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Abstract. Accurate streamflow forecasting remains a challenge due to the pronounced nonlinearity and multiscale variability 15 

inherent in hydrological processes. In this paper, a hybrid logarithmically transformed complete ensemble empirical mode 

decomposition with adaptive noise (CEEMDAN)-based the spatial graph gated recurrent unit with adaptive graph structure 

(LCEEMDAN-ASGGRU) model is proposed to improve streamflow forecasting. The hybrid model is validated by forecasting 

daily streamflow at 14 stations in the Poyang Lake basin, a region characterized by complex river-lake interactions and 

significant spatial variability in streamflow magnitudes among stations. Results demonstrate that the LCEEMDAN-ASGGRU 20 

model shows superior predictive accuracy compared to benchmark models, achieving a mean Nash–Sutcliffe efficiency 

coefficient of 0.888 and mean root mean squared error of 264. The adaptive graph structure is spatially interpretable, closely 

aligning with known hydrological flow paths, while simultaneously capturing temporal similarity patterns among stations. In 

addition, a hidden Markov model with Gaussian Mixture Regression is used to quantify predictive uncertainty. Compared with 

other models, LCEEMDAN-ASGGRU yields the most reliable forecasts. This study demonstrates the effectiveness of coupling 25 

logarithmic transformation, CEEMDAN decomposition, and adaptive graph learning with graph neural networks, providing a 

novel integrated approach for improving streamflow forecasting accuracy under complex hydrological conditions. 

Keywords: Streamflow forecasting; Graph neural network; Adaptive graph structure; CEEMDAN; Uncertainty quantification. 

1 Introduction 

Accurate and reliable streamflow prediction plays a crucial role in managing water resources, preventing floods, and 30 

conserving ecological systems (El-Shafie et al., 2007; Frame et al., 2022; Nearing et al., 2024). However, streamflow prediction 
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remains highly challenging due to the inherent complexity of hydrological processes, characterized by strong nonlinearity and 

non-stationarity, and influenced by numerous external factors (Tao et al., 2025). 

Existing streamflow forecasting methods can be classified into two main types: process-driven and data-driven (Liu et al., 

2022). Process-driven methods, also known as physically-based models, aim to build detailed and simulated watershed models 35 

using the underlying physics of hydrological processes (Gao et al., 2020). These models enable more realistic model structures, 

parameterizations, and calibrations (Gao et al., 2017). However, they require detailed parameterizations and extensive data 

inputs, and often encounter substantial uncertainties due to oversimplifications of the complex hydrological processes (Xiang 

and Demir, 2020). Compared with process-driven models, data-driven models can achieve a higher predictive accuracy with 

lower modeling requirements. Statistical models, as a classical subset of data-driven methods, have been extensively applied 40 

to streamflow forecasting in diverse hydrological regions, with representative models including autoregressive (Myronidis et 

al., 2018) and autoregressive integrated moving average models (Wen et al., 2019). However, due to their reliance on a linear 

assumption, conventional statistical methods struggle to represent the intricate nonlinear dynamics embedded within 

streamflow series, often resulting in low predictive performance. 

Recently, machine learning has received considerable attention because of its potent learning capabilities and adeptness at 45 

handling complex nonlinear processes (Ni et al., 2020). Techniques such as support vector machine (SVM), random forest 

(RF), and artificial neural network (ANN) have shown improved performance in various hydrological prediction tasks (Adnan 

et al., 2020; Oppel and Schumann, 2020; Tan et al., 2018; Yu et al., 2023). Li et al. (2016) developed an RF model for 

forecasting lake water levels and demonstrated its superior accuracy over traditional models. Noori and Kalin. (2016) 

developed an ANN with a quasi-distributed watershed for daily streamflow forecasting, demonstrating that coupling ANN with 50 

semi-distributed models can lead to an improvement in daily streamflow prediction in ungauged watersheds.  

Although conventional (shallow) machine learning models have proven effective for nonlinear streamflow prediction, their 

flat architectures limit their ability to learn the hierarchical representations required as hydrological datasets grow in size and 

complexity. This challenge has been effectively addressed by the rapid advancement of deep learning techniques and the 

acceleration of GPU computing, which together enable more efficient hierarchical feature extraction from large and complex 55 

datasets. The hierarchical structure of deep neural networks, featuring multiple layers of interconnected neurons, provides a 

greater ability to represent complex functions than machine learning methods (Quilty et al., 2022; Tao et al., 2023). Recurrent 

neural network (RNN) is a type of sequence model that maintains a vector of hidden states that propagates over time (Tao et 

al., 2021). However, conventional RNNs struggle to learn from long sequences, leading to the vanishing gradient problem (Ni 

et al., 2020). An improved version of the RNN, called the long short-term memory network (LSTM), offers unique advantages 60 

while maintaining the general characteristics of the RNN (Lin et al., 2021). Xiang et al. (2020) applied LSTM and sequence-

to-sequence models for hourly rainfall-runoff prediction and showed that the combined architecture significantly enhances 

short-term flood forecasting accuracy. As a streamlined variant of LSTM, the gated recurrent unit (GRU) achieves comparable 

predictive performance to LSTM while reducing model complexity and parameter count, thereby improving computational 

efficiency in practical applications (Cho et al., 2014). However, LSTM and GRU are primarily designed for one-dimensional 65 
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sequences and therefore cannot fully exploit the spatial dependencies embedded in geospatial hydrological systems (Jin et al., 

2024; Liu et al., 2023, 2022; Zhao et al., 2024). 

