

1 **Passive acoustic monitoring from profiling floats as a pathway 2 to scalable autonomous observations of global surface wind**

3 Louise Delaigue¹, Pierre Cauchy², Dorian Cazau³, Julien Bonnel⁴, Sara Pensieri⁵, Roberto
4 Bozzano⁵, Anatole Gros-Martial⁶, Christophe Schaeffer⁷, Arnaud David⁷, Paco Stil¹, Antoine
5 Poteau¹, Catherine Schmechtig⁸, Edouard Leymarie¹ and Hervé Claustre¹

6 ¹Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer,
7 France

8 ²Institut des sciences de la mer (ISMER), Université du Québec à Rimouski (UQAR), Rimouski, Québec, Canada

9 ³ENSTA, Lab-STICC, UMR CNRS 6285, Brest, France

10 ⁴Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La Jolla,
11 CA, 92093, USA

12 ⁵Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (IAS), Consiglio
13 Nazionale delle Ricerche (CNR), Genoa, Italy

14 ⁶Centre d'Études Biologiques de Chizé, CNRS, Villiers-en-bois, France

15 ⁷NKE Instrumentation, Hennebont, France

16 ⁸OSU Ecce Terra, UAR 3455, CNRS, Sorbonne Université, Paris Cedex, France

17 *Correspondence to:* Louise Delaigue (louise.delaigue@imev-mer.fr)

18 **Abstract.** Wind forcing plays a pivotal role in driving upper-ocean physical and biogeochemical processes, yet
19 direct wind observations remain sparse in many regions of the global ocean. While passive acoustics have been
20 used to estimate wind speed from moored and mobile platforms, their application to profiling floats has been
21 demonstrated only in limited cases. Here we report the first deployment of a biogeochemical profiling float
22 equipped with a passive acoustic sensor explicitly designed for wind retrieval, aimed at detecting wind-driven
23 surface signals from depth. The float was deployed in the northwestern Mediterranean Sea near the DYFAMED
24 (DYnamique des Flux Atmosphériques en MEDiterranée) meteorological buoy from February to April 2025 and
25 operated at parking depths of 500–1000 m. We demonstrate that wind speed can be successfully retrieved from
26 subsurface ambient noise using established acoustic algorithms, with float-derived estimates showing good
27 agreement with collocated surface observations. To evaluate scalability to remote regions, we simulate a remote
28 deployment scenario by refitting the acoustic model of Nystuen et al. (2015) using ERA5 reanalysis as a reference
29 for surface wind. The ERA5-based calibration performs well under moderate winds but exhibits systematic high-
30 wind bias ($\geq 10 \text{ m s}^{-1}$). Finally, we apply a residual learning framework to correct these estimates using a limited
31 subset of DYFAMED wind data, simulating conditions where only brief surface observations are available. The
32 corrected wind time series achieved a 37% reduction in RMSE, demonstrating the effectiveness of combining
33 reanalysis with sparse in-situ calibration. This framework improves agreement with in-situ wind observations
34 relative to reanalysis alone, supporting a scalable strategy for float-based wind monitoring in data-sparse ocean
35 regions. Such capability has direct implications for improving estimates of air-sea exchanges, interpreting
36 biogeochemical fluxes, and advancing climate-relevant ocean observing.

37

38

39 **1 Introduction**

40 Wind plays a fundamental role in driving ocean circulation, mediating air–sea gas exchange,
41 and shaping climate-related biogeochemical processes (Wanninkhof, 2014; McGillicuddy,
42 2016). Recent studies show that wind-driven circulation strongly influences regional climate
43 trends (eg., Pelichero et al., 2020; Trenberth et al. 2025; McMonigal et al., 2025). Despite its
44 central importance, accurately quantifying wind variability in remote ocean basins remains
45 challenging. Satellite scatterometers suffer from coarse resolution, reduced performance under
46 extreme weather and heavy cloud cover, and signal degradation in high-latitude regions, while
47 surface moorings provide limited spatial coverage (Bentamy et al., 2003; Chelton et al., 2007;
48 Stoffelen et al., 2008).

49 Passive acoustic monitoring of underwater ambient noise offers a complementary approach for
50 inferring surface meteorological conditions from surface-generated underwater noise. The
51 relationship between wind speed and high-frequency (1–20 kHz) noise generated by wave
52 breaking and bubble entrainment has been extensively documented (Vagle et al., 1990; Farmer
53 et al., 1998; Oguz and Prosperetti, 1990). This principle underpins the Weather Observations
54 Through Ambient Noise (WOTAN) techniques and the development of Passive Acoustic
55 Listener (PAL) instruments (Nystuen et al., 2001), enabling autonomous, long-term estimates
56 of wind and rainfall from fixed and drifting platforms.

57 Although widely used, these approaches still face several limitations. The empirical
58 relationships underpinning WOTAN-type methods are often site dependent, with deviations
59 arising from bathymetry, wave regime, and water depth; even under wind-dominated
60 conditions, shallow-water environments can yield substantially different spectral levels
61 (Ingenito, 1989). Model skill is also limited by model design, as single-regime formulations
62 underestimate the slope at higher winds and bias comparisons across SPL–wind relationships
63 (Schwock, 2021). These factors complicate the selection of an appropriate empirical law for a
64 given platform or region. To address these challenges, recent studies have explored data-driven
65 and machine-learning approaches that learn wind–noise relationships directly from
66 observations and reduce reliance on fixed empirical models (Taylor et al., 2020; Trucco et al.,
67 2023; Zambra et al., 2023).

68 Despite these limitations, the WOTAN framework has proven applicable across a wide range
69 of platforms. Wind-driven signatures have been detected from moorings (Ma and Nystuen,
70 2005 ; Nystuen et al., 2015; Pensieri et al., 2015), gliders (Cauchy et al., 2018; Cazau et al.,
71 2019) and profiling floats (Riser et al., 2008; Yang et al., 2015; Yang et al., 2016; Bytheway
72 et al., 2023; Ma et al., 2023), and even from biologged marine mammals operating in remote
73 regions (Menze et al., 2013; Cazau et al., 2017; Gros-Martial et al., 2025a). Beyond wind
74 estimation, acoustic sensors integrated into autonomous platforms have supported a wide range
75 of geophysical and ecological applications, including marine mammal monitoring (Matsumoto
76 et al., 2013; Cauchy et al., 2020; Fregosi et al., 2020; Baumgartner and Bonnel, 2022), and
77 hydroacoustic earthquake detection and characterisation of ambient ocean noise (Baumgartner
78 et al., 2017; Pipatprathanporn and Simons, 2022).

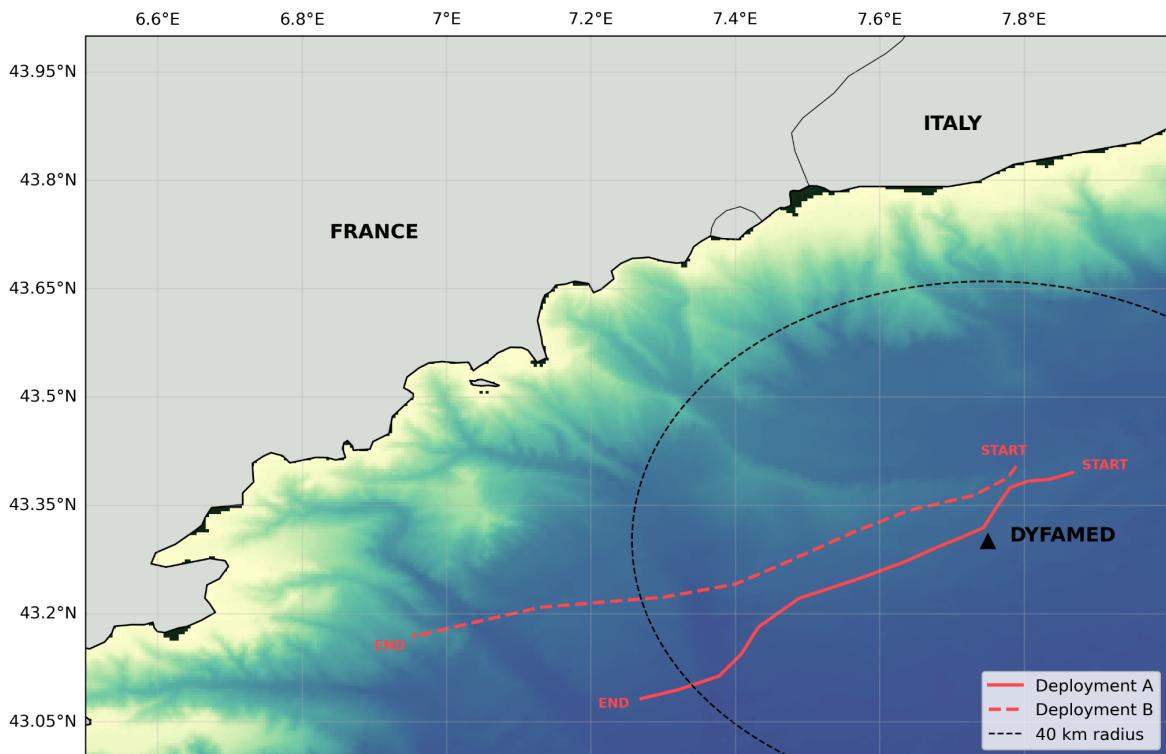
79 Recognising this broad utility, the Ocean Sound Essential Ocean Variable (EOV), coordinated
80 by the International Quiet Ocean Experiment (IQOE) and endorsed by the Global Ocean
81 Observing System (GOOS), identifies autonomous platforms such as profiling floats as ideal

82 platforms for distributed global acoustic monitoring (Tyack et al., 2023). In recent decades,
83 biogeochemical (BGC)-Argo floats have become a central component of global ocean
84 observing systems. Their persistence at sea, broad spatial coverage, and cost-effectiveness have
85 demonstrated clear advantages over traditional ship-based measurements (Roemmich et al.,
86 2009; Riser et al., 2016). As their capabilities have expanded, these platforms now host
87 increasingly sophisticated multidisciplinary sensor suites, with measurements of oxygen,
88 nitrate, chlorophyll, pH, and irradiance (Johnson and Claustre, 2016; Claustre et al., 2020). Yet,
89 despite this progress, the integration of passive acoustics into BGC-Argo remains largely
90 unexplored. Incorporating acoustic wind sensing would supply the atmospheric forcing needed
91 to interpret biogeochemical variability, particularly in high-latitude or storm-dominated
92 regions where wind products remain sparse or uncertain.

93 Here, we present the first deployment of a biogeochemical profiling float equipped with a
94 passive acoustic sensor explicitly designed for wind speed estimation from underwater ambient
95 noise. Deployed in the northwestern Mediterranean Sea, near the DYFAMED (DYnamique
96 des Flux Atmosphériques en MEDiterranée) meteorological buoy, this float serves as a proof-
97 of-concept demonstration to: (1) determine whether wind-driven acoustic signatures can be
98 detected at profiling float parking depths; (2) evaluate the performance of established acoustic
99 wind models on this platform; and (3) develop a practical framework combining acoustic
100 observations with reanalysis data and machine learning to enable wind estimation in remote
101 regions. Through this approach, we demonstrate the potential of acoustic-equipped profiling
102 floats to expand global wind observations, close persistent observational gaps, and support
103 interpretation of biogeochemical and climate-relevant processes.

104 **2 Materials and Methods**

105



106 **Figure 1.** Float trajectories during sea trials conducted in the Ligurian Sea in February and
 107 March 2025. Deployment A (solid line) and Deployment B (dashed line) are shown along with
 108 a concentric dashed circle (40 km radius) centred on the DYFAMED station. The 40 km radius
 109 was used to spatially filter float data for refitting and validation of wind estimates at
 110 DYFAMED, as described in Cauchy et al. (2018).

111 **2.1 Study area and DYFAMED weather station**

112 The acoustic wind sensing trial was conducted in the Ligurian Sea, a sub-basin of the
 113 northwestern Mediterranean, in proximity to the DYFAMED (DYnamique des Flux
 114 Atmosphériques en MEDiterranée) oceanographic time series station (Fig. 1). This station is
 115 part of the national observation program MOOSE (Mediterranean Ocean Observing System
 116 for the Environment, <https://www.moose-network.fr>), funded by CNRS–INSU, and has been
 117 integrated since 2016 into the national research infrastructure ILICO (Infrastructure de
 118 recherche littorale et côtière; Cocquempot et al., 2019).

