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Abstract. Wind forcing plays a pivotal role in driving upper-
ocean physical and biogeochemical processes, yet direct
wind observations remain sparse in many regions of the
global ocean. While passive acoustics have been used to es-
timate wind speed from moored and mobile platforms, their5

application to profiling floats has been demonstrated only in
limited cases. Here we report the first deployment of a bio-
geochemical profiling float equipped with a passive acous-
tic sensor explicitly designed for wind retrieval, aimed at
detecting wind-driven surface signals from depth. The float10

was deployed in the northwestern Mediterranean Sea near
the DYFAMED (DYnamique des Flux Atmosphériques en
MEDiterranée) meteorological buoy from February to April
2025 and operated at parking depths of 500–1000 m. We
demonstrate that wind speed can be successfully retrieved15

from subsurface ambient noise using established acoustic al-
gorithms, with float-derived estimates showing good agree-
ment with collocated surface observations. To evaluate scal-
ability to remote regions, we simulate a remote deploy-
ment scenario by refitting the acoustic model of Nystuen20

et al. (2015) using ERA5 reanalysis as a reference for sur-
face wind. The ERA5-based calibration performs well un-

der moderate winds but exhibits systematic high-wind bias
(≥ 10 m s−1). Finally, we apply a residual learning frame-
work to correct these estimates using a limited subset of DY- 25

FAMED wind data, simulating conditions where only brief
surface observations are available. The corrected wind time
series achieved a 37 %TS1 reduction in RMSE, demonstrat-
ing the effectiveness of combining reanalysis with sparse in-
situ calibration. This framework improves agreement with 30

in-situ wind observations relative to reanalysis alone, sup-
porting a scalable strategy for float-based wind monitor-
ing in data-sparse ocean regions. Such capability has direct
implications for improving estimates of air–sea exchanges,
interpreting biogeochemical fluxes, and advancing climate- 35

relevant ocean observing.

1 Introduction

Wind plays a fundamental role in driving ocean cir-
culation, mediating air–sea gas exchange, and shap-
ing climate-related biogeochemical processes (Wanninkhof, 40

2014; McGillicuddy, 2016). Recent studies show that wind-
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TS1, TS7: These values need to be updated because the figures were regenerated at publication quality for production, which required re-running the same machine-learning workflow. Due to the stochastic nature of the model, very small numerical differences between runs are expected. The RMSE values change from 1.88 to 1.84 and from 1.15 to 1.13 (differences of <~2%). As a result, the relative RMSE reduction is updated to 38.6% (based on 1.84 and 1.13). These minor differences do not affect the interpretation of the results or the conclusions of the manuscript and are required to maintain consistency with the updated figures, which contain the correct values.
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driven circulation strongly influences regional climate trends
(eg., Pellichero et al., 2020; Trenberth et al., 2025; McMoni-
gal et al., 2025). Despite its central importance, accurately
quantifying wind variability in remote ocean basins remains
challenging. Satellite scatterometers suffer from coarse res-5

olution, reduced performance under extreme weather and
heavy cloud cover, and signal degradation in high-latitude
regions, while surface moorings provide limited spatial cov-
erage (Bentamy et al., 2003; Chelton et al., 2007; Stoffelen
et al., 2008).10

Passive acoustic monitoring of underwater ambient noise
offers a complementary approach for inferring surface me-
teorological conditions from surface-generated underwa-
ter noise. The relationship between wind speed and high-
frequency (1–20 kHz) noise generated by wave breaking and15

bubble entrainment has been extensively documented (Va-
gle et al., 1990; Farmer et al., 1998; Oguz and Prosperetti,
1990). This principle underpins the Weather Observations
Through Ambient Noise (WOTAN) techniques and the de-
velopment of Passive Acoustic Listener (PAL) instruments20

(Nystuen, 2001), enabling autonomous, long-term estimates
of wind and rainfall from fixed and drifting platforms.

Although widely used, these approaches still face sev-
eral limitations. The empirical relationships underpinning
WOTAN-type methods are often site dependent, with devia-25

tions arising from bathymetry, wave regime, and water depth;
even under wind-dominated conditions, shallow-water envi-
ronments can yield substantially different spectral levels (In-
genito, 1987). Model skill is also limited by model design, as
single-regime formulations underestimate the slope at higher30

winds and bias comparisons across SPL–wind relationships
(Schwock and Abadi, 2021). These factors complicate the
selection of an appropriate empirical law for a given plat-
form or region. To address these challenges, recent studies
have explored data-driven and machine-learning approaches35

that learn wind–noise relationships directly from observa-
tions and reduce reliance on fixed empirical models (Taylor
et al., 2020; Trucco et al., 2023; Zambra et al., 2023).

Despite these limitations, the WOTAN framework has
proven applicable across a wide range of platforms. Wind-40

driven signatures have been detected from moorings (Ma and
Nystuen, 2005; Nystuen et al., 2015; Pensieri et al., 2015),
gliders (Cauchy et al., 2018; Cazau et al., 2019) and pro-
filing floats (Riser et al., 2008; Yang et al., 2015; Yang et
al., 2016; Bytheway et al., 2023; Ma et al., 2023), and even45

from biologged marine mammals operating in remote re-
gions (Menze et al., 2013; Cazau et al., 2017; Gros-Martial
et al., 2025a). Beyond wind estimation, acoustic sensors in-
tegrated into autonomous platforms have supported a wide
range of geophysical and ecological applications, includ-50

ing marine mammal monitoring (Matsumoto et al., 2013;
Cauchy et al., 2020; Fregosi et al., 2020; Baumgartner and
Bonnel, 2022), and hydroacoustic earthquake detection and
characterisation of ambient ocean noise (Baumgartner et al.,
2017; Pipatprathanporn and Simons, 2022).55

Recognising this broad utility, the Ocean Sound Essen-
tial Ocean Variable (EOV), coordinated by the International
Quiet Ocean Experiment (IQOE) and endorsed by the Global
Ocean Observing System (GOOS), identifies autonomous
platforms such as profiling floats as ideal platforms for dis- 60

tributed global acoustic monitoring (Tyack et al., 2023).
In recent decades, biogeochemical (BGC)-Argo floats have
become a central component of global ocean observing
systems. Their persistence at sea, broad spatial coverage,
and cost-effectiveness have demonstrated clear advantages 65

over traditional ship-based measurements (Roemmich et al.,
2009; Riser et al., 2016). As their capabilities have expanded,
these platforms now host increasingly sophisticated multi-
disciplinary sensor suites, with measurements of oxygen, ni-
trate, chlorophyll, pH, and irradiance (Johnson and Claustre, 70

2016; Claustre et al., 2020; D’Ortenzio et al., 2020). Yet,
despite this progress, the integration of passive acoustics
into BGC-Argo remains largely unexplored. Incorporating
acoustic wind sensing would supply the atmospheric forcing
needed to interpret biogeochemical variability, particularly in 75

high-latitude or storm-dominated regions where wind prod-
ucts remain sparse or uncertain.