Graph neural networks (GNNs), owing to their ability to operate directly on graph-structured data, have emerged as a promising 

approach for capturing both spatial heterogeneity and temporal dynamics embedded in these increasingly unstructured 

hydrological datasets (Bronstein et al., 2017). Graph-based learning has been a significant application area across various 70 

domains, including computer vision, natural language processing, recommender systems, chemistry, and transportation 

(Pradhyumna and Shreya, 2021; Rahmani et al., 2023; Reiser et al., 2022; L. Wu et al., 2023a, b). In hydrological forecasting, 

Sun et al. (2021) explored the application of several state-of-the-art GNNs, including GraphWaveNet, Graph Convolutional 

Network, and ChebNet, for streamflow forecasting in both gauged and ungauged basins. The results demonstrated that GNNs 

are effective in capturing spatiotemporal dependencies and offer a promising framework for large-scale, end-to-end streamflow 75 

prediction. A key determinant of GNN performance lies in how the graph structure is defined, as it directly affects the 

propagation and aggregation of spatial information throughout the network (Zhu et al., 2021). Most existing hydrological 

studies construct graph structures based on predefined spatial criteria, such as river connectivity or geographic proximity, 

which are typically referred to as static graphs (Gai et al., 2023; Jin et al., 2024; Lin et al., 2021; Liu et al., 2023). Based on 

basin topology, Liu et al. (2022) developed a directed graph deep neural network and achieved strong performance in multi-80 

step runoff forecasting. Gai et al. (2023) designed and evaluated multiple static graph structures, including complete, 

information flow, and groundwater flow field association graphs, to better capture the spatial dependencies inherent in karst 

hydrological systems. However, two challenges still prevent accurate streamflow forecasting using GNN models. 

The primary challenge lies in how to accurately define the spatial relationships among hydrological stations, which 

fundamentally determines how information is propagated across the graph. While recent studies have validated the potential 85 

of graph-based approaches in hydrological applications (Liu et al., 2023), these models still rely on predefined static graphs 

that cannot adapt to the underlying complex and evolving inter-station dependencies. They are typically developed for specific 

basins and calibrated to particular hydrological settings, limiting their generalization ability across regions or under changing 

environmental conditions. To overcome this limitation, Wu et al. (2019) first proposed GraphWaveNet, which learns an 

adaptive graph structure from traffic data to better capture hidden spatial dependencies. However, the application of this model 90 

to hydrology requires further exploration. 

The second challenge lies in the intrinsic complexity of hydrometeorological data, characterized by strong nonlinearity and 

non-stationarity (Šraj et al., 2016). Directly analyzing original time series would ignore some features of different time scales. 

To overcome this limitation, hybrid approaches that combine deep learning with signal decomposition techniques have been 

increasingly applied to extract multi-scale patterns and improve model robustness (Adamowski and Sun, 2010; Karran et al., 95 

2014). In particular, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) has been widely 

used to process non-stationary time series by decomposing them into a set of intrinsic mode functions (IMFs) with distinct 

frequency characteristics (Cao et al., 2019; Karijadi et al., 2023; Zeng et al., 2023). Zeng et al. (2023) developed a CEEMDAN-

based model that integrates signal decomposition, reconstruction, and ensemble prediction, achieving high accuracy and 

https://doi.org/10.5194/egusphere-2025-4171
Preprint. Discussion started: 4 September 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

robustness in daily streamflow forecasting. These results demonstrate that CEEMDAN can effectively preprocess non-100 

stationary streamflow data, thereby improving predictive performance. 

In addition, quantifying forecast uncertainty is crucial to assess the predictive reliability of the model. Rather than incorporating 

uncertainty modeling into the prediction model, researchers have developed post-processing techniques to evaluate the 

predictive confidence of models. Representative methods include Bayesian model averaging (Duan et al., 2007), lower upper 

bound estimation (Khosravi et al., 2010), Gaussian process regression (Sun et al., 2014), and hidden Markov model (HMM) 105 

with Gaussian Mixture Regression (GMR) (Liu et al., 2018). 

In this study, we propose a logarithmically transformed CEEMDAN-based the spatial graph gated recurrent unit (SGGRU) 

with adaptive graph structure (LCEEMDAN-ASGGRU) for daily streamflow forecasting. The key contributions of this study 

are summarized as follows: 

(1) The LCEEMDAN-ASGGRU model is proposed for daily streamflow forecasting. Different from the existing models, the 110 

proposed model combines signal processing and a spatiotemporal model with adaptive graph learning, which captures multi-

scale temporal patterns and dynamic spatial dependencies. 

(2) HMM-GMR is applied to quantify the forecasting uncertainty. Evaluation demonstrates that our proposed model achieves 

superior deterministic accuracy, especially under extreme flow conditions. 

(3) The hybrid LCEEMDAN-ASGGRU is applied to the Poyang Lake basin and compared with five models (LSTM, 115 

DTWSGGRU, FDSGGRU, ASGGRU, CEEMDAN-ASGGRU). The results show that the proposed model outperforms all 

five other models in terms of RMSE and NSE. 
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2 Data and problem formulation  

2.1 Study area and dataset  

 120 

Figure 1: Location of hydrological stations. 

 

The Poyang Lake basin is located in southeastern China, on the south shore of the middle and lower reaches of the Yangtze 

River. The basin is primarily fed by five major rivers—Ganjiang, Fuhe, Raohe, Xinjiang, and Xiushui—each with multiple 

tributaries and distinct hydrological characteristics. These rivers converge into Poyang Lake before eventually draining into 125 

the Yangtze River.  

The dataset utilized in this study, obtained from the Hydrological Yearbook of China, consists of daily observations of 
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streamflow, temperature, and precipitation collected from 14 hydrological stations in the Poyang Lake basin. Figure 1 shows 

the spatial distribution of selected stations, covering the five major river systems that drain into the Poyang Lake. The daily 

data span a 12-year period (2009-2020), comprising a total of 4383 daily records. The first 80% of the data (January 1, 2009 130 

to March 31, 2018) were used for training, while the remaining 20% (April 1, 2018 to December 31, 2020) were reserved for 

testing. 

2.2 Graph construction strategies 

In graph-based hydrological modeling, the spatial relationships among observation stations are encoded as graphs to capture 

the dependencies arising from geographical proximity, hydrological flow paths, or behavioral similarity (Sun et al., 2021). The 135 

underlying graph structure serves as the foundation for message propagation in GNNs, and therefore has a significant impact 

on model performance and generalization. 

