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Abstract. Wind forcing plays a pivotal role in driving upper-ocean physical and biogeochemical processes, yet

direct wind observations remain sparse in many regions of the global ocean. While passive acoustics have been -

used to estimate wind speed from moored and mobile platforms, their application to profiling floats has been

demonstrated only in limited cases, Here we report the first deployment of a biogeochemical profiling float .~
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,'CDeleted: and remains largely unexplored

- ) ,[Deleted: Here, we report on the first deployment of a

equipped with a passive acoustic sensor explicitly designed for wind retrieval, aimed at detecting wind-driven

surface signals from depth. The float was deployed in the northwestern Mediterranean Sea near the DYFAMED
(DYnamique des Flux Atmosphériques en MEDiterranée) meteorological buoy from February to April 2025 and
operated at parking depths of 500-1000 m. We demonstrate that wind speed can be successfully retrieved from

r CDeleted: the potential for broader application

subsurface ambient noise using established acoustic algorithms, with float-derived estimates showing good

agreement with collocated surface observations, To evaluate scalability to remote regions, we simulate a remote -

o (Deleted: proxy

deployment scenario by refitting the acoustic model of Nystuen et al. (2015) using ERAS reanalysis as ageference .~ "

for surface wind. The ERAS5-based calibration performs well under moderate winds but exhibits systematic high-

wind bias (310 ms™). Finally, we apply a residual learning framework to correct these estimates using a limited .-

subset of DYFAMED wind data, simulating conditions where only brief surface observationsare available. The
corrected wind time series achieved a 37% reduction in RMSE, demonstrating the effectiveness of combining ™

reanalysis with sparse in-situ calibration. This framework improves agreement with in-situ wind observations
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relative to reanalysis alone, supporting a scalable strategy for float-based wind monitoring in data-sparse ocean
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regions, Such capability has direct implications for improving estimates of air—sea exchanges, interpreting

biogeochemical fluxes, and advancing climate-relevant ocean observing.
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1 Introduction

Wind plays a fundamental role in driving ocean circulation, mediating air-sea gas exchange

,(Deleted: dynamics

,"T,.'[Deleted: fluxes of gases and governing biological

productivity

and_shaping climate-related biogeochemical processes (Wanninkhof, 2014; McGillicuddy,

2016). Recent studies show that wind-driven circulation strongly influences regional climate -

trends, (eg., Pellichero et al., 2020; Trenberth et al. 2025; McMonigal et al., 2025). Despite its

gentral importance, accurately quantifying wind variability jn remote ocean basins remains
challenging, Satellite scatterometers suffer from coarse resolution, reduced performance under

extreme weather and heavy cloud cover, and signal degradation in high-latitude regions, while

surface, moorings provide limited spatial coverage (Bentamy et al., 2003; Chelton et al., 2007;

Stoftelen et al., 2008).

Passive acoustic monitoring of underwater ambient noise offers a complementary approach for

inferring surface meteorological conditions from surface-generated underwater noise. The

et al., 1998; Oguz and Prosperetti, 1990), This principle underpins the Weather Observations

Through Ambient Noise (WOTAN) techniques and the development of Passive Acoustic
Listener (PAL) instruments (Nystuen et al., 2001), enabling autonomous, long-term estimates
of wind and rainfall from fixed and drifting platforms.

Although widely used, these approaches still face several limitations. The empirical
relationships underpinning WOTAN-type methods are often site dependent, with deviations
arising from bathymetry, wave regime, and water depth; even under wind-dominated
conditions, shallow-water environments can yield substantially different spectral levels
(Ingenito, 1989). Model skill is also limited by model design, as single-regime formulations
underestimate the slope at higher winds and bias comparisons across SPL-wind relationships
(Schwock, 2021). These factors complicate the selection of an appropriate empirical law for a
given platform or region. To address these challenges. recent studies have explored data-driven
and machine-learning approaches that learn wind-noise relationships directly from
observations and reduce reliance on fixed empirical models (Taylor et al., 2020; Trucco et al.
2023; Zambra et al., 2023).

Despite these limitations the WOTAN framework has proven applicable across a wide range
of platforms. Wind-driven signatures have been detected from moorings (Ma and Nystuen
2005 : Nystuen et al., 2015; Pensieri et al., 2015), gliders (Cauchy et al., 2018; Cazau et al.
2019) and profiling floats (Riser et al., 2008; Yang et al., 2015; Yang et al., 2016; Bytheway
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et al., 2023; Ma et al., 2023), and even from piologged marine mammals operating jin remote

regions (Menze et al., 2013: Cazau et al., 2017; Gros-Martial et al., 2025a). Beyond wind
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estimation, acoustic sensors integrated into autonomous platforms have supported a wide range
of geophysical and ecological applications, including marine mammal monitoring (Matsumoto
et al., 2013; Cauchy et al., 2020; Fregosi et al., 2020; Baumgartner and Bonnel, 2022), and
hydroacoustic earthquake detection and characterisation of ambient ocean noise (Baumgartner
etal., 2017; Pipatprathanporn and Simons, 2022).
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Recognising this broad utility, the Ocean Sound Essential Ocean Variable (EOV), coordinated |

by the International Quiet Ocean Experiment (IQOE) and endorsed by the Global Ocean

Observing System (GOOS), identifies autonomous platforms such as profiling floats as ideal
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platforms for distributed global acoustic monitoring (Tyack et al., 2023). In recent decades

biogeochemical (BGC)-Argo floats have become a central component of global ocean

observing systems., Their persistence at sea, broad spatial coverage, and cost-effectiveness have |

demonstrated clear advantages over traditional ship-based measurements (Roemmich et al.
2009; Riser et al., 2016). As their capabilities have expanded, these platforms now host
increasingly sophisticated multidisciplinary sensor suites, with measurements of oxygen
nitrate, chlorophyll, pH, and irradiance (Johnson and Claustre, 2016: Claustre et al., 2020). Yet

despite this progress. the integration of passive acoustics into BGC-Argo remains largely |

| Deleted: Advancements in passive acoustic sensing
technology have enabled the integration of acoustic sensors
onto autonomous oceanographic platforms, including
underwater gliders (Cazau et al., 2018; Cauchy et al., 2018)
and profiling floats equipped with PAL sensors (Riser et al.,
2008; Yang et al., 2015; Yang et al., 2016; Ma et al., 2023).
Such developments are especially valuable in remote
environments, where traditional in-situ measurements remain
limited. For example, Menze et al. (2012) provided early
evidence of wind-dependent acoustic noise regimes in (" [9])

unexplored, Incorporating acoustic wind sensing would supply the atmospheric forcing needed