Here, we present the first deployment of a biogeochemical
profiling float equipped with a passive acoustic sensor ex-
plicitly designed for wind speed estimation from underwater 80

ambient noise. Deployed in the northwestern Mediterranean
Sea, near the DYFAMED (DYnamique des Flux Atmo-
sphériques en MEDiterranée) meteorological buoy, this float
serves as a proof-of-concept demonstration to: (1) determine
whether wind-driven acoustic signatures can be detected at 85

profiling float parking depths; (2) evaluate the performance
of established acoustic wind models on this platform; and
(3) develop a practical framework combining acoustic ob-
servations with reanalysis data and machine learning to en-
able wind estimation in remote regions. Through this ap- 90

proach, we demonstrate the potential of acoustic-equipped
profiling floats to expand global wind observations, close
persistent observational gaps, and support interpretation of
biogeochemical and climate-relevant processes.

2 Materials and Methods 95

2.1 Study area and DYFAMED weather station

The acoustic wind sensing trial was conducted in the Lig-
urian Sea, a sub-basin of the northwestern Mediterranean, in
proximity to the DYFAMED (DYnamique des Flux Atmo-
sphériques en MEDiterranée) oceanographic time series sta- 100

tion (Fig. 1). This station is part of the national observation
program MOOSE (Mediterranean Ocean Observing System
for the Environment, https://www.moose-network.fr, last ac-
cess: 28 May 2025), funded by CNRS–INSU, and has been
integrated since 2016 into the national research infrastruc- 105

https://www.moose-network.fr
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Table 1. Integration times applied to third-octave bands during
acoustic signal processing, varying by frequency range to balance
energy and spectral accuracy. In bold, the bands transmitted in the
9-band float configuration.

Frequency band range Integration time

63, 100, 125 and 160 Hz 500 ms
400, 500 and 630 Hz 250 ms
800 Hz, 1, 1.25, 1.6, 2 and 2.5 kHz 100 ms
3.15, 4, 5, 6.3, 8, 10, 12.5, 16, 20 and 25 kHz 50 ms

ture ILICO (Infrastructure de recherche littorale et côtière;
Cocquempot et al., 2019).

Located at 43.42◦ N, 7.87◦ E, DYFAMED has served as a
key reference site for air–sea exchange, upper ocean dynam-
ics, and biogeochemical cycling since the early 1990s. The5

site is equipped with continuous meteorological and oceano-
graphic monitoring, including high-quality wind speed and
direction measurements from the Côte d’Azur meteorolog-
ical buoy operated by Météo-France, located at the DY-
FAMED site. These data are reported at hourly resolution10

following WMO (World Meteorological Organization) stan-
dards and include wind parameters, air temperature, pressure,
humidity, and sea state.

During the study period, wind speeds at DYFAMED
ranged from 0.5 to 16.1 m s−1, with a mean of 6.8 m s−1 and15

a measurement precision of one decimal place.

2.2 Acoustic sensor integration

The float used in this study was equipped with a passive
acoustic module jointly developed by NKE and ABYSsens
in collaboration with LOV. This module was specifically de-20

signed for integration into the PROVOR CTS5 BGC-Argo
platform, with the aim of minimizing power consumption
and data volume while remaining compatible with the op-
erational constraints of the BGC-Argo program.

The module consists of two main parts enclosed in a25

dedicated external housing: (1) a low-noise HTI-96-Min
hydrophone (sensitivity: −165 dB re 1 V µPa−1; frequency
range: 2 Hz–30 kHz), mounted externally to capture pressure
fluctuations, and (2) an ABYSsens acquisition board, which
conditions, digitizes, and processes the signal.30

The acquisition system operates in a low-power pulsed
mode (220 mW) with a sampling frequency up to 62.5 kHz
and 24-bit resolution. To limit power usage and transmission
needs, raw acoustic signals are not stored. Instead, the sen-
sor performs direct onboard integration into 23 third-octave35

bands, spanning from 63 Hz to 25 kHz with a variable in-
tegration time (see Table 1). Higher-frequency bands (e.g.,
3.15–25 kHz) used shorter integration times (50 ms), while
low-frequency bands used longer windows (up to 500 ms).

The acoustic unit is mounted on the upper section of the40

float chassis and is configured to operate exclusively dur-

ing the parking phase (500–1000 m depth; Fig. 3). During
this phase, the float drifts with only routine background mea-
surements (e.g., pressure, CTD), and acoustic acquisition is
automatically suspended whenever noisy operations such as 45

ballast pumping or CTD sampling occur, thereby avoiding
contamination from self-noise.

The float system allows for flexible and modifiable con-
figuration via satellite: the user can define the number of
bands transmitted (23, 9, or a compact onboard estimate of 50

wind/rain), the acquisition interval (typically 5–15 min), and
the number of acoustic samples averaged per measurement.
In this study, we used a 5 min interval with 10 averaged ac-
quisitions per measurement (each acquisition is a spectral es-
timation using the integration times defined in Table 1). 55

The telemetry and energy impact of adding an acoustic
sensor to a 6-variable biogeochemical float was evaluated by
using the programming interface provided by NKE. The esti-
mated reduction in the number of cycles varies from 18 % for
acquisition every 5 min to 7 % for acquisition every 15 min 60

during the whole parking drift of a 10 d Argo cycle and with
5 averaged acquisitions per acoustic measurement. The data
volume increase depends on the transmission format: from
∼ 9 % for onboard wind–rain estimates (15 min period) to
∼ 85 % for a full 23-band spectrum (5 min period). A 9-band 65

spectrum every 15 min – a likely recommended setup – adds
∼ 16 %. These overheads remain within the platform’s ca-
pacity, confirming compatibility with concurrent BGC mea-
surements.