To formalize the spatial and temporal representation of our dataset, we introduce the following definitions. 

Definition 1 (Spatial Graph). The hydrological observation network is represented as a graph ( , )=  , where 

 1 2, , , Nv v v=   is the set of N  nodes (stations), and    denotes the set of spatial connections (edges). These 140 

edges are encoded using an adjacency matrix N NA R  , where 
ijA  denotes the strength or existence of a connection between 

node 
iv  to node 

jv . The matrix A  may be binary or real-valued, directed or undirected, and static or dynamically learned. 

Definition 2 (Feature Matrix). At each time step t , each node 
iv   is associated with a feature vector t F

ix R , where 

3F =  represents three hydrometeorological variables: streamflow, precipitation and temperature. The complete input 

sequence is arranged into a 3D tensor T N FX R   , where T  is the number of time steps.  145 

Definition 3 (Spatial-Temporal Graph). A spatiotemporal graph is a dynamic representation that captures both spatial and 

temporal dependencies in the hydrological system. It is defined as a sequence of attributed graphs ( ),t t tA X=  , where 

N N

tA R   is a fixed or learnable adjacency matrix at time step t and N F

tX R   is the feature matrix.  

Based on this unified formulation, we consider and compare three strategies for constructing the adjacency matrix A : 

(a) Flow Direction Graph: 150 

The flow direction graph defines the adjacency matrix 
N NA R   based on known hydrological flow paths between stations. 

It constructs a directed and binary graph by encoding upstream-to-downstream relationships as: 

1, if station  is upstream of station 

0, otherwise

i j

ij

v v
A


= 


      (1) 

where ijA  indicates a directed edge from station 
iv  to station jv .  

(b) Dynamic Time Warping (DTW) Graph: 155 
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In this strategy, the adjacency matrix is constructed from DTW distances between multivariate time-series recorded at each 

station. It yields a symmetric weighted graph. Given the feature matrix T N FX R   , where each node has three input features 

(streamflow, precipitation and temperature), we denote 
( )f T

ix R  as the time series of feature f  at station i . For each pair 

of nodes ( , )i j , we compute DTW distances: 

( ) ( ) ( )( )  DTW , , flow,prcp, temp
f f f

ij i jd x x f=        (2) 160 

The final adjacency value 𝐴𝑖𝑗  is computed as a weighted combination of similarity scores derived from DTW distances: 

prcp temp flow

exp exp exp
ij ij ij

ij

p t f

d d d
A   

  

     
= − + − + −     

     
     

     (3) 

where σ ,σ ,σp t f
 are the average DTW distances for each feature across all node pairs, used for normalization. The 

coefficients , ,    are manually assigned weights satisfying 1 ( 0.4, 0.3, 0.3)     + + = = = =  to control the 

contribution of each variable. 165 

(c) Adaptive Graph: 

An adaptive graph avoids using a predefined topology and instead learns its adjacency matrix jointly with the forecasting task. 

The underlying learning mechanism is detailed in Section 3.2. 

Based on the spatio-temporal graph formulation ( ), tt A X= , the objective of streamflow forecasting is to learn a mapping 

function that captures both spatial and temporal dependencies. Let  1: 1, , H N

t t H t t HY Y Y R 

+ + + +=     denote the streamflow 170 

values to be predicted over a future horizon of H  steps, where each N

t hY R+   represents the runoff at all stations at time 

t h+ . The forecasting task is thus formulated as: 

( )1: θ 1:
ˆ ,t t H t T tY F X A+ + − +=       (4) 

where 
θF  is a parameterized model that captures both spatial and temporal dependencies for streamflow forecasting. 

3 Methodology 175 

This section introduces the theoretical method used in this study.  

3.1 CEEMDAN algorithm 

 Empirical mode decomposition (EMD) adaptively decomposes a non-stationary signal into a finite set of IMFs based on 

the signal’s intrinsic time scales (Huang et al., 1998). Nevertheless, EMD often suffers from mode mixing, where oscillations 

of similar frequency appear in several modes or oscillations of disparate amplitudes are combined in a single IMF. Ensemble 180 

EMD (EEMD) mitigates this by repeatedly adding Gaussian white noise and averaging the decompositions (Wu and Huang, 
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2009), but residual noise can still contaminate the reconstructed signal. CEEMDAN further addresses these shortcomings by 

guaranteeing completeness and adaptively cancelling the injected noise during reconstruction, thus yielding lower 

reconstruction error and virtually eliminating mode mixing (Lin et al., 2020). In contrast to wavelet- or Fourier-based 

approaches that rely on user-specified basis functions, CEEMDAN is entirely data-driven and adaptive. It decomposes a time 185 

series into a finite set of IMFs and a residual component. Each IMF captures oscillatory behavior at different time scales, 

allowing complex temporal patterns to be analyzed in a more structured manner (Guo et al., 2023). In this study, we employ 

CEEMDAN to capture the multi‑scale characteristics hidden in the hydrological time series. The decomposition yields a 

collection of IMFs, each capturing variability at a specific temporal scale, along with a residual trend component. Partitioning 

the series into scale‑specific, quasi‑stationary constituents allows the subsequent graph neural network submodels to better 190 

capture short‑term, medium‑term, and long‑term streamflow dynamics. 

 Formally, given a univariate time series ( )X t , CEEMDAN expresses it as a sum of K intrinsic mode functions and a 

residual term: 

( ) ( ) ( )
1
IMF

K

k Kk
X t t r t

=
= +           (5) 

where ( )IMFk t denotes the -thk  intrinsic mode function capturing components from high to low frequency, ( )Kr t  is the 195 

final residual after extracting K  IMFs.  

3.2 Adaptive graph learning 

A fundamental challenge in applying GNNs to hydrological forecasting is accurately and flexibly defining spatial dependencies 

among hydrological stations. Static graph structures, though widely adopted, are limited by their basin-specific and time-

invariant properties, which restrict their ability to generalize across regions or adapt to evolving hydrological dynamics. 200 

Inspired by GraphWaveNet (Wu et al., 2019), we learn a directed, row-normalized adjacency matrix directly from the data: 

( )( )row 1 2softmax ReLUadp E E=A          (6) 

where 
1 2, N eE E R   are two trainable node-embedding matrices, N  is the number of stations and e  the embedding 

dimension. 

