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Abstract. Wind forcing plays a pivotal role in driving upper-ocean physical and biogeochemical processes, yet 18 
direct wind observations remain sparse in many regions of the global ocean. While passive acoustics have been 19 
used to estimate wind speed from moored and mobile platforms, their application to profiling floats has been 20 
demonstrated only in limited cases. Here we report the first deployment of a biogeochemical profiling float 21 
equipped with a passive acoustic sensor explicitly designed for wind retrieval, aimed at detecting wind-driven 22 
surface signals from depth. The float was deployed in the northwestern Mediterranean Sea near the DYFAMED 23 
(DYnamique des Flux Atmosphériques en MEDiterranée) meteorological buoy from February to April 2025 and 24 
operated at parking depths of 500–1000 m. We demonstrate that wind speed can be successfully retrieved from 25 
subsurface ambient noise using established acoustic algorithms, with float-derived estimates showing good 26 
agreement with collocated surface observations. To evaluate scalability to remote regions, we simulate a remote 27 
deployment scenario by refitting the acoustic model of Nystuen et al. (2015) using ERA5 reanalysis as a reference 28 
for surface wind. The ERA5-based calibration performs well under moderate winds but exhibits systematic high-29 
wind bias (≥10 m s-1). Finally, we apply a residual learning framework to correct these estimates using a limited 30 
subset of DYFAMED wind data, simulating conditions where only brief surface observations are available. The 31 
corrected wind time series achieved a 37% reduction in RMSE, demonstrating the effectiveness of combining 32 
reanalysis with sparse in-situ calibration. This framework improves agreement with in-situ wind observations 33 
relative to reanalysis alone, supporting a scalable strategy for float-based wind monitoring in data-sparse ocean 34 
regions. Such capability has direct implications for improving estimates of air–sea exchanges, interpreting 35 
biogeochemical fluxes, and advancing climate-relevant ocean observing. 36 

 37 

 38 
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1 Introduction 39 

Wind plays a fundamental role in driving ocean circulation, mediating air–sea gas exchange, 40 
and shaping climate-related biogeochemical processes (Wanninkhof, 2014; McGillicuddy, 41 
2016). Recent studies show that wind-driven circulation strongly influences regional climate 42 
trends (eg., Pellichero et al., 2020; Trenberth et al. 2025; McMonigal et al., 2025). Despite its 43 
central importance, accurately quantifying wind variability in remote ocean basins remains 44 
challenging. Satellite scatterometers suffer from coarse resolution, reduced performance under 45 
extreme weather and heavy cloud cover, and signal degradation in high-latitude regions, while 46 
surface moorings provide limited spatial coverage (Bentamy et al., 2003; Chelton et al., 2007; 47 
Stoffelen et al., 2008).  48 

Passive acoustic monitoring of underwater ambient noise offers a complementary approach for 49 
inferring surface meteorological conditions from surface-generated underwater noise. The 50 
relationship between wind speed and high-frequency (1–20 kHz) noise generated by wave 51 
breaking and bubble entrainment has been extensively documented (Vagle et al., 1990; Farmer 52 
et al., 1998; Oguz and Prosperetti, 1990). This principle underpins the Weather Observations 53 
Through Ambient Noise (WOTAN) techniques and the development of Passive Acoustic 54 
Listener (PAL) instruments (Nystuen et al., 2001), enabling autonomous, long-term estimates 55 
of wind and rainfall from fixed and drifting platforms.  56 

Although widely used, these approaches still face several limitations. The empirical 57 
relationships underpinning WOTAN-type methods are often site dependent, with deviations 58 
arising from bathymetry, wave regime, and water depth; even under wind-dominated 59 
conditions, shallow-water environments can yield substantially different spectral levels 60 
(Ingenito, 1989). Model skill is also limited by model design, as single-regime formulations 61 
underestimate the slope at higher winds and bias comparisons across SPL–wind relationships 62 
(Schwock, 2021). These factors complicate the selection of an appropriate empirical law for a 63 
given platform or region. To address these challenges, recent studies have explored data-driven 64 
and machine-learning approaches that learn wind–noise relationships directly from 65 
observations and reduce reliance on fixed empirical models (Taylor et al., 2020; Trucco et al., 66 
2023; Zambra et al., 2023). 67 

Despite these limitations, the WOTAN framework has proven applicable across a wide range 68 
of platforms. Wind-driven signatures have been detected from moorings (Ma and Nystuen, 69 
2005 ; Nystuen et al., 2015; Pensieri et al., 2015), gliders (Cauchy et al., 2018; Cazau et al., 70 
2019) and profiling floats (Riser et al., 2008; Yang et al., 2015; Yang et al., 2016; Bytheway 71 
et al., 2023; Ma et al., 2023), and even from biologged marine mammals operating in remote 72 
regions (Menze et al., 2013; Cazau et al., 2017; Gros-Martial et al., 2025a). Beyond wind 73 
estimation, acoustic sensors integrated into autonomous platforms have supported a wide range 74 
of geophysical and ecological applications, including marine mammal monitoring (Matsumoto 75 
et al., 2013; Cauchy et al., 2020; Fregosi et al., 2020; Baumgartner and Bonnel, 2022), and 76 
hydroacoustic earthquake detection and characterisation of ambient ocean noise (Baumgartner  77 
et al., 2017; Pipatprathanporn and Simons, 2022).  78 

Recognising this broad utility, the Ocean Sound Essential Ocean Variable (EOV), coordinated 79 
by the International Quiet Ocean Experiment (IQOE) and endorsed by the Global Ocean 80 
Observing System (GOOS), identifies autonomous platforms such as profiling floats as ideal 81 



manuscript submitted to Ocean Science 

 

 

3 

platforms for distributed global acoustic monitoring (Tyack et al., 2023). In recent decades, 82 
biogeochemical (BGC)-Argo floats have become a central component of global ocean 83 
observing systems. Their persistence at sea, broad spatial coverage, and cost-effectiveness have 84 
demonstrated clear advantages over traditional ship-based measurements (Roemmich et al., 85 
2009; Riser et al., 2016). As their capabilities have expanded, these platforms now host 86 
increasingly sophisticated multidisciplinary sensor suites, with measurements of oxygen, 87 
nitrate, chlorophyll, pH, and irradiance (Johnson and Claustre, 2016; Claustre et al., 2020). Yet, 88 
despite this progress, the integration of passive acoustics into BGC-Argo remains largely 89 
unexplored. Incorporating acoustic wind sensing would supply the atmospheric forcing needed 90 
to interpret biogeochemical variability, particularly in high-latitude or storm-dominated 91 
regions where wind products remain sparse or uncertain. 92 