Each sensor output transmitted by the float corresponds 70

to the Third Octave Level (TOL), i.e., the sound pressure
level integrated over a third-octave band, expressed in dB
re 1 µPa. These TOLs represent the float’s primary spectral
product and are used as input to the wind speed retrieval
models. The amplitude resolution of the transmitted data is 75

0.2 or 0.5 dB, with a dynamic range up to 127 dB. This dis-
cretisation arises because the data are transmitted as integers
to save bandwidth, which requires selecting a resolution step.

2.3 Depth correction and spectral normalization

To account for the attenuation of surface-generated noise 80

with depth, a correction term β(h,f ) was applied to all
acoustic measurements (Fig. 2). Because β depends on the
ambient temperature–salinity structure, we quantified hydro-
graphic stability over the 60 d deployment using all pro-
files that reached at least 1000 dbar. Each profile was inter- 85

polated onto a 1 m grid and compared to the deployment-
mean temperature/salinity profiles. Depth-averaged RMS de-
viations were 0.14± 0.04 ◦C for temperature and 0.06± 0.02
for salinity, and no profile exceeded |z= 2 standardised
deviation, confirming weak hydrographic variability. Be- 90

cause such differences are far below hydrophone measure-
ment uncertainties, β(h,f ) was computed once using the
deployment-mean profile and applied uniformly to the full
record. For longer or more dynamic missions, β(h,f ) should
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Figure 1. Float trajectories during sea trials conducted in the Ligurian Sea in February and March 2025. Deployment A (solid line) and
Deployment B (dashed line) are shown along with a concentric dashed circle (40 km radius) centred on the DYFAMED station. The 40 km
radius was used to spatially filter float data for refitting and validation of wind estimates at DYFAMED, as described in Cauchy et al. (2018).

be recomputed for each profile. Modern hardware makes this
operation computationally inexpensive, but the negligible hy-
drographic variability in this deployment renders repeated re-
calculation unnecessary.

Following Cauchy et al. (2018), the correction takes the5

form:

TOL0(f )= TOL(h, f ) + β(h, f ), (1a)

where β (h, f )=

− 10 log

2

∞∫
0

[
r sin2 θr, h e

−αf lr,h

l2r, h

]
dr

 , (1b)

with TOL(h, f ) as the raw TOL measurement from the pro-
filing float, h as the sensor depth, f the centre frequency10

of the band, r the horizontal distance from a surface noise
source to the point vertically above the sensor, l the to-
tal pathlength between source and receiver (accounting for
depth and refraction), including refraction effects, θ the an-
gle between the emitted acoustic ray and the horizontal15

axis, and α the frequency-dependent attenuation coefficient
for bubble-free water. The integral considers contributions
from all surface-generated acoustic sources over the sea sur-
face, assuming radial symmetry, and accounts for geomet-
ric spreading, frequency-dependent absorption, and angle-20

dependent energy emission along each path. This correction
was originally derived for third-octave levels and is directly
applicable here, as the float outputs TOLs at fixed centre fre-
quencies.

Then, depth-corrected third-octave levels TOL0(f ) (dB 25

re 1 µPa) were converted to spectral density levels SPL(f )
(dB re 1 µPa Hz−1) by normalising to the bandwidth of
each band. In the following, SPL always refers to these
depth-corrected, bandwidth-normalised values derived from
TOL0(f ). This step ensures consistency across frequencies 30

and comparability with model spectra. In future deploy-
ments, this spectral correction will be applied directly on-
board the float.

2.4 Profiling float deployments

Two deployments of an acoustic-equipped float (PROVOR 35

CTS5) were carried out near DYFAMED between Febru-
ary and April 2025 (Fig. 1). Deployment A lasted 30 d, from
10 February to 11 March, and Deployment B continued for
24 d starting on 12 March and remained active until 4 April.
The float operated in park-and-profile mode at three park- 40

ing depths (500, 700, and 1000 m; Fig. 2), collecting biogeo-
chemical data during ascent and passive acoustic data exclu-
sively during the parking phases to minimize self-generated
noise.

While Riser et al. (2008) previously demonstrated the 45

feasibility of acoustic wind sensing from Argo floats, their
system transmitted only pre-processed wind estimates de-
rived onboard using a simplified version of the algorithm
by Nystuen et al. (2015), without retaining or transmitting
spectral band data. This limited the possibility of reanalysis 50

or applying alternative processing schemes. In contrast, the
floats used in this study recorded and transmitted full third-
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Figure 2. (a) Mean sound-speed profile derived from the deployment-average temperature and salinity, and used to compute (b) the depth-
correction term β(h,f ) following Cauchy et al. (2018). The correction accounts for the attenuation of wind-generated surface noise with
increasing hydrophone depth and was applied prior to wind-speed retrieval. β is shown here for 3.15 and 8 kHz.

Figure 3. Vertical profiles from the acoustic-equipped profiling float deployed near DYFAMED between February and April 2025. Blue
points indicate times when passive acoustic data were successfully recorded. The vertical dashed line marks the transition between Deploy-
ment A and Deployment B.

octave band spectra, enabling detailed post-processing and
algorithm refinement tailored to the float’s specific acoustic
characteristics.

2.5 Transient and anthropogenic noise mitigation

Transient noise (i.e., episodic non-wind-related events) was5

mitigated by removing values exceeding the 99th percentile
within a±1.5 h window centred around each matched times-
tamp. This percentile corresponds to discarding roughly the

top 1 % of samples over a 3 h window (≈ 2 min of data). No
physically meaningful wind- or wave-driven variability rele- 10

vant to this study evolves on such short timescales, making
this filter effective at removing brief acoustic artefacts with-
out suppressing real high-wind conditions. This approach is
conceptually similar to the transient-noise mitigation used in
glider-based PAM studies (e.g., Cauchy et al., 2018), which 15

suppress short-lived spikes in the spectra to isolate wind-
generated noise.
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To further reduce short-term variability and emphasize
quasi-stationary wind-driven acoustic patterns, we applied
a 3 h rolling mean to each frequency band. This smooth-
ing window is conceptually consistent with the profile-scale
averaging used in glider-based acoustic wind studies (e.g.,5

Cauchy et al., 2018), where acoustic measurements are ag-
gregated over ∼ 2 h glider dives to suppress transient vari-
ability. While smoothing inevitably attenuates rapid fluctu-
ations, the 3 h window stabilises the spectra without eras-
ing multi-hour wind events relevant for air–sea flux appli-10

cations. Alternative strategies, such as post-processing the
wind speed estimates rather than the spectral bands, could
be explored in future deployments if finer-scale variability is
a priority.

