significantly under stormy conditions, 53 
heavy precipitation, and seasonal ice coverage, limiting the accuracy and temporal resolution 54 
required to capture highly dynamic atmospheric conditions at high latitudes (Chelton et al., 55 
2007; Verhoef et al., 2012). Surface platforms, although providing high-resolution data, suffer 56 
from spatial limitations and high deployment and maintenance costs. 57 

An alternative method with substantial promise involves using passive acoustic sensing of 58 
underwater ambient noise generated by surface wind stress and wave-breaking activities. The 59 
relationship between wind speed and high-frequency ambient noise (1–20 kHz) has been 60 
extensively validated through theoretical and empirical studies (Vagle et al., 1990; Farmer et 61 
al., 1998; Oguz and Prosperetti, 1990). These foundational studies demonstrated that air bubble 62 
entrainment due to wave breaking, and raindrop impacts produces distinctive acoustic 63 
signatures, offering a robust proxy for surface meteorological conditions. This approach builds 64 
on the Weather Observations Through Ambient Noise (WOTAN) framework, formally 65 
introduced by Vagle et al. (1990), which directly links wind-driven surface processes to 66 
characteristic underwater acoustic signatures. The WOTAN methodology has since been 67 
successfully implemented in dedicated instruments such as the Passive Acoustic Listener 68 
(PAL), enabling autonomous and continuous monitoring of wind and rainfall from subsurface 69 
acoustic recordings (Nystuen et al., 2001). Building upon this foundation, Ma et al. (2005) 70 
developed a semi-empirical acoustic model capable of discriminating between wind-induced 71 
and rain-induced ambient noise features, thereby enabling reliable estimation of wind speeds 72 
from subsurface recordings. Subsequent studies extended these methods to drifting and 73 

2

https://doi.org/10.5194/egusphere-2025-4174
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 

subsurface platforms, validating the acoustic–wind relationship across varied conditions (Ma 74 
and Nystuen, 2005; Nystuen et al., 2015; Pensieri et al., 2015). 75 

Advancements in passive acoustic sensing technology have enabled the integration of acoustic 76 
sensors onto autonomous oceanographic platforms, including underwater gliders (Cazau et al., 77 
2018; Cauchy et al., 2018) and profiling floats equipped with PAL sensors (Riser et al., 2008; 78 
Yang et al., 2015; Yang et al., 2016; Ma et al., 2023). Such developments are especially 79 
valuable in remote environments, where traditional in-situ measurements remain limited. For 80 
example, Menze et al. (2012) provided early evidence of wind-dependent acoustic noise 81 
regimes in the Weddell Sea, while Cazau et al. (2017) and Gros-Martial et al. (2025) extended 82 
these methods by using biologged southern elephant seals, demonstrating the feasibility of 83 
estimating wind speed from passive acoustic recordings in the polar frontal zone. Beyond 84 
atmospheric sensing, acoustic-equipped profiling floats have also proven valuable for a broader 85 
range of geophysical and ecological applications, including detection and classification of 86 
marine mammal vocalizations (Matsumoto et al., 2013; Baumgartner and Bonnel, 2022), 87 
monitoring of hydroacoustic earthquake signals and ambient ocean noise (Pipatprathanporn 88 
and Simons, 2022), and observing the presence of deep-diving cetaceans (Matsumoto et al., 89 
2013; Fregosi et al., 2020). 90 

Despite these advancements, integration of passive acoustic sensors onto modern 91 
biogeochemical (BGC)-Argo floats remains underexplored. BGC-Argo floats represent a 92 
transformative technology in ocean observing, providing extensive datasets of critical oceanic 93 
parameters including oxygen, nitrate, chlorophyll, pH, and downwelling irradiance (Johnson 94 
and Claustre, 2016; Claustre et al., 2020). These autonomous platforms have significantly 95 
improved our understanding of seasonal and interannual variability in nutrient dynamics 96 
(Johnson et al., 2010), primary productivity (D’ortenzio et al., 2020), ocean acidification 97 
(Williams et al., 2017), and carbon sequestration (Gray et al., 2018). Integrating acoustic wind-98 
sensing capabilities with BGC-Argo floats thus offers a unique opportunity to simultaneously 99 
capture critical atmospheric forcing parameters alongside biogeochemical observations. 100 

Recent technological developments, including miniaturized, low-power acoustic sensors 101 
optimised for integration into autonomous platforms, now enable passive acoustic wind 102 
estimation with minimal impact on float energy budgets and data transmission constraints 103 
(Baumgartner et al., 2017). These advancements facilitate real-time onboard processing and 104 
transmission of acoustic-derived environmental variables via satellite, thus overcoming 105 
historical barriers associated with power consumption and data management. The integration 106 
of acoustic sensors into BGC-Argo floats thereby holds promise for closing significant 107 
observational gaps, particularly in undersampled regions such as the Southern Ocean. 108 

Furthermore, the broader international scientific community has recognized the value of 109 
passive acoustic sensing within global ocean observing frameworks. The Ocean Sound 110 
Essential Ocean Variable (EOV), coordinated by the International Quiet Ocean Experiment 111 
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(IQOE) and endorsed by the Global Ocean Observing System (GOOS), specifically identifies 112 
profiling floats as ideal platforms for scalable, distributed acoustic monitoring. This aligns with 113 
current efforts to enhance autonomous ocean observing systems through multidisciplinary 114 
sensor integration. 115 

In this study, we present the first deployment of a profiling float equipped with a passive 116 
acoustic sensor designed explicitly for wind speed estimation from subsurface ambient noise. 117 
Deployed in the northwestern Mediterranean Sea, near the DYFAMED meteorological buoy, 118 
this float serves as a proof-of-concept demonstration by integrating advanced acoustic sensing 119 
with simultaneous biogeochemical measurements. Our main objective is to assess the 120 
feasibility and precision of acoustic-based wind retrieval methods by applying and refining 121 
established empirical algorithms tailored specifically to the acoustic characteristics of the 122 
profiling platform. We validate float-derived wind estimates using collocated observations 123 
from the DYFAMED buoy and the ERA5 atmospheric reanalysis dataset, highlighting both the 124 
strengths and limitations of existing reference products. Finally, we propose a practical 125 
framework whereby acoustic observations from the float can be effectively combined with 126 
reanalysis data to enhance the accuracy of wind estimates in remote, data-sparse regions. 127 
Through this approach, we demonstrate the potential of acoustic-equipped profiling floats to 128 
serve as scalable, autonomous platforms within global ocean observing networks and capable 129 
of closing critical observational gaps, improving quantification of air–sea exchanges, and 130 
enriching our understanding of oceanic and climatic processes. 131 
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2 Materials and Methods 132 