to interpret biogeochemical variability, particularly in high-latitude or storm-dominated

regions where wind products remain sparse or uncertain,

passive acoustic sensor explicitly designed for wind speed estimation from underwater ambient |

noise. Deployed in the northwestern Mediterranean Sea, near the DYFAMED (D Ynamique

des Flux Atmosphériques en MEDiterran¢e) meteorological buoy, this float serves as a proof-

of-concept demonstration, to; (1) determine whether wind-driven acoustic signatures can be

detected at profiling float parking depths; (2) evaluate the performance of established acoustic |

wind models on this platform; and (3) develop a practical framework combining acoustic
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2 Materials and Methods
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Figure 1. Float trajectories during sea trials conducted in the Ligurian Sea in February and
March 2025. Deployment A (solid line) and Deployment B (dashed line) are shown along with
a concentric dashed circle (40 km radius) centred on the DYFAMED station. The 40 km radius
was used to spatially filter float data for refitting and validation of wind estimates at
DYFAMED, as described in Cauchy et al. (2018).

2.1 Study area and DYFAMED weather station

The acoustic wind sensing trial was conducted in the Ligurian Sea, a sub-basin of the
northwestern Mediterranean, in proximity to the DYFAMED (DYnamique des Flux
Atmosphériques en MEDiterranée) oceanographic time series station (Fig. 1). This station is

part of the national observation program MOOSE (Mediterranean Ocean Observing System
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During the study period, wind speeds at DYFAMED ranged from 0.5 to 16.1 m s”!, with a mean

of 6.8 m s”! and a measurement precision of one decimal place.

2.2 Acoustic sensor integration

The float used in this study was equipped with a passive acoustic module jointly developed by
NKE and ABYSsens in collaboration with LOV. This module was specifically designed for
integration into the PROVOR CTS5 BGC-Argo platform, with the aim of minimizing power
consumption and data volume while remaining compatible with the operational constraints of
the BGC-Argo program.

The module consists of two main parts enclosed in a dedicated external housing: 1) a low-noise
HTI-96-Min hydrophone (sensitivity: =165 dB re 1 V/pPa; frequency range: 2 Hz—30 kHz),
mounted externally to capture pressure fluctuations, and 2) an ABY Ssens acquisition board,
which conditions, digitizes, and processes the signal.

The acquisition system operates in a low-power pulsed mode (220 mW) with a sampling
frequency up to 62.5 kHz and 24-bit resolution. To limit power usage and transmission needs,
raw acoustic signals are not stored. Instead, the sensor performs direct onboard integration into
23 third-octave bands, spanning from 63 Hz to 25 kHz with a variable integration time (see
Table 1). Higher-frequency bands (e.g., 3.15-25 kHz) used shorter integration times (50 ms),
while low-frequency bands used longer windows (up to 500 ms).

Frequency band range Integration time “
63, 100, 125 and 160 Hz 500 ms b
400, 500 and 630 Hz 250 ms “
800 Hz, 1, 1.25, 1.6, 2 and 2.5 kHz 100 ms “
3.15,4,5,6.3,8, 10, 12.5, 16, 20 and 25 kHz | 50 ms “

Table 1. Integration times applied to third-octave bands during acoustic signal processing,
varying by frequency range to balance energy and spectral accuracy. In bold and underlined,
the bands transmitted in the 9-band, float configuration.

The acoustic unit is mounted on the upper section of the float chassis and is configured to
operate exclusively during the parking phase (500-1000 m depth; Fig. 3). During this phase,
the float drifts with only routine background measurements (e.g., pressure, CTD), and acoustic
acquisition is automatically suspended whenever noisy operations such as ballast pumping or
CTD sampling occur, thereby avoiding contamination from self-noise.

The float system allows for flexible and modifiable configuration via satellite: the user can
define the number of bands transmitted (23, 9, or a compact onboard estimate of wind/rain),

Deleted: The station is equipped with continuous
meteorological and oceanographic monitoring, including
high-quality wind speed and direction measurements from a
surface buoy maintained by Météo-France. These data are
reported at hourly resolution, following WMO (World
Meteorological Organization) standards, and include wind
parameters, along with air temperature, pressure, humidity,
and sea state.
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the acquisition interval (typically 5—15 minutes), and the number of acoustic samples averaged
per measurement. In this study, we used a 5-minute interval with 10 averaged acquisitions per
measurement (each acquisition is a spectral estimation using the integration times defined in
Table 1).

The telemetry and energy impact of adding an acoustic sensor to a 6-variable biogeochemical
float was evaluated by using the programming interface provided by NKE. The estimated
reduction in the number of cycles varies from 18% for acquisition every 5 minutes to 7% for
acquisition every 15 minutes during the whole parking drift of a 10-day Argo cycle and with 5
averaged acquisitions per acoustic measurement. The data volume increase depends on the
transmission format: from ~9% for onboard wind—rain estimates (15-min period) to ~85% for
a full 23-band spectrum (5-min period). A 9-band spectrum every 15 minutes—a likely
recommended setup—adds ~16%. These overheads remain within the platform’s capacity,
confirming compatibility with concurrent BGC measurements.

Each sensor output transmitted by the float corresponds to the Third Octave Level (TOL), i.e.,
the sound pressure level integrated over a third-octave band, expressed in dB re 1 pPa. These
TOLs represent the float’s primary spectral product and are used as input to the wind speed
retrieval models. The amplitude resolution of the transmitted data is 0.2 or 0.5 dB, with a
dynamic range up to 127 dB. This discretisation arises because the data are transmitted as
integers to save bandwidth, which requires selecting a resolution step.

2.3 Depth correction and spectral normalization

To account for the attenuation of surface-generated noise with depth, a correction term B(h,f)

was_applied to all acoustic measurements (Fig. 2). Because B depends on the ambient
temperature—salinity structure, we quantified hydrographic stability over the 60-day
deployment using all profiles that reached at least 1000 dbar. Each profile, was interpolated

onto a 1 m grid and compared to the deployment-mean temperature/salinity, profiles. Depth-

averaged RMS deviations were 0.14 + 0.04°C for temperature and 0.06 £ 0.02 for salinity, and
no profile exceeded |z| = 2 standardised deviation, confirming weak hydrographic variability.

Because such differences are far below hydrophone measurement uncertainties, B(h,f) was

computed once using the deployment-mean profile and applied uniformly to the full record.