Anthropogenic noise was mitigated using AIS vessel15

tracks. Because the float only provides GPS positions at the
surface, we reconstructed a continuous trajectory by linearly
interpolating its positions between successive surfacings at
hourly resolution. Each 5 min acoustic record was then as-
sociated with the nearest interpolated position. An observa-20

tion was flagged as potentially contaminated when an AIS-
reported vessel was located within 20 km of this interpolated
float position and within ±30 min of the acoustic timestamp.
The 20 km radius corresponds to the distance over which
ship-radiated noise commonly dominates the ambient sound25

field in the 1–10 kHz band under low-to-moderate sea states,
while the ±30 min window accounts for the typically irreg-
ular AIS reporting interval offshore. As an additional safe-
guard, we excluded cases where the float-derived wind speed
deviated from the DYFAMED buoy by more than the RMSE30

computed under uncontaminated conditions. This RMSE cri-
terion is used only as a secondary check to capture possible
contamination during periods of poor AIS coverage. Sensi-
tivity tests indicate that moderate changes to these thresholds
do not affect the main conclusions.35

2.6 Application of established acoustic models

Empirical models have long been used to estimate surface
wind speed from underwater ambient noise, exploiting the
link between wind-driven bubble formation and acoustic en-
ergy in the 1–20 kHz band. These models typically relate sur-40

face wind speed U to the sound pressure level Lf measured
in selected frequency bands. While many models use third-
octave bands, others rely on custom-defined or narrowband
frequencies, often with variable bandwidths (e.g., 16 % of the
centre frequency in Vagle et al., 1990).45

We applied four established wind retrieval models span-
ning a range of functional forms – cubic, two-regime linear–
quadratic, composite, and two-regime log–linear. All wind
models were applied using acoustic levels consistent with
their original formulations (Table 2). This diversity allowed50

us to assess sensitivity to model structure and evaluate per-
formance under float-specific conditions. Each model was
first implemented using its published coefficients to gener-

ate wind speed estimates from float acoustic data, and the re-
sults were evaluated against collocated meteorological obser- 55

vations (Fig. 4). Subsequently, the parameters of each model
were refitted using collocated float acoustic and wind data
from the DYFAMED meteorological buoy (Figs. 4 and 5),
which provides hourly 10 m wind speed. Model refitting was
performed using nonlinear least-squares optimization (Ta- 60

ble 3). Wind records from DYFAMED were matched to float
measurements by nearest timestamp.

Following the spatial filtering approach of Cauchy et
al. (2018), only float data within 40 km of DYFAMED were
retained for refitting and validation (Fig. 1). This thresh- 65

old corresponds to the estimated confidence radius around
the DYFAMED meteorological buoy, within which wind
speed measurements show high spatial coherence (R= 0.86,
RMSE= 2.5 m s−1) when compared to the AROME-WMED
atmospheric model (Rainaud et al., 2014). Although origi- 70

nally derived from the spatial wind-field decorrelation scale
reported by Cauchy et al. (2018), this 40 km radius re-
flects a regional mesoscale atmospheric property rather than
a platform-specific constraint. Because our deployment oc-
curred in the same NW Mediterranean basin, this decorrela- 75

tion length remains appropriate for our case. We note, how-
ever, that this threshold is region-dependent and should be
re-evaluated for future deployments elsewhere.

The updated coefficients were then used to generate wind
estimates over the full float dataset. While this spatial prox- 80

imity improves wind representativeness, it does not account
for variations in wind fetch, a parameter known to influence
ambient noise generation, particularly through wave and bub-
ble field development (e.g., Prawirasasra et al., 2024).

These four models were selected to represent a range of 85

analytical formulations commonly used in acoustic wind re-
trievals. They all use frequency bands where wind-driven
bubble noise typically dominates the local ambient sound
field, with reduced interference from low-frequency sources
such as distant shipping. Our aim was not to exhaust all avail- 90

able models, but rather to evaluate a representative subset un-
der consistent float-specific conditions, emphasizing the ef-
fect of model structure and local fitting.

The specifications and key features of each model are sum-
marized in Table 2 for reference. For all models and valida- 95

tion steps throughout the rest of Methods section, wind speed
refers to the standard 10 m wind speed, consistent with both
the ERA5 reanalysis product and the DYFAMED buoy ob-
servations used for calibration and evaluation.

The first model, from Vagle et al. (1990), was derived from 100

moored hydrophone data in the North Atlantic and relates
wind speed to high-frequency noise at 8 kHz using a cubic
formulation:

UVagle 1990 = 10

(
−38.70+

√
−38.702−4.7 ·38 ·(SPL8kHz−21.69

−7.38 ·2

)
. (2)

TS2 Next, we applied the cubic model from Nystuen et 105

al. (2015), developed using long-term acoustic records from
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Table 2. Summary of acoustic wind speed estimation models and their input requirements. Input units refer to the spectral level units used in
model calibration. Central frequency indicates the nominal retrieval frequency, and the third-octave band column specifies the corresponding
bandwidth. All models were calibrated and validated against standard 10 m wind speed.

Model Input units Wind frequency Wind retrieval
band (kHz) frequency (kHz)

Vagle et al. (1990) dB re 1 µPa2 Hz−1 7.1–8.9 8
Nystuen et al. (2015) dB re 1 µPa2 Hz−1 7.1–8.9 8
Pensieri et al. (2015) dB re 1 µPa2 Hz−1 7.1–8.9 8
Cauchy et al. (2018) dB re 1 µPa 2.8–3.55 3.15

fixed hydrophones in both the Pacific and Atlantic. This
model targets wind-generated noise at 8 kHz and includes
band-specific criteria to distinguish wind contributions from
other sources such as rain and shipping (Table 2).

