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Abstract. Soil moisture (SM) measurements obtained via dielectric-based sensors are widely used in hydrological and 

climate studies. However, these measurements exhibit significant temperature sensitivity due to the Maxwell–Wagner 

polarization effect, causing an unrealistic diurnal cycle having spurious daytime peaks. This study introduces a Fourier 

transform-based method to correct such temperature-induced errors using physically consistent diurnal patterns from land 10 

surface model (LSM) reanalysis datasets (ERA5-Land and MERRA-2). The proposed approach adjusts the spectral power of 

the SM diurnal cycle to align with model-derived patterns constrained by conservation of mass, resulting in physically realistic 

SM behavior—peaking in the morning and decreasing during the daytime due to evapotranspiration. Validation against non-

dielectric reference sensors indicates that the adjusted SM measurements are significantly improved. The diurnal correlation 

between SM and soil temperature shifts from predominantly positive to negative, particularly evident in regions with large 15 

diurnal temperature ranges and dry climates. Furthermore, applying this method to flux tower observations improves the 

characterization of land–atmosphere interactions by depicting the energy-limited process at sub-daily timescales, where 

increased incoming radiation during the daytime drives enhanced latent heat flux and subsequently reduces SM. Overall, this 

Fourier transform-based adjustment enhances the verity of in-situ soil moisture observations, promoting accurate sub-daily 

analyses of soil moisture dynamics and enabling improved understanding of land–atmosphere coupling processes. 20 

 

1 Introduction 

Soil moisture (SM) is a critical land variable, playing a key role in hydrological and meteorological processes through 

land–atmosphere (L–A) interactions (Seneviratne et al., 2010). It is also an essential climate variable with a memory up to 1–

2 months (Seo and Dirmeyer, 2022a; Rahmati et al., 2024), thereby contributing to predictability at the subseasonal timescale 25 

(Koster et al., 2011; Seo et al., 2019). SM strongly influences precipitation, energy partitioning, and the diurnal cycles of key 

land variables—including evapotranspiration (ET), temperature, humidity, latent heat flux (LH), and sensible heat flux (SH)—

by controlling ET, which supplies moisture to the atmosphere during the daytime and influences boundary layer characteristics 

depending on surface moisture availability and energy constraints (Betts, 2003; Seo and Dirmeyer, 2022b; Dai et al., 1999). 
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These SM-driven surface and atmospheric processes form a fundamental component of L-A coupling, by which SM modulates 30 

the partitioning of land surface fluxes, affects planetary boundary layer (PBL) development and entrainment, and ultimately 

influences cloud formation and precipitation (Santanello et al., 2018). In energy-limited regions, where ET is primarily 

constrained by incoming solar radiation, sufficient SM availability leads to relatively enhanced ET (Hsu et al., 2024; Dong et 

al., 2022). For instance, higher ET is particularly dominant in regions with high humidity and a shallow boundary layer, as 

moist air supports plant transpiration. In contrast, in water-limited regions, where SM availability is low, SM plays a key role 35 

in determining the partitioning between SH and LH to the atmosphere (Seo et al., 2024).   

Although diurnal SM variability accounts for 1–2% of its total variance in observations (Fig.1, bottom left), L-A 

interactions are predominantly active at sub-daily timescales during daytime, primarily driven by surface fluxes resulting from 

incoming solar radiation (Seo and Dirmeyer, 2022b; Yin et al., 2023). The investigation of L-A interactions has relied on low-

frequency variation data (e.g., daily, monthly, and yearly), which limits our understanding of the actual coupling mechanisms 40 

throughout the diurnal cycle (Findell et al., 2024), especially how moisture stress limits ET during the warmest part of the day. 

Daily averaged land variables, which include nighttime conditions, tend to suppress daytime-dominant interactions, leading to 

an underestimation of coupling strength driven by surface fluxes (Yin et al., 2023). Seo and Dirmeyer (2022b) demonstrated 

that the diurnal coevolution of water and thermal energy budgets within atmospheric boundary layer in terms of L–A 

interactions exhibit an asymmetric structure in that phase-space, with a strong diurnal cycle of heat content but a clear semi-45 

diurnal cycle for moisture, driven by the interplay of changing surface evaporation and the depth of the boundary layer. 

However, daily mean values are not enveloped within the closed diurnal cycle in the phase-space of water and heat budgets, 

as the computed mean state typically does not correspond to any real conditions experienced during a full 24-hour cycle. 

Therefore, sub-daily analyses—particularly those capturing the full diurnal evolution of surface fluxes and boundary layer 

development—are essential for accurately characterizing the phase and intensity of L-A interactions. Despite their importance, 50 

studies of L-A interactions at sub-daily timescales using in-situ observations remain limited, highlighting the need for 

observational datasets with fine temporal resolution.  