This formulation enables the learning of directed spatial dependencies directly from the data.  205 
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3.3 Spatial graph gated recurrent unit (SGGRU) module 

 

Figure 2:  Architecture of the SGGRU module. 

 

Following the standard GRU, we extend its capabilities by integrating spatial dependencies via graph convolution. Specifically, 210 

we design a spatial graph gated recurrent unit (SGGRU) module, which enhances the recurrent unit’s ability to model 

spatiotemporal dynamics across hydrological stations (Zhao et al., 2020). As illustrated in Fig. 2, SGGRU architecture 

incorporates graph convolution operations into both the update and reset gate computations, as well as the candidate hidden 

state generation. This structure allows the model to simultaneously capture spatial correlations among stations (via a learned 

or predefined adjacency matrix) and temporal dependencies within the time series. 215 

Mathematically, the SGGRU can be expressed as follows: 

( )( )1, σ GraphConv1 , ,t t t t adpr u x h A−=             (7) 

 ( )( )1tanh GraphConv2 , ,t t t t adph x r h A−=        (8) 
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( )1 1t t t t th u h u h−= + −        (9) 

where 
tu , 

tr  and 
th  are the update, reset, and potential cell state at time t, respectively. 

1th −
 is the output of the hidden 220 

layer at time 1t − . 
tx  is the input at time t. GraphConv1( )  and GraphConv2( )  are the graph convolution layers 

parameterized by learnable weights. σ  is the sigmoid function. tanh  is the hyperbolic tangent, and  is the element-

wise multiplication. 

 This architecture ensures that each recurrent update accounts for both the temporal evolution of streamflow and 

meteorological features, as well as the spatial dependencies among stations. It accommodates either fixed or learned adjacency 225 

matrices. In this study, all graph-based models, including DTWSGGRU, FDSGGRU, ASGGRU, and their CEEMDAN-

enhanced variants share a common SGGRU backbone to ensure architectural parity across spatial representations. We use the 

Adam optimizer for training and other training settings are discussed in Section 4. 

3.4 Proposed LCEEMDAN-ASGGRU model 

 230 

Figure 3: Framework of LCEEMDAN-ASGGRU. 

 

To exploit the strengths of multiscale decomposition and adaptive spatial-temporal modeling, we propose a hybrid 

LCEEMDAN-ASGGRU. The specific modeling process is shown in Fig. 3. 

(1) To stabilize variance and mitigate the influence of extreme values observed in streamflow and precipitation time series, 235 
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we apply a logarithmic transformation prior to decomposition. Specifically, we adopt the natural logarithm with the 

transformation defined as: 

log ( ) log(1 ( ))X t X t= +       (10) 

This transformation ensures numerical stability while reducing the influence of large outliers, thereby enhancing the 

subsequent CEEMDAN decomposition and improving the separability of IMFs across scales. 240 

(2) The CEEMDAN decomposition was performed using the PyEMD library with default parameters, including a noise 

standard deviation of 0.2 and 250 noise-assisted trials. Each variable (streamflow, precipitation, and temperature) at each 

station was decomposed into eight IMFs and one residual component. 

(3) Each IMF and residual component is standardized using z-score normalization before forecasting to ensure they remain 

on the same scale:  245 

log log'
( ) ( )

( )
X t X t

X t


−
=        (11) 

where 
log ( )X t  denote the mean deviation of the series and   denote the mean and standard deviation of the series. The 

corresponding normalization parameters were stored and applied during postprocessing to enable accurate inverse 

transformation of the model predictions back to the original scale. 

(4) Each of the nine decomposed components from the CEEMDAN process is treated as an independent prediction subtask. 250 

For each component, a separate instance of the ASGGRU model is trained independently, allowing the model to specialize in 

capturing the temporal dynamics unique to that frequency scale. Notably, each IMF and the residual has its own set of optimal 

hyperparameters, reflecting the varying statistical characteristics and predictive complexities across components. This design 

provides additional flexibility, enabling the model to allocate capacity appropriately.  

(5) During inference, each trained submodel outputs a predicted sequence corresponding to its specific component. These 255 

outputs are then linearly aggregated across all components to reconstruct the final streamflow prediction. Mathematically, the 

reconstruction can be expressed as: 

1

ˆ ˆ( ) ( )
K

k

k

y t y t
=

=       (12) 

where ˆ ( )ky t  denotes the prediction from the IMF or residual submodel, ˆ( )y t   is the final reconstructed streamflow 

prediction at time step t . 260 

The proposed hybrid LCEEMDAN-ASGGRU model integrates a logarithmic transformation for variance stabilization, the 

CEEMDAN technique for multiscale decomposition, and an ASGGRU for spatial-temporal modeling. This integrated 

framework enables the model to effectively capture nonlinear, multiscale hydrometeorological dynamics and complex 

inter-station dependencies. For comparison, the CEEMDAN-ASGGRU model employs the same framework as the 

LCEEMDAN-ASGGRU but excludes the logarithmic transformation. 265 
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3.5 Evaluation indicators 

 To evaluate the forecast accuracy of streamflow prediction models, two widely adopted performance metrics are used: 

root mean squared error (RMSE) and the Nash–Sutcliffe efficiency coefficient (NSE). Together, these two metrics provide a 

balanced assessment of both the error magnitude and the explained variance in the predictions. RMSE and NSE are calculated 

as follows： 270 

2

1

)ˆ
1

(
N

i i

i

RMSE y y
N =

= −       (13) 

2

1

2

1

( )ˆ
1

( )

N

i ii

N

ii

y y
NSE

y y

=

=

−
= −

−




      (14) 

3.6 Forecasting uncertainty 

HMM-GMR (Calinon and Billard, 2007) is employed as a post-processing method to quantify the predictive uncertainty of 

the trained models. This approach enables estimation of the full conditional distribution of the observed streamflow, given the 275 

model's point forecast, and is capable of handling heteroscedastic and non-normal error structures, which are common in 

hydrological time series (Chen et al., 2016). 