For longer or more dynamic missions, B(h,f) should be recomputed for each profile. Modern

hardware makes this operation computationally inexpensive, but the negligible hydrographic
variability in this deployment renders repeated recalculation unnecessary

Following Cauchy et al. (2018), the correction takes the form:

TOLy(f) = TOL(h,f) + B(h,f) (1a),

(1b),

lzr,h

i —agly,
where f(hf) = ~10log (2 g [Lf"] o
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with TOL(h, f) as the raw TOL measurement from the profiling float, h as the sensor depth, f
the centre frequency of the band, r the horizontal distance from a surface noise source to the
point vertically above the sensor, | the total pathlength between source and receiver (accounting
for depth and refraction), including refraction effects, 0 the angle between the emitted acoustic
ray and the horizontal axis, and o the frequency-dependent attenuation coefficient for bubble-
free water. The integral considers contributions from all surface-generated acoustic sources
over the sea surface, assuming radial symmetry, and accounts for geometric spreading,
frequency-dependent absorption, and angle-dependent energy emission along each path. This
correction was originally derived for third-octave levels and is directly applicable here, as the
float outputs TOLs at fixed centre frequencies.

Then, depth-corrected third-octave levels TOL,(f) (dB re 1 puPa) were converted to spectral

CDeleted: in

density levels SPL(f) (dB re 1 pPa/Hz) by normalising to the bandwidth of each band. In the
following, SPL always refers to these depth-corrected, bandwidth-normalised values derived
from TOL, (f). This step ensures consistency across frequencies and comparability with model
spectra. In future deployments, this spectral correction will be applied directly onboard the
float.
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Figure 2. a) Mean sound-speed profile derived from the deployment-average temperature and

salinity, and used to compute b) the depth-correction term [3(h.f) following Cauchy et al.
(2018). The correction accounts for the attenuation of wind-generated surface noise with
increasing hydrophone depth and was applied prior to wind-speed retrieval. B is shown here
for 3.15 kHz and 8 kHz.

2.4 Profiling float deployments
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Figure 3. Vertical profiles from the acoustic-equipped profiling float deployed near
DYFAMED between February and April 2025. Blue points indicate times when passive
acoustic data were successfully recorded. The vertical dashed line marks the transition between
Deployment A and Deployment B.

Two deployments of an acoustic-equipped float (PROVOR CTSS5) were carried out near
DYFAMED between February and April 2025 (Fig. 1). Deployment A lasted 30 days, from 10
February to 11 March, and Deployment B continued for 24 days starting on 12 March and
remained active until 4 April. The float operated in park-and-profile mode at three parking
depths (500, 700, and 1000 m; Fig. 2), collecting biogeochemical data during ascent and
passive acoustic data exclusively during the parking phases to minimize self-generated noise.

While Riser et al. (2008) previously demonstrated the feasibility of acoustic wind sensing from
Argo floats, their system transmitted only pre-processed wind estimates derived onboard using
a simplified version of the algorithm by Nystuen et al. (2015), without retaining or transmitting
spectral band data. This limited the possibility of reanalysis or applying alternative processing
schemes. In contrast, the floats used in this study recorded and transmitted full third-octave
band spectra, enabling detailed post-processing and algorithm refinement tailored to the float’s
specific acoustic characteristics.

2.5 Transient and anthropogenic noise mitigation

Transient noise (i.e., episodic non-wind-related events) was mitigated by removing values
exceeding the 99th percentile within a +1.5-hour window centred around each matched
timestamp. This percentile corresponds to discarding roughly the top 1% of samples over a 3-
hour window (=two minutes of data). No physically meaningful wind- or wave-driven
variability relevant to this study evolves on such short timescales, making this filter effective
at removing brief acoustic artefacts without suppressing real high-wind conditions. This
approach is conceptually similar to the transient-noise mitigation used in glider-based PAM
studies (e.g., Cauchy et al., 2018). which suppress short-lived spikes in the spectra to isolate
wind-generated noise

Deleted: Transient noise (i.e. episodic non-wind-related
events) was mitigated by removing values exceeding the
99th percentile within a £1.5-hour window centred around
each matched timestamp. While this approach risks
excluding some high-wind events, we verified that extreme
wind episodes typically span durations longer than a few
hours, minimizing the chance of misclassification (see Fig.
8).
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To further reduce short-term variability and emphasize quasi-stationary wind-driven acoustic
patterns, we applied a 3-hour rolling mean to each frequency band. This smoothing window is '[Formatted: Font: Times New Roman, 12 pt, Font color: }

conceptually consistent with the profile-scale averaging used in glider-based acoustic wind Auto, English (UK)
studies (e.g.. Cauchy et al., 2018), where acoustic measurements are aggregated over ~2-hour

glider dives to suppress transient variability, While smoothing inevitably attenuates rapid { Deleted: This choice reflects a compromise between noise
fluctuations, the 3 h window stabilises the spectra without erasing multi-hour wind events “. reduction and temporal resolution: the smoothing is

g e . . B R K sufficient to stabilize wind estimates in the presence of
relevant for air—sea flux applications, Alternative strategies, such as post-processing tl}e wind * | Giomesoscale variability and intermittent noise, yet long
speed estimates rather than the spectral bands, could be explored in future deployments if finer- * . . { enough to preserve multi-hour wind events of interest.
scale Variability isa priority. Y (Deleted: this approach may attenuate
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Anthropogenic noise was mitigated using AIS vessel tracks. Because the float only provides+
GPS positions at the surface, we reconstructed a continuous trajectory by linearly interpolating °
its positions between successive surfacings at hourly resolution. Each 5-min acoustic record

was then associated with the nearest interpolated position. An observation was flagged as multi-hour processes of interest (eg., air—sea fluxes)

D otentially contammgt(.:d when an .AIS-rcpo.rtcd vessel was lqcatcd within 20 km of thls . ( Formatted: Font: Times New Roman, 12 pt, Font color:
interpolated float position and within £30 min of the acoustic timestamp. The 20 km radius Auto, English (UK)

corresponds to the distance over which ship-radiated noise commonly dominates the ambient '(Formatted; Justified
sound field in the 1-10 kHz band under low-to-moderate sea states, while the +30 min window
accounts for the typically irregular AIS reporting interval offshore. As an additional safeguard
we excluded cases where the float-derived wind speed deviated from the DYFAMED buoy by
more than the RMSE computed under uncontaminated conditions. This RMSE criterion is used

only as a secondary check to capture possible contamination during periods of poor AIS
coverage. Sensitivity tests indicate that moderate changes to these thresholds do not affect the

main conclusions., - Deleted: To mitigate anthropogenic noise contamination,

' Automatic Identification System (AIS) ship tracking data
were used to identify vessel presence within a 10 km radius
and +30 minutes of each float timestamp. Acoustic
observations were flagged as potentially contaminated if they
coincided with ship presence and showed anomalous
deviations—defined as float-derived wind speed differing
from the DYFAMED buoy estimate by more than the root
mean square error (RMSE) observed under uncontaminated
conditions. While this introduces a partial dependence on
external wind reference data, the combined AlS+anomaly
criterion reduces false positives and avoids relying solely on
model-sensor differences for data exclusion. Data flagged as
contaminated were excluded from further analysis."
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smoothing is sufficient to suppress noise while retaining
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2.6 Application of established acoustic models

Wind frequenc Wind retrieval
Model Input units band (l(<1Hz) y frequency
(kHz)
Vagle et al. (1990) dB re 1 uPa*Hz 7.1-8.9 8

Nystuen et al. )

(2015) dB re 1 pPa?Hz 7.1-8.9 8
Pensieri et al. )

(2015) dB re 1 pPa*Hz 7.1-8.9 8
Cauchy et al.