The International Soil Moisture Network (ISMN; Dorigo et al., 2021), which provides hourly SM time series, has been 

widely used to investigate SM behavior on a range of timescales. Methods for SM measurement can be categorized into direct 

and indirect approaches. The gravimetric method, a direct approach, is the most accurate but is destructive (disturbs the soil 55 

being measured), time-consuming, and labor-intensive, making it unsuitable for real-time or long-term climate monitoring. 

Given these limitations, many indirect methods, including cosmic ray sensors, neutron probes, and sensors based on time 

domain transmissometry (TDT), time domain reflectometry (TDR), frequency domain reflectometry (FDR), electric 

capacitance, and impedance, have been widely used. However, since these methods estimate SM based on water’s effect on 

various electromagnetic properties of matter, they introduce inherent errors, and the sensors themselves have limitations. For 60 

instance, cosmic ray sensors and neutron probes offer accurate SM estimates with large- and point-scale footprints, respectively, 

but they are expensive and come with significant limitations. Cosmic ray sensors require regular maintenance, their 

measurement depth varies with soil water content, and they have strong installation constraints (Zreda et al., 2012). Neutron 
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probes rely on radioactive materials, posing safety risks and requiring strict regulatory compliance (Hunduma and Kebede, 

2020; Sharma et al., 2018; Lekshmi et al., 2014). On the other hand, other indirect methods (e.g., TDT, TDR, FDR, capacitance, 65 

and impedance sensors) are widely used due to their low cost, ease of operation, relatively simple installation and management, 

fast response, automation and multiplexing capability, non-destructive measurement, and safety from radiation hazards. These 

sensors estimate SM based on the dielectric constant, which makes them highly sensitive to temperature variations (Mane et 

al., 2024; Francesca et al., 2010; Mittelbach et al., 2012; Ojo et al., 2015; Rowlandson et al.,2013). 

Temperature sensitivity arises from Maxwell-Wagner polarization, a phenomenon occurring at the interface of contrasting 70 

matter phases due to differences in dielectric permittivity and electrical conductivity. This interfacial polarization alters the 

effective bulk dielectric permittivity (Chelidze and Gueguen, 1999; Chen and Or, 2006a). In porous materials such as soil, the 

interfaces between water, air, and mineral particles have different electrical properties. Temperature variations influence the 

separation, mobility, and relaxation time of electrical charges, thereby altering the bulk dielectric response measured by the 

sensor. The temperature sensitivity of Maxwell–Wagner polarization depends on frequency: at low frequencies (e.g., <100 75 

MHz), the response is dominated by interfacial polarization, which increases with temperature due to enhanced ion mobility 

and electrical conductivity (Chen and Or, 2006b). Low-frequency sensors (e.g. capacitance, impedance, and FDR) are widely 

used due to due to their low cost, ease of installation, and suitability for automated monitoring systems. However, these sensors 

often exhibit temperature-dependent artifacts, resulting in spurious daytime SM peaks and a positive temporal correlation with 

the diurnal cycle of temperature, even though the reality of diurnal SM minimum near the surface is observed in the daytime 80 

(Kosa, 2009). Such spurious diurnal SM evolution, in the absence of precipitation, contradicts the water balance at land surface. 

Previous studies have attempted to correct for the temperature sensitivity in indirect SM measurements. These approaches 

can be classified into mechanistic methods, which aim to formulate corrections based on the physical mechanisms underlying 

temperature effects on dielectric properties, and empirical correction techniques informed by the statistical properties of 

observational data. For mechanistic approaches, the temperature sensitivity of soil dielectric permittivity has been investigated 85 

through its frequency-dependent response, with a liner model of the temperature dependence of the real part of permittivity 

serving as a basis for temperature correction in SM estimation (Skierucha et al., 2024). A moisture deviation coefficient has 

also been proposed to quantify temperature-induced biases, in which permittivity changes lead to systematic measurement 

errors. To mitigate these, laboratory calibration, energy and water transfer modeling, and machine learning techniques have 

been suggested (Wilczek et al., 2023). For empirical correction approaches, Chanzy et al. (2012) suggested a daily correction 90 

coefficient calculated from diurnal variations in permittivity and temperature, potentially influenced by SM and conductivity. 

It was applied to adjust measured permittivity, using time periods with minimal moisture change (i.e., early morning or late 

afternoon) for stable estimation.  