Here, we present the first deployment of a biogeochemical profiling float equipped with a 93 
passive acoustic sensor explicitly designed for wind speed estimation from underwater ambient 94 
noise. Deployed in the northwestern Mediterranean Sea, near the DYFAMED (DYnamique 95 
des Flux Atmosphériques en MEDiterranée) meteorological buoy, this float serves as a proof-96 
of-concept demonstration to: (1) determine whether wind-driven acoustic signatures can be 97 
detected at profiling float parking depths; (2) evaluate the performance of established acoustic 98 
wind models on this platform; and (3) develop a practical framework combining acoustic 99 
observations with reanalysis data and machine learning to enable wind estimation in remote 100 
regions. Through this approach, we demonstrate the potential of acoustic-equipped profiling 101 
floats to expand global wind observations, close persistent observational gaps, and support 102 
interpretation of biogeochemical and climate-relevant processes.103 
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2 Materials and Methods 104 

 105 

Figure 1. Float trajectories during sea trials conducted in the Ligurian Sea in February and 106 
March 2025. Deployment A (solid line) and Deployment B (dashed line) are shown along with 107 
a concentric dashed circle (40 km radius) centred on the DYFAMED station. The 40 km radius 108 
was used to spatially filter float data for refitting and validation of wind estimates at 109 
DYFAMED, as described in Cauchy et al. (2018). 110 

2.1 Study area and DYFAMED weather station 111 

The acoustic wind sensing trial was conducted in the Ligurian Sea, a sub-basin of the 112 
northwestern Mediterranean, in proximity to the DYFAMED (DYnamique des Flux 113 
Atmosphériques en MEDiterranée) oceanographic time series station (Fig. 1). This station is 114 
part of the national observation program MOOSE (Mediterranean Ocean Observing System 115 
for the Environment, https://www.moose-network.fr), funded by CNRS–INSU, and has been 116 
integrated since 2016 into the national research infrastructure ILICO (Infrastructure de 117 
recherche littorale et côtière; Cocquempot et al., 2019). 118 

Located at 43.42°N, 7.87°E, DYFAMED has served as a key reference site for air–sea 119 
exchange, upper ocean dynamics, and biogeochemical cycling since the early 1990s. The site 120 
is equipped with continuous meteorological and oceanographic monitoring, including high-121 
quality wind speed and direction measurements from the Côte d’Azur meteorological 122 
buoy operated by Météo-France, located at the DYFAMED site. These data are reported at 123 
hourly resolution following WMO (World Meteorological Organization) standards and include 124 
wind parameters, air temperature, pressure, humidity, and sea state. 125 
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During the study period, wind speeds at DYFAMED ranged from 0.5 to 16.1 m s-1, with a mean 126 
of 6.8 m s-1 and a measurement precision of one decimal place. 127 

2.2 Acoustic sensor integration 128 

The float used in this study was equipped with a passive acoustic module jointly developed by 129 
NKE and ABYSsens in collaboration with LOV. This module was specifically designed for 130 
integration into the PROVOR CTS5 BGC-Argo platform, with the aim of minimizing power 131 
consumption and data volume while remaining compatible with the operational constraints of 132 
the BGC-Argo program. 133 

The module consists of two main parts enclosed in a dedicated external housing: 1) a low-noise 134 
HTI-96-Min hydrophone (sensitivity: −165 dB re 1 V/µPa; frequency range: 2 Hz–30 kHz), 135 
mounted externally to capture pressure fluctuations, and 2) an ABYSsens acquisition board, 136 
which conditions, digitizes, and processes the signal. 137 

The acquisition system operates in a low-power pulsed mode (220 mW) with a sampling 138 
frequency up to 62.5 kHz and 24-bit resolution. To limit power usage and transmission needs, 139 
raw acoustic signals are not stored. Instead, the sensor performs direct onboard integration into 140 
23 third-octave bands, spanning from 63 Hz to 25 kHz with a variable integration time (see 141 
Table 1). Higher-frequency bands (e.g., 3.15–25 kHz) used shorter integration times (50 ms), 142 
while low-frequency bands used longer windows (up to 500 ms). 143 

Frequency band range Integration time 

 63, 100, 125 and 160 Hz 500 ms 

400, 500 and 630 Hz 250 ms 

800 Hz, 1, 1.25, 1.6, 2 and 2.5 kHz 100 ms 

3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20 and 25 kHz 50 ms 

Table 1. Integration times applied to third-octave bands during acoustic signal processing, 144 
varying by frequency range to balance energy and spectral accuracy. In bold and underlined, 145 
the bands transmitted in the 9-band float configuration. 146 

The acoustic unit is mounted on the upper section of the float chassis and is configured to 147 
operate exclusively during the parking phase (500–1000 m depth; Fig. 3). During this phase, 148 
the float drifts with only routine background measurements (e.g., pressure, CTD), and acoustic 149 
acquisition is automatically suspended whenever noisy operations such as ballast pumping or 150 
CTD sampling occur, thereby avoiding contamination from self-noise. 151 

The float system allows for flexible and modifiable configuration via satellite: the user can 152 
define the number of bands transmitted (23, 9, or a compact onboard estimate of wind/rain), 153 
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the acquisition interval (typically 5–15 minutes), and the number of acoustic samples averaged 154 
per measurement. In this study, we used a 5-minute interval with 10 averaged acquisitions per 155 
measurement (each acquisition is a spectral estimation using the integration times defined in 156 
Table 1). 157 

The telemetry and energy impact of adding an acoustic sensor to a 6-variable biogeochemical 158 
float was evaluated by using the programming interface provided by NKE. The estimated 159 
reduction in the number of cycles varies from 18% for acquisition every 5 minutes to 7% for 160 
acquisition every 15 minutes during the whole parking drift of a 10-day Argo cycle and with 5 161 
averaged acquisitions per acoustic measurement. The data volume increase depends on the 162 
transmission format: from ~9% for onboard wind–rain estimates (15-min period) to ~85% for 163 
a full 23-band spectrum (5-min period). A 9-band spectrum every 15 minutes—a likely 164 
recommended setup—adds ~16%. These overheads remain within the platform’s capacity, 165 
confirming compatibility with concurrent BGC measurements. 166 