 133 

Figure 1. Float trajectories during sea trials conducted in the Ligurian Sea in February and 134 
March 2025. Deployment A (solid line) and Deployment B (dashed line) are shown along with 135 
a concentric dashed circle (40 km radius) centred on the DYFAMED station. The 40 km radius 136 
was used to spatially filter float data for refitting and validation of wind estimates at 137 
DYFAMED, as described in Cauchy et al. (2018). 138 

2.1 Study area and DYFAMED weather station 139 

The acoustic wind sensing trial was conducted in the Ligurian Sea, a sub-basin of the 140 
northwestern Mediterranean, in proximity to the DYFAMED (DYnamique des Flux 141 
Atmosphériques en MEDiterranée) oceanographic time series station (Fig. 1). DYFAMED 142 
(43.42°N, 7.87°E) has served as a key reference site for air–sea exchange, upper ocean 143 
dynamics, and biogeochemical cycling since the early 1990s. The station is equipped with 144 
continuous meteorological and oceanographic monitoring, including high-quality wind speed 145 
and direction measurements from a surface buoy maintained by Météo-France. These data are 146 
reported at hourly resolution, following WMO (World Meteorological Organization) 147 
standards, and include wind parameters, along with air temperature, pressure, humidity, and 148 
sea state. During the study period, wind speeds at DYFAMED ranged from 0.5 to 16.1 m s-1, 149 
with a mean of 6.8 m s-1 and a measurement precision of one decimal place. 150 
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2.2 Acoustic sensor integration 151 

The float used in this study was equipped with a passive acoustic module jointly developed by 152 
NKE and ABYSsens in collaboration with LOV. This module was specifically designed for 153 
integration into the PROVOR CTS5 BGC-Argo platform, with the aim of minimizing power 154 
consumption and data volume while remaining compatible with the operational constraints of 155 
the BGC-Argo program. 156 

The module consists of two main parts enclosed in a dedicated external housing: 1) a low-noise 157 
HTI-96-Min hydrophone (sensitivity: −165 dB re 1 V/µPa; frequency range: 2 Hz–30 kHz), 158 
mounted externally to capture pressure fluctuations, and 2) an ABYSsens acquisition board, 159 
which conditions, digitizes, and processes the signal. 160 

The acquisition system operates in a low-power pulsed mode (220 mW) with a sampling 161 
frequency up to 62.5 kHz and 24-bit resolution. To limit power usage and transmission needs, 162 
raw acoustic signals are not stored. Instead, the sensor performs direct onboard integration into 163 
23 third-octave bands, spanning from 63 Hz to 25 kHz with a variable integration time (see 164 
Table 1). Higher-frequency bands (e.g., 3.15–25 kHz) used shorter integration times (50 ms), 165 
while low-frequency bands used longer windows (up to 500 ms). 166 

Frequency band range Integration time 

 63, 100, 125 and 160 Hz 500 ms 

400, 500 and 630 Hz 250 ms 

800 Hz, 1, 1.25, 1.6, 2 and 2.5 kHz 100 ms 

3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20 and 25 kHz 50 ms 

Table 1. Integration times applied to third-octave bands during acoustic signal processing, 167 
varying by frequency range to balance energy and spectral accuracy. In bold and underlined, 168 
the bands transmitted in the “9 bands” float configuration. 169 

The acoustic unit is mounted on the upper section of the float chassis and is configured to 170 
operate exclusively during the parking phase (500–1000 m depth). During this phase, the float 171 
drifts with only routine background measurements (e.g., pressure, CTD), and acoustic 172 
acquisition is automatically suspended whenever noisy operations such as ballast pumping or 173 
CTD sampling occur, thereby avoiding contamination from self-noise. 174 

The float system allows for flexible and modifiable configuration via satellite: the user can 175 
define the number of bands transmitted (23, 9, or a compact onboard estimate of wind/rain), 176 
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the acquisition interval (typically 5–15 minutes), and the number of acoustic samples averaged 177 
per measurement. In this study, we used a 5-minute interval with 10 averaged acquisitions per 178 
measurement (each acquisition is a spectral estimation using the integration times defined in 179 
Table 1). 180 

The telemetry and energy impact of adding an acoustic sensor to a 6-variable biogeochemical 181 
float was evaluated by using the programming interface provided by NKE. The estimated 182 
reduction in the number of cycles varies from 18% for acquisition every 5 minutes to 7% for 183 
acquisition every 15 minutes during the whole parking drift of a 10-day Argo cycle and with 5 184 
averaged acquisitions per acoustic measurement. The data volume increase depends on the 185 
transmission format: from ~9% for onboard wind–rain estimates (15-min period) to ~85% for 186 
a full 23-band spectrum (5-min period). A 9-band spectrum every 15 minutes—a likely 187 
recommended setup—adds ~16%. These overheads remain within the platform’s capacity, 188 
confirming compatibility with concurrent BGC measurements. 189 

Each sensor output transmitted by the float corresponds to the Third Octave Level (TOL), i.e., 190 
the sound pressure level integrated over a third-octave band, expressed in dB re 1 µPa. These 191 
TOLs represent the float’s primary spectral product and are used as input to the wind speed 192 
retrieval models. The amplitude resolution of the transmitted data is 0.2 or 0.5 dB, with a 193 
dynamic range up to 127 dB. This discretisation arises because the data are transmitted as 194 
integers to save bandwidth, which requires selecting a resolution step. 195 

2.3 Depth correction and spectral normalization 196 

To account for the attenuation of surface-generated noise with depth, a correction was applied 197 
to all acoustic measurements (Fig. 2). In this study, the correction term was calculated from the 198 
first temperature–salinity profile (Fig. 2a-b) and applied throughout the deployment, as the 199 
float remained in relatively stable hydrographic conditions (Fig. 2c). For long-term or basin-200 
scale missions, however, this coefficient would need to be recomputed for each profile, since 201 
temperature and salinity variability along the float trajectory can significantly affect sound 202 
propagation. 203 