While these approaches offer useful corrections, most rely on site-specific assumptions or sensor-dependent characteristics 

that are not easily extrapolated, highlighting the need for a more generally applicable correction method. Therefore, this study 95 

proposes a type of empirical correction method using Fourier transform to better represent the realism of the SM diurnal cycle 

in accordance with the land surface water balance. To implement this correction, we utilize land surface reanalysis datasets 

https://doi.org/10.5194/egusphere-2025-4163
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

 

generated by state-of-the-art physical models, which ensure water budget closure, particularly capturing the inverse 

relationship between SM and ET. Based on the diurnally adjusted SM observations, we further assess the impact of the time-

filtering method across different land cover types and background climatological conditions, as well as its influence on land-100 

atmosphere interactions, using flux tower observations, coupled with LH at sub-daily timescales.  

2 Data 

2.1 In-situ observation 

The International Soil Moisture Network (ISMN; Dorigo et al., 2021) was initiated to provide a standardized data system 

that integrates data from various in-situ monitoring networks through quality control and harmonization. SM observations had 105 

been collected and distributed in disparate formats, making it difficult to incorporate them into research. ISMN hosts data from 

77 networks with more than 2,900 stations distributed globally, though majority are concentrated in the Continental United 

States (CONUS) and Europe. It provides SM and soil temperature (TS) observations at various depths, along with some 

precipitation and air temperature data. However, different measurement sensors are used at each station, even for the same 

variable, such that SM data comes from a diverse set of sensors, including impedance, capacitance, cosmic-ray, TDR, TDT, 110 

and FDR methods. Most are provided at an hourly temporal resolution in UTC, with a consistent format and unit convention. 

ISMN also provides various quality flags for identifying measurements that are unrealistic, scientifically implausible or 

statistical outliers, and offers metadata describing station characteristics, including soil texture, climate classification (i.e., 

Köppen-Geiger), land cover type, and geolocation information. Importantly, the sensors’ manufacturer and model are 

identified for every time series. The ISMN dataset has been widely used to understand the nature of soil physics and evaluate 115 

satellite-based and modeled SM products (e.g., Gruber et al., 2020; Beck et al., 2021; Seo et al., 2021; Yi et al., 2023). 

In this study, soil moisture and temperature measurements within the top 10 cm of soil are used, encompassing all available 

shallow depth measurements. Since in-situ observations often contain missing or unreliable measurements, we filter the data 

to include only those with a quality flag marked as ‘G (Good)’ and utilize only days with complete 24-hour observations, as 

our focus is on the entire diurnal cycle. For obtaining enough diurnal samples, stations with at least 92 days of overlapping 120 

data for both SM and temperature are used; 1,058 stations are ultimately used across the globe (Fig. 1). Among these, only 10 

stations use non-dielectric-based sensors; all other sites measure SM with dielectric permittivity-based sensors (hereafter, 

dielectric-based sensors). The dielectric-based sensors estimate SM based on the dielectric permittivity of soil, which is 

inherently sensitive to temperature variations. This temperature dependence introduces diurnal errors in the measurements, 

which appear as a physical water imbalance such as a spurious positive correlation between soil moisture and temperature. 125 

However, some dielectric-based sensors that operate at high frequencies (e.g. TDT and TDR) exhibit a limited sensitivity to 

temperature, showing a realistic physical relationship between soil moisture and temperature with a negative correlation—

similar to non-dielectric-based cosmic-ray sensors (Fig. 2a). Thus, 100 stations (10: non-dielectric-based sensors, 90: high-

frequency dielectric-based sensors) serve as reference sites to validate the SM diurnal cycle of in-situ measurements. 

https://doi.org/10.5194/egusphere-2025-4163
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



5 

 

2.2 Land Reanalysis Datasets 130 

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 Land (ERA5-Land) (Muñoz-

Sabater et al., 2021) is a global reanalysis dataset. It employs the Carbon Hydrology-Tiled ECMWF Scheme for Surface 

Exchanges over Land (CHTESSEL) as its land surface model. Unlike ERA5 (Hersbach et al., 2020), which utilizes a simplified 

extended Kalman filter (SEKF) that assimilates European Remote Sensing Satellite (ERS)-1/-2 and Advanced Scatterometer 

(ASCAT), ERA5-Land is an offline simulation solely driven by ERA5 atmospheric forcing for near-surface meteorological 135 

variables. ERA5-Land provides hourly outputs at a spatial resolution of 9 km (0.1°) from 1950 to the present, compared to 

ERA5 reanalysis with 31 km resolution. To account for topographic discrepancies between the ERA5 and ERA5-Land grids, 

air temperature is corrected using a lapse rate derived from ERA5 lower-tropospheric temperature profiles. Subsequently, 

surface pressure and specific humidity are recalculated based on the adjusted temperature and elevation, assuming constant 

relative humidity. The enhanced spatial resolution and refined topographic representation contribute to the improvement in 140 

land surface estimates. While most differences from ERA5 are methodological and related to spatial resolution enhancement, 