119 Located at 43.42°N, 7.87°E, DYFAMED has served as a key reference site for air–sea
 120 exchange, upper ocean dynamics, and biogeochemical cycling since the early 1990s. The site
 121 is equipped with continuous meteorological and oceanographic monitoring, including high-
 122 quality wind speed and direction measurements from the Côte d’Azur meteorological
 123 buoy operated by Météo-France, located at the DYFAMED site. These data are reported at
 124 hourly resolution following WMO (World Meteorological Organization) standards and include
 125 wind parameters, air temperature, pressure, humidity, and sea state.

126 During the study period, wind speeds at DYFAMED ranged from 0.5 to 16.1 m s⁻¹, with a mean
 127 of 6.8 m s⁻¹ and a measurement precision of one decimal place.

128 **2.2 Acoustic sensor integration**

129 The float used in this study was equipped with a passive acoustic module jointly developed by
 130 NKE and ABYSsens in collaboration with LOV. This module was specifically designed for
 131 integration into the PROVOR CTS5 BGC-Argo platform, with the aim of minimizing power
 132 consumption and data volume while remaining compatible with the operational constraints of
 133 the BGC-Argo program.

134 The module consists of two main parts enclosed in a dedicated external housing: 1) a low-noise
 135 HTI-96-Min hydrophone (sensitivity: -165 dB re 1 V/μPa; frequency range: 2 Hz–30 kHz),
 136 mounted externally to capture pressure fluctuations, and 2) an ABYSsens acquisition board,
 137 which conditions, digitizes, and processes the signal.

138 The acquisition system operates in a low-power pulsed mode (220 mW) with a sampling
 139 frequency up to 62.5 kHz and 24-bit resolution. To limit power usage and transmission needs,
 140 raw acoustic signals are not stored. Instead, the sensor performs direct onboard integration into
 141 23 third-octave bands, spanning from 63 Hz to 25 kHz with a variable integration time (see
 142 Table 1). Higher-frequency bands (e.g., 3.15–25 kHz) used shorter integration times (50 ms),
 143 while low-frequency bands used longer windows (up to 500 ms).

Frequency band range	Integration time
<u>63</u> , 100, <u>125</u> and 160 Hz	500 ms
<u>400</u> , 500 and 630 Hz	250 ms
800 Hz, <u>1</u> , 1.25, 1.6, <u>2</u> and 2.5 kHz	100 ms
3.15, 4, <u>5</u> , 6.3, <u>8</u> , 10, <u>12.5</u> , 16, <u>20</u> and 25 kHz	50 ms

144 **Table 1.** Integration times applied to third-octave bands during acoustic signal processing,
 145 varying by frequency range to balance energy and spectral accuracy. In bold and underlined,
 146 the bands transmitted in the 9-band float configuration.

147 The acoustic unit is mounted on the upper section of the float chassis and is configured to
 148 operate exclusively during the parking phase (500–1000 m depth; Fig. 3). During this phase,
 149 the float drifts with only routine background measurements (e.g., pressure, CTD), and acoustic
 150 acquisition is automatically suspended whenever noisy operations such as ballast pumping or
 151 CTD sampling occur, thereby avoiding contamination from self-noise.

152 The float system allows for flexible and modifiable configuration via satellite: the user can
 153 define the number of bands transmitted (23, 9, or a compact onboard estimate of wind/rain),

154 the acquisition interval (typically 5–15 minutes), and the number of acoustic samples averaged
 155 per measurement. In this study, we used a 5-minute interval with 10 averaged acquisitions per
 156 measurement (each acquisition is a spectral estimation using the integration times defined in
 157 Table 1).

158 The telemetry and energy impact of adding an acoustic sensor to a 6-variable biogeochemical
 159 float was evaluated by using the programming interface provided by NKE. The estimated
 160 reduction in the number of cycles varies from 18% for acquisition every 5 minutes to 7% for
 161 acquisition every 15 minutes during the whole parking drift of a 10-day Argo cycle and with 5
 162 averaged acquisitions per acoustic measurement. The data volume increase depends on the
 163 transmission format: from ~9% for onboard wind–rain estimates (15-min period) to ~85% for
 164 a full 23-band spectrum (5-min period). A 9-band spectrum every 15 minutes—a likely
 165 recommended setup—adds ~16%. These overheads remain within the platform’s capacity,
 166 confirming compatibility with concurrent BGC measurements.

167 Each sensor output transmitted by the float corresponds to the Third Octave Level (TOL), i.e.,
 168 the sound pressure level integrated over a third-octave band, expressed in dB re 1 μ Pa. These
 169 TOLs represent the float’s primary spectral product and are used as input to the wind speed
 170 retrieval models. The amplitude resolution of the transmitted data is 0.2 or 0.5 dB, with a
 171 dynamic range up to 127 dB. This discretisation arises because the data are transmitted as
 172 integers to save bandwidth, which requires selecting a resolution step.

173 2.3 Depth correction and spectral normalization

174 To account for the attenuation of surface-generated noise with depth, a correction term $\beta(h,f)$
 175 was applied to all acoustic measurements (Fig. 2). Because β depends on the ambient
 176 temperature–salinity structure, we quantified hydrographic stability over the 60-day
 177 deployment using all profiles that reached at least 1000 dbar. Each profile was interpolated
 178 onto a 1 m grid and compared to the deployment-mean temperature/salinity profiles. Depth-
 179 averaged RMS deviations were $0.14 \pm 0.04^\circ\text{C}$ for temperature and 0.06 ± 0.02 for salinity, and
 180 no profile exceeded $|z| = 2$ standardised deviation, confirming weak hydrographic variability.
 181 Because such differences are far below hydrophone measurement uncertainties, $\beta(h,f)$ was
 182 computed once using the deployment-mean profile and applied uniformly to the full record.
 183 For longer or more dynamic missions, $\beta(h,f)$ should be recomputed for each profile. Modern
 184 hardware makes this operation computationally inexpensive, but the negligible hydrographic
 185 variability in this deployment renders repeated recalculation unnecessary.

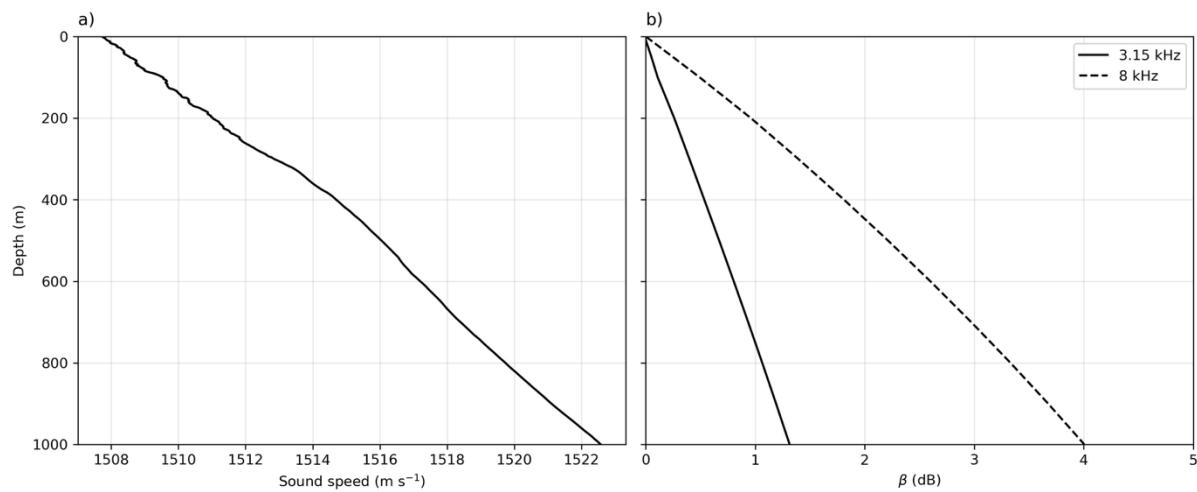
186 Following Cauchy et al. (2018), the correction takes the form:

$$\text{TOL}_0(f) = \text{TOL}(h,f) + \beta(h,f) \quad (1a),$$

$$\text{where } \beta(h,f) = -10 \log \left\{ 2 \int_0^\infty \left[\frac{r \sin^2 \theta_{r,h} e^{-\alpha_f l_{r,h}}}{l_{r,h}^2} \right] dr \right\} \quad (1b),$$

187 with $TOL(h, f)$ as the raw TOL measurement from the profiling float, h as the sensor depth, f
 188 the centre frequency of the band, r the horizontal distance from a surface noise source to the
 189 point vertically above the sensor, l the total pathlength between source and receiver (accounting
 190 for depth and refraction), including refraction effects, θ the angle between the emitted acoustic
 191 ray and the horizontal axis, and α the frequency-dependent attenuation coefficient for bubble-
 192 free water. The integral considers contributions from all surface-generated acoustic sources
 193 over the sea surface, assuming radial symmetry, and accounts for geometric spreading,
 194 frequency-dependent absorption, and angle-dependent energy emission along each path. This
 195 correction was originally derived for third-octave levels and is directly applicable here, as the
 196 float outputs TOLs at fixed centre frequencies.

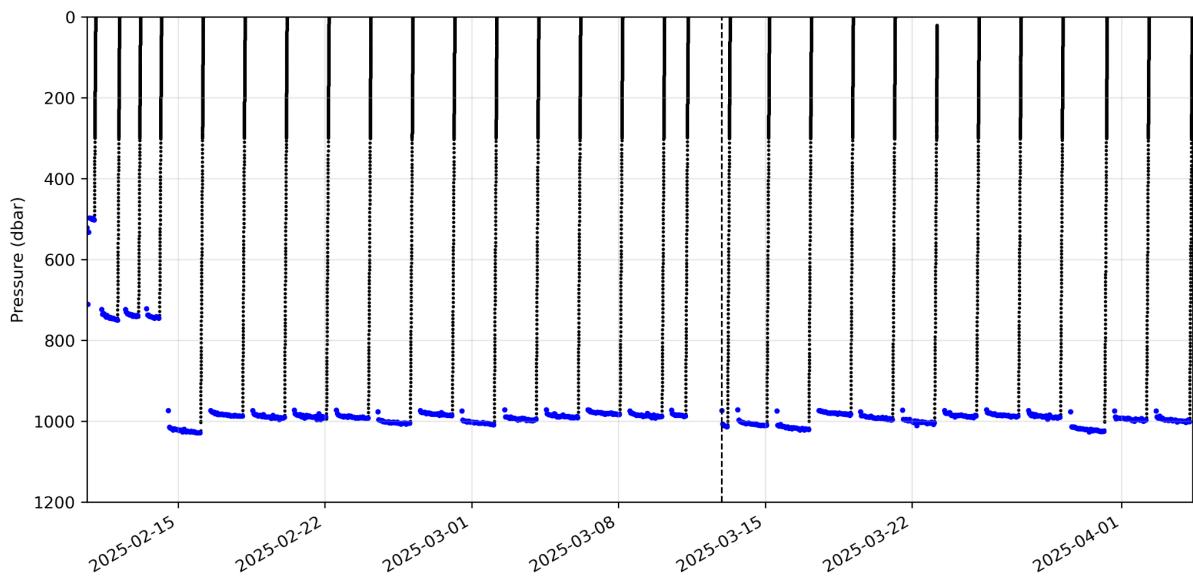
197 Then, depth-corrected third-octave levels $TOL_0(f)$ (dB re 1 μ Pa) were converted to spectral
 198 density levels $SPL(f)$ (dB re 1 μ Pa/Hz) by normalising to the bandwidth of each band. In the
 199 following, SPL always refers to these depth-corrected, bandwidth-normalised values derived
 200 from $TOL_0(f)$. This step ensures consistency across frequencies and comparability with model
 201 spectra. In future deployments, this spectral correction will be applied directly onboard the
 202 float.