Following Cauchy et al. (2018), the correction takes the form: 204 

TOL!(f) 	= 	TOL(h, f) 	+ 	β(h, f) (1a), 

where β(h, f) =	−10	log $2∫ &𝑟	𝑠𝑖𝑛
2𝜃𝑟,ℎ	𝑒

−𝛼𝑓	𝑙𝑟,ℎ

𝑙2𝑟,ℎ
'∞

0 dr( (1b), 
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with TOL(h, f) as the raw TOL measurement from the profiling float, h as the sensor depth, f 205 
the centre frequency of the band, r the horizontal distance from a surface noise source to the 206 
point vertically above the sensor, l the total pathlength between source and receiver (accounting 207 
for depth and refraction), including refraction effects, θ the angle between the emitted acoustic 208 
ray and the horizontal axis, and α the frequency-dependent attenuation coefficient for bubble-209 
free water.  The integral considers contributions from all surface-generated acoustic sources 210 
over the sea surface, assuming radial symmetry, and accounts for geometric spreading, 211 
frequency-dependent absorption, and angle-dependent energy emission along each path. This 212 
correction was originally derived for third-octave levels and is directly applicable here, as the 213 
float outputs TOLs at fixed centre frequencies. 214 

Then, depth-corrected third-octave levels (in dB re 1 µPa) were converted to spectral density 215 
levels (dB re 1 µPa/Hz) by normalising to the bandwidth of each band. This step ensures 216 
consistency across frequencies and comparability with model spectra. In future deployments, 217 
this spectral correction will be applied directly onboard the float. 218 

 219 

Figure 2. a) Sound speed profile used to derive the b) depth correction term β(h, f) as a function 220 
of depth, following the formulation of Cauchy et al. (2018). The correction accounts for the 221 
attenuation of wind-generated surface noise with increasing sensor depth and was applied prior 222 
to wind speed estimation. Here, β is shown at 3.15 kHz and 8 kHz. 223 

  224 
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2.4 Profiling float deployments 225 

 226 

Figure 3. Vertical profiles from the acoustic-equipped profiling float deployed near 227 
DYFAMED between February and April 2025. Blue points indicate times when passive 228 
acoustic data were successfully recorded. The vertical dashed line marks the transition between 229 
Deployment A and Deployment B. 230 

Two deployments of an acoustic-equipped float (PROVOR CTS5) were carried out near 231 
DYFAMED between February and April 2025 (Fig. 1). Deployment A lasted 30 days, from 10 232 
February to 11 March, and Deployment B continued for 24 days starting on 12 March and 233 
remained active until 4 April. The float operated in park-and-profile mode at three parking 234 
depths (500, 700, and 1000 m; Fig. 2), collecting biogeochemical data during ascent and 235 
passive acoustic data exclusively during the parking phases to minimize self-generated noise. 236 

While Riser et al. (2008) previously demonstrated the feasibility of acoustic wind sensing from 237 
Argo floats, their system transmitted only pre-processed wind estimates derived onboard using 238 
a simplified version of the algorithm by Nystuen et al. (2015), without retaining or transmitting 239 
spectral band data. This limited the possibility of reanalysis or applying alternative processing 240 
schemes. In contrast, the floats used in this study recorded and transmitted full third-octave 241 
band spectra, enabling detailed post-processing and algorithm refinement tailored to the float’s 242 
specific acoustic characteristics. 243 

2.5 Transient and anthropogenic noise mitigation 244 

Transient noise (i.e. episodic non-wind-related events) was mitigated by removing values 245 
exceeding the 99th percentile within a ±1.5-hour window centred around each matched 246 
timestamp. While this approach risks excluding some high-wind events, we verified that 247 
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extreme wind episodes typically span durations longer than a few hours, minimizing the chance 248 
of misclassification (see Fig. 8). 249 

To further reduce short-term variability and emphasize quasi-stationary wind-driven acoustic 250 
patterns, we applied a 3-hour rolling mean to each frequency band. This choice reflects a 251 
compromise between noise reduction and temporal resolution: the smoothing is sufficient to 252 
stabilize wind estimates in the presence of submesoscale variability and intermittent noise, yet 253 
long enough to preserve multi-hour wind events of interest. While this approach may attenuate 254 
very brief fluctuations, our inspection of the time series suggests that the smoothing is sufficient 255 
to suppress noise while retaining multi-hour processes of interest (eg., air–sea fluxes). 256 
Alternative strategies, such as post-processing the wind speed estimates rather than the spectral 257 
bands, could be explored in future deployments if finer-scale variability is a priority. 258 

To mitigate anthropogenic noise contamination, Automatic Identification System (AIS) ship 259 
tracking data were used to identify vessel presence within a 10 km radius and ±30 minutes of 260 
each float timestamp. Acoustic observations were flagged as potentially contaminated if they 261 
coincided with ship presence and showed anomalous deviations—defined as float-derived 262 
wind speed differing from the DYFAMED buoy estimate by more than the root mean square 263 
error (RMSE) observed under uncontaminated conditions. While this introduces a partial 264 
dependence on external wind reference data, the combined AIS+anomaly criterion reduces 265 
false positives and avoids relying solely on model–sensor differences for data exclusion. Data 266 
flagged as contaminated were excluded from further analysis. 267 

  268 
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2.6 Application of established acoustic models 269 

 270 

Table 2. Summary of acoustic wind speed estimation models and their input requirements. 271 
Input units refer to the spectral level units used in model calibration. Central frequency 272 
indicates the nominal retrieval frequency, and the third-octave band column specifies the 273 
corresponding bandwidth. All models were calibrated and validated against standard 10-m 274 
wind speed. 275 

Empirical models have long been used to estimate surface wind speed from underwater ambient 276 
noise, exploiting the link between wind-driven bubble formation and acoustic energy in the 1–277 
20 kHz band. These models typically relate surface wind speed U to the sound pressure level 278 
Lf measured in selected frequency bands. While many models use third-octave bands, others 279 
rely on custom-defined or narrowband frequencies, often with variable bandwidths (e.g., 16% 280 
of the centre frequency in Vagle et al., 1990). 281 

We applied four established wind retrieval models spanning a range of functional forms—282 
cubic, two-regime linear–quadratic, composite, and two-regime log–linear. All wind models 283 
were applied using acoustic levels consistent with their original formulations (Table 2). This 284 
diversity allowed us to assess sensitivity to model structure and evaluate performance under 285 
float-specific conditions. Each model was first implemented using its published coefficients to 286 
generate wind speed estimates from float acoustic data, and the results were evaluated against 287 
collocated meteorological observations (Fig. 4). Subsequently, the parameters of each model 288 
were refitted using collocated float acoustic and wind data from the DYFAMED 289 
meteorological buoy (Figs. 4 and 5; see Table 1 in Supplementary Material), which provides 290 