ERA5-Land also includes physical updates such as revised soil thermal conductivity in frozen conditions, improved soil water 

balance closure, and an explicit treatment of rainfall over snow. This study uses ERA5-Land because of its superior 

performance in reproducing realistic SM time series against in-situ measurements across the globe (see Fig. 3a in Beck et al., 

2021). 145 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017), is 

another global reanalysis dataset, developed by the National Aeronautics and Space Administration (NASA) Global Modeling 

and Assimilation Office (GMAO). It is produced using the Goddard Earth Observing System version 5 (GEOS5) atmospheric 

data assimilation system and Gridpoint Statistical Interpolation (GSI) (Wu et al., 2002; Kleist et al., 2009) analysis scheme, 

which performs grid-based analysis using a 3D-Var approach. MERRA-2 uses the Catchment LSM, with offline LSM runs 150 

driven by atmospheric conditions from the GEOS-5 system operating in “replay” mode, during which modelled precipitation 

is corrected using satellite- and gauge-based datasets, resulting in a more realistic representation of SM. This catchment-based 

approach realistically captures topographical influences of hillslope hydrology and improves the simulation of land surface 

processes such as runoff and evaporation by explicitly partitioning each grid cell into saturated, unsaturated, and wilting regions 

that exhibit distinct hydro-meteorological behaviors (Koster et al., 2000). MERRA-2 provides hourly SM estimates for the 155 

surface layer (0–5 cm) and root-zone (0–100 cm) from 1980 to the present, with a spatial resolution of 0.625° × 0.5°.  

The Global Land Data Assimilation System (GLDAS; Rodell et al., 2004) product is another candidate for incorporating 

physically constrained land surface products driven by near-surface atmospheric forcing to adjust the diurnal cycle in SM 

measurements. Although GLDAS version 2.1 exhibits diurnal behavior similar to that of reference observations, it is not 

employed in this study due to its 3-hourly temporal resolution, which limits its ability to capture the 24-hour diurnal cycle via 160 

the application of a Fourier transform-based adjustment used in this study. This study uses LSM-derived SM and temperature 

in the surface layer (0–7 cm for ERA5-Land and 0–5 cm for MERRA-2) for diurnal adjustment, due to their physically 
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constrained, realistic behavior (Seo and Dirmeyer, 2022a). For comparison with the observations, the grid cell nearest to each 

observation site is selected from the respective reanalysis datasets.  

2.3 Flux tower observations 165 

The ISMN dataset does not include measurements of land surface heat fluxes, so this study employs flux tower observations 

to investigate the effect of adjusting the diurnal cycle of SM on the representation of observed L-A coupling at sub-daily 

timescales. In flux tower observations, land surface heat fluxes are measured using eddy covariance methods (Pastorello et al., 

2020). SM at these sites is measured using multiple types of dielectric-based sensors (e.g. TDR, FDR, etc.) (Zhang and Yuan, 

2020; Op de Beeck et al., 2018), which suffer from the same temperature sensitivity errors described previously. This can lead 170 

to a spurious SM peak during the daytime, despite high ET, even if precipitation is absent.  

FLUXNET2015, the latest major release of globally harmonized flux tower observations, provides Tier 1 data accompanied 

by quality flags for each variable, along with the flag of uncertainty and gap-filled data. This network provides SM 

measurements at depths up to 100 cm from the mid-1990s up to 2015. AmeriFlux also provides flux observations through the 

present day across a wide range of ecosystem and land cover types, primarily across North and South America (Novick et al., 175 

2018), where SM is generally reported at two layers: a top layer (typically up to 10 cm) and a bottom layer (up to 100cm) (Qiu 

et al., 2016). The land surface variables are harmonized using the global Flux Processing Standard, which standardizes 

metadata (e.g., variable name, units and formats) at hourly or half-hourly resolution (Chu et al., 2023). Additionally, the 

Integrated Carbon Observation System (ICOS; Heiskanen et al., 2022) is a European research infrastructure established to 

provide standardized, long-term, high-precision observations of greenhouse gas (GHG) concentrations and fluxes across the 180 

atmosphere, terrestrial ecosystems, and oceans. In ICOS, dielectric-based sensors measure SM at depths of 5, 10, 20, 50 and 

100 cm (Op de Beeck et al., 2018). This study further uses the warm-winter-2020 and drought-2018 datasets from ICOS, which 

were extended and expanded from FLUXNET2015 to investigate anomalously warm winter of 2020 and the extreme drought 

in Europe in 2018, respectively.  