Each sensor output transmitted by the float corresponds to the Third Octave Level (TOL), i.e., 167 
the sound pressure level integrated over a third-octave band, expressed in dB re 1 µPa. These 168 
TOLs represent the float’s primary spectral product and are used as input to the wind speed 169 
retrieval models. The amplitude resolution of the transmitted data is 0.2 or 0.5 dB, with a 170 
dynamic range up to 127 dB. This discretisation arises because the data are transmitted as 171 
integers to save bandwidth, which requires selecting a resolution step. 172 

2.3 Depth correction and spectral normalization 173 

To account for the attenuation of surface-generated noise with depth, a correction term β(h,f) 174 
was applied to all acoustic measurements (Fig. 2). Because β depends on the ambient 175 
temperature–salinity structure, we quantified hydrographic stability over the 60-day 176 
deployment using all profiles that reached at least 1000 dbar. Each profile was interpolated 177 
onto a 1 m grid and compared to the deployment-mean temperature/salinity profiles. Depth-178 
averaged RMS deviations were 0.14 ± 0.04°C for temperature and 0.06 ± 0.02 for salinity, and 179 
no profile exceeded |z| = 2 standardised deviation, confirming weak hydrographic variability. 180 
Because such differences are far below hydrophone measurement uncertainties, β(h,f) was 181 
computed once using the deployment-mean profile and applied uniformly to the full record. 182 
For longer or more dynamic missions, β(h,f) should be recomputed for each profile. Modern 183 
hardware makes this operation computationally inexpensive, but the negligible hydrographic 184 
variability in this deployment renders repeated recalculation unnecessary. 185 

Following Cauchy et al. (2018), the correction takes the form: 186 

TOL!(f) 	= 	TOL(h, f) 	+ 	β(h, f) (1a), 

where β(h, f) = 	−10	log 32 ∫ 6"	$%&
!'",$	(

&'(	)",$

)!",$
7*

! dr: (1b), 
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with TOL(h, f) as the raw TOL measurement from the profiling float, h as the sensor depth, f 187 
the centre frequency of the band, r the horizontal distance from a surface noise source to the 188 
point vertically above the sensor, l the total pathlength between source and receiver (accounting 189 
for depth and refraction), including refraction effects, θ the angle between the emitted acoustic 190 
ray and the horizontal axis, and α the frequency-dependent attenuation coefficient for bubble-191 
free water.  The integral considers contributions from all surface-generated acoustic sources 192 
over the sea surface, assuming radial symmetry, and accounts for geometric spreading, 193 
frequency-dependent absorption, and angle-dependent energy emission along each path. This 194 
correction was originally derived for third-octave levels and is directly applicable here, as the 195 
float outputs TOLs at fixed centre frequencies. 196 

Then, depth-corrected third-octave levels TOL!(f)	(dB re 1 µPa) were converted to spectral 197 
density levels SPL(f) (dB re 1 µPa/Hz) by normalising to the bandwidth of each band. In the 198 
following, SPL always refers to these depth-corrected, bandwidth-normalised values derived 199 
from TOL!(f). This step ensures consistency across frequencies and comparability with model 200 
spectra. In future deployments, this spectral correction will be applied directly onboard the 201 
float. 202 

 203 

Figure 2. a) Mean sound-speed profile derived from the deployment-average temperature and 204 
salinity, and used to compute b) the depth-correction term β(h,f) following Cauchy et al. 205 
(2018). The correction accounts for the attenuation of wind-generated surface noise with 206 
increasing hydrophone depth and was applied prior to wind-speed retrieval. β is shown here 207 
for 3.15 kHz and 8 kHz. 208 

2.4 Profiling float deployments 209 
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 210 

Figure 3. Vertical profiles from the acoustic-equipped profiling float deployed near 211 
DYFAMED between February and April 2025. Blue points indicate times when passive 212 
acoustic data were successfully recorded. The vertical dashed line marks the transition between 213 
Deployment A and Deployment B. 214 

Two deployments of an acoustic-equipped float (PROVOR CTS5) were carried out near 215 
DYFAMED between February and April 2025 (Fig. 1). Deployment A lasted 30 days, from 10 216 
February to 11 March, and Deployment B continued for 24 days starting on 12 March and 217 
remained active until 4 April. The float operated in park-and-profile mode at three parking 218 
depths (500, 700, and 1000 m; Fig. 2), collecting biogeochemical data during ascent and 219 
passive acoustic data exclusively during the parking phases to minimize self-generated noise. 220 

While Riser et al. (2008) previously demonstrated the feasibility of acoustic wind sensing from 221 
Argo floats, their system transmitted only pre-processed wind estimates derived onboard using 222 
a simplified version of the algorithm by Nystuen et al. (2015), without retaining or transmitting 223 
spectral band data. This limited the possibility of reanalysis or applying alternative processing 224 
schemes. In contrast, the floats used in this study recorded and transmitted full third-octave 225 
band spectra, enabling detailed post-processing and algorithm refinement tailored to the float’s 226 
specific acoustic characteristics. 227 

2.5 Transient and anthropogenic noise mitigation 228 

Transient noise (i.e., episodic non-wind-related events) was mitigated by removing values 229 
exceeding the 99th percentile within a ±1.5-hour window centred around each matched 230 
timestamp. This percentile corresponds to discarding roughly the top 1% of samples over a 3-231 
hour window (≈two minutes of data). No physically meaningful wind- or wave-driven 232 
variability relevant to this study evolves on such short timescales, making this filter effective 233 
at removing brief acoustic artefacts without suppressing real high-wind conditions. This 234 
approach is conceptually similar to the transient-noise mitigation used in glider-based PAM 235 
studies (e.g., Cauchy et al., 2018), which suppress short-lived spikes in the spectra to isolate 236 
wind-generated noise. 237 
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To further reduce short-term variability and emphasize quasi-stationary wind-driven acoustic 238 
patterns, we applied a 3-hour rolling mean to each frequency band. This smoothing window is 239 
conceptually consistent with the profile-scale averaging used in glider-based acoustic wind 240 
studies (e.g., Cauchy et al., 2018), where acoustic measurements are aggregated over ~2-hour 241 
glider dives to suppress transient variability. While smoothing inevitably attenuates rapid 242 
fluctuations, the 3 h window stabilises the spectra without erasing multi-hour wind events 243 
relevant for air–sea flux applications. Alternative strategies, such as post-processing the wind 244 
speed estimates rather than the spectral bands, could be explored in future deployments if finer-245 
scale variability is a priority. 246 