Model Input units Wind frequency band 
(kHz) 

Wind retrieval 
frequency  

(kHz) 

Vagle et al. (1990) dB re 1 µPa²/Hz 7.1–8.9 8 

Nystuen et al. (2015) dB re 1 µPa²/Hz 7.1–8.9 8 

Pensieri et al. (2015) dB re 1 µPa²/Hz 7.1–8.9 8 

Cauchy et al. (2018) dB re 1 µPa 2.8–3.55 3.15 
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hourly 10-meter wind speed. Model refitting was performed using nonlinear least-squares 291 
optimization (Table 3). Wind records from DYFAMED were matched to float measurements 292 
by nearest timestamp. 293 

Following the spatial filtering approach of Cauchy et al. (2018), only float data within 40 km 294 
of DYFAMED were retained for refitting and validation (Fig. 1). This threshold corresponds 295 
to the estimated confidence radius around the DYFAMED meteorological buoy, within which 296 
wind speed measurements show high spatial coherence (R = 0.86, RMSE = 2.5 m s-1) when 297 
compared to the AROME-WMED atmospheric model (Rainaud et al., 2016). The updated 298 
coefficients were then used to generate wind estimates over the full float dataset. While this 299 
spatial proximity improves wind representativeness, it does not account for variations in wind 300 
fetch, a parameter known to influence ambient noise generation, particularly through wave and 301 
bubble field development (e.g., Prawirasasra et al., 2024). 302 

These four models were selected to represent a range of analytical formulations commonly 303 
used in acoustic wind retrievals. They all use frequency bands where wind-driven bubble noise 304 
typically dominates the local ambient sound field, with reduced interference from low-305 
frequency sources such as distant shipping. Our aim was not to exhaust all available models, 306 
but rather to evaluate a representative subset under consistent float-specific conditions, 307 
emphasizing the effect of model structure and local fitting.  308 

The specifications and key features of each model are summarized in Table 2 for reference. 309 
For all models and validation steps throughout the rest of Methods section, wind speed refers 310 
to the standard 10-meter wind speed, consistent with both the ERA5 reanalysis product and the 311 
DYFAMED buoy observations used for calibration and evaluation. 312 

The first model, from Vagle et al. (1990), was derived from moored hydrophone data in the 313 
North Atlantic and relates wind speed to high-frequency noise at 8 kHz using a cubic 314 
formulation: 315 

U,-./0	122! 	= 	10(
456.8!	9	:456.8!*4;.8	⋅	56	⋅	(=>?+,-.4@1.A2)

48.56	⋅	@  (2). 

Next, we applied the cubic model from Nystuen et al. (2015), developed using long-term 316 
acoustic records from fixed hydrophones in both the Pacific and Atlantic. This model targets 317 
wind-generated noise at 8 kHz and includes band-specific criteria to distinguish wind 318 
contributions from other sources such as rain and shipping (Table 2). 319 

UCDEFG0H	@!1I = 0.0005	 ⋅ SPL6JKL5 − 0.0310	 ⋅ SPL6JKL@ + 0.4904	 ⋅ SPL6JKL 	
+ 2.0871 

(3). 
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We then tested the two-regime linear–quadratic model from Pensieri et al. (2015) at 8 kHz, 320 
developed using moored hydrophone data from the Ligurian Sea, near our study area. 321 
Calibrated for Mediterranean conditions, the model relates wind speed to ambient noise levels 322 
at the 8 kHz band, applying distinct linear and quadratic fits across low- and high-noise 323 
regimes. Notably, the transition between regimes is defined at 38 dB, corresponding to a wind 324 
speed of 2.39 m s-1 in their framework. However, it is important to note that the threshold 325 
separating high and low regimes is not standardized across the literature and may vary between 326 
studies. 327 

U>0HEM0NM	@!1I = A0.044642 ⋅ 	SPL6JKL
@ − 3.2917 ⋅ 	SPL6JKL + 63.016	

0.1458 ⋅ SPL6JKL − 3.146, for	SPL6JKL < 38	dB									
 (4). 

Finally, we included the two-regime log–linear model from Cauchy et al. (2018), developed 328 
using acoustic data from a glider operating in the western Mediterranean. Designed for mobile 329 
platforms, the model relates wind speed to third-octave noise levels centred at 3 kHz. The 330 
model uses distinct logarithmic and linear fits across two noise regimes. 331 
 332 
This choice of 3 kHz, instead of the more commonly used 8 kHz, was based on empirical 333 
observations showing greater dynamic range and lower variance in this band, which may reflect 334 
sensor-specific factors or the sensor’s mounting configuration on the glider (Cauchy et al., 335 
2018). The relationship goes as: 336 

UO-GPQD	@!16 =

⎩
⎪
⎨

⎪
⎧ 1
0.4 ⋅ 10;

⋅ I10
=>?/,-.4=011

@! + 0.2 ⋅ 10;J																																				

1
1.6 ⋅ 10;

⋅ K10
=>?/,-.23011

@! + 12.5 ⋅ 10;L for	U > 10	m	s41
 (5). 

The wind retrieval relationship is modelled using a two-regime log-linear function. The 337 
transition between regimes occurs at wind speeds of approximately 10–11 m s-1, established 338 
empirically. To represent this switching behaviour, a relative threshold level is introduced, 339 
expressed as SPL – Soff, where Soff denotes the sea-state 0 noise reference. This formulation 340 
highlights when wind-driven noise becomes dominant relative to the reference background 341 
noise. 342 

2.7 Simulated wind estimation using reanalysis and residual learning 343 

To evaluate the ability of float-derived acoustic measurements to estimate surface wind speed 344 
in regions without direct atmospheric observations, we used wind data from the ERA5 345 
atmospheric reanalysis produced by the European Centre for Medium-Range Weather 346 
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Forecasts (ECMWF; Bell et al., 2021). ERA5 provides global wind fields on a 0.25° × 0.25° 347 
spatial grid with hourly temporal resolution, offering a consistent and widely used reference 348 
for surface atmospheric conditions. 349 

Hourly ERA5 data were retrieved for the period spanning the float deployments, from 10 350 
February to 31 March 2025. Specifically, we extracted the 10 m zonal (u1!@ ) and meridional 351 
(v1!@ ) wind components from the grid cell containing the float’s position. Wind speed (U) was 352 
then computed as: 353 

U	 = 	Ru1!@ + v1!@  (6). 