This study uses available flux tower observations spanning the past 30 years (FLUXNET2015: mid-1990s–2015; 185 

AmeriFlux: mid-1990s–present; ICOS: 2008–present), incorporating SM measurements at depths up to 10 cm, which ensures 

consistency across all sites. Where FLUXNET2015 spatially and temporally overlaps the AmeriFlux and ICOS data, the 

FLUXNET2015 is given priority, and the other datasets are used to extend the temporal coverage of the FLUXNET2015 data. 

Among the 342 stations with both SM and LH observations, 178 stations with at least 92 days of complete 24-hour records (as 

defined in the ISMN dataset) are selected for this study (Fig. S1). Using SM and LH data from these 178 stations, the analysis 190 

is conducted across multiple temporal scales, including diurnally adjusted hourly, original hourly, daily and monthly averaged 

SM data. The daily and monthly timescales are derived by averaging the original hourly time series. The flux tower sites are 

mostly located in mid-latitude regions, where vegetated environments typically exhibit wet soil, representing energy-limited 

regimes consistent with the ecological monitoring objectives of the networks. In these regions, sufficient daytime energy 

availability enhances ET, which subsequently leads to drying out SM. 195 
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3 Methodology 

3.1 Data preprocessing 

To examine the diurnal variation of SM primarily driven by ET, which is a sink term in the water budget at the land surface, 

days when the precipitation source term is present have been excluded from all three datasets (in-situ measurements, LSM 

outputs, and flux tower observations). This is because incoming shortwave radiation during the daytime enhances ET, leading 200 

to a decrease in SM, a signal that can be obscured by precipitation. Rainy days are filtered out using a standard deviation-based 

approach, instead of incorporating ground-based precipitation observations, due to their limited availability in ISMN, 

incompleteness, and spatial inconsistency with other variables (e.g., SM and ET) (Seo and Dirmeyer, 2022b). To exclude rainy 

days, hourly SM measurements are aggregated to a daily resolution to estimate the day-to-day SM tendency. When the 

tendency exceeds a threshold of +1.5 standard deviations, calculated over the entire analysis period, both the current and 205 

previous days are identified as rainy days and excluded from the adjustment (Step 1 in Fig. 4a). This threshold value is adopted 

because it best corresponds to days with observed precipitation in available in-situ data. For the LSMs, rainy days are excluded 

based on their included precipitation data, using a threshold of daily total precipitation exceeding 0.1mm. 

Additionally, low-frequency variability in SM is filtered out to isolate its diurnal component by subtracting a 24-hour 

centered moving average from the original hourly time series, resulting in the hourly anomalies used in the diurnal adjustment 210 

(Step 2 in Figs. 4b, c). In the calculation of the running mean over a 24-hour window, data gaps or the exclusion of rainy days 

may result in windows containing fewer than 24 observations. In such cases, the mean is still computed using the available 

data points within each window, provided that at least one valid observation is present.  

 

3.2 Diurnal Soil Moisture adjustment 215 

To adjust the diurnal cycle of SM, this study adopts the Fast Fourier Transform (FFT) method by adjusting the SM anomaly 

time series in the frequency domain (Fig. 3). This method allows for the identification of dominant frequencies and 

quantification of their respective contributions to the total variance, as represented by the Power Spectral Density (PSD) (Seo 

and Dirmeyer, 2022a). The FFT is applied to the preprocessed hourly SM time series for overlapped dates among the three 

datasets (in-situ observations and both reanalysis datasets based on LSMs). To ensure the continuity of hourly SM time series 220 

for the application of FFT, the preprocessed time series are concatenated. Both ERA5-Land and MERRA-2 datasets are used 

to adjust the SM diurnal cycle of in-situ measurements since the modelled time series are reliable with reference to their 

physically based simulation of SM dynamics (Fig. 2b). Based on the diurnal component of the multi-model averaged SM 

spectrum from both reanalyses, the harmonic variance of SM from in-situ observations is adjusted within only the 20- to 30-

hour frequency band. Its mathematical formulation is followed as: 225 

𝐹𝐹𝑇𝑜𝑏𝑠[𝑓𝑟𝑒𝑞30: 𝑓𝑟𝑒𝑞20] =
𝐹𝐹𝑇𝑜𝑏𝑠

𝐹𝐹𝑇𝐿𝑆𝑀𝑠

× 𝐹𝐹𝑇𝐿𝑆𝑀𝑠[𝑓𝑟𝑒𝑞30: 𝑓𝑟𝑒𝑞20], (1) 
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where 𝐹𝐹𝑇𝑜𝑏𝑠  and  𝐹𝐹𝑇𝐿𝑆𝑀𝑠  are the spectral power of SM time series from in-situ observations and averaged LSMs, 

respectively, and 𝑓𝑟𝑒𝑞 is frequency domain in the PSD. The scaling factor (𝐹𝐹𝑇𝑜𝑏𝑠/𝐹𝐹𝑇𝐿𝑆𝑀𝑠), is applied to ensure continuity 

at the window boundaries, adjusting for difference in spectral characteristics between datasets (Seo and Dirmeyer, 2022a) (Fig. 