Anthropogenic noise was mitigated using AIS vessel tracks. Because the float only provides 247 
GPS positions at the surface, we reconstructed a continuous trajectory by linearly interpolating 248 
its positions between successive surfacings at hourly resolution. Each 5-min acoustic record 249 
was then associated with the nearest interpolated position. An observation was flagged as 250 
potentially contaminated when an AIS-reported vessel was located within 20 km of this 251 
interpolated float position and within ±30 min of the acoustic timestamp. The 20 km radius 252 
corresponds to the distance over which ship-radiated noise commonly dominates the ambient 253 
sound field in the 1–10 kHz band under low-to-moderate sea states, while the ±30 min window 254 
accounts for the typically irregular AIS reporting interval offshore. As an additional safeguard, 255 
we excluded cases where the float-derived wind speed deviated from the DYFAMED buoy by 256 
more than the RMSE computed under uncontaminated conditions. This RMSE criterion is used 257 
only as a secondary check to capture possible contamination during periods of poor AIS 258 
coverage. Sensitivity tests indicate that moderate changes to these thresholds do not affect the 259 
main conclusions.  260 
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2.6 Application of established acoustic models 261 

 262 

Table 2. Summary of acoustic wind speed estimation models and their input requirements. 263 
Input units refer to the spectral level units used in model calibration. Central frequency 264 
indicates the nominal retrieval frequency, and the third-octave band column specifies the 265 
corresponding bandwidth. All models were calibrated and validated against standard 10-m 266 
wind speed. 267 

Empirical models have long been used to estimate surface wind speed from underwater ambient 268 
noise, exploiting the link between wind-driven bubble formation and acoustic energy in the 1–269 
20 kHz band. These models typically relate surface wind speed U to the sound pressure level 270 
Lf measured in selected frequency bands. While many models use third-octave bands, others 271 
rely on custom-defined or narrowband frequencies, often with variable bandwidths (e.g., 16% 272 
of the centre frequency in Vagle et al., 1990). 273 

We applied four established wind retrieval models spanning a range of functional forms—274 
cubic, two-regime linear–quadratic, composite, and two-regime log–linear. All wind models 275 
were applied using acoustic levels consistent with their original formulations (Table 2). This 276 
diversity allowed us to assess sensitivity to model structure and evaluate performance under 277 
float-specific conditions. Each model was first implemented using its published coefficients to 278 
generate wind speed estimates from float acoustic data, and the results were evaluated against 279 
collocated meteorological observations (Fig. 4). Subsequently, the parameters of each model 280 
were refitted using collocated float acoustic and wind data from the DYFAMED 281 
meteorological buoy (Figs. 4 and 5; see Table 1 in Supplementary Material), which provides 282 
hourly 10-meter wind speed. Model refitting was performed using nonlinear least-squares 283 
optimization (Table 3). Wind records from DYFAMED were matched to float measurements 284 
by nearest timestamp. 285 

Model Input units Wind frequency 
band (kHz) 

Wind retrieval 
frequency 

(kHz) 

Vagle et al. (1990) dB re 1 µPa²/Hz 7.1–8.9 8 

Nystuen et al. 
(2015) dB re 1 µPa²/Hz 7.1–8.9 8 

Pensieri et al. 
(2015) dB re 1 µPa²/Hz 7.1–8.9 8 

Cauchy et al. 
(2018) dB re 1 µPa 2.8–3.55 3.15 



manuscript submitted to Ocean Science 

 

 

Following the spatial filtering approach of Cauchy et al. (2018), only float data within 40 km 286 
of DYFAMED were retained for refitting and validation (Fig. 1). This threshold corresponds 287 
to the estimated confidence radius around the DYFAMED meteorological buoy, within which 288 
wind speed measurements show high spatial coherence (R = 0.86, RMSE = 2.5 m s-1) when 289 
compared to the AROME-WMED atmospheric model (Rainaud et al., 2016). Although 290 
originally derived from the spatial wind-field decorrelation scale reported by Cauchy et al. 291 
(2018), this 40 km radius reflects a regional mesoscale atmospheric property rather than a 292 
platform-specific constraint. Because our deployment occurred in the same NW Mediterranean 293 
basin, this decorrelation length remains appropriate for our case. We note, however, that this 294 
threshold is region-dependent and should be re-evaluated for future deployments elsewhere. 295 

The updated coefficients were then used to generate wind estimates over the full float dataset. 296 
While this spatial proximity improves wind representativeness, it does not account for 297 
variations in wind fetch, a parameter known to influence ambient noise generation, particularly 298 
through wave and bubble field development (e.g., Prawirasasra et al., 2024). 299 

These four models were selected to represent a range of analytical formulations commonly 300 
used in acoustic wind retrievals. They all use frequency bands where wind-driven bubble noise 301 
typically dominates the local ambient sound field, with reduced interference from low-302 
frequency sources such as distant shipping. Our aim was not to exhaust all available models, 303 
but rather to evaluate a representative subset under consistent float-specific conditions, 304 
emphasizing the effect of model structure and local fitting.  305 

The specifications and key features of each model are summarized in Table 2 for reference. 306 
For all models and validation steps throughout the rest of Methods section, wind speed refers 307 
to the standard 10-meter wind speed, consistent with both the ERA5 reanalysis product and the 308 
DYFAMED buoy observations used for calibration and evaluation. 309 

The first model, from Vagle et al. (1990), was derived from moored hydrophone data in the 310 
North Atlantic and relates wind speed to high-frequency noise at 8 kHz using a cubic 311 
formulation: 312 

U+,-./	011! 	= 	10(
345.7!	8	9345.7!!3:.7	⋅	45	⋅	(<=>*+,-3?0.@1)

37.45	⋅	?  (2). 