203

204 **Figure 2.** a) Mean sound-speed profile derived from the deployment-average temperature and
 205 salinity, and used to compute b) the depth-correction term $\beta(h,f)$ following Cauchy et al.
 206 (2018). The correction accounts for the attenuation of wind-generated surface noise with
 207 increasing hydrophone depth and was applied prior to wind-speed retrieval. β is shown here
 208 for 3.15 kHz and 8 kHz.

209 2.4 Profiling float deployments



210

211 **Figure 3.** Vertical profiles from the acoustic-equipped profiling float deployed near
 212 DYFAMED between February and April 2025. Blue points indicate times when passive
 213 acoustic data were successfully recorded. The vertical dashed line marks the transition between
 214 Deployment A and Deployment B.

215 Two deployments of an acoustic-equipped float (PROVOR CTS5) were carried out near
 216 DYFAMED between February and April 2025 (Fig. 1). Deployment A lasted 30 days, from 10
 217 February to 11 March, and Deployment B continued for 24 days starting on 12 March and
 218 remained active until 4 April. The float operated in park-and-profile mode at three parking
 219 depths (500, 700, and 1000 m; Fig. 2), collecting biogeochemical data during ascent and
 220 passive acoustic data exclusively during the parking phases to minimize self-generated noise.

221 While Riser et al. (2008) previously demonstrated the feasibility of acoustic wind sensing from
 222 Argo floats, their system transmitted only pre-processed wind estimates derived onboard using
 223 a simplified version of the algorithm by Nystuen et al. (2015), without retaining or transmitting
 224 spectral band data. This limited the possibility of reanalysis or applying alternative processing
 225 schemes. In contrast, the floats used in this study recorded and transmitted full third-octave
 226 band spectra, enabling detailed post-processing and algorithm refinement tailored to the float's
 227 specific acoustic characteristics.

228 **2.5 Transient and anthropogenic noise mitigation**

229 Transient noise (i.e., episodic non-wind-related events) was mitigated by removing values
 230 exceeding the 99th percentile within a ± 1.5 -hour window centred around each matched
 231 timestamp. This percentile corresponds to discarding roughly the top 1% of samples over a 3-
 232 hour window (\approx two minutes of data). No physically meaningful wind- or wave-driven
 233 variability relevant to this study evolves on such short timescales, making this filter effective
 234 at removing brief acoustic artefacts without suppressing real high-wind conditions. This
 235 approach is conceptually similar to the transient-noise mitigation used in glider-based PAM
 236 studies (e.g., Cauchy et al., 2018), which suppress short-lived spikes in the spectra to isolate
 237 wind-generated noise.

238 To further reduce short-term variability and emphasize quasi-stationary wind-driven acoustic
239 patterns, we applied a 3-hour rolling mean to each frequency band. This smoothing window is
240 conceptually consistent with the profile-scale averaging used in glider-based acoustic wind
241 studies (e.g., Cauchy et al., 2018), where acoustic measurements are aggregated over \sim 2-hour
242 glider dives to suppress transient variability. While smoothing inevitably attenuates rapid
243 fluctuations, the 3 h window stabilises the spectra without erasing multi-hour wind events
244 relevant for air–sea flux applications. Alternative strategies, such as post-processing the wind
245 speed estimates rather than the spectral bands, could be explored in future deployments if finer-
246 scale variability is a priority.

247 Anthropogenic noise was mitigated using AIS vessel tracks. Because the float only provides
248 GPS positions at the surface, we reconstructed a continuous trajectory by linearly interpolating
249 its positions between successive surfacings at hourly resolution. Each 5-min acoustic record
250 was then associated with the nearest interpolated position. An observation was flagged as
251 potentially contaminated when an AIS-reported vessel was located within 20 km of this
252 interpolated float position and within \pm 30 min of the acoustic timestamp. The 20 km radius
253 corresponds to the distance over which ship-radiated noise commonly dominates the ambient
254 sound field in the 1–10 kHz band under low-to-moderate sea states, while the \pm 30 min window
255 accounts for the typically irregular AIS reporting interval offshore. As an additional safeguard,
256 we excluded cases where the float-derived wind speed deviated from the DYFAMED buoy by
257 more than the RMSE computed under uncontaminated conditions. This RMSE criterion is used
258 only as a secondary check to capture possible contamination during periods of poor AIS
259 coverage. Sensitivity tests indicate that moderate changes to these thresholds do not affect the
260 main conclusions.

261 **2.6 Application of established acoustic models**

Model	Input units	Wind frequency band (kHz)	Wind retrieval frequency (kHz)
Vagle et al. (1990)	dB re 1 $\mu\text{Pa}^2/\text{Hz}$	7.1–8.9	8
Nystuen et al. (2015)	dB re 1 $\mu\text{Pa}^2/\text{Hz}$	7.1–8.9	8
Pensieri et al. (2015)	dB re 1 $\mu\text{Pa}^2/\text{Hz}$	7.1–8.9	8
Cauchy et al. (2018)	dB re 1 μPa	2.8–3.55	3.15

262

263 **Table 2.** Summary of acoustic wind speed estimation models and their input requirements.
 264 Input units refer to the spectral level units used in model calibration. Central frequency
 265 indicates the nominal retrieval frequency, and the third-octave band column specifies the
 266 corresponding bandwidth. All models were calibrated and validated against standard 10-m
 267 wind speed.

268 Empirical models have long been used to estimate surface wind speed from underwater ambient
 269 noise, exploiting the link between wind-driven bubble formation and acoustic energy in the 1–
 270 20 kHz band. These models typically relate surface wind speed U to the sound pressure level
 271 L_f measured in selected frequency bands. While many models use third-octave bands, others
 272 rely on custom-defined or narrowband frequencies, often with variable bandwidths (e.g., 16%
 273 of the centre frequency in Vagle et al., 1990).

274 We applied four established wind retrieval models spanning a range of functional forms—
 275 cubic, two-regime linear–quadratic, composite, and two-regime log–linear. All wind models
 276 were applied using acoustic levels consistent with their original formulations (Table 2). This
 277 diversity allowed us to assess sensitivity to model structure and evaluate performance under
 278 float-specific conditions. Each model was first implemented using its published coefficients to
 279 generate wind speed estimates from float acoustic data, and the results were evaluated against
 280 collocated meteorological observations (Fig. 4). Subsequently, the parameters of each model
 281 were refitted using collocated float acoustic and wind data from the DYFAMED
 282 meteorological buoy (Figs. 4 and 5; see Table 1 in Supplementary Material), which provides
 283 hourly 10-meter wind speed. Model refitting was performed using nonlinear least-squares
 284 optimization (Table 3). Wind records from DYFAMED were matched to float measurements
 285 by nearest timestamp.

286 Following the spatial filtering approach of Cauchy et al. (2018), only float data within 40 km
 287 of DYFAMED were retained for refitting and validation (Fig. 1). This threshold corresponds
 288 to the estimated confidence radius around the DYFAMED meteorological buoy, within which
 289 wind speed measurements show high spatial coherence ($R = 0.86$, $\text{RMSE} = 2.5 \text{ m s}^{-1}$) when
 290 compared to the AROME-WMED atmospheric model (Rainaud et al., 2016). Although
 291 originally derived from the spatial wind-field decorrelation scale reported by Cauchy et al.
 292 (2018), this 40 km radius reflects a regional mesoscale atmospheric property rather than a
 293 platform-specific constraint. Because our deployment occurred in the same NW Mediterranean
 294 basin, this decorrelation length remains appropriate for our case. We note, however, that this
 295 threshold is region-dependent and should be re-evaluated for future deployments elsewhere.

296 The updated coefficients were then used to generate wind estimates over the full float dataset.
 297 While this spatial proximity improves wind representativeness, it does not account for
 298 variations in wind fetch, a parameter known to influence ambient noise generation, particularly
 299 through wave and bubble field development (e.g., Prawirasasra et al., 2024).

300 These four models were selected to represent a range of analytical formulations commonly
 301 used in acoustic wind retrievals. They all use frequency bands where wind-driven bubble noise
 302 typically dominates the local ambient sound field, with reduced interference from low-
 303 frequency sources such as distant shipping. Our aim was not to exhaust all available models,
 304 but rather to evaluate a representative subset under consistent float-specific conditions,
 305 emphasizing the effect of model structure and local fitting.

306 The specifications and key features of each model are summarized in Table 2 for reference.
 307 For all models and validation steps throughout the rest of Methods section, wind speed refers
 308 to the standard 10-meter wind speed, consistent with both the ERA5 reanalysis product and the
 309 DYFAMED buoy observations used for calibration and evaluation.

310 The first model, from Vagle et al. (1990), was derived from moored hydrophone data in the
 311 North Atlantic and relates wind speed to high-frequency noise at 8 kHz using a cubic
 312 formulation:

$$U_{\text{Vagle 1990}} = 10^{\frac{-38.70 + \sqrt{-38.70^2 - 4.7 \cdot 38 \cdot (\text{SPL}_{8\text{kHz}} - 21.69)}}{-7.38 \cdot 2}} \quad (2).$$

313 Next, we applied the cubic model from Nystuen et al. (2015), developed using long-term
 314 acoustic records from fixed hydrophones in both the Pacific and Atlantic. This model targets
 315 wind-generated noise at 8 kHz and includes band-specific criteria to distinguish wind
 316 contributions from other sources such as rain and shipping (Table 2).

$$U_{\text{Nystuen 2015}} = 0.0005 \cdot \text{SPL}_{8\text{kHz}}^3 - 0.0310 \cdot \text{SPL}_{8\text{kHz}}^2 + 0.4904 \cdot \text{SPL}_{8\text{kHz}} + 2.0871 \quad (3).$$

317 We then tested the two-regime linear–quadratic model from Pensieri et al. (2015) at 8 kHz,
 318 developed using moored hydrophone data from the Ligurian Sea, near our study area.
 319 Calibrated for Mediterranean conditions, the model relates wind speed to ambient noise levels
 320 at the 8 kHz band, applying distinct linear and quadratic fits across low- and high-noise
 321 regimes. Notably, the transition between regimes is defined at 38 dB, corresponding to a wind
 322 speed of 2.39 m s⁻¹ in their framework. However, it is important to note that the threshold
 323 separating high and low regimes is not standardized across the literature and may vary between
 324 studies.

$$U_{\text{Pensieri 2015}} = \begin{cases} 0.044642 \cdot \text{SPL}_{8\text{kHz}}^2 - 3.2917 \cdot \text{SPL}_{8\text{kHz}} + 63.016 & \\ 0.1458 \cdot \text{SPL}_{8\text{kHz}} - 3.146, \text{ for } \text{SPL}_{8\text{kHz}} < 38 \text{ dB} & \end{cases} \quad (4).$$

325 Finally, we included the two-regime log–linear model from Cauchy et al. (2018), developed
 326 using acoustic data from a glider operating in the western Mediterranean. Designed for mobile
 327 platforms, the model relates wind speed to third-octave noise levels centred at 3 kHz. The
 328 model uses distinct logarithmic and linear fits across two noise regimes.

329
 330 This choice of 3 kHz, instead of the more commonly used 8 kHz, was based on empirical
 331 observations showing greater dynamic range and lower variance in this band, which may reflect
 332 sensor-specific factors or the sensor’s mounting configuration on the glider (Cauchy et al.,
 333 2018). The relationship goes as:

$$U_{\text{Cauchy 2018}} = \begin{cases} \frac{1}{0.4 \cdot 10^4} \cdot \left(10^{\frac{\text{SPL}_{3\text{kHz}} - S_{\text{off}}}{20}} + 0.2 \cdot 10^4 \right) & \\ \frac{1}{1.6 \cdot 10^4} \cdot \left(10^{\frac{\text{SPL}_{3\text{kHz}} - S_{\text{off}}}{20}} + 12.5 \cdot 10^4 \right) \text{ for } U > 10 \text{ m s}^{-1} & \end{cases} \quad (5).$$

334 The wind retrieval relationship is modelled using a two-regime log-linear function. The
 335 transition between regimes occurs at wind speeds of approximately 10–11 m s⁻¹, established
 336 empirically. To represent this switching behaviour, a relative threshold level is introduced,
 337 expressed as SPL – S_{off}, where S_{off} denotes the sea-state 0 noise reference. This formulation
 338 highlights when wind-driven noise becomes dominant relative to the reference background
 339 noise.