UNystuen 2015 = 0.0005 ·SPL3
8kHz− 0.0310 ·SPL2

8kHz

+ 0.4904 ·SPL8kHz+ 2.0871 (3)5

We then tested the two-regime linear–quadratic model
from Pensieri et al. (2015) at 8 kHz, developed using moored
hydrophone data from the Ligurian Sea, near our study area.
Calibrated for Mediterranean conditions, the model relates
wind speed to ambient noise levels at the 8 kHz band, ap-10

plying distinct linear and quadratic fits across low- and high-
noise regimes. Notably, the transition between regimes is de-
fined at 38 dB, corresponding to a wind speed of 2.39 m s−1

in their framework. However, it is important to note that the
threshold separating high and low regimes is not standard-15

ized across the literature and may vary between studies.

UPensieri 2015 ={
0.044642 · SPL2

8kHz− 3.2917 · SPL8kHz+ 63.016
0.1458 ·SPL8kHz− 3.146, for SPL8kHz < 38dB (4)

Finally, we included the two-regime log–linear model from
Cauchy et al. (2018), developed using acoustic data from
a glider operating in the western Mediterranean. Designed20

for mobile platforms, the model relates wind speed to third-
octave noise levels centred at 3 kHzTS3 . The model uses dis-
tinct logarithmic and linear fits across two noise regimes.

This choice of 3 kHzTS4 , instead of the more commonly
used 8 kHz, was based on empirical observations showing25

greater dynamic range and lower variance in this band, which
may reflect sensor-specific factors or the sensor’s mounting
configuration on the glider (Cauchy et al., 2018). The rela-
tionship goes as:

UCauchy 2018 =
1

0.4×104 ·

(
10

SPL3kHz−Soff
20 + 0.2× 104

)
1

1.6×104 ·

(
10

SPL3kHz−Soff
20 + 12.5× 104

)
for U > 10m s−1

(5)30

TS5 The wind retrieval relationship is modelled using a two-
regime log-linear function. The transition between regimes

occurs at wind speeds of approximately 10–11 m s−1, estab-
lished empirically. To represent this switching behaviour, a
relative threshold level is introduced, expressed as SPL – Soff, 35

where Soff denotes the sea-state 0 noise reference. This for-
mulation highlights when wind-driven noise becomes domi-
nant relative to the reference background noise.

2.7 Simulated wind estimation using reanalysis and
residual learning 40

To assess the ability of float-derived acoustic measurements
to estimate surface wind speed in regions lacking direct at-
mospheric observations, we developed a two-step frame-
work based on (i) calibration to ERA5 reanalysis winds and
(ii) residual correction using sparse in-situ measurements. 45

The goal was to emulate realistic deployments of acoustic-
equipped profiling floats in remote regions where only global
reanalysis products and limited ship- or buoy-based wind
measurements are available.

2.7.1 ERA5-based calibration of the acoustic model 50

To evaluate the ability of float-derived acoustic measure-
ments to estimate surface wind speed in regions lacking di-
rect atmospheric observations, we used the ERA5 reanaly-
sis from ECMWF (Bell et al., 2021). ERA5 provides global
10 m wind at 0.25◦ resolution and hourly frequency. We ex- 55

tracted zonal and meridional wind components (u10, v10)
from the grid cell containing the float’s position and com-
puted wind speed U as:

U =

√
u2

10+ v
2
10 (6)

These values were time-matched to float and DYFAMED 60

measurements using the nearest available ERA5 hour.
The empirical acoustic–wind model of Nystuen et

al. (2015; Eq. 3) was then re-fitted to the float’s measured
8 kHz SPL using ERA5 wind speed as the reference. This
produced an ERA5-calibrated acoustic wind estimate, repre- 65

senting a realistic scenario in which profiling floats operate
in regions lacking direct wind observations and rely solely
on reanalysis for model tuning.

Uncertainty in the ERA5-calibrated estimate was quanti-
fied using a 100-member bootstrap ensemble. For each iter- 70

Author
Sticky Note
TS3, TS4, TS5, TS6: These edits are made to ensure consistency with Cauchy et al., 2018, which reports a frequency of 3.15 kHz rather than 3 kHz. This correction does not affect the results or conclusions of the manuscript and is required to maintain consistency with the figures, which already use the correct value (3.15 kHz). The discrepancy in the text was inadvertently introduced during the revision process. Please accept my apologies as it's my fault for not spotting it earlier.
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ation, we resampled the float dataset with replacement and
perturbed the ERA5 wind input by adding Gaussian noise
consistent with its reported uncertainty (σ = 1.5 m s−1). The
acoustic model was re-fitted for each bootstrap sample, and
the ensemble standard deviation was used to characterise un-5

certainty arising from both ERA5 input variability and the
parameter sensitivity of the fitted empirical model.

2.7.2 Residual-learning correction using limited in-situ
observations

To correct systematic errors in the ERA5-calibrated acoustic10

estimate, we used the limited DYFAMED buoy observations
obtained within 40 km of the float. These collocated mea-
surements represent approximately 40 % of the full dataset
and simulate practical scenarios in which only short-duration
local reference winds (e.g., during deployment or opportunis-15

tic ship passages) are available.
Residuals between DYFAMED wind speed and the ERA5-

calibrated acoustic estimate were modelled using four pre-
dictors: SPL at 8 kHz, ERA5 10 m wind speed, normalised
deployment day, and the Nystuen-model wind estimate.20

These variables capture the local acoustic signal, large-scale
atmospheric forcing, slow temporal drift, and the first-order
empirical fit. Residuals were estimated with XGBoost regres-
sion (Chen and Guestrin, 2016), using all float–buoy colloca-
tions within 40 km (∼ 40 % of the dataset). To maintain gen-25

eralisation, we applied a compact hyperparameter set (300
estimators, learning rate 0.05, max depth 3, subsample 0.9,
colsample_bytree 0.8) together with safeguards against over-
fitting, including bootstrap resampling, Gaussian perturba-
tions of ERA5 winds (σ = 1.5 m s−1) during training and30

prediction, shallow trees, and subsampling of both rows and
features. Uncertainty was quantified using a 100-member en-
semble, with each model trained on a bootstrap resample of
the DYFAMED-matched subset and forced with perturbed
ERA5 winds. This dual bootstrapping captures variability as-35

sociated with the machine learning model structure and with
ERA5 uncertainty. Corrected wind speeds were obtained by
adding the ensemble-mean residual to the ensemble-mean
Nystuen estimate, with total uncertainty expressed as ±1σ
by combining the XGBoost ensemble spread and ERA5 in-40

put uncertainty in quadrature. The bootstrap uncertainty of
the Nystuen fit is reported separately. This framework pro-
vides a transparent and robust correction method, illustrating
how float acoustics, reanalysis winds, and sparse in-situ ob-
servations can be combined to estimate surface wind speed45

in remote regions.