3c). PSD also appears at negative frequencies, which do not physically exist, due to the symmetry property of the Fourier 

Transform, where positive and negative frequency components mathematically mirror each other. The adjustment is 230 

consistently applied within the negative frequency range [𝑓𝑟𝑒𝑞−20: 𝑓𝑟𝑒𝑞−30]. An updated hourly SM time series is then 

reconstructed using the Inverse FFT (IFFT) of the adjusted spectrum in the diurnal frequency range (Step 3 in Fig. 4d), after 

which the previously filtered low-frequency SM time series (Step 2; c.f., Fig. 4b) is added again (Step 4 in Fig. 4e). 

Assuming SM measurements to be relatively insensitive to temperature during the nighttime hours (20:00–06:00 LST) due 

to the absence of solar radiation, we further correct the mean of diurnal anomaly for each day. The nighttime mean of the 235 

adjusted SM anomaly is matched to the nighttime mean of the original SM anomaly (Step 5 in Fig. 4f), for each calendar day. 

This is achieved by subtracting the difference between the original and the adjusted nighttime means in the entire adjusted 

diurnal cycle. As this approach can result in negative values in the reconstructed SM time series for very dry soils, an additional 

adjustment is applied for those days to ensure physical plausibility. For calendar dates with negative SM values, the diurnal 

amplitude is reduced using standard normal deviate scaling (SNDS; Koster et al. 2004; Seo et al. 2019; Seo and Dirmeyer, 240 

2022a), thereby preventing negative SM values while preserving the daily mean SM. By applying the diurnal mean correction, 

most stations showed a decrease of SM by around 0–10%, indicating that the SM climatology in the observations has been 

overestimated due to sensor temperature sensitivity (Fig. 4g). This decrease is particularly prominent in the western US, where 

the SM is generally low and diurnal temperature range (DTR) is large. Hereafter, we refer to the adjusted ISMN SM based on 

the LSM simulations as ISMNadj. 245 

3.3 Effect of diurnal temperatures on soil moisture-temperature coupling 

We have analyzed how the temporal correlation between SM and TS varies with the climatology of the DTR (𝑇𝑟𝑎𝑛𝑔𝑒 =

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛). We examined the statistical relationship between the soil moisture-temperature coupling (𝜌 = 𝑅(𝑆𝑀, 𝑇𝑆)) and 

𝑇𝑟𝑎𝑛𝑔𝑒 , across the observation sites, quantified as: 

𝑅(𝜌, 𝑇𝑟𝑎𝑛𝑔𝑒) =
𝐸[(𝜌 − 𝐸[𝜌] )(𝑇𝑟𝑎𝑛𝑔𝑒 − 𝐸[𝑇𝑟𝑎𝑛𝑔𝑒])]

𝜎𝜌𝜎𝑟𝑎𝑛𝑔𝑒

, (2) 

where 𝐸[∙] denotes the expectation operator, and 𝜎𝜌 and 𝜎𝑟𝑎𝑛𝑔𝑒  denote the standard deviation of 𝜌 and 𝑇𝑟𝑎𝑛𝑔𝑒 , respectively. 250 

Since 𝑇𝑟𝑎𝑛𝑔𝑒  is defined as the difference between maximum temperature (𝑇𝑚𝑎𝑥 ) and minimum temperature (𝑇𝑚𝑖𝑛 ), the 

expression can be expanded as: 

=
1

𝜎𝜌𝜎𝑟𝑎𝑛𝑔𝑒

{𝐸[(𝜌 − 𝐸[𝜌])(𝑇𝑚𝑎𝑥 − 𝐸[𝑇𝑚𝑎𝑥])] − 𝐸[(𝜌 − 𝐸[𝜌])(𝑇𝑚𝑖𝑛 − 𝐸[𝑇𝑚𝑖𝑛])]}, (3) 

This can be rewritten using the definition of covariance (𝐶𝑜𝑣) as: 
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=
𝐶𝑜𝑣(𝜌, 𝑇𝑚𝑎𝑥)

𝜎𝜌𝜎𝑟𝑎𝑛𝑔𝑒

−
𝐶𝑜𝑣(𝜌, 𝑇𝑚𝑖𝑛)

𝜎𝜌𝜎𝑟𝑎𝑛𝑔𝑒

, (4) 