340 2.7 Simulated wind estimation using reanalysis and residual learning

341 To assess the ability of float-derived acoustic measurements to estimate surface wind speed in
 342 regions lacking direct atmospheric observations, we developed a two-step framework based on
 343 (i) calibration to ERA5 reanalysis winds and (ii) residual correction using sparse in-situ
 344 measurements. The goal was to emulate realistic deployments of acoustic-equipped profiling
 345 floats in remote regions where only global reanalysis products and limited ship- or buoy-based
 346 wind measurements are available.

347 **2.7.1 ERA5-based calibration of the acoustic model**

348 To evaluate the ability of float-derived acoustic measurements to estimate surface wind speed
 349 in regions lacking direct atmospheric observations, we used the ERA5 reanalysis from
 350 ECMWF (Bell et al., 2021). ERA5 provides global 10 m wind at 0.25° resolution and hourly
 351 frequency. We extracted zonal and meridional wind components (u_{10} , v_{10}) from the grid cell
 352 containing the float's position and computed wind speed U as:

$$U = \sqrt{u_{10}^2 + v_{10}^2} \quad (6).$$

353 These values were time-matched to float and DYFAMED measurements using the nearest
 354 available ERA5 hour.

355 The empirical acoustic–wind model of Nystuen et al. (2015; Eq. 3) was then re-fitted to the
 356 float's measured 8 kHz SPL using ERA5 wind speed as the reference. This produced an ERA5-
 357 calibrated acoustic wind estimate, representing a realistic scenario in which profiling floats
 358 operate in regions lacking direct wind observations and rely solely on reanalysis for model
 359 tuning.

360 Uncertainty in the ERA5-calibrated estimate was quantified using a 100-member bootstrap
 361 ensemble. For each iteration, we resampled the float dataset with replacement and perturbed
 362 the ERA5 wind input by adding Gaussian noise consistent with its reported uncertainty ($\sigma =$
 363 1.5 m s^{-1}). The acoustic model was re-fitted for each bootstrap sample, and the ensemble
 364 standard deviation was used to characterise uncertainty arising from both ERA5 input
 365 variability and the parameter sensitivity of the fitted empirical model.

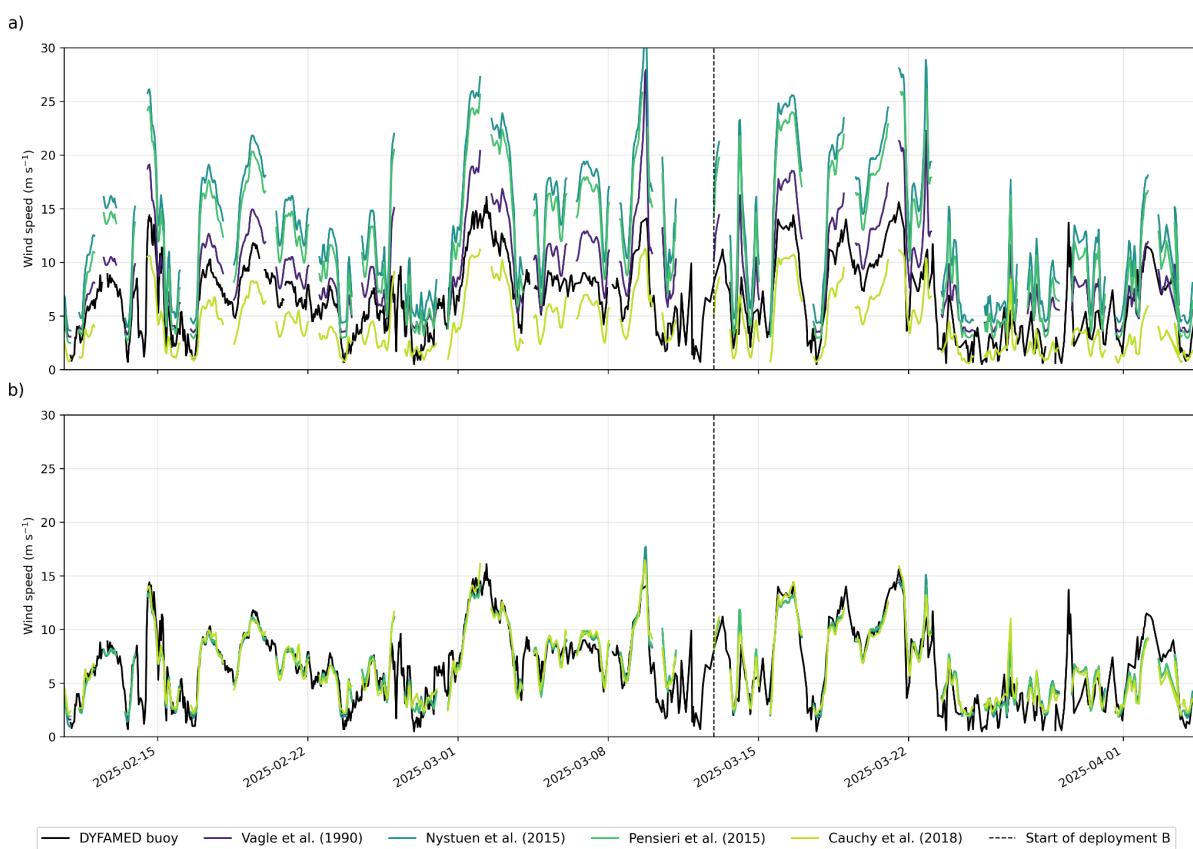
366 **2.7.2 Residual -learning correction using limited in-situ observations**

367 To correct systematic errors in the ERA5-calibrated acoustic estimate, we used the limited
 368 DYFAMED buoy observations obtained within 40 km of the float. These collocated
 369 measurements represent approximately 40% of the full dataset and simulate practical scenarios
 370 in which only short-duration local reference winds (e.g., during deployment or opportunistic
 371 ship passages) are available.

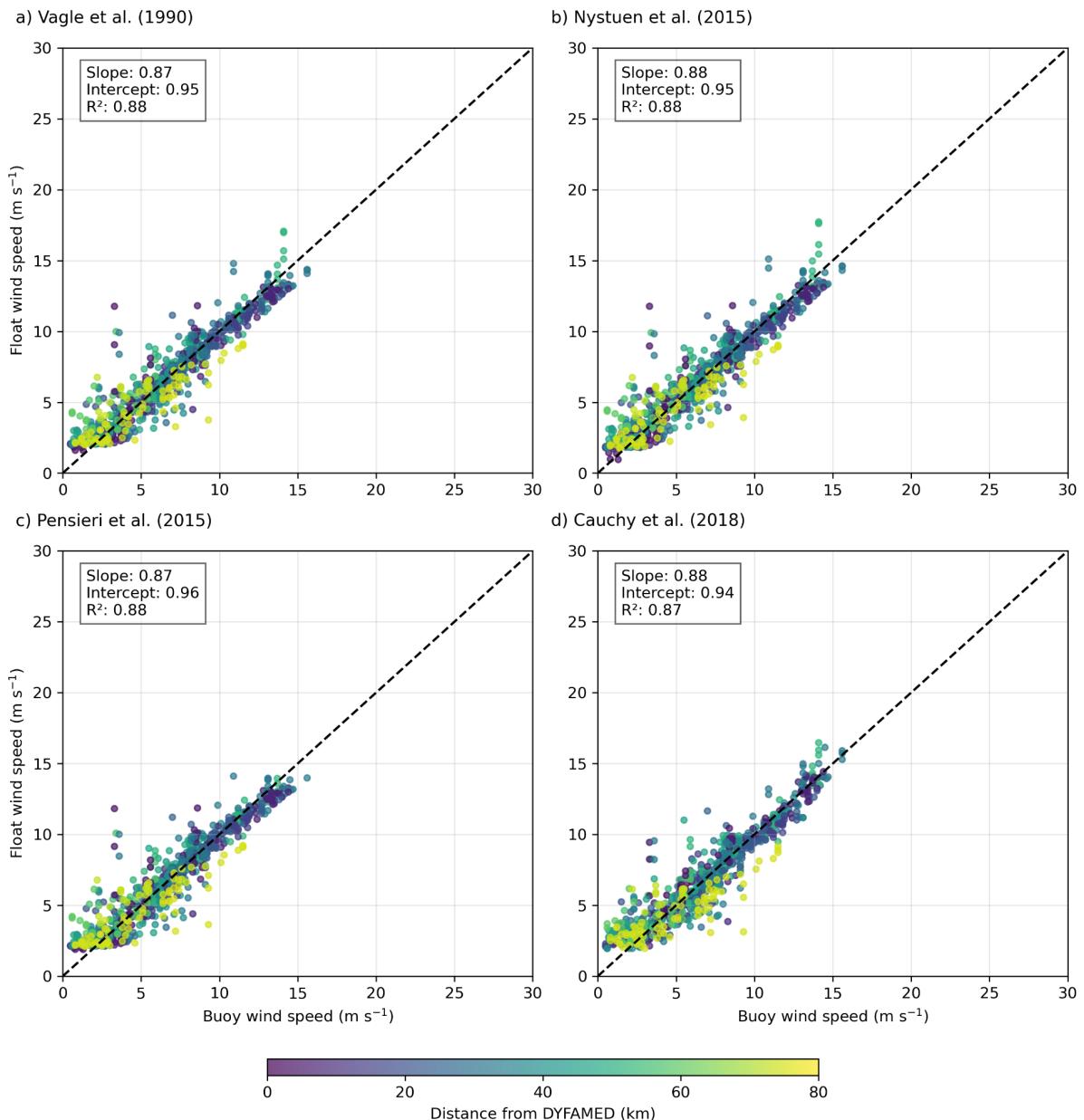
372 Residuals between DYFAMED wind speed and the ERA5-calibrated acoustic estimate were
 373 modelled using four predictors: SPL at 8 kHz, ERA5 10-m wind speed, normalised deployment
 374 day, and the Nystuen-model wind estimate. These variables capture the local acoustic signal,
 375 large-scale atmospheric forcing, slow temporal drift, and the first-order empirical fit. Residuals
 376 were estimated with XGBoost regression (Chen & Guestrin, 2016), using all float–buoy
 377 collocations within 40 km (~40% of the dataset). To maintain generalisation, we applied a
 378 compact hyperparameter set (300 estimators, learning rate 0.05, max depth 3, subsample 0.9,
 379 colsample_bytree 0.8) together with safeguards against overfitting, including bootstrap
 380 resampling, Gaussian perturbations of ERA5 winds ($\sigma = 1.5 \text{ m s}^{-1}$) during training and
 381 prediction, shallow trees, and subsampling of both rows and features. Uncertainty was
 382 quantified using a 100-member ensemble, with each model trained on a bootstrap resample of

383 the DYFAMED-matched subset and forced with perturbed ERA5 winds. This dual
 384 bootstrapping captures variability associated with the machine learning model structure and
 385 with ERA5 uncertainty. Corrected wind speeds were obtained by adding the ensemble-mean
 386 residual to the ensemble-mean Nystuen estimate, with total uncertainty expressed as $\pm 1\sigma$ by
 387 combining the XGBoost ensemble spread and ERA5 input uncertainty in quadrature. The
 388 bootstrap uncertainty of the Nystuen fit is reported separately. This framework provides a
 389 transparent and robust correction method, illustrating how float acoustics, reanalysis winds,
 390 and sparse in-situ observations can be combined to estimate surface wind speed in remote
 391 regions.

392 3 Results and Discussion



394 **Figure 4.** Comparison of unoptimized (top) and optimised (bottom) wind speed models against
 395 DYFAMED buoy observations. Each subplot shows modelled wind speed estimates from four
 396 literature models (Vagle et al., 1990; Nystuen et al., 2015; Pensieri et al., 2015; Cauchy et al.,
 397 2018) compared with collocated buoy wind data (black line). The unoptimized models a) use
 398 original published coefficients, while the optimised models b) are re-fitted using data within
 399 40 km of the DYFAMED site. The dashed vertical line indicates the start of deployment B.



400

Figure 5. Comparison of optimised wind speed estimates from four literature models against collocated DYFAMED buoy wind measurements. Each subplot (a-d) shows scatter plots of float-derived wind speed vs. buoy wind speed using model-specific optimised coefficients: (a) Vagle et al. (1990), (b) Nystuen et al. (2015), (c) Pensieri et al. (2015), and (d) Cauchy et al. (2018). Points are color-coded by distance from the DYFAMED buoy, and the dashed line represents the 1:1 reference. Insets display linear regression slope, intercept, and coefficient of determination (R^2).