Next, we applied the cubic model from Nystuen et al. (2015), developed using long-term 313 
acoustic records from fixed hydrophones in both the Pacific and Atlantic. This model targets 314 
wind-generated noise at 8 kHz and includes band-specific criteria to distinguish wind 315 
contributions from other sources such as rain and shipping (Table 2). 316 

UBCDEF/G	?!0H = 0.0005	 ⋅ SPL5IJK4 − 0.0310	 ⋅ SPL5IJK? + 0.4904	 ⋅ SPL5IJK 	
+ 2.0871 

(3). 
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We then tested the two-regime linear–quadratic model from Pensieri et al. (2015) at 8 kHz, 317 
developed using moored hydrophone data from the Ligurian Sea, near our study area. 318 
Calibrated for Mediterranean conditions, the model relates wind speed to ambient noise levels 319 
at the 8 kHz band, applying distinct linear and quadratic fits across low- and high-noise 320 
regimes. Notably, the transition between regimes is defined at 38 dB, corresponding to a wind 321 
speed of 2.39 m s-1 in their framework. However, it is important to note that the threshold 322 
separating high and low regimes is not standardized across the literature and may vary between 323 
studies. 324 

U=/GDL/ML	?!0H = 30.044642 ⋅ 	SPL5IJK
? − 3.2917 ⋅ 	SPL5IJK + 63.016	

0.1458 ⋅ SPL5IJK − 3.146, for	SPL5IJK < 38	dB									
 (4). 

Finally, we included the two-regime log–linear model from Cauchy et al. (2018), developed 325 
using acoustic data from a glider operating in the western Mediterranean. Designed for mobile 326 
platforms, the model relates wind speed to third-octave noise levels centred at 3 kHz. The 327 
model uses distinct logarithmic and linear fits across two noise regimes. 328 
 329 
This choice of 3 kHz, instead of the more commonly used 8 kHz, was based on empirical 330 
observations showing greater dynamic range and lower variance in this band, which may reflect 331 
sensor-specific factors or the sensor’s mounting configuration on the glider (Cauchy et al., 332 
2018). The relationship goes as: 333 

UN,FOPC	?!05 =

⎩
⎪
⎨

⎪
⎧ 1
0.4 ⋅ 10:

⋅ O10
<=>.+,-3</00

?! + 0.2 ⋅ 10:P																																				

1
1.6 ⋅ 10:

⋅ Q10
<=>.+,-&1/00

?! + 12.5 ⋅ 10:R for	U > 10	m	s30
 (5). 

The wind retrieval relationship is modelled using a two-regime log-linear function. The 334 
transition between regimes occurs at wind speeds of approximately 10–11 m s-1, established 335 
empirically. To represent this switching behaviour, a relative threshold level is introduced, 336 
expressed as SPL – Soff, where Soff denotes the sea-state 0 noise reference. This formulation 337 
highlights when wind-driven noise becomes dominant relative to the reference background 338 
noise. 339 

2.7 Simulated wind estimation using reanalysis and residual learning 340 

To assess the ability of float-derived acoustic measurements to estimate surface wind speed in 341 
regions lacking direct atmospheric observations, we developed a two-step framework based on 342 
(i) calibration to ERA5 reanalysis winds and (ii) residual correction using sparse in-situ 343 
measurements. The goal was to emulate realistic deployments of acoustic-equipped profiling 344 
floats in remote regions where only global reanalysis products and limited ship- or buoy-based 345 
wind measurements are available. 346 



manuscript submitted to Ocean Science 

 

 

2.7.1 ERA5-based calibration of the acoustic model 347 

To evaluate the ability of float-derived acoustic measurements to estimate surface wind speed 348 
in regions lacking direct atmospheric observations, we used the ERA5 reanalysis from 349 
ECMWF (Bell et al., 2021). ERA5 provides global 10 m wind at 0.25° resolution and hourly 350 
frequency. We extracted zonal and meridional wind components (u10, v10) from the grid cell 351 
containing the float’s position and computed wind speed U as: 352 

U	 = 	Vu0!? + v0!?  (6). 

These values were time-matched to float and DYFAMED measurements using the nearest 353 
available ERA5 hour. 354 

The empirical acoustic–wind model of Nystuen et al. (2015; Eq. 3) was then re-fitted to the 355 
float’s measured 8 kHz SPL using ERA5 wind speed as the reference. This produced an ERA5-356 
calibrated acoustic wind estimate, representing a realistic scenario in which profiling floats 357 
operate in regions lacking direct wind observations and rely solely on reanalysis for model 358 
tuning. 359 

Uncertainty in the ERA5-calibrated estimate was quantified using a 100-member bootstrap 360 
ensemble. For each iteration, we resampled the float dataset with replacement and perturbed 361 
the ERA5 wind input by adding Gaussian noise consistent with its reported uncertainty (σ = 362 
1.5 m s⁻¹). The acoustic model was re-fitted for each bootstrap sample, and the ensemble 363 
standard deviation was used to characterise uncertainty arising from both ERA5 input 364 
variability and the parameter sensitivity of the fitted empirical model. 365 

2.7.2 Residual -learning correction using limited in-situ observations 366 

To correct systematic errors in the ERA5-calibrated acoustic estimate, we used the limited 367 
DYFAMED buoy observations obtained within 40 km of the float. These collocated 368 
measurements represent approximately 40% of the full dataset and simulate practical scenarios 369 
in which only short-duration local reference winds (e.g., during deployment or opportunistic 370 
ship passages) are available. 371 

Residuals between DYFAMED wind speed and the ERA5-calibrated acoustic estimate were 372 
modelled using four predictors: SPL at 8 kHz, ERA5 10-m wind speed, normalised deployment 373 
day, and the Nystuen-model wind estimate. These variables capture the local acoustic signal, 374 
large-scale atmospheric forcing, slow temporal drift, and the first-order empirical fit. Residuals 375 
were estimated with XGBoost regression (Chen & Guestrin, 2016), using all float–buoy 376 
collocations within 40 km (~40% of the dataset). To maintain generalisation, we applied a 377 
compact hyperparameter set (300 estimators, learning rate 0.05, max depth 3, subsample 0.9, 378 
colsample_bytree 0.8) together with safeguards against overfitting, including bootstrap 379 
resampling, Gaussian perturbations of ERA5 winds (σ = 1.5 m s⁻¹) during training and 380 
prediction, shallow trees, and subsampling of both rows and features. Uncertainty was 381 
quantified using a 100-member ensemble, with each model trained on a bootstrap resample of 382 
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the DYFAMED-matched subset and forced with perturbed ERA5 winds. This dual 383 
bootstrapping captures variability associated with the machine learning model structure and 384 
with ERA5 uncertainty. Corrected wind speeds were obtained by adding the ensemble-mean 385 
residual to the ensemble-mean Nystuen estimate, with total uncertainty expressed as ±1σ by 386 
combining the XGBoost ensemble spread and ERA5 input uncertainty in quadrature. The 387 
bootstrap uncertainty of the Nystuen fit is reported separately. This framework provides a 388 
transparent and robust correction method, illustrating how float acoustics, reanalysis winds, 389 
and sparse in-situ observations can be combined to estimate surface wind speed in remote 390 
regions. 391 