In the proposed framework, we first construct a joint sequence consisting of the predicted and observed streamflow values, 

( )pred obs

1{ , }T

t t tX x x ==  for each model at each target station. An HMM with K  hidden states is trained on this bivariate 

sequence using the expectation-maximization (EM) algorithm. In our implementation, the number of hidden states is fixed at 280 

3K = , balancing modeling flexibility and stability while maintaining low computational complexity. Each hidden state 

corresponds to a bivariate Gaussian distribution, and the hidden state sequence evolves according to a first-order Markov chain. 

Let 
( ) ( )
1 2,

k k

k   =
 

 and 

( ) ( )

( ) ( )

11 12

21 22

k k

k k k

  
 =  

   

be the mean vector and covariance matrix of the bivariate distribution in state 

𝑘. The conditional distribution of the observation given the prediction is then derived using Gaussian Mixture Regression 

(GMR). The final predictive distribution is a weighted combination of state-wise conditional Gaussians: 285 

obs pred pred obs ( ) ( )

2|1 2|1

1

( ) ( ) ( ; , )
K

k k

t t k t t

k

p x x w x x 
=

=  ∣       (15) 

where ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) pred ( ) ( ) ( ) ( ) ( ) ( )

2|1 2 21 11 1 2|1 22 21 11 12,k k k k k k k k k k

tx  
− −

= +  −  =  −    and the weights 
kW  are computed via the 

forward algorithm of the HMM. 

Using the resulting predictive distribution at each time step, we evaluate the uncertainty performance of each model based on 

three standard metrics: 290 
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(1) Interval Coverage Probability (ICP) 

The ICP measures the proportion of observed values falling within the model’s prediction interval at a given confidence level 

α. A well-calibrated model is expected to produce an ICP close to the nominal confidence level. 

( )( ) ( ) ( ) ( )obs

2|1 2|1 2|1 2|1

1

1
ICP ,t t t t

T
k k k k

t

t

x z z
T

    
=

 =  −  +        (16) 

where  is the indicator function, Z
 is the standard normal quantile, and 

( ) ( )

2|1 2|1,t tk k   are the predictive mean and standard 295 

deviation estimated from the HMM-GMR at time t . 

(2) Prediction Interval Width (PIW) 

The PIW quantifies the average width of the prediction interval at a given confidence level. It reflects the sharpness of the 

predictive distribution: narrower intervals are preferred when coverage is adequate. 

( )( )

2|1

1

1
PIW 2 t

T
k

t

z
T

 
=

=         (17) 300 

(3) Continuous Ranked Probability Score (CRPS) 

CRPS evaluates the quality of the full predictive distribution by measuring the squared difference between the predicted 

cumulative distribution function ( )tF   and the empirical step function at the observation: 

2
obs

1

1
CRPS ( ) ( )

T

t t

t

F x x x dx
T

+

−
=

 = − −        (18) 

where ( )  is the Heaviside step function. 305 

4 Results and discussion 

4.1 Experimental configuration 

To ensure a fair and consistent evaluation across all models, we adopt a unified experimental configuration. The feature matrix 

and target time series are split into training and testing subsets using an 8:2 ratio. Each model receives the same multivariate 

input tensor 12 3

11:

N

t tX R  

−    (12-day history of streamflow, precipitation and temperature at the 𝑁 = 14  stations) and 310 

predicts next-day streamflow 
1

ˆ N

tY R+  . 

4.2 Model settings 

4.2.1 Baseline and Graph-based models 

We construct four deep learning models: LSTM (as a non-graph baseline model), and three GNN-based models—

DTWSGGRU, FDSGGRU, and ASGGRU. All graph models are implemented using the SGGRU introduced in Section 3.3. 315 
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For consistency and fair comparison, all models share the same training settings: a batch size of 32, a learning rate of 0.001 

and 1000 training epochs. SGGRU module adopts a two-layer graph convolution structure with a hidden dimension of 64, and 

it is optimized using Adam. Training is conducted with the Huber loss function, which enhances robustness to outliers and 

abrupt fluctuations commonly present in streamflow data. Model performance is evaluated using two widely adopted metrics, 

RMSE and NSE (Section 3.5). Each experiment is repeated 10 times with different random seeds to ensure reliable results.  320 

(1) LSTM: The LSTM network serves as a classical baseline for sequence modeling. It consists of three stacked LSTM 

layers.  

(2) DTWSGGRU: This model uses a fixed spatial graph constructed based on DTW distances computed from the historical 

dataset between pairs of stations. This graph captures temporal similarity patterns across stations. 

(3) FDSGGRU: This model utilizes a binary (0-1) flow-direction adjacency matrix representing the hydrological network, 325 

where edges denote directed upstream–downstream flow relationships. This structure encodes physical connectivity within the 

river system. 

(4) ASGGRU: ASGGRU integrates a data-driven adaptive graph into the SGGRU module. Instead of using a predefined 

static graph, the model dynamically learns spatial dependencies during training through a node embedding mechanism. The 

embedding dimension is set to 16.  330 

4.2.2 Decomposition-based variants 

For decomposition-based approaches, the original dataset is first decomposed into IMFs and a residual. Each decomposition 

component is then trained using a separate ASGGRU model, which is optimized independently. For every submodel, we 

conduct a 5-fold cross-validation to explore the hyperparameter space (Table 1), including hidden and embedding dimensions, 

batch size, learning rate, weight decay, and maximum epochs. The CEEMDAN-ASGGRU model uses the same submodel 335 

architecture and hyperparameter configurations as the LCEEMDAN-ASGGRU model. 