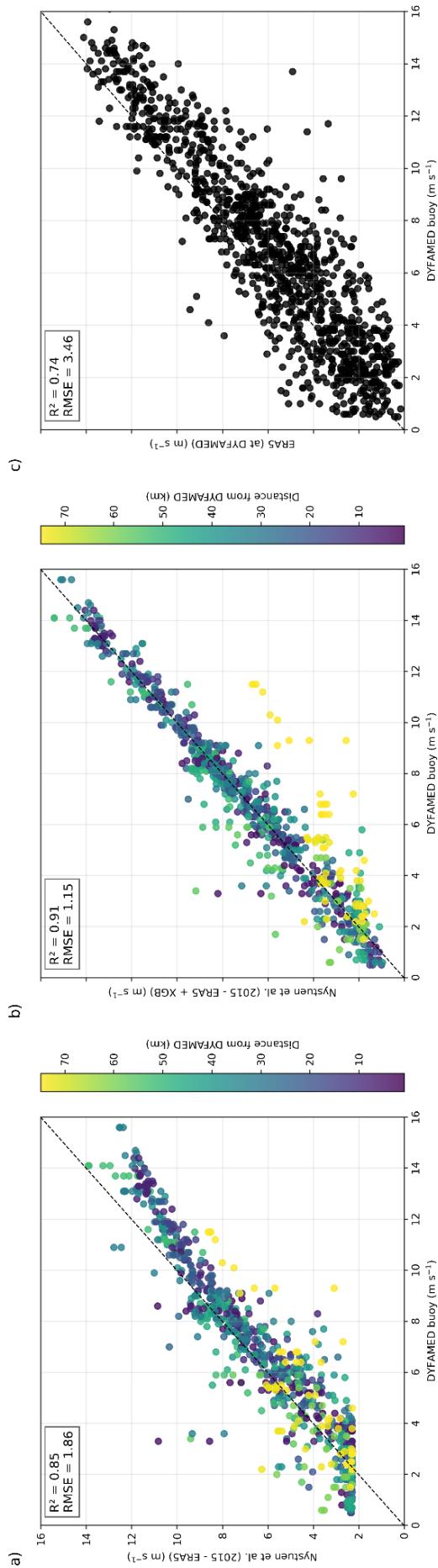


Figure 6. Comparison between DYFAMED buoy wind speed measurements and float-derived estimates using the Nystuen et al. (2015) acoustic model: (a) wind speeds estimated using Nystuen's polynomial formulation fit to ERA5; (b) same model corrected using a residual-learning approach with XGBoost, trained on the differences between ERA5-based estimates and DYFAMED observations; and (c) ERA5 wind speed at the DYFAMED grid point compared directly to buoy measurements for February, March and April 2025. Each point is colored by the float's distance from DYFAMED in panels (a) and (b). Dashed lines denote 1:1 agreement. All wind speeds are expressed in meters per second ($m s^{-1}$).

409

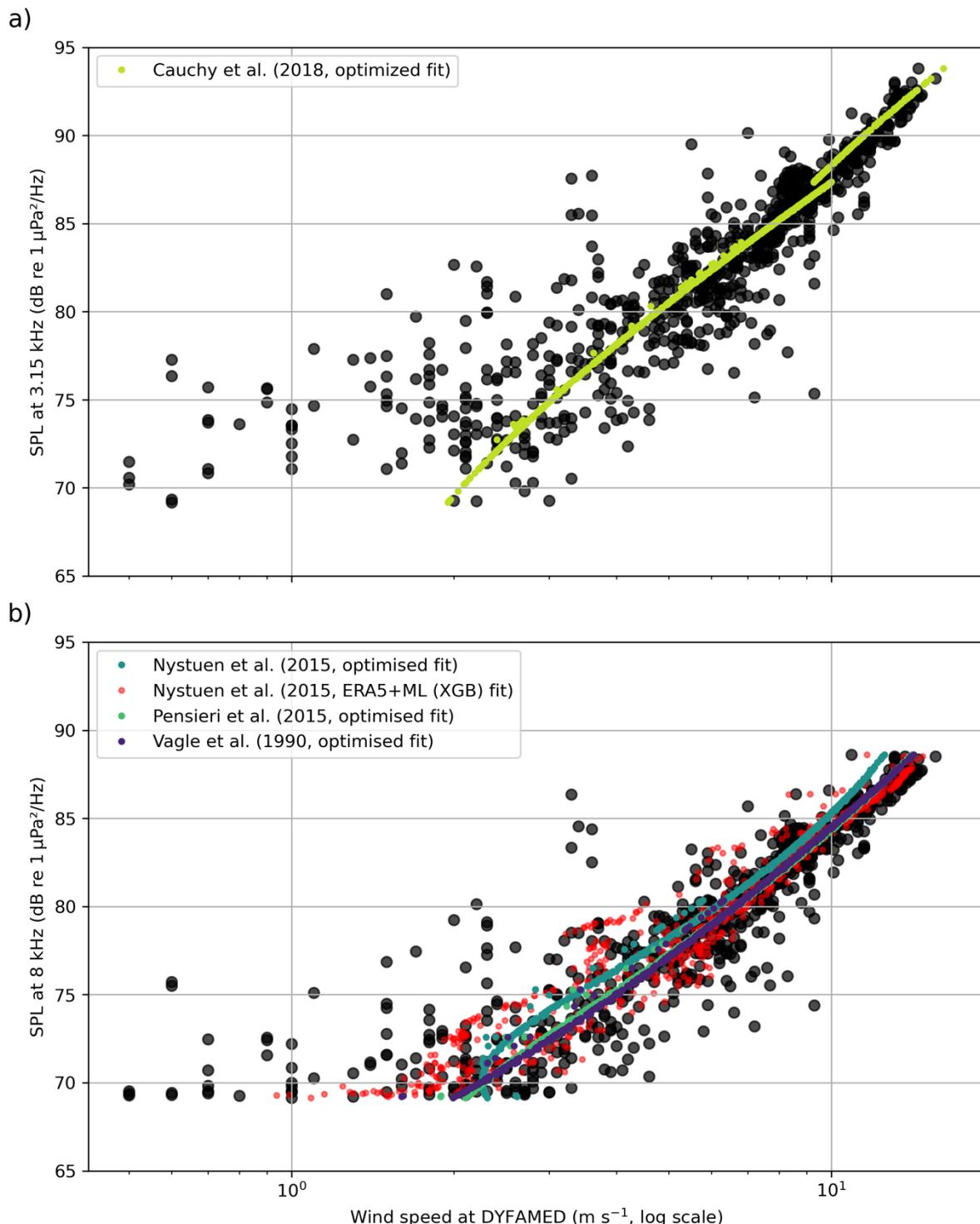
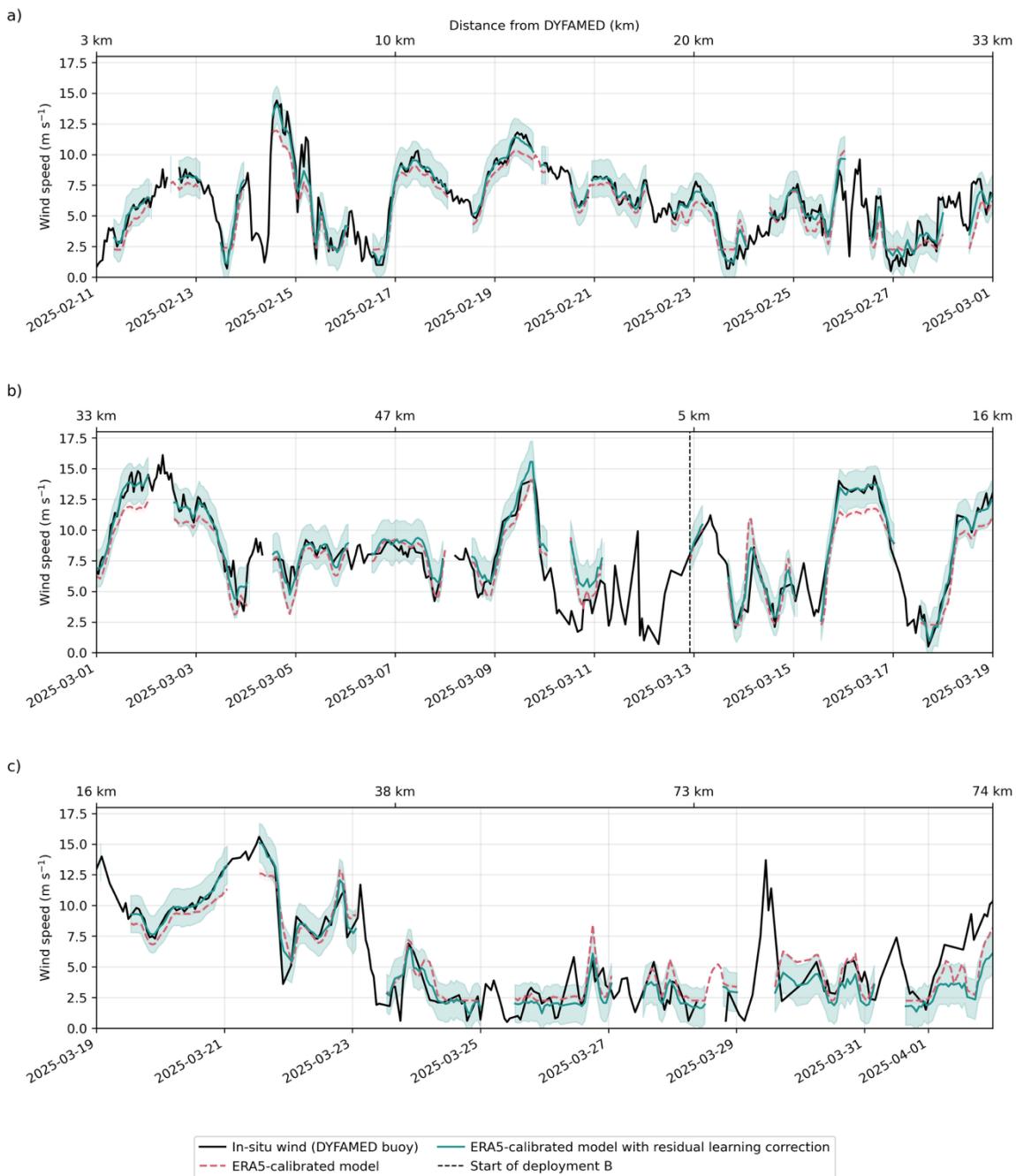
410
411
412
413

Figure 7. Optimised 10-meter wind speed (log scale) as a function of observed underwater sound pressure level (SPL) at DYFAMED for (a) 3.15 kHz and (b) 8 kHz. Observed wind speed is shown in black.

414



415

416 **Figure 8.** Time series comparison between acoustic float wind estimates and DYFAMED buoy
 417 winds, displayed over three consecutive 18-day windows (a–c). The dashed pink curve
 418 corresponds to wind speeds predicted using the Nystuen et al. (2015) acoustic model calibrated
 419 solely with ERA5 reanalysis winds. The solid green curve shows the same model after applying
 420 the residual-learning correction (XGBoost), and the shaded region indicates its associated
 421 predictive uncertainty. Buoy-measured wind speed is shown in black. The upper x-axis reports
 422 the float’s distance from DYFAMED throughout the record, and the dashed vertical line
 423 indicates the transition to deployment B.

424

425 **3.1 Assessing the performance of float-based acoustic wind estimation**

426 We applied four previously published wind retrieval models to float-measured sound pressure
427 levels (SPLs) at 8 kHz and 3 kHz. Using the original coefficients from these studies, wind speed
428 estimates deviated significantly from collocated DYFAMED observations, particularly in their
429 ability to reproduce the magnitude of wind events (Fig. 4a). This mismatch reflects the
430 sensitivity of empirical acoustic models to deployment context, including platform geometry,
431 acoustic propagation, and local noise environment.