3 Results and Discussion

3.1 Assessing the performance of float-based acoustic
wind estimation

We applied four previously published wind retrieval mod- 50

els to float-measured sound pressure levels (SPLs) at 8 and
3 kHzTS6 . Using the original coefficients from these studies,
wind speed estimates deviated significantly from collocated
DYFAMED observations, particularly in their ability to re-
produce the magnitude of wind events (Fig. 4a). This mis- 55

match reflects the sensitivity of empirical acoustic models to
deployment context, including platform geometry, acoustic
propagation, and local noise environment.

When these same models were refitted using collocated
float acoustics and DYFAMED wind observations within 60

40 km (Fig. 1), performance improved substantially (Fig. 4b;
Fig. 7). Among the models, the cubic formulation by Nystuen
et al. (2015) achieved the best fit (R2

= 0.88; Fig. 5b) and
successfully captured the full observed wind range (0.5–
16.1 m s−1; Figs. 5 and 7). It was also the only model re- 65

solving wind speeds < 2 m s−1, a regime often missed due
to weak surface forcing and minimal bubble generation. This
low-wind sensitivity strengthens its relevance for air–sea gas-
exchange studies and suggests broad applicability in moder-
ate wind regimes. High-quality wind estimates are particu- 70

larly important for interpreting float-based biogeochemical
measurements, as air–sea oxygen fluxes respond sensitively
to short-timescale wind variability (Bushinsky et al., 2017).

However, even after successful fitting, the portability of
acoustic–wind models remains uncertain. Factors such as 75

noise contamination, ambient biological activity and re-
gional propagation conditions can vary substantially be-
tween deployments, affecting both the shape and robust-
ness of the acoustic–wind relationship (Gros-Martial et al.,
2025b). Moreover, profiling floats introduce their own arti- 80

facts, which may arise from hydrodynamic turbulence, buoy-
ancy engine activity, bubble release, or electronic interfer-
ence, each of which can contaminate the acoustic signal
independently of wind forcing. Even models developed in
the same basin required refitting (i.e. Pensieri et al., 2015; 85

Figs. 4, 5 and 7).
A promising direction would be to classify deployments

into broader “acoustic environment types”, such as open-
ocean gyres, coastal shelves, or high-latitude storm zones,
within which shared model parameters could be defined 90

and validated. This aligns with the priorities outlined in the
Ocean Sound Essential Ocean Variable (EOV) Implementa-
tion Plan, which emphasizes the need for community-agreed
metadata standards, calibration protocols, and classification
schemes to support global comparability across acoustic de- 95

ployments (Tyack et al., 2023). Evaluating these frameworks
for profiling floats may help standardize acoustic wind re-
trieval and integrate it more effectively into global observing
systems.
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Figure 4. Comparison of unoptimized (top) and optimised (bottom) wind speed models against DYFAMED buoy observations. Each subplot
shows modelled wind speed estimates from four literature models (Vagle et al., 1990; Nystuen et al., 2015; Pensieri et al., 2015; Cauchy et
al., 2018) compared with collocated buoy wind data (black line). The unoptimized models (a) use original published coefficients, while the
optimised models (b) are re-fitted using data within 40 km of the DYFAMED site. The dashed vertical line indicates the start of deployment
B.

3.2 Generalizing float-specific wind modelling using
reanalysis

While site-specific fitting of acoustic wind models yields
accurate float-derived wind estimates, such fittings are not
feasible in most regions of the global ocean where in-situ5

wind observations are unavailable. To assess whether the
acoustic–wind relationship can be generalized for remote de-
ployments, we investigated the use of reanalysis wind prod-
ucts as a proxy reference for model fitting. Specifically, we
used the ERA5 atmospheric reanalysis (Bell et al., 2021) to10

refit the Nystuen et al. (2015) model to float-measured acous-
tic data, simulating a scenario where no collocated buoy or
shipboard wind measurements are available (Figs. 6 and 8).

Using time-matched float sound pressure level at 8 kHz
and collocated ERA5 wind speed, we derived a new set of15

coefficients (Sect. 2.6), producing a general-purpose fit based
solely on float data and reanalysis inputs. The goal was to test
whether an existing model can be adapted for use in data-

sparse regions, enabling scalable wind estimation from pro-
filing floats. 20

As shown in Fig. 6a, the ERA5-calibrated Nystuen et
al. (2015) model reproduced wind variability within the 2.5–
10 m s−1 range with moderate skill (R2

= 0.85), and per-
formed best during Deployment A, when wind conditions
remained relatively stable (Fig. 8). Performance deteriorated 25

during stronger wind events, particularly in Deployment B,
where the model systematically underestimated wind, with
errors > 3 m s−1 (Figs. 6a and 8).

Comparison with DYFAMED also revealed broader lim-
itations of ERA5. Although ERA5 provides a globally con- 30

sistent wind product, it diverged from buoy observations dur-
ing several high-wind episodes (Figs. 6c, 8). This behaviour
is consistent with earlier reports of reanalysis underestimat-
ing localised, orographically forced winds in semi-enclosed
basins such as the Mediterranean (Bentamy et al., 2003; Bell 35

et al., 2021). Such biases are critical in regions like the South-
ern Ocean, where frequent high-wind events dominate air–
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Figure 5. Comparison of optimised wind speed estimates from four literature models against collocated DYFAMED buoy wind measure-
ments. Each subplot (a–d) shows scatter plots of float-derived wind speed vs. buoy wind speed using model-specific optimised coefficients:
(a) Vagle et al. (1990), (b) Nystuen et al. (2015), (c) Pensieri et al. (2015), and (d) Cauchy et al. (2018). Points are color-coded by distance
from the DYFAMED buoy, and the dashed line represents the 1 : 1 reference. Insets display linear regression slope, intercept, and coefficient
of determination (R2).

sea CO2 fluxes and gas exchange scales nonlinearly with
wind speed (Wanninkhof, 2014; Wanninkhof et al., 2025).