3 Results and Discussion 392 

 393 

Figure 4. Comparison of unoptimized (top) and optimised (bottom) wind speed models against 394 
DYFAMED buoy observations. Each subplot shows modelled wind speed estimates from four 395 
literature models (Vagle et al., 1990; Nystuen et al., 2015; Pensieri et al., 2015; Cauchy et al., 396 
2018) compared with collocated buoy wind data (black line). The unoptimized models a) use 397 
original published coefficients, while the optimised models b) are re-fitted using data within 398 
40 km of the DYFAMED site. The dashed vertical line indicates the start of deployment B.  399 
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 400 

Figure 5. Comparison of optimised wind speed estimates from four literature models against 401 
collocated DYFAMED buoy wind measurements. Each subplot (a–d) shows scatter plots of 402 
float-derived wind speed vs. buoy wind speed using model-specific optimised coefficients: (a) 403 
Vagle et al. (1990), (b) Nystuen et al. (2015), (c) Pensieri et al. (2015), and (d) Cauchy et al. 404 
(2018). Points are color-coded by distance from the DYFAMED buoy, and the dashed line 405 
represents the 1:1 reference. Insets display linear regression slope, intercept, and coefficient of 406 
determination (R2).407 
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 409 

410 
Figure 7. Optimised 10-meter wind speed (log scale) as a function of observed underwater 411 
sound pressure level (SPL) at DYFAMED for (a) 3.15 kHz and (b) 8 kHz. Observed wind speed 412 
is shown in black.  413 

 414 
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 415 

Figure 8. Time series comparison between acoustic float wind estimates and DYFAMED buoy 416 
winds, displayed over three consecutive 18-day windows (a–c). The dashed pink curve 417 
corresponds to wind speeds predicted using the Nystuen et al. (2015) acoustic model calibrated 418 
solely with ERA5 reanalysis winds. The solid green curve shows the same model after applying 419 
the residual-learning correction (XGBoost), and the shaded region indicates its associated 420 
predictive uncertainty. Buoy-measured wind speed is shown in black. The upper x-axis reports 421 
the float’s distance from DYFAMED throughout the record, and the dashed vertical line 422 
indicates the transition to deployment B. 423 

 424 
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3.1 Assessing the performance of float-based acoustic wind estimation 425 

We applied four previously published wind retrieval models to float-measured sound pressure 426 
levels (SPLs) at 8 kHz and 3 kHz. Using the original coefficients from these studies, wind speed 427 
estimates deviated significantly from collocated DYFAMED observations, particularly in their 428 
ability to reproduce the magnitude of wind events (Fig. 4a). This mismatch reflects the 429 
sensitivity of empirical acoustic models to deployment context, including platform geometry, 430 
acoustic propagation, and local noise environment. 431 

When these same models were refitted using collocated float acoustics and DYFAMED wind 432 
observations within 40 km (Fig. 1), performance improved substantially (Fig. 4b; Fig. 7). 433 
Among the models, the cubic formulation by Nystuen et al. (2015) achieved the best fit 434 
(R2 = 0.88; Fig. 5b) and successfully captured the full observed wind range (0.5–16.1 m s-1; 435 
Figs. 5 and 7). It was also the only model resolving wind speeds < 2 m s-1, a regime often missed 436 
due to weak surface forcing and minimal bubble generation. This low-wind sensitivity 437 
strengthens its relevance for air–sea gas-exchange studies and suggests broad applicability in 438 
moderate wind regimes. High-quality wind estimates are particularly important for interpreting 439 
float-based biogeochemical measurements, as air–sea oxygen fluxes respond sensitively to 440 
short-timescale wind variability (Bushinsky et al., 2017).  441 

However, even after successful fitting, the portability of acoustic–wind models remains 442 
uncertain. Factors such as noise contamination, ambient biological activity and regional 443 
propagation conditions can vary substantially between deployments, affecting both the shape 444 
and robustness of the acoustic–wind relationship (Gros-Martial et al., 2025b). Moreover, 445 
profiling floats introduce their own artifacts, which may arise from hydrodynamic turbulence, 446 
buoyancy engine activity, bubble release, or electronic interference, each of which can 447 
contaminate the acoustic signal independently of wind forcing. Even models developed in the 448 
same basin required refitting (i.e. Pensieri et al. 2015; Figs. 4, 5 and 7). 449 

A promising direction would be to classify deployments into broader “acoustic environment 450 
types”, such as open-ocean gyres, coastal shelves, or high-latitude storm zones, within which 451 
shared model parameters could be defined and validated. This aligns with the priorities outlined 452 
in the Ocean Sound Essential Ocean Variable (EOV) Implementation Plan, which emphasizes 453 
the need for community-agreed metadata standards, calibration protocols, and classification 454 
schemes to support global comparability across acoustic deployments (Tyack et al., 2023). 455 
Evaluating these frameworks for profiling floats may help standardize acoustic wind retrieval 456 
and integrate it more effectively into global observing systems. 457 

 3.2 Generalizing float-specific wind modelling using reanalysis 458 

While site-specific fitting of acoustic wind models yields accurate float-derived wind 459 
estimates, such fittings are not feasible in most regions of the global ocean where in-situ wind 460 
observations are unavailable. To assess whether the acoustic–wind relationship can be 461 
generalized for remote deployments, we investigated the use of reanalysis wind products as a 462 
proxy reference for model fitting. Specifically, we used the ERA5 atmospheric reanalysis (Bell 463 
et al., 2021) to refit the Nystuen et al. (2015) model to float-measured acoustic data, simulating 464 
a scenario where no collocated buoy or shipboard wind measurements are available (Figs. 6 465 
and 8). 466 
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Using time-matched float sound pressure level at 8 kHz and collocated ERA5 wind speed, we 467 
derived a new set of coefficients (Section 2.6), producing a general-purpose fit based solely on 468 
float data and reanalysis inputs. The goal was to test whether an existing model can be adapted 469 
for use in data-sparse regions, enabling scalable wind estimation from profiling floats. 470 