432 When these same models were refitted using collocated float acoustics and DYFAMED wind
433 observations within 40 km (Fig. 1), performance improved substantially (Fig. 4b; Fig. 7).
434 Among the models, the cubic formulation by Nystuen et al. (2015) achieved the best fit
435 ($R^2 = 0.88$; Fig. 5b) and successfully captured the full observed wind range ($0.5\text{--}16.1\text{ m s}^{-1}$;
436 Figs. 5 and 7). It was also the only model resolving wind speeds $< 2\text{ m s}^{-1}$, a regime often missed
437 due to weak surface forcing and minimal bubble generation. This low-wind sensitivity
438 strengthens its relevance for air-sea gas-exchange studies and suggests broad applicability in
439 moderate wind regimes. High-quality wind estimates are particularly important for interpreting
440 float-based biogeochemical measurements, as air-sea oxygen fluxes respond sensitively to
441 short-timescale wind variability (Bushinsky et al., 2017).

442 However, even after successful fitting, the portability of acoustic-wind models remains
443 uncertain. Factors such as noise contamination, ambient biological activity and regional
444 propagation conditions can vary substantially between deployments, affecting both the shape
445 and robustness of the acoustic-wind relationship (Gros-Martial et al., 2025b). Moreover,
446 profiling floats introduce their own artifacts, which may arise from hydrodynamic turbulence,
447 buoyancy engine activity, bubble release, or electronic interference, each of which can
448 contaminate the acoustic signal independently of wind forcing. Even models developed in the
449 same basin required refitting (i.e. Pensieri et al. 2015; Figs. 4, 5 and 7).

450 A promising direction would be to classify deployments into broader “acoustic environment
451 types”, such as open-ocean gyres, coastal shelves, or high-latitude storm zones, within which
452 shared model parameters could be defined and validated. This aligns with the priorities outlined
453 in the Ocean Sound Essential Ocean Variable (EOV) Implementation Plan, which emphasizes
454 the need for community-agreed metadata standards, calibration protocols, and classification
455 schemes to support global comparability across acoustic deployments (Tyack et al., 2023).
456 Evaluating these frameworks for profiling floats may help standardize acoustic wind retrieval
457 and integrate it more effectively into global observing systems.

458 **3.2 Generalizing float-specific wind modelling using reanalysis**

459 While site-specific fitting of acoustic wind models yields accurate float-derived wind
460 estimates, such fittings are not feasible in most regions of the global ocean where in-situ wind
461 observations are unavailable. To assess whether the acoustic-wind relationship can be
462 generalized for remote deployments, we investigated the use of reanalysis wind products as a
463 proxy reference for model fitting. Specifically, we used the ERA5 atmospheric reanalysis (Bell
464 et al., 2021) to refit the Nystuen et al. (2015) model to float-measured acoustic data, simulating
465 a scenario where no collocated buoy or shipboard wind measurements are available (Figs. 6
466 and 8).

467 Using time-matched float sound pressure level at 8 kHz and collocated ERA5 wind speed, we
468 derived a new set of coefficients (Section 2.6), producing a general-purpose fit based solely on
469 float data and reanalysis inputs. The goal was to test whether an existing model can be adapted
470 for use in data-sparse regions, enabling scalable wind estimation from profiling floats.

471 As shown in Figure 6a, the ERA5-calibrated Nystuen et al. (2015) model reproduced wind
472 variability within the 2.5–10 m s⁻¹ range with moderate skill ($R^2 = 0.85$), and performed best
473 during Deployment A, when wind conditions remained relatively stable (Fig. 8). Performance
474 deteriorated during stronger wind events, particularly in Deployment B, where the model
475 systematically underestimated wind, with errors > 3 m s⁻¹ (Figs. 6a and 8).

476 Comparison with DYFAMED also revealed broader limitations of ERA5. Although ERA5
477 provides a globally consistent wind product, it diverged from buoy observations during several
478 high-wind episodes. This behaviour is consistent with earlier reports of reanalysis
479 underestimating localised, orographically forced winds in semi-enclosed basins such as the
480 Mediterranean (Bentamy et al., 2003; Bell et al., 2021). Such biases are critical in regions like
481 the Southern Ocean, where frequent high-wind events dominate air–sea CO₂ fluxes and gas
482 exchange scales nonlinearly with wind speed (Wanninkhof, 2014; Wanninkhof et al., 2025).

483 Thus, while float reanalysis-based calibration enables acoustic wind estimation in the absence
484 of local observations, its accuracy depends strongly on the reliability of the reference product
485 used for fitting.

486 3.3 Simulating scalable wind estimation in data-sparse regions

487 While reanalysis-calibrated acoustic models offer a pathway for estimating surface wind speed
488 in remote regions, the results in Section 3.2 show that this approach alone is insufficient during
489 high-wind or rapidly evolving events. This limitation is especially critical in high-latitude
490 regions such as the Southern Ocean, where extreme wind forcing drives critical fluxes of heat,
491 momentum, and carbon (Gray et al., 2018; Dotto et al., 2019; Zhang et al., 2022; Gruber et al.,
492 2023).

493 3.3.1 Local model correction using residuals learning

494 To overcome this, we implemented a residual learning framework that combines the
495 generalizability of reanalysis-based fitting with the accuracy of localized corrections.
496 Specifically, we trained an ensemble of XGBoost regression models to predict the residuals
497 between the ERA5-calibrated estimates and collocated DYFAMED buoy observations (see
498 Section 2.6). The model was trained using float data within 40 km of DYFAMED and
499 bootstrapped over 100 iterations to quantify mean corrections and prediction uncertainty (Fig.
500 1; Fig. 6b). The 40 km radius was selected based on the sensitivity analysis of Cauchy et al.
501 (2018), who found it to balance proximity with data availability; though this threshold is likely
502 site-dependent and should be reassessed in future deployments.

503 The corrected wind time series showed substantially better agreement with DYFAMED
504 observations (Fig. 8), especially during high-wind events where the uncorrected model
505 underestimated wind speeds. This bias correction increased R^2 from 0.85 to 0.91 and reduced
506 RMSE from 1.88 m s⁻¹ to 1.15 m s⁻¹, a 37.0% reduction in prediction error. While other

507 learning-based methods have achieved similar improvements (e.g., Zambra et al., 2023, 16%
508 RMSE reduction), our method explicitly uses reanalysis as a prior and relies only on sparse in-
509 situ fitting, making it more realistic for remote deployments.

510 The machine learning model does not estimate wind speed directly but instead learns to adjust
511 biases using a small set of predictors (i.e. acoustic signal intensity, deployment day, ERA5-
512 calibrated prediction). In effect, it identifies conditions under which ERA5 is likely to fail,
513 applying larger corrections during high-wind events.

514 These results demonstrate that even limited in-situ reference data—for example, brief engine-
515 off ship-based winds during deployment—can significantly improve estimates along the full
516 float trajectory. In our case, in-situ points represented approximately 40% of the record due to
517 the short deployment but this introduces potential limitations. First, because fitting and
518 evaluation used the same dataset, the performance metrics may be optimistic. Future
519 deployments should use spatially or temporally separate validation or fully independent
520 reference stations. Second, the RMSE reduction reflects improvements mainly at high wind
521 speeds, where raw errors are largest, and may overstate gains at lower winds. Taken together,
522 these factors imply that these performance metrics likely represent an upper bound of the
523 framework’s accuracy for long-duration or multi-region deployments. The generalisation
524 across sites, seasons and events remains untested and will require validation using spatially or
525 temporally independent datasets.

526 3.3.2 Strategies for sparse in-situ calibration

527 In practical terms, acquiring suitable reference observations can be challenging. While ship-
528 based wind measurements are a natural candidate, particularly during float deployment or
529 recovery, they may be unsuitable for model fitting if the ship is too close, as engine noise can
530 contaminate the float’s acoustic signal. A practical compromise is to station the ship far enough
531 to avoid acoustic interference while keeping wind measurements representative. Alternatively,
532 a more robust strategy is to deploy floats in proximity to existing meteorological buoys, which
533 provide collocated wind observations without interfering with subsurface acoustic recordings.

534 In regions where neither buoys nor suitable ship data are available, identifying whether the
535 available in-situ coverage is sufficient becomes more complex. This will depend not only on
536 the duration and trajectory of the float mission, but also on the opportunistic use of additional
537 reference sources encountered along the way, for example, other buoys, or wind observations
538 from vessels transiting the area. Where such sources are absent, satellite products, particularly
539 synthetic aperture radar (SAR), can provide episodic but high-resolution wind fields that
540 capture localized variability and serve as intermittent calibration points.

541 More broadly, these scenarios highlight the need for flexible modelling approaches that can
542 exploit heterogeneous and temporally limited reference data. Rather than relying on dense
543 training datasets or persistent surface observations, future efforts could employ machine-
544 learning strategies such as domain adaptation, transfer learning, or few-shot learning to adapt
545 models to new environments with minimal retraining. For instance, recent work by Wang et al.
546 (2020) has shown that few-shot transfer methods can yield competitive performance even when
547 only a small number of target-domain samples are available.

548 In the context of profiling floats, such strategies could enable a more scalable approach to
549 acoustic model tuning, leveraging sparse data from ships, buoys, or satellites, each limited
550 individually but collectively offering adequate diversity. We propose framing this
551 as opportunistic multisource model fine-tuning: a hybrid calibration scheme in which local
552 corrections are derived from whatever reference sources are available, without requiring dense
553 or continuous in-situ coverage. Developing and validating such approaches will be essential
554 for global deployment of acoustically equipped floats while maintaining robustness across
555 diverse environmental and acoustic conditions.

556 3.3.3 Implications for global observing

557 While ERA5 provides a useful climatological reference, it tends to underestimate short-lived,
558 high-wind events due to spatial and temporal smoothing (Fig. 8). This is an issue particularly
559 for gas exchange studies, as extreme winds disproportionately contribute to total fluxes.
560 Acoustic float data, collected continuously and at high resolution, offer the potential to
561 complement satellite or reanalysis wind products, particularly during short-lived wind events
562 that are smoothed out in coarse-resolution products.

563 However, model performance degrades with increasing distance from DYFAMED, reflecting
564 the spatial decorrelation of wind fields and the limited spatial representativeness of the buoy
565 observations. Beyond 73 km during Deployment B, both the Nystuen et al. (2015) – ERA5 fit
566 and the machine-learning-corrected float estimates begin to diverge from DYFAMED winds
567 (Figs. 6 and Fig. 8). This divergence likely reflects true spatial variability rather than model
568 failure, as the float and buoy may be sampling different wind regimes. One way to address this
569 uncertainty is to analyse float trajectories that pass between two surface reference stations,
570 testing whether refitting at the final station yields consistent corrections or reveals systematic
571 regional shifts in wind decorrelation. Such an approach will require future deployments that
572 span multiple buoys, enabling a systematic evaluation of how model performance degrades, or
573 remains robust, across both time and space.

574 Additionally, in the Southern Ocean, where anthropogenic noise is relatively low, lower-
575 frequency bands (<1 kHz) may be viable for wind estimation, as they are more sensitive to high
576 wind speeds due to increased bubble activity and longer propagation ranges. These bands could
577 outperform higher-frequency bands under strong forcing conditions, provided contamination
578 from distant shipping or other sources remains minimal.

579 Several recent studies have applied machine learning to underwater acoustic data to estimate
580 wind and rainfall, often relying on long-term, stationary deployments and direct spectral
581 prediction (Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023; ; Zambra et al., 2023).
582 While effective under controlled conditions, these approaches depend on dense labelled
583 datasets and assume stable acoustic environments. In contrast, our residual-learning strategy is
584 designed for sparse, mobile deployments: it corrects reanalysis-based estimates using short-
585 duration in-situ fitting and does not require full acoustic labels, making it more compatible with
586 the operational realities of profiling floats.

587 While in-situ data remains the most difficult to obtain in remote regions, our method supports
588 opportunistic fitting, for example, brief ship-based winds during deployment or nearby
589 meteorological buoys. This hybrid strategy balances scalability and realism, enabling more
590 robust performance even where long-term reference data are scarce.