Thus, while float reanalysis-based calibration enables
acoustic wind estimation in the absence of local observa-
tions, its accuracy depends strongly on the reliability of the5

reference product used for fitting.

3.3 Simulating scalable wind estimation in data-sparse
regions

While reanalysis-calibrated acoustic models offer a pathway
for estimating surface wind speed in remote regions, the re-10

sults in Sect. 3.2 show that this approach alone is insuffi-
cient during high-wind or rapidly evolving events. This lim-
itation is especially critical in high-latitude regions such as
the Southern Ocean, where extreme wind forcing drives crit-
ical fluxes of heat, momentum, and carbon (Gray et al., 2018; 15

Dotto et al., 2019; Zhang et al., 2022; Gruber et al., 2023).

3.3.1 Local model correction using residuals learning

To overcome this, we implemented a residual learning frame-
work that combines the generalizability of reanalysis-based
fitting with the accuracy of localized corrections. Specifi- 20
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Figure 6. Comparison between DYFAMED buoy wind speed measurements and float-derived estimates using the Nystuen et al. (2015)
acoustic model: (a) wind speeds estimated using Nystuen’s polynomial formulation fit to ERA5; (b) same model corrected using a residual-
learning approach with XGBoost, trained on the differences between ERA5-based estimates and DYFAMED observations; and (c) ERA5
wind speed at the DYFAMED grid point compared directly to buoy measurements for February, March and April 2025. Each point is colored
by the float’s distance from DYFAMED in panels (a) and (b). Dashed lines denote 1 : 1 agreement. All wind speeds are expressed in meters
per second (m s−1).

cally, we trained an ensemble of XGBoost regression mod-
els to predict the residuals between the ERA5-calibrated es-
timates and collocated DYFAMED buoy observations (see
Sect. 2.6). The model was trained using float data within
40 km of DYFAMED and bootstrapped over 100 iterations5

to quantify mean corrections and prediction uncertainty
(Figs. 1, 6b). The 40 km radius was selected based on the
sensitivity analysis of Cauchy et al. (2018), who found it to
balance proximity with data availability; though this thresh-
old is likely site-dependent and should be reassessed in future10

deployments.
The corrected wind time series showed substantially bet-

ter agreement with DYFAMED observations (Fig. 8), espe-
cially during high-wind events where the uncorrected model
underestimated wind speeds. This bias correction increased15

R2 from 0.85 to 0.91 and reduced RMSE from 1.88 to
1.15 m s−1, a 37.0 %TS7 reduction in prediction error. While
other learning-based methods have achieved similar im-
provements (e.g., Zambra et al., 2023, 16 % RMSE reduc-
tion), our method explicitly uses reanalysis as a prior and20

relies only on sparse in-situ fitting, making it more realistic
for remote deployments.

The machine learning model does not estimate wind speed
directly but instead learns to adjust biases using a small set
of predictors (i.e. acoustic signal intensity, deployment day,25

ERA5-calibrated prediction). In effect, it identifies condi-
tions under which ERA5 is likely to fail, applying larger cor-
rections during high-wind events.

These results demonstrate that even limited in-situ refer-
ence data – for example, brief engine-off ship-based winds30

during deployment – can significantly improve estimates
along the full float trajectory. In our case, in-situ points repre-
sented approximately 40 % of the record due to the short de-
ployment but this introduces potential limitations. First, be-
cause fitting and evaluation used the same dataset, the perfor-35

mance metrics may be optimistic. Future deployments should
use spatially or temporally separate validation or fully in-
dependent reference stations. Second, the RMSE reduction
reflects improvements mainly at high wind speeds, where
raw errors are largest, and may overstate gains at lower 40

winds. Taken together, these factors imply that these perfor-
mance metrics likely represent an upper bound of the frame-
work’s accuracy for long-duration or multi-region deploy-
ments. The generalisation across sites, seasons and events
remains untested and will require validation using spatially 45

or temporally independent datasets.

3.3.2 Strategies for sparse in-situ calibration

In practical terms, acquiring suitable reference observations
can be challenging. While ship-based wind measurements
are a natural candidate, particularly during float deployment 50

or recovery, they may be unsuitable for model fitting if the
ship is too close, as engine noise can contaminate the float’s
acoustic signal. A practical compromise is to station the ship
far enough to avoid acoustic interference while keeping wind
measurements representative. Alternatively, a more robust 55

strategy is to deploy floats in proximity to existing meteo-
rological buoys, which provide collocated wind observations
without interfering with subsurface acoustic recordings.

In regions where neither buoys nor suitable ship data are
available, identifying whether the available in-situ coverage 60

is sufficient becomes more complex. This will depend not
only on the duration and trajectory of the float mission, but
also on the opportunistic use of additional reference sources
encountered along the way, for example, other buoys, or
wind observations from vessels transiting the area. Where 65

such sources are absent, satellite products, particularly syn-
thetic aperture radar (SAR), can provide episodic but high-
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Figure 7. Optimised 10 m wind speed (log scale) as a function of observed underwater sound pressure level (SPL) at DYFAMED for
(a) 3.15 kHz and (b) 8 kHz. Observed wind speed is shown in black.

resolution wind fields that capture localized variability and
serve as intermittent calibration points.

More broadly, these scenarios highlight the need for flex-
ible modelling approaches that can exploit heterogeneous
and temporally limited reference data. Rather than relying on5

dense training datasets or persistent surface observations, fu-
ture efforts could employ machine-learning strategies such as
domain adaptation, transfer learning, or few-shot learning to
adapt models to new environments with minimal retraining.
For instance, recent work by Wang et al. (2020) has shown10

that few-shot transfer methods can yield competitive perfor-
mance even when only a small number of target-domain sam-
ples are available.