4.3 Prediction performance comparison 

To validate the effectiveness of the proposed LCEEMDAN-ASGGRU, this section presents a comprehensive performance 

analysis through comparative experiments. Instead of evaluating each model in isolation, we adopt an ablation approach, 

progressively breaking down the proposed model into its key components: the adaptive graph learning module, the multi-scale 340 

CEEMDAN decomposition, and the logarithmic transformation. This hierarchical evaluation allows us to isolate and quantify 

the contributions of the spatial and temporal enhancements embedded in the architecture. 
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4.3.1 Overall accuracy 

 

Figure 4: Model performance comparison across different forecasting models. 345 

 

The overall forecasting performance of the six models is summarized in Fig. 4. The DTWSGGRU, FDSGGRU, and ASGGRU 

all outperform the non-graph LSTM baseline, indicating that incorporating spatial dependencies through graph-based 

architectures enhances predictive skill. This observation is consistent with the findings of Yang et al. (2023), which 

demonstrated that integrating spatial graph structures significantly enhances runoff prediction accuracy compared to non-graph 350 

baselines in multi-station experiments. The ASGGRU achieves higher accuracy than the two static graph models, highlighting 

the benefits of adaptively learning spatial relationships from data rather than relying solely on predefined graph structures. 

In addition, the integration of multiscale decomposition through CEEMDAN substantially enhances model performance, and 

the application of logarithmic transformation prior to decomposition yields the best overall accuracy. The LCEEMDAN-

ASGGRU model achieves the lowest mean RMSE of 264 and the highest mean NSE of 0.888, representing the best overall 355 

predictive performance. 

These overall findings provide a consistent foundation for the following analyses, where the specific contributions of graph 

construction and decomposition strategies are examined in greater detail at both the model level and the station level. 
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4.3.2 Effect of graph construction 

 360 

Figure 5: Two statics graph, (a) DTW-similarity graph, an undirected, weighted graph, edge width is proportional to similarity, and 

only connections above 0.3 threshold are shown; (b) Flow-direction graph, a directed graph based on the river-flow adjacency matrix, 

where arrows indicate upstream-to-downstream connectivity. 

 

To examine the impact of different spatial graph structures on streamflow prediction, we compared three variants of the 365 

proposed architecture that differed only in how their spatial adjacency matrices were constructed: DTWSGGRU, FDSGGRU, 

and ASGGRU. The DTWSGGRU employs a static similarity graph whose edge weights are given by DTW distances between 

historical series, thereby capturing temporal synchrony among stations (Fig. 5 (a)). The FDSGGRU model adopts a binary 

flow-direction graph to encode hydrological connectivity based on river topology (Fig. 5 (b)). Both graphs are predefined and 

fixed throughout training. In contrast, the ASGGRU model learns an adaptive spatial graph via node embeddings that are 370 

updated jointly with the model parameters.  

As shown in Fig. 4, the overall RMSE and NSE scores reveal that all three GNN models outperform the LSTM baseline, 

highlighting the benefit of incorporating spatial structure. Among the static graph models, FDSGGRU outperforms 

DTWSGGRU on average (mean NSE: 0.751 vs. 0.716; mean RMSE: 479 vs. 496), suggesting that when a GNN adopts the 

flow-direction adjacency matrix, its spatial representation aligns more closely with the basin’s hydraulic connectivity, leading 375 

to improved streamflow prediction accuracy. This is consistent with Sun et al. (2022), which found that incorporating flow 

direction in spatial graphs leads to more physically consistent hydrological predictions across diverse basins. 
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However, as shown in Tables 2 and 3, neither DTWSGGRU nor FDSGGRU consistently outperforms LSTM at every station. 

For example, DTWSGGRU underperforms LSTM at stations S1, S4, S5, and S13, and FDSGGRU lags behind LSTM at 

station S5 in both NSE and RMSE. These discrepancies illustrate the limitations of static graphs: DTWSGGRU is constrained 380 

by non-physical similarity measures, while FDSGGRU, though physically grounded, uses fixed edge weights that fail to reflect 

varying connection strengths across different hydrological regimes. This limitation has also been emphasized in recent graph 

learning literature. A recent survey on dynamic graph neural networks pointed out that static graphs “limit the ability to model 

complex and time-varying spatial relationships” (Zheng et al., 2024), reinforcing the necessity of adaptive graph construction 

in systems with evolving spatial dependencies. 385 

In contrast, ASGGRU achieves higher mean NSE and lower mean RMSE than LSTM at all stations. Its ability to dynamically 

learn spatial correlations allows it to capture both physically plausible structures (as in FDSGGRU) and temporal alignment 

patterns (as in DTWSGGRU). This flexibility is important in basins with complex hydrological processes or variable forcing-

response dynamics. These findings suggest that while predefined graphs offer modest benefits over non-graph baselines, 

adaptive graph learning provides the most consistent and substantial improvements, validating its importance as a core graph 390 

learning component of the proposed framework. 

4.3.3 Improvement of decomposition and logarithmic transformation 

In this subsection, we investigated how streamflow forecasting could be further enhanced by introducing multiscale temporal 

decomposition and logarithmic transformation, focusing on two augmented models: CEEMDAN-ASGGRU and 

LCEEMDAN-ASGGRU. 395 

The CEEMDAN-ASGGRU model extended ASGGRU by incorporating CEEMDAN decomposition into the modeling 

pipeline. As delineated in Section 3.4, the streamflow, precipitation, and temperature time series at each station were 

decomposed into eight IMFs and one residual component. Each of these components was modeled independently using a 

dedicated ASGGRU model. This enableed the architecture to explicitly learn temporal dynamics at varying frequency scales. 

From Fig. 4, CEEMDAN-ASGGRU demonstrated a 24.27% reduction in mean RMSE and a 6% increase in mean NSE 400 

compared to ASGGRU. Such performance improvements were consistent with prior hydrological modeling. Xu et al. (2024) 

reported that a hybrid CEEMDAN-based model reduced RMSE by 60-70% in monthly runoff prediction for two stations in 

China. 