These values were time-matched to float and DYFAMED measurements using the nearest 354 
available ERA5 hour. 355 

Using ERA5 wind speeds as a reference, we refitted the empirical model from Nystuen et al. 356 
(2015; 3) to float-measured Sound Pressure Level (SPL) at 8 kHz, producing a new set of 357 
coefficients tailored to the float deployment. This produced a first-pass wind estimate derived 358 
from float acoustics alone, calibrated to ERA5 rather than to DYFAMED in-situ observations. 359 
This approach simulates a scenario in which a profiling float is deployed in a remote region 360 
lacking surface wind measurements, and reanalysis products are used to train or tune the 361 
acoustic model. 362 

To improve the accuracy of this ERA5-calibrated estimate, we developed a residual learning 363 
framework that uses limited collocated DYFAMED in-situ observations to correct systematic 364 
errors. This training set, consisting of observations within 40 km, represents approximately 365 
40% of the full dataset. This setup was designed to simulate a realistic scenario where ship-366 
based wind measurements are available in proximity to a float deployment. Specifically, we 367 
used wind speed measurements from the DYFAMED buoy to model residual differences 368 
between the ERA5-based acoustic prediction and true surface conditions. A feature matrix was 369 
constructed including SPL at 8 kHz, ERA5 wind speed (10-meter), normalized time 370 
(deployment day), and the acoustic model prediction wind speed from Nystuen et al. (2015; 371 
Eq. 3). Residuals relative to DYFAMED wind speed were modelled using XGBoost regression, 372 
a gradient boosting machine learning algorithm based on gradient-boosted decision trees and 373 
known for its high predictive performance and ability to handle non-linear relationships and 374 
interactions between features (Chen and Guestrin, 2016). 375 

To estimate prediction uncertainty, we applied bootstrapping at two levels. For the ERA5-376 
calibrated acoustic estimate, we generated 100 bootstrap samples by resampling the float 377 
dataset with replacement and perturbing the ERA5 wind input using its reported uncertainty 378 
(standard deviation σ = 1.5 m s-1; Bell et al., 2021). The empirical model was re-fitted for each 379 
bootstrap, and the resulting ensemble of predictions was used to compute the standard deviation 380 
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at each time point. This approach captures both the impact of ERA5 input uncertainty and 381 
variability in the fitted model parameters. 382 

For the ML-corrected wind speed, we trained an ensemble of 100 XGBoost models on 383 
bootstrapped subsets of the training data. During both training and prediction, Gaussian noise 384 
(mean = 0, σ = 1.5 m s-1) was added to the ERA5 wind feature to simulate observational 385 
uncertainty. The Gaussian assumption provides a tractable way to propagate uncertainty 386 
through the learning framework and is commonly used in ensemble perturbation methods when 387 
only first- and second-moment statistics are available. While the true distribution of ERA5 388 
errors may deviate from normality, the central limit tendency of aggregated atmospheric errors 389 
makes the Gaussian approximation a reasonable first-order choice. Importantly, this approach 390 
ensures that the output uncertainty reflects both the variability of the fitted ML model and the 391 
stated input uncertainty, though future work could refine the noise model if detailed error 392 
distributions become available. Final corrected wind speeds were computed by summing the 393 
Nystuen et al. (2015) ensemble-mean prediction with the ensemble-mean residual. Uncertainty 394 
bounds were defined as ±1σ, combining variability across the XGBoost ensemble with ERA5 395 
input uncertainty in quadrature. Uncertainty for the ML-corrected estimate reflects the 396 
variability of the residual model and ERA5 input uncertainty but does not propagate the 397 
bootstrap spread of the underlying Nystuen fit, which we report separately. 398 

This method demonstrates how passive acoustic observations from profiling floats can be 399 
combined with global reanalysis products and limited in-situ data to improve local wind speed 400 
estimates, simulating the upscaling of BGC-Argo float deployments in remote ocean regions 401 
lacking direct wind speed estimates.  402 

15

https://doi.org/10.5194/egusphere-2025-4174
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 

3 Results and Discussion 403 

 404 

Figure 4. Comparison of unoptimized (top) and optimised (bottom) wind speed models against 405 
DYFAMED buoy observations. Each subplot shows modelled wind speed estimates from four 406 
literature models (Vagle et al., 1990; Nystuen et al., 2015; Pensieri et al., 2015; Cauchy et al., 407 
2018) compared with collocated buoy wind data (black line). The unoptimized models a) use 408 
original published coefficients, while the optimised models b) are re-fitted using data within 409 
40 km of the DYFAMED site. The dashed vertical line indicates the start of deployment B.  410 
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 411 

Figure 5. Comparison of optimised wind speed estimates from four literature models against 412 
collocated DYFAMED buoy wind measurements. Each subplot (a–d) shows scatter plots of 413 
float-derived wind speed vs. buoy wind speed using model-specific optimised coefficients: (a) 414 
Vagle et al. (1990), (b) Nystuen et al. (2015), (c) Pensieri et al. (2015), and (d) Cauchy et al. 415 
(2018). Points are color-coded by distance from the DYFAMED buoy, and the dashed line 416 
represents the 1:1 reference. Insets display linear regression slope, intercept, and coefficient of 417 
determination (R2).418 
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 420 

421 
Figure 7. Optimised 10-meter wind speed (log scale) as a function of observed underwater 422 
sound pressure level (SPL) at DYFAMED for (a) 3.15 kHz and (b) 8 kHz. Observed wind speed 423 
is shown in black.  424 

 425 
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 426 

Figure 8. Time series comparison of wind speed estimates from the acoustic float and 427 
DYFAMED buoy observations, shown across three sequential 18-day segments of the 428 
deployment (a–c). The dashed pink line shows estimates from the Nystuen et al. (2015) model 429 
fit to ERA5-derived inputs. The solid green line represents the same model corrected using a 430 
residual-learning approach (XGBoost) with its associated uncertainty. Black curves show in-431 
situ wind speed from the DYFAMED buoy. The top x-axis indicates the float's distance from 432 
DYFAMED over time, and a dashed vertical line marks the start of deployment B. 433 

 434 
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3.1 Assessing the performance of float-based acoustic wind estimation 435 

We applied four previously published wind retrieval models to float-measured sound pressure 436 
levels (SPLs) at 8 kHz and 3 kHz. Using the original coefficients from these studies, wind speed 437 
estimates deviated significantly from collocated DYFAMED observations, particularly in their 438 
ability to reproduce the magnitude of wind events (Fig. 4a). This mismatch reflects the 439 
sensitivity of empirical acoustic models to deployment context, including platform geometry, 440 
acoustic propagation, and local noise environment. 441 