(2018) dBre 1 pPa 2.8-3.55 3.15

Table 2. Summary of acoustic wind speed estimation models and their input requirements.
Input units refer to the spectral level units used in model calibration. Central frequency
indicates the nominal retrieval frequency, and the third-octave band column specifies the
corresponding bandwidth. All models were calibrated and validated against standard 10-m
wind speed.

Empirical models have long been used to estimate surface wind speed from underwater ambient
noise, exploiting the link between wind-driven bubble formation and acoustic energy in the 1—-
20 kHz band. These models typically relate surface wind speed U to the sound pressure level
Lt measured in selected frequency bands. While many models use third-octave bands, others
rely on custom-defined or narrowband frequencies, often with variable bandwidths (e.g., 16%
of the centre frequency in Vagle et al., 1990).

We applied four established wind retrieval models spanning a range of functional forms—
cubic, two-regime linear—quadratic, composite, and two-regime log—linear. All wind models
were applied using acoustic levels consistent with their original formulations (Table 2). This
diversity allowed us to assess sensitivity to model structure and evaluate performance under
float-specific conditions. Each model was first implemented using its published coefficients to
generate wind speed estimates from float acoustic data, and the results were evaluated against
collocated meteorological observations (Fig. 4). Subsequently, the parameters of each model
were refitted using collocated float acoustic and wind data from the DYFAMED
meteorological buoy (Figs. 4 and 5; see Table 1 in Supplementary Material), which provides
hourly 10-meter wind speed. Model refitting was performed using nonlinear least-squares
optimization (Table 3). Wind records from DYFAMED were matched to float measurements
by nearest timestamp.

(Formatted: Justified
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Following the spatial filtering approach of Cauchy et al. (2018), only float data within 40 km
of DYFAMED were retained for refitting and validation (Fig. 1). This threshold corresponds
to the estimated confidence radius around the DYFAMED meteorological buoy, within which
wind speed measurements show high spatial coherence (R=0.86, RMSE=2.5m s-1) when

compared to the AROME-WMED atmospheric model (Rainaud et al., 2016). Althoughr

originally derived from the spatial wind-field decorrelation scale reported by Cauchy et al.
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(2018), this 40 km radius reflects a regional mesoscale atmospheric property rather than a
platform-specific constraint. Because our deployment occurred in the same NW Mediterranean

basin, this decorrelation length remains appropriate for our case. We note, however, that this
threshold is region-dependent and should be re-evaluated for future deployments elsewhere.

The updated coefficients were then used to generate wind estimates over the full float dataset.
While this spatial proximity improves wind representativeness, it does not account for
variations in wind fetch, a parameter known to influence ambient noise generation, particularly
through wave and bubble field development (e.g., Prawirasasra et al., 2024).

These four models were selected to represent a range of analytical formulations commonly
used in acoustic wind retrievals. They all use frequency bands where wind-driven bubble noise
typically dominates the local ambient sound field, with reduced interference from low-
frequency sources such as distant shipping. Our aim was not to exhaust all available models,
but rather to evaluate a representative subset under consistent float-specific conditions,
emphasizing the effect of model structure and local fitting.

The specifications and key features of each model are summarized in Table 2 for reference.
For all models and validation steps throughout the rest of Methods section, wind speed refers
to the standard 10-meter wind speed, consistent with both the ERAS reanalysis product and the
DYFAMED buoy observations used for calibration and evaluation.

The first model, from Vagle et al. (1990), was derived from moored hydrophone data in the
North Atlantic and relates wind speed to high-frequency noise at 8§ kHz using a cubic
formulation:

—38.70 + /—38.702—4.7 - 38 - (SPLgyp,~21.69) ?)

_ ( -
Uyagle 1990 = 10 7.38-2

Next, we applied the cubic model from Nystuen et al. (2015), developed using long-term
acoustic records from fixed hydrophones in both the Pacific and Atlantic. This model targets
wind-generated noise at 8 kHz and includes band-specific criteria to distinguish wind
contributions from other sources such as rain and shipping (Table 2).

Unystuen 2015 = 0.0005 - SPLgy,® — 0.0310 - SPLgyy,” + 0.4904 - SPLgyy,

3).
+ 2.0871 ®)

(F ormatted: Justified




599
600
601
602
603
604
605
606

607
608
609
610
611
612
613
614
615

616
617
618
619
620
621

22

23
24
25
26
27
28

We then tested the two-regime linear—quadratic model from Pensieri et al. (2015) at 8 kHz,
developed using moored hydrophone data from the Ligurian Sea, near our study area.
Calibrated for Mediterranean conditions, the model relates wind speed to ambient noise levels
at the 8 kHz band, applying distinct linear and quadratic fits across low- and high-noise
regimes. Notably, the transition between regimes is defined at 38 dB, corresponding to a wind
speed of 2.39 m s! in their framework. However, it is important to note that the threshold
separating high and low regimes is not standardized across the literature and may vary between
studies.

U _ (0.044642 - SPLgyy,” — 32917 - SPLgyy, + 63.016 @ -
Pensieri 2015 {0.1458 - SPLgyy, — 3.146, for SPLg, < 38 dB :

Finally, we included the two-regime log—linear model from Cauchy et al. (2018), developed
using acoustic data from a glider operating in the western Mediterranean. Designed for mobile
platforms, the model relates wind speed to third-octave noise levels centred at 3 kHz. The
model uses distinct logarithmic and linear fits across two noise regimes.