The LCEEMDAN-ASGGRU employed a log-transformation of the time series prior to CEEMDAN decomposition. The 

objective of this step was to stabilize the variance and mitigate the impact of extreme streamflow values. The LCEEMDAN-405 

ASGGRU model exhibited the lowest mean RMSE of 264 and the highest mean NSE of 0.888 (Fig. 4), demonstrating superior 

performance in comparison to all the other models evaluated in this study. Six stations (S5, S7, S10, S11, S13, S14) achieved 

NSE values above 0.900, while station S1 records the largest improvement over the LSTM (ΔNSE = +0.260) (Table 3). 

To further visualize these improvements, Figure 6 presents the observed and predicted streamflow of six models at two 

representative stations: S4, located in the southernmost part of the basin and exhibiting the lowest mean streamflow, and S5, 410 
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located in the northernmost end and recording the highest mean streamflow. In addition, a partially enlarged subgraph is 

provided for clearer observation. From Fig. 6, we found that the forecast results of the LCEEMDAN-ASGGRU model were 

very consistent with the observed streamflow. At both hydrological extremes, the proposed model outperformed the five other 

models in tracking changes in streamflow dynamics.  

The step-wise performance gains show that each added module supplies a distinct, non-overlapping piece of the forecasting 415 

puzzle. The adaptive graph structure continuously recalibrates edge weights, reflecting the strength of spatial relationships and 

the degree of similarity between sites. The CEEMDAN decomposition disassembles the original flow sequence into mutually 

unmixed multi-scale IMFs, thereby enabling the model to learn flow patterns at different scales separately. The logarithmic 

transformation stabilizes variance and compresses extreme peaks. The combination of these three ingredients produces a 

uniformly superior model that achieves accurate prediction of streamflow of varying scales. 420 

 

Figure 6: Observed and predicted streamflow at two stations: (a) S4, located at the southernmost point of the basin and characterized 

by persistently low-flow conditions; (b) S5, situated at the northernmost point and exhibiting frequent and extreme high-flow events. 
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4.4 Spatial interpretability analysis 

 425 

Figure 7: Learned adaptive adjacency matrix obtained from ASGGRU. 

 

To investigate the spatial representations captured by the adaptive graph learning mechanism, we analyze the learned graph 

obtained from ASGGRU and evaluate its hydrological consistency, its relationship with static graph priors, and its overall 

interpretability. 430 

The learned adaptive adjacency matrix is visualized in Fig. 7. Several strong directional connections emerge from the learned 

structure, many of which correspond well with known flow-direction relationships within the river network. In particular, 

connections such as S3→S10, S4→S14, S7→S11, and S13→S7 reflect physically consistent upstream–downstream 

dependencies that are embedded in the true hydrological topology. Hence, the data-driven learning process extracts physically 

meaningful connectivity without any explicit spatial supervision. This result echoes findings by Bai and Tahmasebi. (2023), 435 

who have also demonstrated that learned adjacency matrices from adaptive GNNs can reflect meaningful spatial structures 

even without explicit supervision in groundwater forecasting and environmental modeling. Besides these hydrologically 
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plausible edges, the matrix displays indirect or cross-basin connections that may capture remote influences or shared 

meteorological forcing. 

To further quantify the relationship between the learned adaptive graph and the two static priors, we conducted an overlap 440 

analysis under varying edge-weight thresholds (0.05, 0.10, and 0.20). Table 4 summarizes the overlap analysis results between 

the learned adaptive adjacency matrix and the predefined FD and DTW graphs under different thresholds, which provides 

quantitative insights into the extent of consistency and divergence between data-driven and prior-based graph structures. The 

adaptive graph demonstrates strong consistency with the flow-direction prior. At the 0.05 threshold, 80.5% of the A edges 

overlap with FD edges, indicating that the adaptive graph learning model effectively captures physically plausible flow 445 

connectivity patterns. In contrast, only 32.1% of A edges coincide with DTW-based similarity edges, reflecting the model's 

more selective incorporation of temporal similarity information. 

This overlap pattern remains stable as the threshold increases. As the edge-weight threshold rises from 0.05 to 0.20, the total 

number of effective A edges decreases from 72 to 45. Across the examined thresholds, the FD-A overlap consistently exceeds 

70%, while the DTW-A overlap remains below 20%. Importantly, across all thresholds, no A-only edges were identified, 450 

indicating that the adaptive graph learning primarily operates within the combined subspace spanned by flow-direction and 

temporal similarity priors, rather than introducing entirely novel spatial connections. This behavior suggests that the adaptive 

graph learning model effectively refines and re-weights hydrologically and temporally meaningful spatial relationships, 

balancing physical consistency with data-driven flexibility. 
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4.5 Uncertainty estimation 455 

 

Figure 8: Predictive uncertainty performance of six models evaluated using three metrics: ICP, PIW, and CRPS. (a) and (c) show 

the results for S4, while (b) and (d) correspond to S5. 

 

In this subsection, HMM-GMR is employed to evaluate the probabilistic reliability of each model output. Figure 8 presents 460 

the joint evaluation of PIW, ICP, and CRPS at two stations, S4 and S5. PIW measures the sharpness of prediction intervals, 

ICP evaluates their calibration, and CRPS provides a comprehensive score that jointly reflects both calibration and sharpness. 

Ideally, a well-performing model should maintain a narrow PIW, achieve an ICP close to the nominal 95% confidence level, 

and minimize the CRPS. 

For station S4, LCEEMDAN-ASGGRU achieves the narrowest intervals (PIW = 96.9 m³/s) with an ICP of approximately 465 

0.880, indicating a favorable balance between precision and reliability. Meanwhile, CEEMDAN-ASGGRU attains a slightly 
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higher ICP (0.920), but at the cost of noticeably wider intervals. LSTM and DTWSGGRU produce broad intervals (PIW > 190 

m³/s) but still fall short of nominal coverage, suggesting both overdispersion and underconfidence in their uncertainty 

estimation. ASGGRU yields a favorable ICP (0.930) but also the widest intervals among graph-based models. For station S5, 

both LCEEMDAN-ASGGRU and CEEMDAN-ASGGRU maintain ICP values above 0.960, with PIWs constrained to a 470 

moderate range (3000–4000 m³/s). In contrast, ASGGRU exhibits a sharp decline in ICP (0.880) and has the broadest intervals 

(PIW > 6500 m³/s).  