When these same models were refitted using collocated float acoustics and DYFAMED wind 442 
observations within 40 km (Fig. 1), performance improved markedly (Fig. 4b; Fig. 7). Among 443 
the models, the cubic formulation by Nystuen et al. (2015) achieved the best fit (R2 = 0.88; Fig. 444 
5b) and successfully captured the full observed wind range (0.5–16.1 m s-1; Figs. 5 and 7). 445 
Notably, it was the only model capable of resolving wind speeds below 2 m s-1, a critical range 446 
often underrepresented due to weak surface forcing and minimal bubble generation. This low-447 
end sensitivity is particularly valuable for air–sea gas exchange estimates in biogeochemical 448 
studies and suggests that the Nystuen model may be more broadly applicable in low-to-449 
moderate wind regimes. 450 

However, even after successful fitting, the transferability of acoustic–wind models remains 451 
uncertain. Factors such as noise contamination, ambient biological activity and regional 452 
propagation conditions can vary substantially between deployments, affecting both the shape 453 
and robustness of the acoustic–wind relationship. Moreover, profiling floats introduce their 454 
own artifacts, which may arise from hydrodynamic turbulence, buoyancy engine activity, 455 
bubble release, or electronic interference, each of which can contaminate the acoustic signal 456 
independently of wind forcing. In our study, even models originally developed in the same 457 
basin required refitting (i.e. Pensieri et al. 2015; Figs. 4, 5 and 7), underlining the challenge of 458 
cross-platform and cross-region generalization.  459 

A promising future direction may involve grouping deployments into broader “acoustic 460 
environment types”—such as open-ocean gyres, coastal shelves, or high-latitude storm 461 
zones—within which shared model parameters could be defined and validated. This aligns with 462 
the priorities outlined in the Ocean Sound Essential Ocean Variable (EOV) Implementation 463 
Plan, which emphasizes the need for community-agreed metadata standards, calibration 464 
protocols, and classification schemes to support global comparability across acoustic 465 
deployments (Tyack et al., 2023). Evaluating the adequacy of such frameworks in the context 466 
of profiling float–based wind retrieval could inform future updates and promote harmonization 467 
with broader ocean observing efforts. 468 

 3.2 Generalizing float-specific wind modelling using reanalysis 469 

While site-specific fitting of acoustic wind models yields accurate float-derived wind 470 
estimates, such fittings are not feasible in most regions of the global ocean where in-situ wind 471 
observations are unavailable. To assess whether the acoustic–wind relationship can be 472 
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generalized for remote deployments, we investigated the use of reanalysis wind products as a 473 
proxy reference for model fitting. Specifically, we used the ERA5 atmospheric reanalysis (Bell 474 
et al., 2021) to refit the Nystuen et al. (2015) model to float-measured acoustic data, simulating 475 
a scenario where no collocated buoy or shipboard wind measurements are available (Figs. 6 476 
and 8). 477 

Using time-matched float sound pressure level at 8 kHz and collocated ERA5 wind speed, we 478 
derived a new set of coefficients (Section 2.6), representing a general-purpose acoustic wind 479 
model that could, in principle, be deployed globally using only float data and reanalysis inputs. 480 
The objective of this exercise was not to develop a new region-specific model, but rather to test 481 
whether existing models could be adapted—via reanalysis fitting—for use in data-sparse areas, 482 
ultimately enabling scalable wind estimation from profiling floats globally. 483 

As shown in Figure 6a, this ERA5-calibrated Nystuen et al. (2015) model reproduced wind 484 
variability within the 2.5–10 m s⁻¹ range with moderate skill (R² = 0.85), and performed best 485 
during Deployment A, when wind conditions remained relatively stable and within the 486 
moderate wind regime (Fig. 8). However, performance declined during periods of stronger 487 
wind, particularly in Deployment B (Figs. 6a and 8). In these cases, the model systematically 488 
underestimated wind speeds, with errors exceeding 3 m s-1 during high-wind events. 489 

Comparison with ERA5 reanalysis also revealed broader limitations. Although ERA5 provides 490 
a globally consistent reference product for surface winds, it diverged from DYFAMED data 491 
during several high-wind episodes, especially in Deployment B. This discrepancy is consistent 492 
with earlier studies reporting the underestimation of localized orographic wind events in 493 
reanalysis datasets over semi-enclosed basins such as the Mediterranean (Bentamy et al., 2003; 494 
Bell et al., 2021). This limitation is especially consequential for deployments in the Southern 495 
Ocean, where high-wind regimes are frequent and drive a large share of the global air–sea CO2 496 
flux. Underestimating these events could lead to significant biases, as gas exchange scales 497 
nonlinearly with wind speed (Wanninkhof, 2014; Wanninkhof et al., 2025). 498 

Thus, while float-based acoustic wind estimation can be extended using reanalysis data in the 499 
absence of in-situ observations, its accuracy ultimately depends on the fidelity of the reference 500 
product used for fitting. In our case, reanalysis-based fitting performed well in moderate wind 501 
regimes but failed to capture the intensity of high-wind events—highlighting the limitations of 502 
relying solely on global reanalysis in dynamic or orographically complex regions. 503 

3.3 Simulating scalable wind estimation in data-sparse regions 504 

While reanalysis-calibrated acoustic models offer a pathway for estimating surface wind 505 
speed in remote regions, the results in Section 3.2 show that this approach alone remains 506 
insufficient during high-wind events or rapidly evolving conditions. This limitation poses a 507 
significant challenge for air–sea interaction studies in the Southern Ocean and other high-508 

22

https://doi.org/10.5194/egusphere-2025-4174
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 

latitude regions, where extreme wind forcing drives critical fluxes of heat, momentum, and 509 
carbon (Lee et al., 2017; Dotto et al., 2019; Zhang et al., 2022; Gruber et al., 2023). 510 

3.3.1 Local model correction using residuals learning 511 

To overcome this, we implemented a residual learning framework that combines the 512 
generalizability of reanalysis-based fitting with the accuracy of localized corrections. 513 
Specifically, we trained an ensemble of XGBoost regression models to predict the residuals 514 
between the ERA5-calibrated estimates and collocated DYFAMED buoy observations (see 515 
Section 2.6). The model was trained using float data within 40 km of DYFAMED and 516 
bootstrapped over 100 iterations to estimate both mean corrections and predictive uncertainty 517 
(Fig. 1; Fig. 6b). The 40 km radius was selected based on the sensitivity analysis of Cauchy et 518 
al. (2018), who found it to balance proximity with data availability; however, this threshold 519 
may be site-specific and should be re-evaluated in future deployments to reflect local acoustic 520 
and meteorological conditions. 521 