591 Another important consideration is the potential for regional bias introduced by the depth
592 correction applied to acoustic levels. This correction compensates driven by local hydrographic
593 structure and was derived from the float's mean profile at the start of the deployment. Applying
594 a single correction to the full mission introduces a location-dependent bias that may vary across
595 floats or seasons. Ideally, the correction should be recalculated with each new hydrographic
596 profile, especially for long-term or wide-ranging deployments. To ensure basin- to global-scale
597 comparability, these corrections should be standardised and explicitly documented in
598 processing protocols for acoustic-equipped floats.

599 This deployment-focused flexibility is key to scaling up acoustic wind estimation globally. By
600 combining reanalysis for first-order fitting with localized corrections when available, our
601 framework improves agreement with in-situ winds without requiring long-term surface
602 infrastructure. Scaling this approach across the BGC-Argo array would provide high-
603 resolution, all-weather wind monitoring in regions poorly served by existing observing
604 networks.

605 **4 Conclusions**

606 This study provides a proof of concept for retrieving surface wind speeds from subsurface
607 ambient noise recorded by a profiling float equipped with a passive acoustic sensor and
608 operated alongside standard biogeochemical sensors. Float-measured acoustic noise captured
609 surface wind variability from 500–1000 m depth, and empirically calibrated estimates closely
610 matched buoy observations, confirming the feasibility of subsurface acoustic wind retrieval.
611 Reanalysis-based calibration reproduced moderate winds but underestimated high-wind
612 events, highlighting the limits of using reanalysis alone in dynamic environments. A residual-
613 learning correction using sparse local reference data substantially improved performance,
614 particularly during strong winds. These findings underscore the potential of acoustic-equipped
615 profiling floats to provide scalable, high-resolution wind observations in remote regions,
616 supporting improved estimates of wind-driven air–sea fluxes.

617 Nevertheless, our results stem from a single short-duration deployment. Broader validation
618 across regions, seasons, and acoustic environments is needed, and performance estimates likely
619 represent an upper bound. Recent benchmarking efforts (e.g., Gros-Martial et al., 2025b)
620 already demonstrate the value of assembling multi-site acoustic–meteorological datasets and
621 highlight the challenges of model transferability across diverse soundscapes. Future missions
622 should employ independent training–validation–test partitions to rigorously evaluate
623 generalizability, following best practices established in recent WOTAN studies that explicitly
624 address temporal correlation and multi-site validation requirements (e.g., Cauchy et al., 2018;
625 Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023).

626 Acoustic wind retrieval offers a promising pathway for expanding autonomous wind
627 monitoring within the global BGC-Argo array, improving coverage in regions poorly served
628 by existing systems. Sparse in-situ calibration also provides a valuable new data stream for
629 validating and potentially correcting regional biases in global wind reanalyses. Ultimately, this
630 work supports the Ocean Sound EO2’s call for standardized methodologies and demonstrates
631 the feasibility of integrating passive acoustics into sustained, basin- to global-scale observing
632 systems.

633

634 **Funding.** The research leading to these results has received part of the funding from the
635 European Union's Horizon research and innovation program under grants #101094716
636 (GEORGE project) and #101188028 (TRICUSO project). REFINE has received funding from
637 the European Research Council (ERC) under the European Union's Horizon 2020 research and
638 innovation programme (grant agreement N° 834177). Argo-2030 has received the support of
639 the French government within the framework of the "Investissements d'avenir" program
640 integrated in France 2030 and managed by the Agence Nationale de la Recherche (ANR) under
641 the reference "ANR-21-ESRE-0019".

642 **Data availability.** The two deployments of this prototype float have not been assigned a WMO
643 identifier and have not been declared in Argo; the data are therefore not available through the
644 Argo program. All float data, DYFAMED buoy measurements, ERA5 reanalysis wind fields,
645 and analysis scripts used in this study is freely available online in Delaigue (2025). The
646 repository include processed datasets, code for model fitting and residual learning, and figure-
647 generation scripts to ensure full reproducibility of results.

648 **Author contributions.** EL, HC, and LD conceptualized the project. AD and CS developed the
649 acoustic sensor used in this study. LD curated the data. EL, HC, and LD performed the
650 investigation. LD conceptualized the methodology, used the necessary software, visualized the
651 data, and prepared the original draft of the paper. AGM, DC, EL, HC, JB, LD, PC, RB and SP
652 reviewed and edited the paper.

653 **Competing interests.** NKE instrumentation is a private company which commercialized the
654 acoustic float, in which AD and CS are employed. The acoustic float is based on the PROVOR
655 CTS5 platform and on an acoustic sensor developed and commercialized by NKE
656 instrumentation with a partnership agreement with LOV. All other co-authors declare no
657 competing interests.

658 **Disclaimer.** Publisher's note: Copernicus Publications remains neutral with regard to
659 jurisdictional claims in published maps and institutional affiliations.

660 **Acknowledgements.** We gratefully acknowledge the MOOSE team (Mediterranean Ocean
661 Observing System for the Environment) at OSU STAMAR for their support in deploying the
662 float, recovering it, and enabling its second deployment. We also thank the crew of the Téthys
663 for their assistance at sea, and Jean-Yves for facilitating two successful float recoveries on short
664 notice. We are grateful to Météo-France for maintaining and providing access to the Côte
665 d'Azur meteorological buoy data at the DYFAMED site, which were essential for validating
666 our wind measurements. We also acknowledge the MOOSE program (Mediterranean Ocean
667 Observing System for the Environment), funded by CNRS-INSU, and the Research
668 Infrastructure ILICO (CNRS-IFREMER) for their long-term support of sustained ocean
669 observations in the northwestern Mediterranean. We further thank the European Centre for
670 Medium-Range Weather Forecasts (ECMWF) for making the ERA5 reanalysis products freely
671 available, which provided an essential reference dataset for this study. We thank Aldo Napoli
672 (Mines Paris) for his assistance with the AIS data and Ambroise Renaud (Mines Paris) for
673 making his modified version of libais freely available on GitHub, which allowed us to parse
674 NMEA data from the AIS reception device at Mines Paris (Sophia Antipolis) and from the
675 AISHub feed. Finally, we are grateful to AISHub (AIS data sharing and vessel tracking) for
676 providing access to their AIS data services.

677

678 **References**

679 Baumgartner, M. F., Stafford, K. M., and Latha, G.: Near real-time underwater passive acoustic
680 monitoring of natural and anthropogenic sounds, in: *Observing the Oceans in Real Time*, 203–
681 226, 2017.

682 Baumgartner, M. F. and Bonnel, J.: Real-time detection and classification of marine mammals
683 from expendable profiling floats, Workshop on Detection, Classification, Localization and
684 Density Estimation of Marine Mammals using Passive Acoustics, Oahu, USA, March 2022.

685 Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater,
686 J., Nicolas, J., Radu, R., Schepers, D., and Thépaut, J.-N.: The ERA5 global reanalysis:
687 Preliminary extension to 1950, *Q. J. Roy. Meteor. Soc.*, 147, 4186–
688 4227, <https://doi.org/10.1002/qj.4174>, 2021.

689 Bentamy, A., Katsaros, K. B., Mestas-Nuñez, A. M., Drennan, W. M., Forde, E. B., and
690 Roquet, H.: Satellite estimates of wind speed and latent heat flux over the global oceans, *J.*
691 *Climate*, 16, 637–656, [https://doi.org/10.1175/1520-0442\(2003\)016<0637:SEOWSA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2), 2003.

693 Bushinsky, S. M., Gray, A. R., Johnson, K. S., and Sarmiento, J. L.: Oxygen in the Southern
694 Ocean from Argo floats: Determination of processes driving air–sea fluxes, *J. Geophys. Res.-*
695 *Oceans*, 122, 8661–8682, <https://doi.org/10.1002/2017JC012923>, 2017.

696 Bytheway, J. L., Thompson, E. J., Yang, J., and Chen, H.: Evaluating satellite precipitation
697 estimates over oceans using passive aquatic listeners, *Geophys. Res. Lett.*, 50,
698 e2022GL102087, <https://doi.org/10.1029/2022GL102087>, 2023.

699 Cauchy, P., Heywood, K. J., Merchant, N. D., Queste, B. Y., and Testor, P.: Wind speed
700 measured from underwater gliders using passive acoustics, *J. Atmos. Ocean. Technol.*, 35,
701 2305–2321, <https://doi.org/10.1175/JTECH-D-17-0209.1>, 2018.

702 Cauchy, P., Heywood, K. J., Risch, D., Merchant, N. D., Queste, B. Y., and Testor, P.: Sperm
703 whale presence observed using passive acoustic monitoring from gliders of opportunity,
704 *Endang. Species Res.*, 42, 133–149, <https://doi.org/10.3354/esr01044>, 2020.

705 Cazau, D., Bonnel, J., and Baumgartner, M. F.: Wind speed estimation using an acoustic
706 underwater glider in a near-shore marine environment, *IEEE Trans. Geosci. Remote Sens.*, 57,
707 2097–2106, <https://doi.org/10.1109/TGRS.2018.2871422>, 2019.

708 Cazau, D., Bonnel, J., Jouma'a, J., Le Bras, Y., and Guinet, C.: Measuring the marine
709 soundscape of the Indian Ocean with southern elephant seals used as acoustic gliders of
710 opportunity, *J. Atmos. Ocean. Technol.*, 34, 207–223, <https://doi.org/10.1175/JTECH-D-16-0124.1>, 2017.

712 Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of
713 large oceanic eddies, *Geophys. Res. Lett.*, 34,
714 L15606, <https://doi.org/10.1029/2007GL030812>, 2007.

715 Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, Proc. 22nd ACM
716 SIGKDD Int. Conf. Knowl. Discov. Data Min., 785–
717 794, <https://doi.org/10.1145/2939672.2939785>, 2016.

718 Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the global ocean with
719 Biogeochemical-Argo, Annu. Rev. Mar. Sci., 12, 23–48, <https://doi.org/10.1146/annurev-marine-010419-010956>, 2020.

721 Cocquempot, L., Delacourt, C., Paillet, J., Riou, P., Aucan, J., Castelle, B., Charria, G., Claudet,
722 J., Conan, P., Coppola, L., Hocdé, R., Planes, S., Raimbault, P., Savoye, N., Testut, L., and
723 Vuillemin, R.: Coastal Ocean and Nearshore Observation: A French Case Study, Front. Mar.
724 Sci., 6, 324, <https://doi.org/10.3389/fmars.2019.00324>, 2019.

725 Delaigue, L. (2025). louisedelaigue/WIND-FROM-FLOAT-ACOUSTICS: Initial release for
726 Zenodo DOI (v1.1). Zenodo. <https://doi.org/10.5281/zenodo.17232552>

727 D'ortenzio, F., Taillandier, V., Claustre, H., et al.: Biogeochemical Argo: The test case of the
728 NAOS Mediterranean array, Front. Mar. Sci., 7, 120, <https://doi.org/10.3389/fmars.2020.00120>, 2020.

730 Dotto, T. S., Naveira Garabato, A. C., Bacon, S., et al.: Wind-driven processes controlling
731 oceanic heat delivery to the Amundsen Sea, Antarctica, J. Phys. Oceanogr., 49, 2829–
732 2849, <https://doi.org/10.1175/JPO-D-19-0064.1>, 2019.

733 Farmer, D. M., Vagle, S., and Booth, A. D.: A free-flooding acoustical resonator for
734 measurement of bubble size distributions, J. Atmos. Ocean. Technol., 15, 1132–
735 1146, [https://doi.org/10.1175/1520-0426\(1998\)015<1132:AFFARF>2.0.CO;2](https://doi.org/10.1175/1520-0426(1998)015<1132:AFFARF>2.0.CO;2), 1998.

736 Fregosi, S., Harris, D. V., Matsumoto, H., Mellinger, D. K., Barlow, J., Baumann-Pickering,
737 S., and Klinck, H.: Detections of whale vocalizations by simultaneously deployed bottom-
738 moored and deep-water mobile autonomous hydrophones, Front. Mar. Sci., 7,
739 721, <https://doi.org/10.3389/fmars.2020.00721>, 2020.

740 Gray, A. R., Johnson, K. S., Bushinsky, S. M., et al.: Autonomous biogeochemical floats detect
741 significant carbon dioxide outgassing in the high-latitude Southern Ocean, Geophys. Res. Lett.,
742 45, 9049–9057, <https://doi.org/10.1029/2018GL078013>, 2018.