This choice of 3 kHz, instead of the more commonly used 8 kHz, was based on empirical
observations showing greater dynamic range and lower variance in this band, which may reflect
sensor-specific factors or the sensor’s mounting configuration on the glider (Cauchy et al.,
2018). The relationship goes as:

Ve 1 SPL3kHz—Soff

m . (10 20 +0.2- 104>

UCauchy 2018 — J 1 SPL3kHz-S g 5). “
%0 4 -1
Lm- 100 20 +12.5-10 >forU>10ms

The wind retrieval relationship is modelled using a two-regime log-linear function. The
transition between regimes occurs at wind speeds of approximately 10-11 m s’!, established
empirically. To represent this switching behaviour, a relative threshold level is introduced,
expressed as SPL — S, where Sofr denotes the sea-state 0 noise reference. This formulation
highlights when wind-driven noise becomes dominant relative to the reference background
noise.

2.7 Simulated wind estimation using reanalysis and residual learning

To assess the ability of float-derived acoustic measurements to estimate surface wind speed in+._

regions lacking direct atmospheric observations, we developed a two-step framework based on
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(i) calibration to ERAS5 reanalysis winds and (ii) residual correction using sparse in-situ
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)

measurements. The goal was to emulate realistic deployments of acoustic-equipped profiling
floats in remote regions where only global reanalysis products and limited ship- or buoy-based
wind measurements are available,
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2.7.1 ERAS5-based calibration of the acoustic model

To evaluate the ability of float-derived acoustic measurements to estimate surface wind speed
in _regions lacking direct atmospheric observations, we used the ERAS5 reanalysis from
ECMWF (Bell et al., 2021). ERAS5 provides global 10 m wind at 0.25° resolution and hourly
frequency. We extracted zonal and meridional wind components (u;o. vyo) from the grid cell
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containing the float’s position and computed wind speed U as;

U= Ju%o+v%o ©. -

These values were time-matched to float and DYFAMED measurements using the nearest
available ERAS hour.

The empirical acoustic—wind model of Nystuen et al. (2015; Eq. 3) was then re-fitted to the

float’s measured 8 kHz SPL using ERAS5 wind speed as the reference, This produced an ERAS5- :
calibrated acoustic wind estimate, representing a realistic scenario in which profiling floats

operate in regions lacking direct wind observations and rely solely on reanalysis for model
tuning

Uncertainty in s [ A 1T c
ensemble. For each iteration, we resampled the float dataset with replacement and perturbed

the ERAS wind input by adding Gaussian noise consistent with its reported uncertainty (¢ = i

1.5 m s™"). The acoustic model was re-fitted for each bootstrap sample. and the ensemble
standard deviation was used to characterise uncertainty arising from both ERAS5 input
variability and the parameter sensitivity of the fitted empirical model.

2.7.2 Residual -learning correction using limited in-situ observations b

To correct systematic errors in the ERAS5-calibrated acoustic estimate, we used the limited

DYFAMED buoy observations obtained within 40 km of the float. These collocated

measurements represent approximately 40% of the full dataset and simulate practical scenarios
in which only short-duration local reference winds (e.g.. during deployment or opportunistic
ship passages) are available.

Residuals between DYFAMED wind speed and the ERA5-calibrated acoustic estimate were«

modelled using four predictors: SPL at 8 kHz, ERAS5 10-m wind speed, normalised deployment
day, and the Nystuen-model wind estimate. These variables capture the local acoustic signal

large-scale atmospheric forcing, slow temporal drift, and the first-order empirical fit. Residuals
were estimated with XGBoost regression (Chen & Guestrin, 2016), using all float-buoy
collocations within 40 km (~40% of the dataset). To maintain generalisation, we applied a
compact hyperparameter set (300 estimators, learning rate 0.05, max depth 3, subsample 0.9
colsample bytree 0.8) together with safeguards against overfitting, including bootstrap
resampling, Gaussian perturbations of ERAS5 winds (o = 1.5 m s™") during training and
prediction, shallow trees, and subsampling of both rows and features. Uncertainty was
quantified using a 100-member ensemble, with each model trained on a bootstrap resample of
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Hourly ERAS5 data were retrieved for the period spanning the
float deployments, from 10 February to 31 March 2025.
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meridional (v%) wind components from the grid cell
containing the float’s position. Wind speed (U) was then
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refitted the empirical model from Nystuen et al. (2015; 3) to
float-measured Sound Pressure Level (SPL) at 8 kHz,
producing a new set of coefficients tailored to the float
deployment. This produced a first-pass wind estimate
derived from float acoustics alone, calibrated to ERAS5 rather
than to DYFAMED in-situ observations. This approach
simulates a scenario in which a profiling float is deployed in
a remote region lacking surface wind measurements, and
reanalysis products are used to train or tune the acoustic
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the DYFAMED-matched subset and forced with perturbed ERAS5 winds. This dual
bootstrapping captures variability associated with the machine learning model structure and

with ERAS uncertainty. Corrected wind speeds were obtained by adding the ensemble-mean
residual to the ensemble-mean Nystuen estimate, with total uncertainty expressed as +1c by
combining the XGBoost ensemble spread and ERAS5 input uncertainty in quadrature. The
bootstrap uncertainty of the Nystuen fit is reported separately. This framework provides a
transparent and robust correction method, illustrating how float acoustics, reanalysis winds

and sparse in-situ observations can be combined to estimate surface wind speed in remote

regions

3 Results and Discussion
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Figure 4. Comparison of unoptimized (top) and optimised (bottom) wind speed models against
DYFAMED buoy observations. Each subplot shows modelled wind speed estimates from four
literature models (Vagle et al., 1990; Nystuen et al., 2015; Pensieri et al., 2015; Cauchy et al.,
2018) compared with collocated buoy wind data (black line). The unoptimized models a) use
original published coefficients, while the optimised models b) are re-fitted using data within
40 km of the DYFAMED site. The dashed vertical line indicates the start of deployment B.