In the context of profiling floats, such strategies could
enable a more scalable approach to acoustic model tuning, 15

leveraging sparse data from ships, buoys, or satellites, each
limited individually but collectively offering adequate diver-
sity. We propose framing this as opportunistic multisource
model fine-tuning: a hybrid calibration scheme in which lo-
cal corrections are derived from whatever reference sources 20

are available, without requiring dense or continuous in-situ
coverage. Developing and validating such approaches will
be essential for global deployment of acoustically equipped
floats while maintaining robustness across diverse environ-
mental and acoustic conditions. 25
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Figure 8. Time series comparison between acoustic float wind estimates and DYFAMED buoy winds, displayed over three consecutive 18 d
windows (a–c). The dashed pink curve corresponds to wind speeds predicted using the Nystuen et al. (2015) acoustic model calibrated solely
with ERA5 reanalysis winds. The solid blue line shows the same model after applying the residual-learning correction (XGBoost), and the
shaded region indicates its associated predictive uncertainty. Buoy-measured wind speed is shown in black. The upper x-axis reports the
float’s distance from DYFAMED throughout the record, and the dashed vertical line indicates the transition to deployment B.

3.3.3 Implications for global observing

While ERA5 provides a useful climatological reference, it
tends to underestimate short-lived, high-wind events due to
spatial and temporal smoothing (Fig. 8). This is an issue par-
ticularly for gas exchange studies, as extreme winds dispro-5

portionately contribute to total fluxes. Acoustic float data,

collected continuously and at high resolution, offer the po-
tential to complement satellite or reanalysis wind products,
particularly during short-lived wind events that are smoothed
out in coarse-resolution products. 10

However, model performance degrades with increasing
distance from DYFAMED, reflecting the spatial decorrela-
tion of wind fields and the limited spatial representativeness
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of the buoy observations. Beyond 73 km during Deployment
B, both the Nystuen et al. (2015) – ERA5 fit and the machine-
learning-corrected float estimates begin to diverge from DY-
FAMED winds (Figs. 6 and 8). This divergence likely reflects
true spatial variability rather than model failure, as the float5

and buoy may be sampling different wind regimes. One way
to address this uncertainty is to analyse float trajectories that
pass between two surface reference stations, testing whether
refitting at the final station yields consistent corrections or re-
veals systematic regional shifts in wind decorrelation. Such10

an approach will require future deployments that span mul-
tiple buoys, enabling a systematic evaluation of how model
performance degrades, or remains robust, across both time
and space.

Additionally, in the Southern Ocean, where anthropogenic15

noise is relatively low, lower-frequency bands (< 1 kHz) may
be viable for wind estimation, as they are more sensitive to
high wind speeds due to increased bubble activity and longer
propagation ranges. These bands could outperform higher-
frequency bands under strong forcing conditions, provided20

contamination from distant shipping or other sources remains
minimal.

Several recent studies have applied machine learning to
underwater acoustic data to estimate wind and rainfall, of-
ten relying on long-term, stationary deployments and direct25

spectral prediction (Taylor et al., 2020; Trucco et al., 2022;
Trucco et al., 2023; Zambra et al., 2023). While effective un-
der controlled conditions, these approaches depend on dense
labelled datasets and assume stable acoustic environments. In
contrast, our residual-learning strategy is designed for sparse,30

mobile deployments: it corrects reanalysis-based estimates
using short-duration in-situ fitting and does not require full
acoustic labels, making it more compatible with the opera-
tional realities of profiling floats.

While in-situ data remains the most difficult to obtain in35

remote regions, our method supports opportunistic fitting,
for example, brief ship-based winds during deployment or
nearby meteorological buoys. This hybrid strategy balances
scalability and realism, enabling more robust performance
even where long-term reference data are scarce.40

Another important consideration is the potential for re-
gional bias introduced by the depth correction applied to
acoustic levels. This correction compensates for effects
driven by local hydrographic structure and was derived from
the float’s mean profile at the start of the deployment. Ap-45

plying a single correction to the full mission introduces a
location-dependent bias that may vary across floats or sea-
sons. Ideally, the correction should be recalculated with each
new hydrographic profile, especially for long-term or wide-
ranging deployments. To ensure basin- to global-scale com-50

parability, these corrections should be standardised and ex-
plicitly documented in processing protocols for acoustic-
equipped floats.

This deployment-focused flexibility is key to scaling up
acoustic wind estimation globally. By combining reanaly-55

sis for first-order fitting with localized corrections when
available, our framework improves agreement with in-situ
winds without requiring long-term surface infrastructure.
Scaling this approach across the BGC-Argo array would pro-
vide high-resolution, all-weather wind monitoring in regions 60

poorly served by existing observing networks.

4 Conclusions

This study provides a proof of concept for retrieving surface
wind speeds from subsurface ambient noise recorded by a
profiling float equipped with a passive acoustic sensor and 65

operated alongside standard biogeochemical sensors. Float-
measured acoustic noise captured surface wind variability
from 500–1000 m depth, and empirically calibrated estimates
closely matched buoy observations, confirming the feasibil-
ity of subsurface acoustic wind retrieval. Reanalysis-based 70

calibration reproduced moderate winds but underestimated
high-wind events, highlighting the limits of using reanalysis
alone in dynamic environments. A residual-learning correc-
tion using sparse local reference data substantially improved
performance, particularly during strong winds. These find- 75

ings underscore the potential of acoustic-equipped profiling
floats to provide scalable, high-resolution wind observations
in remote regions, supporting improved estimates of wind-
driven air–sea fluxes.

Nevertheless, our results stem from a single short-duration 80

deployment. Broader validation across regions, seasons, and
acoustic environments is needed, and performance estimates
likely represent an upper bound. Recent benchmarking ef-
forts (e.g., Gros-Martial et al., 2025b) already demonstrate
the value of assembling multi-site acoustic–meteorological 85

datasets and highlight the challenges of model transferabil-
ity across diverse soundscapes. Future missions should em-
ploy independent training–validation–test partitions to rigor-
ously evaluate generalizability, following best practices es-
tablished in recent WOTAN studies that explicitly address 90

temporal correlation and multi-site validation requirements
(e.g., Cauchy et al., 2018; Taylor et al., 2020; Trucco et al.,
2022; Trucco et al., 2023).

Acoustic wind retrieval offers a promising pathway for
expanding autonomous wind monitoring within the global 95

BGC-Argo array, improving coverage in regions poorly
served by existing systems. Sparse in-situ calibration also
provides a valuable new data stream for validating and po-
tentially correcting regional biases in global wind reanalyses.
Ultimately, this work supports the Ocean Sound EOV’s call 100

for standardized methodologies and demonstrates the feasi-
bility of integrating passive acoustics into sustained, basin-
to global-scale observing systems.
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