As shown in Figure 6a, the ERA5-calibrated Nystuen et al. (2015) model reproduced wind 471 
variability within the 2.5–10 m s-1 range with moderate skill (R2 = 0.85), and performed best 472 
during Deployment A, when wind conditions remained relatively stable (Fig. 8). Performance 473 
deteriorated during stronger wind events, particularly in Deployment B, where the model 474 
systematically underestimated wind, with errors > 3 m s-1 (Figs. 6a and 8). 475 

Comparison with DYFAMED also revealed broader limitations of ERA5. Although ERA5 476 
provides a globally consistent wind product, it diverged from buoy observations during several 477 
high-wind episodes. This behaviour is consistent with earlier reports of reanalysis 478 
underestimating localised, orographically forced winds in semi-enclosed basins such as the 479 
Mediterranean (Bentamy et al., 2003; Bell et al., 2021). Such biases are critical in regions like 480 
the Southern Ocean, where frequent high-wind events dominate air–sea CO2 fluxes and gas 481 
exchange scales nonlinearly with wind speed (Wanninkhof, 2014; Wanninkhof et al., 2025). 482 

Thus, while float reanalysis-based calibration enables acoustic wind estimation in the absence 483 
of local observations, its accuracy depends strongly on the reliability of the reference product 484 
used for fitting. 485 

3.3 Simulating scalable wind estimation in data-sparse regions 486 

While reanalysis-calibrated acoustic models offer a pathway for estimating surface wind speed 487 
in remote regions, the results in Section 3.2 show that this approach alone is insufficient during 488 
high-wind or rapidly evolving events. This limitation is especially critical in high-latitude 489 
regions such as the Southern Ocean, where extreme wind forcing drives critical fluxes of heat, 490 
momentum, and carbon (Gray et al., 2018; Dotto et al., 2019; Zhang et al., 2022; Gruber et al., 491 
2023). 492 

3.3.1 Local model correction using residuals learning 493 

To overcome this, we implemented a residual learning framework that combines the 494 
generalizability of reanalysis-based fitting with the accuracy of localized corrections. 495 
Specifically, we trained an ensemble of XGBoost regression models to predict the residuals 496 
between the ERA5-calibrated estimates and collocated DYFAMED buoy observations (see 497 
Section 2.6). The model was trained using float data within 40 km of DYFAMED and 498 
bootstrapped over 100 iterations to quantify mean corrections and prediction uncertainty (Fig. 499 
1; Fig. 6b). The 40 km radius was selected based on the sensitivity analysis of Cauchy et al. 500 
(2018), who found it to balance proximity with data availability; though this threshold is likely 501 
site-dependent and should be reassessed in future deployments. 502 

The corrected wind time series showed substantially better agreement with DYFAMED 503 
observations (Fig. 8), especially during high-wind events where the uncorrected model 504 
underestimated wind speeds. This bias correction increased R2 from 0.85 to 0.91 and reduced  505 
RMSE from 1.88 m s-1 to 1.15 m s-1, a 37.0% reduction in prediction error. While other 506 
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learning-based methods have achieved similar improvements (e.g., Zambra et al., 2023, 16% 507 
RMSE reduction), our method explicitly uses reanalysis as a prior and relies only on sparse in-508 
situ fitting, making it more realistic for remote deployments. 509 

The machine learning model does not estimate wind speed directly but instead learns to adjust 510 
biases using a small set of predictors (i.e. acoustic signal intensity, deployment day, ERA5-511 
calibrated prediction). In effect, it identifies conditions under which ERA5 is likely to fail, 512 
applying larger corrections during high-wind events. 513 

These results demonstrate that even limited in-situ reference data—for example, brief engine-514 
off ship-based winds during deployment—can significantly improve estimates along the full 515 
float trajectory. In our case, in-situ points represented approximately 40% of the record due to 516 
the short deployment but this introduces potential limitations. First, because fitting and 517 
evaluation used the same dataset, the performance metrics may be optimistic. Future 518 
deployments should use spatially or temporally separate validation or fully independent 519 
reference stations. Second, the RMSE reduction reflects improvements mainly at high wind 520 
speeds, where raw errors are largest, and may overstate gains at lower winds. Taken together, 521 
these factors imply that these performance metrics likely represent an upper bound of the 522 
framework’s accuracy for long-duration or multi-region deployments. The generalisation 523 
across sites, seasons and events remains untested and will require validation using spatially or 524 
temporally independent datasets. 525 

3.3.2 Strategies for sparse in-situ calibration 526 

In practical terms, acquiring suitable reference observations can be challenging. While ship-527 
based wind measurements are a natural candidate, particularly during float deployment or 528 
recovery, they may be unsuitable for model fitting if the ship is too close, as engine noise can 529 
contaminate the float’s acoustic signal. A practical compromise is to station the ship far enough 530 
to avoid acoustic interference while keeping wind measurements representative. Alternatively, 531 
a more robust strategy is to deploy floats in proximity to existing meteorological buoys, which 532 
provide collocated wind observations without interfering with subsurface acoustic recordings. 533 

In regions where neither buoys nor suitable ship data are available, identifying whether the 534 
available in-situ coverage is sufficient becomes more complex. This will depend not only on 535 
the duration and trajectory of the float mission, but also on the opportunistic use of additional 536 
reference sources encountered along the way, for example, other buoys, or wind observations 537 
from vessels transiting the area. Where such sources are absent, satellite products, particularly 538 
synthetic aperture radar (SAR), can provide episodic but high-resolution wind fields that 539 
capture localized variability and serve as intermittent calibration points. 540 