The corrected wind time series showed markedly improved alignment with DYFAMED 522 
observations (Fig. 8), particularly during high-wind events where the uncorrected model 523 
consistently underestimated wind speed. This bias-correction approach yielded a substantial 524 
performance gain, increasing the coefficient of determination (R²) from 0.85 to 0.91—an 525 
absolute improvement of 0.06, or approximately 7.1% relative to the baseline model. At the 526 
same time, the root mean square error (RMSE) dropped from 1.88 m s-1 to 1.15 m s-1, 527 
corresponding to a 37.0% reduction in prediction error. While other learning-based methods 528 
have achieved comparable improvements—e.g., Zambra et al. (2022) reported a 16% RMSE 529 
reduction using a physics-informed deep learning model—our method differs by explicitly 530 
using reanalysis as a prior and requiring only sparse in-situ fitting. 531 

The machine learning model does not estimate wind speed directly. Instead, it learns to adjust 532 
the bias based on a limited number of input features: acoustic signal intensity, deployment day, 533 
and the ERA5-calibrated prediction. In essence, it identifies when and where ERA5 is likely to 534 
fail, applying larger corrections under high-wind conditions where reanalysis tends to 535 
underestimate variability. 536 

The results demonstrate that even a limited number of in-situ fitting points—simulating, for 537 
example, a brief engine-off ship-based wind measurement window during float deployment—538 
could significantly improve wind estimates across the full float trajectory. In our case, the in-539 
situ data used for fitting represented approximately 40% of the full dataset, due to the relatively 540 
short deployment duration. However, this approach also introduces potential limitations. First, 541 
although we aimed to simulate operational constraints, the fitting points were drawn from the 542 
same dataset used for evaluation, raising the possibility of optimistic bias in the reported 543 
performance. Future deployments should explore spatially or temporally distinct training–544 
validation splits or assess generalization using fully withheld reference stations. Second, the 545 
observed reduction in RMSE reflects improvements primarily at the higher end of the wind 546 
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speed range, where raw model errors tend to be largest. While this benefits absolute RMSE 547 
metrics, it may overstate improvements at lower wind speeds. 548 

3.3.2 Strategies for sparse in-situ calibration 549 

In practical terms, however, acquiring suitable reference observations can be challenging. 550 
While ship-based wind measurements are a natural candidate—particularly during float 551 
deployment or recovery—they may be unsuitable for model fitting if the ship is too close, as 552 
engine noise can contaminate the float’s acoustic signal. A viable compromise is to position 553 
the ship nearby—but not too close—so that wind speed measurements remain representative 554 
while minimizing acoustic interference. Alternatively, a more robust strategy is to deploy floats 555 
in proximity to existing meteorological buoys, which provide collocated wind observations 556 
without interfering with subsurface acoustic recordings. 557 

In regions where neither buoys nor suitable ship data are available, identifying whether the 558 
available in-situ coverage is sufficient becomes more complex. This will depend not only on 559 
the duration and trajectory of the float mission, but also on the opportunistic use of additional 560 
reference sources encountered along the way—for example, other buoys, or wind observations 561 
from vessels transiting the area. In such cases, satellite-based products—particularly synthetic 562 
aperture radar (SAR) imagery—could offer another valuable source of wind information. 563 
These products provide high spatial resolution and can capture localized wind variability at 564 
times and locations where in-situ data are sparse. Although episodic and weather-dependent, 565 
SAR passes could serve as intermittent anchor points for model adjustment or evaluation. 566 

More broadly, these scenarios highlight the need for flexible modelling approaches that can 567 
exploit heterogeneous and temporally limited reference data. Rather than relying on dense 568 
training datasets or persistent surface observations, future efforts could explore machine 569 
learning paradigms such as domain adaptation, transfer learning, or few-shot learning, which 570 
aim to adapt models to new environments with minimal retraining. For instance, recent work 571 
by Wang et al. (2020) has shown that few-shot transfer methods can yield competitive 572 
performance even when only a small number of target-domain samples are available. 573 

In the context of profiling floats, such strategies could enable a more scalable approach to 574 
acoustic model tuning, by leveraging sparse data from ships, buoys, or satellites—each with its 575 
own limitations but collectively offering sufficient diversity. We propose framing this as 576 
opportunistic multisource model fine-tuning: a hybrid calibration scheme in which local 577 
corrections are derived from whatever reference sources are available, without requiring dense 578 
or continuous in-situ coverage. Developing and validating such methods will be essential to 579 
deploy acoustic-equipped floats globally while maintaining robustness across a wide range of 580 
environmental and acoustic conditions. 581 

  582 
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3.3.3 Implications for global observing 583 

While ERA5 provides a useful climatological reference, it tends to underestimate short-lived, 584 
high-wind events due to spatial and temporal smoothing. This is an issue particularly for gas 585 
exchange studies, as extreme winds disproportionately contribute to total fluxes. Acoustic float 586 
data—collected continuously and at high resolution—are uniquely positioned to detect these 587 
events, even when they fall below the detection threshold of satellite or reanalysis products. 588 

However, model performance degrades with increasing distance from DYFAMED, reflecting 589 
the spatial decorrelation of wind fields and the limited spatial representativeness of the buoy 590 
observations. Beyond 73 km during Deployment B, both the Nystuen et al. (2015) – ERA5 fit 591 
and the machine-learning-corrected float estimates begin to diverge from DYFAMED winds 592 
(Figs. 6 and Fig. 8). This divergence does not necessarily imply model failure but rather raises 593 
the possibility that the float and buoy are sampling different wind regimes. In such cases, it 594 
becomes difficult to determine whether discrepancies are due to limitations in the acoustic 595 
model or to true spatial variability in wind forcing. One way to address this uncertainty is to 596 
analyse float trajectories that pass between two surface reference stations, assessing whether 597 
refitting at the final station yields consistent corrections or reveals systematic regional shifts in 598 
wind decorrelation. Such an approach will require future deployments that span multiple buoys, 599 
enabling a systematic evaluation of how model performance degrades—or remains robust—600 
across both time and space. 601 