To express each covariance term in the form of a correlation, we multiply the numerator and denominator of each term by 

the corresponding standard deviations (𝜎𝑚𝑎𝑥  or 𝜎𝑚𝑖𝑛): 255 

=
1

𝜎𝑟𝑎𝑛𝑔𝑒  
{𝜎𝑚𝑎𝑥 ∙ 𝑅(𝜌, 𝑇𝑚𝑎𝑥) − 𝜎𝑚𝑖𝑛 ∙ 𝑅(𝜌, 𝑇𝑚𝑖𝑛) } , (5) 

where 𝜎𝑚𝑎𝑥  and 𝜎𝑚𝑖𝑛  denote the standard deviation of 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛 , respectively. These equations show that the 

correlation between 𝜌 and 𝑇𝑟𝑎𝑛𝑔𝑒  can be decomposed into the separate contributions from 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛. This study explores 

the correlation between 𝜌 and 𝑇𝑟𝑎𝑛𝑔𝑒  to understand the integrated effect of diurnal temperature variability on SM sensors. 

3.4 Land coupling strength 

To investigate land coupling between SM and LH, this study uses the Terrestrial Coupling Index (TCI; Dirmeyer, 2011; 260 

Seo and Dirmeyer, 2022b), which quantifies the influence of a source variable (𝑆𝑉) on a target variable (𝑇𝑉). TCI is a statistical 

metric that quantifies how strongly a target variable responds to variability in a source variable. It incorporates both the 

sensitivity between the two variables (e.g., coefficient correlation) and the magnitude of variability in the target (e.g. standard 

deviation). However, it does not imply causality and should be interpreted as a measure of statistical association only. When 

LH is the target, positive or negative TCI values indicate that the L-A coupling chain is primarily triggered by SM or net 265 

radiation, respectively, corresponding to water- or energy-limited processes (see Fig. 2 in Seo et al., 2024). This metric is 

formulated as: 

𝑇𝐶𝐼(𝑆𝑉, 𝑇𝑉) = 𝑟(𝑆𝑉, 𝑇𝑉) × 𝜎(𝑇𝑉), (6) 

where 𝑟 represents the correlation coefficient between the time series of source and target variables, and 𝜎 represents the 

standard deviation of target variable. In this study, the source and target variables are set as SM and LE, respectively, and TCI 

is implemented with data sampled at multiple temporal scales (e.g., diurnal, daily, and monthly). Hourly time series are 270 

reconstructed by averaging the values from multiple days at each hour, after filtering them with a 24-hour centered moving 

average. Daily and monthly products are constructed by averaging the original time series. Although the relationship between 

SM and LH is not exactly linear, the linear dependencies dominate over much of the globe (see Fig. 4 in Hsu and Dirmeyer, 

2021), supporting the applicability of the TCI.  

4 Results 275 

4.1 Evaluation of SM diurnal cycle and its relationship with temperature 

To determine whether the FFT-based adjustment successfully corrects the SM diurnal cycle, we compare the diurnally 

adjusted time series against reference sensors (non-electrical or high-frequency dielectric-based sensors), which are less 

affected by temperature-driven biases. Since the reference sensors and dielectric-based sensors are not co-located, the closest 
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sensor pairs within 200km are used for comparison, resulting in a total of 20 pairs (Fig. 5). The minimum of SM diurnal cycle 280 

is expected in the afternoon because the peak in incoming solar radiation enhances ET during the daytime. However, the 

diurnal cycle in the ISMN shows a peak in the afternoon, contradicting the realistic SM behavior based on the water budget 

balance. The diurnal time series in ISMNadj show a peak in the morning and a minimum in the afternoon, aligning well with 

the physically reliable feature and showing coherent SM behavior relative to the reference sensors which exhibit their minimum 

values in the afternoon (Fig. 5a). There is a large spread among diurnal time series within ISMN due to the diversity in climate 285 

zones and land cover types across the sites. The correlation of the adjusted SM diurnal cycle is increased by 0.6, compared to 

the result from the original time series, indicating that the adjusted time series better captures the expected diurnal behavior 

(Fig. 5b). The spatial distribution of the relationship between surface SM and TS in ISMN unrealistically exhibits a positive 

correlation between these two variables over relatively arid regions, showing an SM peak in the afternoon (Figs. 6a, d). In 

contrast, the results from the combined LSMs generally indicate a negative correlation, characterized by a morning SM peak 290 

(Figs. 6b, e). When the in-situ observations are diurnally adjusted using the LSMs, the regions with spuriously positive 

correlations in the original time series shift to physically consistent negative correlations (Figs. 6c, f).  