More broadly, these scenarios highlight the need for flexible modelling approaches that can 541 
exploit heterogeneous and temporally limited reference data. Rather than relying on dense 542 
training datasets or persistent surface observations, future efforts could employ machine-543 
learning strategies such as domain adaptation, transfer learning, or few-shot learning to adapt 544 
models to new environments with minimal retraining. For instance, recent work by Wang et al. 545 
(2020) has shown that few-shot transfer methods can yield competitive performance even when 546 
only a small number of target-domain samples are available. 547 
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In the context of profiling floats, such strategies could enable a more scalable approach to 548 
acoustic model tuning, leveraging sparse data from ships, buoys, or satellites, each limited 549 
individually but collectively offering adequate diversity. We propose framing this 550 
as opportunistic multisource model fine-tuning: a hybrid calibration scheme in which local 551 
corrections are derived from whatever reference sources are available, without requiring dense 552 
or continuous in-situ coverage. Developing and validating such approaches will be essential 553 
for global deployment of acoustically equipped floats while maintaining robustness across 554 
diverse environmental and acoustic conditions. 555 

3.3.3 Implications for global observing 556 

While ERA5 provides a useful climatological reference, it tends to underestimate short-lived, 557 
high-wind events due to spatial and temporal smoothing (Fig. 8). This is an issue particularly 558 
for gas exchange studies, as extreme winds disproportionately contribute to total fluxes. 559 
Acoustic float data, collected continuously and at high resolution, offer the potential to 560 
complement satellite or reanalysis wind products, particularly during short-lived wind events 561 
that are smoothed out in coarse-resolution products. 562 

However, model performance degrades with increasing distance from DYFAMED, reflecting 563 
the spatial decorrelation of wind fields and the limited spatial representativeness of the buoy 564 
observations. Beyond 73 km during Deployment B, both the Nystuen et al. (2015) – ERA5 fit 565 
and the machine-learning-corrected float estimates begin to diverge from DYFAMED winds 566 
(Figs. 6 and Fig. 8). This divergence likely reflects true spatial variability rather than model 567 
failure, as the float and buoy may be sampling different wind regimes. One way to address this 568 
uncertainty is to analyse float trajectories that pass between two surface reference stations, 569 
testing whether refitting at the final station yields consistent corrections or reveals systematic 570 
regional shifts in wind decorrelation. Such an approach will require future deployments that 571 
span multiple buoys, enabling a systematic evaluation of how model performance degrades, or 572 
remains robust, across both time and space. 573 

Additionally, in the Southern Ocean, where anthropogenic noise is relatively low, lower-574 
frequency bands (<1 kHz) may be viable for wind estimation, as they are more sensitive to high 575 
wind speeds due to increased bubble activity and longer propagation ranges. These bands could 576 
outperform higher-frequency bands under strong forcing conditions, provided contamination 577 
from distant shipping or other sources remains minimal. 578 

Several recent studies have applied machine learning to underwater acoustic data to estimate 579 
wind and rainfall, often relying on long-term, stationary deployments and direct spectral 580 
prediction (Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023; ; Zambra et al., 2023). 581 
While effective under controlled conditions, these approaches depend on dense labelled 582 
datasets and assume stable acoustic environments. In contrast, our residual-learning strategy is 583 
designed for sparse, mobile deployments: it corrects reanalysis-based estimates using short-584 
duration in-situ fitting and does not require full acoustic labels, making it more compatible with 585 
the operational realities of profiling floats. 586 

While in-situ data remains the most difficult to obtain in remote regions, our method supports 587 
opportunistic fitting, for example, brief ship-based winds during deployment or nearby 588 
meteorological buoys. This hybrid strategy balances scalability and realism, enabling more 589 
robust performance even where long-term reference data are scarce. 590 
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Another important consideration is the potential for regional bias introduced by the depth 591 
correction applied to acoustic levels. This correction compensates driven by local hydrographic 592 
structure and was derived from the float's mean profile at the start of the deployment. Applying 593 
a single correction to the full mission introduces a location-dependent bias that may vary across 594 
floats or seasons. Ideally, the correction should be recalculated with each new hydrographic 595 
profile, especially for long-term or wide-ranging deployments. To ensure basin- to global-scale 596 
comparability, these corrections should be standardised and explicitly documented in 597 
processing protocols for acoustic-equipped floats. 598 

This deployment-focused flexibility is key to scaling up acoustic wind estimation globally. By 599 
combining reanalysis for first-order fitting with localized corrections when available, our 600 
framework improves agreement with in-situ winds without requiring long-term surface 601 
infrastructure. Scaling this approach across the BGC-Argo array would provide high-602 
resolution, all-weather wind monitoring in regions poorly served by existing observing 603 
networks. 604 



manuscript submitted to Ocean Science 

 

 

4 Conclusions 605 

This study provides a proof of concept for retrieving surface wind speeds from subsurface 606 
ambient noise recorded by a profiling float equipped with a passive acoustic sensor and 607 
operated alongside standard biogeochemical sensors. Float-measured acoustic noise captured 608 
surface wind variability from 500–1000 m depth, and empirically calibrated estimates closely 609 
matched buoy observations, confirming the feasibility of subsurface acoustic wind retrieval. 610 
Reanalysis-based calibration reproduced moderate winds but underestimated high-wind 611 
events, highlighting the limits of using reanalysis alone in dynamic environments. A residual-612 
learning correction using sparse local reference data substantially improved performance, 613 
particularly during strong winds. These findings underscore the potential of acoustic-equipped 614 
profiling floats to provide scalable, high-resolution wind observations in remote regions, 615 
supporting improved estimates of wind-driven air–sea fluxes. 616 

Nevertheless, our results stem from a single short-duration deployment. Broader validation 617 
across regions, seasons, and acoustic environments is needed, and performance estimates likely 618 
represent an upper bound. Recent benchmarking efforts (e.g., Gros-Martial et al., 2025b) 619 
already demonstrate the value of assembling multi-site acoustic–meteorological datasets and 620 
highlight the challenges of model transferability across diverse soundscapes. Future missions 621 
should employ independent training–validation–test partitions to rigorously evaluate 622 
generalizability, following best practices established in recent WOTAN studies that explicitly 623 
address temporal correlation and multi-site validation requirements (e.g., Cauchy et al., 2018; 624 
Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023). 625 

Acoustic wind retrieval offers a promising pathway for expanding autonomous wind 626 
monitoring within the global BGC-Argo array, improving coverage in regions poorly served 627 
by existing systems. Sparse in-situ calibration also provides a valuable new data stream for 628 
validating and potentially correcting regional biases in global wind reanalyses. Ultimately, this 629 
work supports the Ocean Sound EOV’s call for standardized methodologies and demonstrates 630 
the feasibility of integrating passive acoustics into sustained, basin- to global-scale observing 631 
systems. 632 

  633 
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