Additionally, in the Southern Ocean, where anthropogenic noise is relatively low, it may also 602 
be worth reconsidering the use of lower-frequency bands (<1 kHz) for wind estimation. These 603 
frequencies are more sensitive to high wind speeds due to increased bubble activity and longer 604 
propagation ranges and may outperform higher-frequency bands under strong forcing 605 
conditions—provided contamination from distant shipping or other sources remains minimal. 606 

Several recent studies have applied machine learning to underwater acoustic data to estimate 607 
wind and rainfall, often relying on long-term, stationary deployments and direct prediction 608 
from spectral features (Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023; Zambra et 609 
al., 2022). While these approaches have shown strong performance under controlled 610 
conditions—such as Taylor et al.'s use of moored PAL systems during storm events or Zambra 611 
et al.'s assimilation-based deep learning scheme—they typically require dense, labelled 612 
datasets and assume relatively stable acoustic environments. 613 

In contrast, our residual learning strategy is designed for sparse, mobile deployments. It 614 
corrects reanalysis-based estimates using short-duration in-situ fitting and does not require full 615 
acoustic training labels, making it more adaptable to the practical constraints of autonomous 616 
profiling floats. While in-situ data remains the most difficult to obtain in remote, data-poor 617 
regions, our approach is well-suited to opportunistic fitting—for instance, using brief ship-618 
based wind observations during deployment or leveraging nearby meteorological buoys. This 619 
hybrid strategy balances scalability with realism, enabling robust performance even in hard-to-620 
access areas where long-term reference data are limited or unavailable. 621 
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In parallel, another important consideration is the potential for regional bias introduced by the 622 
depth correction applied to acoustic levels. This correction compensates for propagation losses 623 
due to local water column properties (e.g., temperature, salinity, and sound speed) and is 624 
typically derived from the float's hydrographic profile at the start of the deployment. When 625 
used to adjust the full acoustic time series, this introduces a location-dependent correction that 626 
may vary across floats or missions. Ideally, the correction should be recalculated for each new 627 
hydrographic profile, especially in long-term or wide-ranging deployments where temperature 628 
and salinity conditions evolve. To ensure comparability of wind estimates at basin or global 629 
scales, such corrections should be clearly documented and incorporated into standard 630 
processing protocols for acoustic-equipped floats. 631 

This deployment-focused flexibility is key to scaling up acoustic wind estimation globally. By 632 
leveraging reanalysis products for first order fitting and applying localized corrections when 633 
available, our framework enables accurate, event-resolving wind estimates without the need 634 
for long-term surface infrastructure. Scaling this approach across the BGC-Argo array would 635 
provide high-resolution, all-weather wind monitoring in regions poorly served by existing 636 
networks. 637 

4 Conclusions 638 

This study provides the first demonstration of retrieving surface wind speeds from subsurface 639 
ambient noise recorded by a profiling float equipped with a passive acoustic sensor. By 640 
integrating a low-power hydrophone onto an autonomous profiling float and applying 641 
established acoustic retrieval algorithms, we successfully detected surface wind variability 642 
from depths between 500 and 1000 m. When empirically calibrated using collocated buoy 643 
observations, float-derived wind speed estimates closely matched in-situ surface 644 
measurements, confirming the feasibility and accuracy of this approach under realistic 645 
oceanographic conditions. 646 

To evaluate its potential for application in remote, data-sparse regions, we simulated a scenario 647 
where acoustic models were calibrated solely using ERA5 reanalysis winds. Although the 648 
ERA5-based calibration captured moderate wind variability effectively (2.5–10 m s⁻¹), it 649 
consistently underestimated high-wind events, underscoring limitations in using reanalysis data 650 
as a standalone reference. To mitigate this, we implemented a residual-learning approach, 651 
leveraging brief periods of local wind observations (e.g., from ship-based or moored 652 
instruments) to correct systematic errors in the acoustic estimates. This hybrid methodology 653 
substantially improved model performance, particularly under high-wind conditions, 654 
maintaining accuracy across extended float trajectories and demonstrating robustness for 655 
operational use. 656 

These findings underscore the potential of acoustic-equipped profiling floats as scalable and 657 
autonomous platforms capable of delivering high-resolution surface wind observations in 658 
remote or poorly instrumented oceanic regions. Such observations are particularly critical for 659 
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refining estimates of air–sea exchanges, including the oceanic uptake and release of CO2, 660 
processes significantly influenced by wind-driven gas exchange. Combined with emerging 661 
biogeochemical proxy algorithms, such as CANYON-B and CONTENT, acoustic-equipped 662 
floats can now provide fully autonomous, integrated estimates of air–sea CO2 fluxes by 663 
coupling accurate wind measurements with concurrent measurements of oceanic temperature, 664 
salinity, and oxygen. 665 

Nevertheless, this study represents a single deployment in a semi-enclosed basin. Broader 666 
validation across diverse oceanographic regimes, including open-ocean gyres, polar regions, 667 
and high-energy storm zones, is necessary to fully assess the robustness, generalizability, and 668 
temporal stability of the proposed correction frameworks. Future deployments will help refine 669 
the methods presented here and further test their applicability across different acoustic 670 
environments and platform configurations. 671 

The demonstrated capability to retrieve accurate wind speeds from subsurface acoustic 672 
measurements marks a significant advancement in autonomous ocean observing. As next-673 
generation passive acoustic sensors become increasingly integrated into the global BGC-Argo 674 
array, this technology offers a cost-effective and efficient strategy for addressing persistent 675 
observational gaps. Such developments will enable unprecedented insights into wind forcing, 676 
air–sea interactions, and climate-relevant ocean processes in regions historically challenging 677 
to monitor through traditional methods. 678 

Looking forward, the ability to calibrate acoustic wind retrievals using sparse local reference 679 
measurements not only improves float-based wind estimates but also provides a valuable new 680 
data stream for validating and potentially correcting biases in global wind reanalyses. As 681 
acoustic-equipped floats accumulate data across various ocean regions, their observations may 682 
substantially enhance the fidelity of global atmospheric products, particularly in remote areas 683 
currently lacking validation data. 684 

Ultimately, this work aligns closely with the Ocean Sound Essential Ocean Variable (EOV) 685 
Implementation Plan, advocating for standardized methodologies, robust metadata 686 
documentation, and interoperable frameworks across acoustic observing platforms. 687 
Demonstrating successful acoustic wind retrieval from autonomous, mobile platforms thus 688 
contributes directly to the practical realization of global observing standards, strengthening the 689 
integration of passive acoustics into sustained, multidisciplinary ocean observing systems. 690 
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