To provide a more comprehensive evaluation, we further compute the CRPS (Fig. 8), which accounts for both calibration and 

sharpness across the full predictive distribution. LCEEMDAN-ASGGRU outperforms all other models at both stations, 

followed by CEEMDAN-ASGGRU. Although ASGGRU ranks third at station S4, its performance deteriorates sharply at 475 

station S5, recording the poorest CRPS among all models. These results indicate that, despite its adaptive spatial graph, 

ASGGRU fails to adequately distinguish high- from low-frequency flow variability, confirming that spatial adaptivity alone is 

insufficient for robust generalization under strongly heterogeneous hydrological conditions. By contrast, the decomposition-

based variants excel under extreme flow regimes, underscoring the essential role of multiscale decomposition and 

demonstrating the additional benefit of logarithmic transformation in stabilizing variance and enhancing predictive skill.  480 

Figure 9 offers a time-series visualization of predicted means and associated 95% confidence intervals for all six models at 

stations S5 and S4. At both stations, LCEEMDAN-ASGGRU provides the closest alignment between predicted and observed 

flows while maintaining the narrowest and most adaptive uncertainty bands. In high-flow scenarios (S5), it effectively tracks 

peak magnitudes without excessive widening of intervals; in low-flow scenarios (S4), it captures subtle variations with both 

tight intervals and consistent coverage. 485 

The results of the uncertainty analyses confirm that the proposed model not only achieves the highest deterministic accuracy 

but also produces the most reliable and informative uncertainty estimates, making it particularly suitable for applications 

requiring robust risk-aware streamflow forecasting across diverse hydrological conditions. 
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Figure 9: Comparison of the mean of the six models with the magnitude range of the observed flows: (a) S4, (b)S5. 490 
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5. Conclusion 

In this study, we propose a hybrid LCEEMDAN-ASGGRU model, which combines logarithmic transformation, multiscale 

time decomposition, and adaptive graph modeling, for streamflow forecasting. The hybrid LCEEMDAN-ASGGRU is applied 

in the Poyang Lake basin and compared with the CEEMDAN-ASGGRU, ASGGRU, DTWSGGRU, FDSGGRU, and LSTM. 

The results show that the hybrid model significantly outperforms the five other models in terms of performance metrics. 495 

Specifically, LCEEMDAN-ASGGRU achieves the lowest RMSE and the highest NSE, and is effective in capturing high-flow 

peaks and low-flow variations. The analysis of the learned graph structure shows that the adaptive graph module effectively 

refines and re-weights hydrologically and temporally meaningful spatial connections, striking a balance between physical 

consistency and data-driven flexibility. In addition, HMM-GMR uncertainty analysis confirms that LCEEMDAN-ASGGRU 

delivers the most stable and reliable probabilistic forecasts, exhibiting the lowest CRPS and comparatively narrow prediction 500 

intervals. In summary, the proposed model can produce accurate and reliable prediction results, which can support water 

resource managers in making decisions regarding resource allocation and reservoir operation. 
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Table 1 Hyperparameter search space for IMF and residual submodels. 

Hyperparameters Search Range 

Hidden dimension {16, 32, 64, 128} 

Embedding dimension {8, 16, 32} 

Batch size {16, 32, 64} 

Maximum epochs {500, 800, 1000, 1500, 2000} 

Learning rate {0.01, 0.001, 0.005, 0.0001, 0.0005} 

Weight decay {0.0, 0.001, 0.0001} 
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Table 2 RMSE of the six models at 14 stations (S1–S14), averaged over 10 independent runs. 

655 

Model RMSE 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 

LSTM 312 153 312 58 1646 297 801 236 137 475 1152 126 279 1064 

DTWSGGRU 333 141 300 59 1735 295 775 228 135 398 1158 126 304 950 

FDSGGRU 301 135 291 50 1733 299 692 201 128 418 1174 123 252 903 

ASGGRU 311 133 266 54 1663 267 646 189 110 331 911 116 239 806 

CEEMDAN-ASGGRU 287 112 223 37 684 278 544 180 122 325 638 103 218 826 

LCEEMDAN-ASGGRU 191 91 183 33 744 258 387 158 97 267 556 87 128 518 
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Table 3 NSE of the six models at 14 stations (S1–S14), averaged over 10 independent runs. 

Model NSE 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 

LSTM 0.579 0.654 0.662 0.647 0.838 0.709 0.794 0.672 0.742 0.733 0.808 0.544 0.760 0.796 

DTWSGGRU 0.520 0.706 0.689 0.622 0.818 0.713 0.804 0.694 0.749 0.813 0.803 0.549 0.712 0.835 

FDSGGRU 0.608 0.732 0.706 0.734 0.821 0.704 0.845 0.762 0.775 0.792 0.801 0.574 0.804 0.852 

ASGGRU 0.580 0.735 0.755 0.691 0.839 0.765 0.865 0.789 0.835 0.870 0.879 0.616 0.823 0.881 

CEEMDAN-ASGGRU 0.641 0.814 0.827 0.849 0.971 0.742 0.902 0.807 0.796 0.871 0.938 0.695 0.841 0.867 

LCEEMDAN-ASGGRU 0.837 0.868 0.883 0.883 0.967 0.779 0.951 0.851 0.870 0.907 0.954 0.785 0.949 0.948 
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Table 4 Learned adaptive adjacency matrix with the flow-direction (FD) and DTW-based graphs under varying threshold levels. 

Threshold An Edge Count FD-A Overlap DTW-A Overlap FD-only Edges DTW-only Edges A-only Edges 

0.05 72 80.5% 32.1% 0 144 0 

0.10 57 78.0% 25.4% 0 158 0 

0.20 45 70.7% 20.1% 0 167 0 
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