" | and interactions between features (Chen and Guestrin, 2016).¢
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the full dataset. This setup was designed to simulate a
realistic scenario where ship-based wind measurements are
available in proximity to a float deployment. Specifically, we
used wind speed measurements from the DYFAMED buoy
to model residual differences between the ERA5-based
acoustic prediction and true surface conditions. A feature
matrix was constructed including SPL at 8 kHz, ERAS5 wind
speed (10-meter), normalized time (deployment day), and the
acoustic model prediction wind speed from Nystuen et al.
(2015; Eq. 3). Residuals relative to DYFAMED wind speed
were modelled using XGBoost regression, a gradient
boosting machine learning algorithm based on gradient-
boosted decision trees and known for its high predictive
performance and ability to handle non-linear relationships
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acoustic estimate, we generated 100 bootstrap samples by
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the ERAS wind input using its reported uncertainty (standard
deviation 6= 1.5 ms'; Bell et al., 2021). The empirical
model was re-fitted for each bootstrap, and the resulting
ensemble of predictions was used to compute the standard
deviation at each time point. This approach captures both the
impact of ERAS5 input uncertainty and variability in the fitted
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For the ML-corrected wind speed, we trained an ensemble of
100 XGBoost models on bootstrapped subsets of the training
data. During both training and prediction, Gaussian noise
(mean =0, 6 = 1.5 m s') was added to the ERAS5 wind
feature to simulate observational uncertainty. The Gaussian
assumption provides a tractable way to propagate uncertainty
through the learning framework and is commonly used in
ensemble perturbation methods when only first- and second-
moment statistics are available. While the true distribution of
ERAS errors may deviate from normality, the central limit
tendency of aggregated atmospheric errors makes the
Gaussian approximation a reasonable first-order choice.
Importantly, this approach ensures that the output
uncertainty reflects both the variability of the fitted ML
model and the stated input uncertainty, though future work
could refine the noise model if detailed error distributions
become available. Final corrected wind speeds were
computed by summing the Nystuen et al. (2015) ensemble-
mean prediction with the ensemble-mean residual.
Uncertainty bounds were defined as +1c, combining
variability across the XGBoost ensemble with ERAS input
uncertainty in quadrature. Uncertainty for the ML-corrected
estimate reflects the variability of the residual model and
ERAS input uncertainty but does not propagate the bootstrap
spread of the underlying Nystuen fit, which we report
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This method demonstrates how passive acoustic observations
from profiling floats can be combined with global reanalysis
products and limited in-situ data to improve local wind speed
estimates, simulating the upscaling of BGC-Argo float
deployments in remote ocean regions lacking direct W T14]
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a) Vagle et al. (1990) b) Nystuen et al. (2015)
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Figure 5. Comparison of optimised wind speed estimates from four literature models against
collocated DYFAMED buoy wind measurements. Each subplot (a—d) shows scatter plots of
float-derived wind speed vs. buoy wind speed using model-specific optimised coefficients: (a)
Vagle et al. (1990), (b) Nystuen et al. (2015), (c) Pensieri et al. (2015), and (d) Cauchy et al.
(2018). Points are color-coded by distance from the DYFAMED buoy, and the dashed line
represents the 1:1 reference. Insets display linear regression slope, intercept, and coefficient of
determination (R?).
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Figure 8. Time series comparison between acoustic float wind estimates and DYFAMED buoy
winds, displayed over three consecutive 18-day windows (a—c). The dashed pink curve
corresponds to wind speeds predicted using the Nystuen et al. (2015) acoustic model calibrated
solely with ERAS reanalysis winds. The solid green curve shows the same model after applying
the residual-learning correction (XGBoost), and the shaded region indicates its associated
predictive uncertainty. Buoy-measured wind speed is shown in black. The upper x-axis reports
the float’s distance from DYFAMED throughout the record, and the dashed vertical line
indicates the transition to deployment B

| Deleted: Time series comparison of wind speed estimates

from the acoustic float and DYFAMED buoy observations,
shown across three sequential 18-day segments of the
deployment (a—c). The dashed pink line shows estimates
from the Nystuen et al. (2015) model fit to ERAS5-derived
inputs. The solid green line represents the same model
corrected using a residual-learning approach (XGBoost) with
its associated uncertainty. Black curves show in-situ wind
speed from the DYFAMED buoy. The top x-axis indicates
the float's distance from DYFAMED over time, and a dashed
vertical line marks the start of deployment B.
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3.1 Assessing the performance of float-based acoustic wind estimation

We applied four previously published wind retrieval models to float-measured sound pressure
levels (SPLs) at 8 kHz and 3 kHz. Using the original coefficients from these studies, wind speed
estimates deviated significantly from collocated DYFAMED observations, particularly in their
ability to reproduce the magnitude of wind events (Fig.4a). This mismatch reflects the
sensitivity of empirical acoustic models to deployment context, including platform geometry,
acoustic propagation, and local noise environment.

When these same models were refitted using collocated float acoustics and DYFAMED wind
observations within 40 km (Fig. 1), performance improved substantially (Fig.4b; Fig. 7).
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Among the models, the cubic formulation by Nystuen et al. (2015) achieved the best fit
(R?=0.88; Fig. 5b) and successfully captured the full observed wind range (0.5-16.1 ms';
Figs. 5 and 7). J was also the only model resolving wind speeds <2 m s!, a regime often missed

due to weak surface forcing and minimal bubble generation. This low-wind sensitivity *

strengthens its relevance for air—sea gas-exchange studies and suggests broad applicability in

moderate wind regimes. High-quality wind estimates are particularly important for interpreting
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float-based biogeochemical measurements, as air—sea oxygen fluxes respond sensitively to
short-timescale wind variability (Bushinsky et al., 2017).,
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However, even after successful fitting, the portability of acoustic-wind models remains
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uncertain. Factors such as noise contamination, ambient biological activity and regional
propagation conditions can vary substantially between deployments, affecting both the shape
and robustness of the acoustic—wind relationship_(Gros-Martial et al., 2025b). Moreover,
profiling floats introduce their own artifacts, which may arise from hydrodynamic turbulence,
buoyancy engine activity, bubble release, or electronic interference, each of which can
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contaminate the acoustic signal independently of wind forcing. Fyven models developed in the

same basin required refitting (i.e. Pensieri et al. 2015; Figs. 4, 5 and 7),,

A promising direction would be to classify deployments into broader “acoustic environment
types”. such as open-ocean gyres, coastal shelves, or high-latitude storm zones, within which

: (Deleted: transferability

shared model parameters could be defined and validated. This aligns with the priorities outlined
in the Ocean Sound Essential Ocean Variable (EOV) Implementation Plan, which emphasizes

the need for community-agreed metadata standards, calibration protocols, and classification
schemes to support global comparability across acoustic deployments (Tyack et al., 2023).
Evaluating these frameworks for profiling floats may help standardize acoustic wind retrieval
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and integrate it more effectively into global observing systems.,

; [Deleted: ng the challenge of cross-platform and cross-region

3.2 Generalizing float-specific wind modelling using reanalysis

While site-specific fitting of acoustic wind models yields accurate float-derived wind

estimates, such fittings are not feasible in most regions of the global ocean where in-situ wind
observations are unavailable. To assess whether the acoustic—wind relationship can be
generalized for remote deployments, we investigated the use of reanalysis wind products as a
proxy reference for model fitting. Specifically, we used the ERAS atmospheric reanalysis (Bell
etal., 2021) to refit the Nystuen et al. (2015) model to float-measured acoustic data, simulating
a scenario where no collocated buoy or shipboard wind measurements are available (Figs. 6
and 8).
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Using time-matched float sound pressure level at 8 kHz and collocated ERAS wind speed, we

derived a new set of coefficients (Section 2.6), producing a general-purpose fit based solely on

float data and reanalysis inputs. The goal was to test whether an existing model can be adapted
for use in data-sparse regions, enabling scalable wind estimation from profiling floats