743 Gros-Martial, A., Dubus, G., Cazau, D., Bazin, S., and Guinet, C.: Producing a new in-situ
744 wind speed product for the Southern Ocean based on acoustic meteorology from biologged
745 southern elephant seals, J. Atmos. Ocean. Technol., <https://doi.org/10.1175/JTECH-D-25-0037.1>, 2025a.

747 Gros-Martial, A., Delaigue, L., Cauchy, P., Pensieri, S., Bozzano, R., Bonnel, J., Leymarie, E.,
748 Baumgartner, M., Guinet, C., Bazin, S., and Cazau, D.: Benchmarking models for ocean wind
749 speed estimation based on passive acoustic monitoring, OCEANS 2025 Brest, Brest, France,
750 IEEE, 1–10, <https://doi.org/10.1109/OCEANS58557.2025.11104747>, 2025b.

751 Gruber, N., Bakker, D. C. E., DeVries, T., et al.: Trends and variability in the ocean carbon
752 sink, Nat. Rev. Earth Environ., 4, 119–134, <https://doi.org/10.1038/s43017-022-00381-x>,
753 2023.

754 Ingenito, F. and Wolf, S. N.: Site dependence of wind-dominated ambient noise in shallow
755 water, *J. Acoust. Soc. Am.*, 85, 141–145, <https://doi.org/10.1121/1.397722>, 1989.

756 Johnson, K. S. and Claustre, H.: Bringing biogeochemistry into the Argo age, *Eos Trans. AGU*,
757 97, <https://doi.org/10.1029/2016EO062427>, 2016.

758 Li, Z., Thompson, E. J., Behrangi, A., Chen, H., and Yang, J.: Performance of GPCP daily
759 products over oceans: Evaluation using Passive Aquatic Listeners, *Geophys. Res. Lett.*, 50,
760 e2023GL104310, <https://doi.org/10.1029/2023GL104310>, 2023.

761 Ma, B. B. and Nystuen, J. A.: Prediction of underwater sound levels from rain and wind, *J.*
762 *Acoust. Soc. Am.*, 117, 3555–3565, <https://doi.org/10.1121/1.1910283>, 2005.

763 Ma, B. B., Girton, J. B., Dunlap, J. H., Gobat, J. I., and Chen, J.: Passive acoustic measurements
764 on autonomous profiling floats, *OCEANS 2023 – MTS/IEEE U.S. Gulf Coast*, Biloxi, USA,
765 1–6, <https://doi.org/10.23919/OCEANS52994.2023.10337032>, 2023.

766 Matsumoto, H., Jones, C., Klinck, H., et al.: Tracking beaked whales with a passive acoustic
767 profiler float, *J. Acoust. Soc. Am.*, 133, 731–740, <https://doi.org/10.1121/1.4773260>, 2013.

768 McGillicuddy, D. J.: Mechanisms of physical–biological–biogeochemical interaction at the
769 oceanic mesoscale, *Annu. Rev. Mar. Sci.*, 8, 125–159, <https://doi.org/10.1146/annurev-marine-010814-015606>, 2016.

771 McMonigal, K., Larson, S. M., and Gervais, M.: Wind-driven ocean circulation changes can
772 amplify future cooling of the North Atlantic warming hole, *J. Climate*, 38, 2479–
773 2496, <https://doi.org/10.1175/JCLI-D-24-0227.1>, 2025.

774 Menze, S., Kindermann, L., van Opzeeland, I., et al.: Soundscapes of the Southern Ocean:
775 Passive acoustic monitoring in the Weddell Sea, Conference presentation, 2013.

776 Nystuen, J. A.: Listening to raindrops from underwater: an acoustic disdrometer, *J. Atmos.*
777 *Ocean. Technol.*, 18, 1640–1657, [https://doi.org/10.1175/1520-0426\(2001\)018<1640:LTRFUA>2.0.CO;2](https://doi.org/10.1175/1520-0426(2001)018<1640:LTRFUA>2.0.CO;2), 2001.

779 Nystuen, J. A., Anagnostou, M. N., Anagnostou, E. N., and Papadopoulos, A.: Monitoring
780 Greek seas using passive underwater acoustics, *J. Atmos. Ocean. Technol.*, 32, 334–
781 349, <https://doi.org/10.1175/JTECH-D-13-00264.1>, 2015.

782 Oguz, H. N. and Prosperetti, A.: Bubble entrainment by the impact of drops on liquid surfaces,
783 *J. Fluid Mech.*, 219, 143–179, <https://doi.org/10.1017/S0022112090002890>, 1990.

784 Pellichero, V., Boutin, J., Claustre, H., Merlivat, L., Sallée, J.-B., and Blain, S.: Relaxation of
785 wind stress drives the abrupt onset of biological carbon uptake in the Kerguelen bloom: a
786 multisensor approach, *Geophys. Res. Lett.*, 47,
787 e2019GL085992, <https://doi.org/10.1029/2019GL085992>, 2020.

788 Pensieri, S., Bozzano, R., Nystuen, J. A., Anagnostou, E. N., Anagnostou, M. N., and Bechini,
789 R.: Underwater acoustic measurements to estimate wind and rainfall in the Mediterranean Sea,
790 *Adv. Meteorol.*, 2015, 612512, <https://doi.org/10.1155/2015/612512>, 2015.

791 Pipatprathanporn, S. and Simons, F. J.: One year of sound recorded by a MERMAID float in
792 the Pacific: hydroacoustic earthquake signals and infrasonic ambient noise, *Geophys. J. Int.*,
793 228, 193–212, <https://doi.org/10.1093/gji/ggab296>, 2022.

794 Prawirasasra, M. S., Mustonen, M., and Klauson, A.: Wind fetch effect on underwater wind-
795 driven sound, *Est. J. Earth Sci.*, 73, 15–25, <https://doi.org/10.3176/earth.2024.02>, 2024.

796 Rainaud, R., Bouin, M.-N., Redelsperger, J.-L., et al.: Characterization of air-sea exchanges
797 over the western Mediterranean Sea during HyMeX SOP1 using the AROME-WMED model,
798 *Q. J. Roy. Meteor. Soc.*, 142, 173–187, <https://doi.org/10.1002/qj.2480>, 2016.

799 Riser, S. C., Nystuen, J. A., and Rogers, A.: Monsoon effects in the Bay of Bengal inferred
800 from profiling float-based measurements of wind speed and rainfall, *Limnol. Oceanogr.*, 53,
801 2080–2093, https://doi.org/10.4319/lo.2008.53.5_part_2.2080, 2008.

802 Riser, S. C., Freeland, H. J., Roemmich, D., et al.: Fifteen years of ocean observations with
803 the global Argo array, *Nat. Clim. Change*, 6, 145–153, <https://doi.org/10.1038/nclimate2872>,
804 2016.

805 Roemmich, D., G.C. Johnson, S. Riser, R. Davis, J. Gilson, W.B. Owens, S.L. Garzoli, C.
806 Schmid, and M. Ignaszewski. The Argo Program: Observing the global ocean with profiling
807 floats. *Oceanography* 22(2):34–43, <https://doi.org/10.5670/oceanog.2009.36>, 2009.

808 Schwock, F. and Abadi, S.: Statistical analysis and modeling of underwater wind noise at the
809 northeast Pacific continental margin, *J. Acoust. Soc. Am.*, 150, 4166–
810 4177, <https://doi.org/10.1121/10.0007463>, 2021.

811 Stoffelen, A., Portabella, M., Verhoef, A., Verspeek, J., and Vogelzang, J.: High-resolution
812 ASCAT scatterometer winds near the coast, *IGARSS 2008 – IEEE Int. Geosci. Remote Sens.*
813 Symp., Boston, USA, 7–11 July 2008, I-114–I-
814 117, <https://doi.org/10.1109/IGARSS.2008.4778806>, 2008.

815 Taylor, W. O., Anagnostou, M. N., Cerrai, D., and Anagnostou, E. N.: Machine learning
816 methods to approximate rainfall and wind from acoustic underwater measurements, *IEEE*
817 *Trans. Geosci. Remote Sens.*, 59, 2810–2821, <https://doi.org/10.1109/TGRS.2020.3007557>,
818 2021.

819 Trenberth, K. E., Cheng, L., Pan, Y., Fasullo, J., and Mayer, M.: Distinctive pattern of global
820 warming in ocean heat content, *J. Climate*, 38, 2155–2168, <https://doi.org/10.1175/JCLI-D-24-0609.1>, 2025.

822 Trucco, A., Barla, A., Bozzano, R., Pensieri, S., and Repetto, S.: Compounding approaches for
823 wind prediction from underwater noise by supervised learning, *IEEE J. Oceanic Eng.*, 47,
824 1172–1187, <https://doi.org/10.1109/JOE.2022.3162689>, 2022.

825 Trucco, A., Barla, A., Bozzano, R., Pensieri, S., and Repetto, S.: Introducing temporal
826 correlation in rainfall and wind prediction from underwater noise, *IEEE J. Oceanic Eng.*, 48,
827 349–364, <https://doi.org/10.1109/JOE.2022.3223406>, 2023.

828 Tyack, P., Akamatsu, T., Boebel, O., Chapuis, L., Debusschere, E., de Jong, C., Erbe, C.,
829 Evans, K., Gedamke, J., Gridley, T., Haralabus, G., Jenkins, R., Miksis-Olds, J., Sagen, H.,
830 Thomsen, F., Thomisch, K., and Urban, E.: Ocean Sound Essential Ocean Variable
831 Implementation Plan, Zenodo [data set], <https://doi.org/10.5281/zenodo.10067187>, 2023.

832 Vagle, S., Large, W. G., and Farmer, D. M.: An evaluation of the WOTAN technique of
833 inferring oceanic winds from underwater ambient sound, *J. Atmos. Ocean. Technol.*, 7, 576–
834 595, [https://doi.org/10.1175/1520-0426\(1990\)007<0576:AEOTWT>2.0.CO;2](https://doi.org/10.1175/1520-0426(1990)007<0576:AEOTWT>2.0.CO;2), 1990.

835 Wang, Y., Yao, Q., Kwok, J. T., and Ni, L. M.: Generalizing from a few examples: A survey
836 on few-shot learning, *ACM Comput. Surv.*, 53, 1–34, <https://doi.org/10.1145/3386252>, 2020.

837 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
838 *Limnol. Oceanogr.-Meth.*, 12, 351–362, <https://doi.org/10.4319/lom.2014.12.351>, 2014.

839 Wanninkhof, R., Triñanes, J., Pierrot, D., et al.: Trends in sea–air CO₂ fluxes and sensitivities
840 to atmospheric forcing using an extremely randomized trees machine learning approach, *Glob.*
841 *Biogeochem. Cycles*, 39, e2024GB008315, <https://doi.org/10.1029/2024GB008315>, 2025.

842 Yang, J., Riser, S. C., Nystuen, J. A., Asher, W. E., and Jessup, A. T.: Regional rainfall
843 measurements using the Passive Aquatic Listener during the SPURS field campaign,
844 *Oceanography*, 28, 124–133, <https://doi.org/10.5670/oceanog.2015.10>, 2015.

845 Yang, J., Asher, W. E., and Riser, S. C.: Rainfall measurements in the North Atlantic Ocean
846 using underwater ambient sound, in: 2016 IEEE/OES China Ocean Acoustics (COA), Harbin,
847 China, 9–11 January 2016, 1–4, <https://doi.org/10.1109/COA.2016.7535834>, 2016.

848 Zambra, M., Cazau, D., Farrugia, N., Gensse, A., Pensieri, S., Bozzano, R. and Fablet,
849 R.: Learning-based temporal estimation of in-situ wind speed from underwater passive
850 acoustics, *IEEE J. Oceanic Eng.*, 48, 1215–1225, <https://doi.org/10.1109/JOE.2023.3288970>,
851 2023.

852 Zhang, M., Cheng, Y., Bao, Y., Zhao, C., Wang, G., Zhang, Y., Song, Z., Wu, Z., and Qiao,
853 F.: Seasonal to decadal spatiotemporal variations of the global ocean carbon sink, *Glob.*
854 *Change Biol.*, 28, 1786–1797, <https://doi.org/10.1111/gcb.16031>, 2022.