As shown in Figure 6a, the, ERAS-calibrated Nystuen et al. (2015) model reproduced wind
variability within the 2.5-10 m s, range with moderate skill (R? = 0.85), and performed best
during Deployment A, when wind conditions remained relatively stable (Fig. 8), Performance | -
deteriorated during stronger wind events, particularly in Deployment B, where the model
systematically underestimated wind, with errors >3 m s'! (Figs. 6a and 8).,

Comparison with DYFAMED also revealed broader limitations_of ERAS. Although ERAS °
provides a globally consistent wind product, it diverged from buoy observations during several
high-wind episodes, This pehaviour is consistent with earlier yeports of reanalysis
underestimating localised. orographically forced winds in semi-enclosed basins such as the
Mediterranean (Bentamy et al., 2003; Bell et al., 2021). Such biases are critical in regions like |
the Southern Ocean., where frequent high-wind events dominate air—sea COp fluxes and gas '|
exchange scales nonlinearly with wind speed (Wanninkhof, 2014; Wanninkhof et al., 2025), |

Thus, while float reanalysis-based calibration enables acoustic wind estimation in the absence

of local observations, jts accuracy depends strongly on the yeliability of the reference product |
used for fitting,,

3.3 Simulating scalable wind estimation in data-sparse regions

While reanalysis-calibrated acoustic models offer a pathway for estimating surface wind speed-«
in remote regions, the results in Section 3.2 show that this approach alone is jnsufficient during
high-wind or rapidly evolving events. This limitation is especially critical in high-latitude
regions such as the Southern Ocean, where extreme wind forcing drives critical fluxes of heat, |
momentum, and carbon (Gray et al., 2018 Dotto et al., 2019; Zhang et al., 2022; Gruber et al., W
2023).

3.3.1 Local model correction using residuals learning

To overcome this, we implemented a residual learning framework that combines the
generalizability of reanalysis-based fitting with the accuracy of localized corrections.
Specifically, we trained an ensemble of XGBoost regression models to predict the residuals %
between the ERAS5-calibrated estimates and collocated DYFAMED buoy observations (see
Section 2.6). The model was trained using float data within 40 km of DYFAMED and
bootstrapped over 100 iterations to quantify mean corrections and prediction uncertainty (Fig.
1; Fig. 6b). The 40 km radius was selected based on the sensitivity analysis of Cauchy et al. -
(2018), who found it to balance proximity with data availability; though this threshold is likely
site-dependent and should be reassessed in future deployments.,

The corrected wind time series showed substantially better agreement with DYFAMED
observations (Fig. 8), especially during high-wind events where the uncorrected model
underestimated wind speeds. This bias correction increased R? from 0.85 to 0.91 and reduced ,
RMSE from 1.88ms™! to 1.15ms!, a 37.0% reduction in prediction error. While other
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learning-based methods have achieved similar improvements (g.g., ; Zambra et al., 2023, 16%
RMSE reduction). our method explicitly uses reanalysis as a prior and relies only on sparse in-
situ fitting, making it more realistic for remote deployments,,

The machine learning model does not estimate wind speed directly but instead, learns to adjust
Dbiases using a small set of predictors, (i.c.; acoustic signal intensity, deployment day, ERAS- -
calibrated prediction). In effect, it identifies conditions under which ERAS is likely to fail
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informed deep learning model—our method differs by
explicitly using reanalysis as a prior and requiring only
sparse in-situ fitting.

applying larger corrections during high-wind events,,

These results demonstrate that even Jimited in-situ reference data_—for example, brief engine-
off ship-based winds during deployment—can significantly improve estimates along the full
float trajectory. In our case, jn-situ points represented approximately 40% of the record due to
the_short deployment but this introduces potential limitations. First, because fitting and
evaluation used the same dataset, the performance metrics may be optimistic, Future ¥
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deployments should use spatially or temporally separate validation or fully independent i
reference stations. Second, the RMSE reduction reflects improvements mainly at high wind
speeds, where raw errors are largest, and jnay overstate gains at lower winds, Taken together.
these factors imply that these performance metrics likely represent an upper bound of the
framework’s accuracy for long-duration or multi-region deployments. The generalisation
across sites, seasons and events remains untested and will require validation using spatially or
temporally independent datasets.

3.3.2 Strategies for sparse in-situ calibration

In practical terms, acquiring suitable reference observations can be challenging. While ship-
based wind measurements are a natural candidate, particularly during float deployment or
recovery, they may be unsuitable for model fitting if the ship is too close, as engine noise can
contaminate the float’s acoustic signal. A practical compromise is to station the ship far enough
to avoid acoustic interference while keeping wind measurements representative. Alternatively,
a more robust strategy is to deploy floats in proximity to existing meteorological buoys, which
provide collocated wind observations without interfering with subsurface acoustic recordings.

In regions where neither buoys nor suitable ship data are available, identifying whether the
available in-situ coverage is sufficient becomes more complex. This will depend not only on
the duration and trajectory of the float mission, but also on the opportunistic use of additional
reference sources encountered along the way. for example, other buoys, or wind observations
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More broadly, these scenarios highlight the need for flexible modelling approaches that can
exploit heterogeneous and temporally limited reference data. Rather than relying on dense
training datasets or persistent surface observations, future efforts could employ machine-

learning strategies such as domain adaptation, transfer learning, or few-shot learning to adapt
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In the context of profiling floats, such strategies could enable a more scalable approach to<
acoustic model tuning, Jeveraging sparse data from ships, buoys, or satellites, each limited

individually but collectively offering adequate diversity, We propose framing this

as opportunistic multisource model fine-tuning: a hybrid calibration scheme in which local

corrections are derived from whatever reference sources are available, without requiring dense *

or continuous in-situ coverage. Developing and validating such approaches will be essential

for global deployment of acoustically equipped floats while maintaining robustness across
diverse environmental and acoustic conditions.,
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3.3.3 Implications for global observing

While ERAS provides a useful climatological reference, it tends to underestimate short-lived,
high-wind events due to spatial and temporal smoothing (Fig. 8). This is an issue particularly
for gas exchange studies, as extreme winds disproportionately contribute to total fluxes.
Acoustic float data, collected continuously and at high resolution, offer the potential to
complement satellite or reanalysis wind products, particularly during short-lived wind events
that are smoothed out in coarse-resolution products,,
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However, model performance degrades with increasing distance from DYFAMED, reflecting
the spatial decorrelation of wind fields and the limited spatial representativeness of the buoy
observations. Beyond 73 km during Deployment B, both the Nystuen et al. (2015) — ERAS fit
and the machine-learning-corrected float estimates begin to diverge from DYFAMED winds
(Figs. 6 and Fig. 8). This divergence likely reflects true spatial variability rather than model
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failure, as the float and buoy may be sampling different wind regimes, One way to address this

uncertainty is to analyse float trajectories that pass between two surface reference stations,
testing whether refitting at the final station yields consistent corrections or reveals systematic
regional shifts in wind decorrelation, Such an approach will require future deployments that

span multiple buoys, enabling a systematic evaluation of how model performance degrades..or

remains robust, across both time and space.

Additionally, in the Southern Ocean, where anthropogenic noise is relatively low, lower-
frequency bands (<1 kHz) may be viable for wind estimation, as they,are more sensitive to high
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outperform higher-frequency bands under strong forcing conditions, provided contamination

from distant shipping or other sources remains minimal.

Several recent studies have applied machine learning to underwater acoustic data to estimate
wind and rainfall, often relying on long-term, stationary deployments and direct spectral
prediction (Taylor et al., 2020; Trucco et al., 2022; Trucco et al., 2023; ; Zambra et al., 2023).
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the operational realities of profiling floats.

While in-situ data remains the most difficult to obtain in remote regions, our method supports .-

opportunistic fitting, for example, brief ship-based winds during deployment or nearby

meteorological buoys. This hybrid strategy balances scalability and realism, enabling more
robust performance even where long-term reference data are scarce.,
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Apnother important consideration is the potential for regional bias introduced by the depth
correction applied to acoustic levels. This correction compensates driven by local hydrographic
structure and was derived from the float's mean profile at the start of the deployment. Applying

a single correction to the full mission introduces a location-dependent bias that may vary across

floats or seasons. Jdeally, the correction should be recalculated with, each new hydrographic
profile, especially for, long-term or wide-ranging deployments, To ensure basin- to global-scale

comparability, these corrections should be standardised and éxplicitly documented in

processing protocols for acoustic-equipped floats,,

This deployment-focused flexibility is key to scaling up acoustic wind estimation globally, By
combining reanalysis for first-order fitting with localized corrections when available, our \\
framework improves agreement with in-situ winds without requiring long-term surface

infrastructure. Scaling this approach across the BGC-Argo array would provide high-
resolution, all-weather wind monitoring in regions poorly served by existing observing
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4 Conclusions,

This study provides a proof of concept for retrieving surface wind speeds from subsurface

ambient noise recorded by a profiling float equipped with a passive acoustic sensor and

operated alongside standard biogeochemical sensors. Float-measured acoustic noise captured
surface wind variability from 500-1000 m depth, and empirically calibrated estimates closely
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matched buoy observations, confirming the feasibility of subsurface acoustic wind retrieval.
Reanalysis-based calibration reproduced moderate winds but underestimated high-wind

events, highlighting the limits of using reanalysis alone in dynamic environments. A residual-
learning correction using sparse local reference data substantially improved performance
particularly during strong winds. These findings underscore the potential of acoustic-equipped
profiling floats to provide scalable, high-resolution wind observations in remote regions
supporting improved estimates of wind-driven air—sea fluxes.

Nevertheless, our results stem from a single short-duration deployment. Broader validation

across regions, seasons, and acoustic environments is needed, and performance estimates likely
represent an upper bound. Recent benchmarking efforts (e.g., Gros-Martial et al.

already demonstrate the value of assembling multi-site acoustic—meteorological datasets and

highlight the challenges of model transferability across diverse soundscapes. Future missions
should employ independent training—validation—test partitions to rigorously evaluate

generalizability, following best practices established in recent WOTAN studies that explicitly

address temporal correlation and multi-site validation requirements (e.g., Cauchy et al., 2018;
Taylor et al.. 2020; Trucco et al., 2022: Trucco et al., 2023).

2025b)

Acoustic wind retrieval offers a promising pathway for expanding autonomous wind<

monitoring within the global BGC-Argo array, improving coverage in regions poorly served
by existing systems. Sparse in-situ calibration also provides a valuable new data stream for
validating and potentially correcting regional biases in global wind reanalyses. Ultimately, this
work supports the Ocean Sound EOV’s call for standardized methodologies and demonstrates

the feasibility of integrating passive acoustics into sustained, basin- to global-scale observing

systems,,
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| retrieving surface wind speeds from subsurface ambient
noise recorded by a profiling float equipped with a passive
acoustic sensor. By integrating a low-power hydrophone
onto an autonomous profiling float and applying established
acoustic retrieval algorithms, we successfully detected
surface wind variability from depths between 500 and

1000 m. When empirically calibrated using collocated buoy
observations, float-derived wind speed estimates closely
matched in-situ surface measurements, confirming the
feasibility and accuracy of this approach under realistic
oceanographic conditions. |

To evaluate its potential for application in remote, data-
sparse regions, we simulated a scenario where acoustic
models were calibrated solely using ERAS5 reanalysis winds.
Although the ERAS5-based calibration captured moderate
wind variability effectively (2.5-10 ms™), it consistently
underestimated high-wind events, underscoring limitations in
using reanalysis data as a standalone reference. To mitigate
this, we implemented a residual-learning approach,
leveraging brief periods of local wind observations (e.g.,
from ship-based or moored instruments) to correct
systematic errors in the acoustic estimates. This hybrid
methodology substantially improved model performance,
particularly under high-wind conditions, maintaining
accuracy across extended float trajectories and
demonstrating robustness for operational use.{|

These findings underscore the potential of acoustic-equipped
profiling floats as scalable and autonomous platforms
capable of delivering high-resolution surface wind
observations in remote or poorly instrumented oceanic
regions. Such observations are particularly critical for
refining estimates of air—sea exchanges, including the
oceanic uptake and release of CO,, processes significantly
influenced by wind-driven gas exchange. Combined with
emerging biogeochemical proxy algorithms, such as
CANYON-B and CONTENT, acoustic-equipped floats can
now provide fully autonomous, integrated estimates of air—
sea CO; fluxes by coupling accurate wind measurements
with concurrent measurements of oceanic temperature,
salinity, and oxygen.

Nevertheless, this study represents a single deployment in a
semi-enclosed basin. Broader validation across diverse
oceanographic regimes, including open-ocean gyres, polar
regions, and high-energy storm zones, is necessary to fully
assess the robustness, generalizability, and temporal stability
of the proposed correction frameworks. Future deployments
will help refine the methods presented here and furth("_T38]
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