To examine how soil moisture–temperature coupling is influenced by temperature sensitivity during both daytime and 

nighttime, we classified the diurnal correlation between SM and TS (𝜌 = 𝑅(𝑆𝑀, 𝑇𝑆)) based on the 𝑇𝑟𝑎𝑛𝑔𝑒 . As described in 

Section 3.3, by expressing 𝑇𝑟𝑎𝑛𝑔𝑒  in terms of 𝑇𝑚𝑎𝑥  and 𝑇𝑚𝑖𝑛, we can separately quantify the effects of daytime temperatures 295 

(𝑅(𝜌, 𝑇𝑚𝑎𝑥)) and nighttime temperatures (𝑅(𝜌, 𝑇𝑚𝑖𝑛)) on 𝜌. Since the Maxwell-Wagner effect primarily arises with high 

temperature, 𝑅(𝜌, 𝑇𝑚𝑎𝑥) shows a larger positive value compared to 𝑅(𝜌, 𝑇𝑚𝑖𝑛) (Table 1). 𝑅(𝜌, 𝑇𝑟𝑎𝑛𝑔𝑒) exhibits a larger value 

than 𝑅(𝜌, 𝑇𝑚𝑎𝑥), primarily because 𝜎𝑟𝑎𝑛𝑔𝑒  is smaller than 𝜎𝑚𝑎𝑥  (cf., Eq. 5). Therefore, in regions characterized by a large 

𝑇𝑟𝑎𝑛𝑔𝑒 , 𝜌 tends to exhibit positive values (Fig. 7a). A similar pattern is also observed in regions where the SM climatology is 

relatively dry (Fig. S2). On clear days, incoming radiation at the surface enhances LH, leading to soil drying, which 300 

subsequently increases the partitioning toward SH, ultimately raising daytime temperatures. This classification further enables 

examination the effect of the FFT-based adjustment on SM measurements across various 𝑇𝑟𝑎𝑛𝑔𝑒  regimes (Fig. 7b). When 

𝑇𝑟𝑎𝑛𝑔𝑒  is small, the original ISMN data exhibits a concentration of diurnal correlations on the negative side, shifting toward 

positive values as 𝑇𝑟𝑎𝑛𝑔𝑒  becomes large. Such spurious SM–temperature coupling is significantly mitigated in the ISMNadj 

data, particularly in regions characterized by large 𝑇𝑟𝑎𝑛𝑔𝑒  and arid SM conditions. 305 

We additionally assess the effect of the diurnally adjusted SM time series on SM–temperature coupling according to the 

Köppen-Geiger climate classification (Fig. S3), aggregated into four first-level climate groups: Tropical, Temperate, 

Continental, and Dry (Fig. 8a). The Polar category is excluded from the analysis due to its limited sample size (n=5) and 

spatially concentrated over the Tibetan Plateau (Fig. S3) rather than at high-latitude polar regions. The correlation between 

SM and TS, quantifying SM–temperature coupling, is predominantly positive in the original ISMN data, particularly in 310 

Tropical and Dry regions. In Tropical regions, both dry and wet subtypes exhibit positive diurnal correlations (not shown), 

likely attributable to the consistently high temperatures (𝑇𝑚𝑖𝑛≥18°C) by the definition of the Köppen-Geiger classification. 
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Dry regions are characterized by high 𝑇𝑟𝑎𝑛𝑔𝑒 , typical of arid environments as discussed above, resulting from high 𝑇𝑚𝑎𝑥 . The 

other climate classifications—Temperate and Continental—exhibit bimodal distributions with both positive and negative 

correlations (Fig. 8a), prompting further subdivision based on second-level Köppen-Geiger types. For instance, subtypes “s” 315 

(dry summer) and “w” (dry winter) are grouped as dry, while “f” (fully humid) and “m” (monsoonal) are grouped as wet. This 

subdivision clarifies the diurnal correlation patterns, revealing notably spurious positive correlations in dry climates (Figs. 8b, 

c). The diurnally adjusted SM observations exhibit negative correlations across all climate classifications, consistent with both 

reanalysis products, although ERA5-Land shows weaker negative SM–temperature coupling compared to MERRA-2. The 

difference in 𝑅(𝑆𝑀, 𝑇𝑆) between ERA5-Land and MERRA-2 is primarily due to inconsistencies in their LH. MERRA-2 shows 320 

an earlier peak in LH and SH than ERA5-Land. This leads to a delayed onset of surface cooling based on energy balance (Fig. 

S4) and subsequently results in a later peak of TS. Consequently, MERRA-2 shows a more pronounced out-of-phase 

relationship between SM decrease and TS increase, which results in a stronger negative correlation in MERRA-2 than in 

ERA5-Land. 

 325 

4.2 Land segment-based evaluation of L-A interaction 

While the previous analysis primarily focuses on the relationship between SM and TS, we further turn to flux tower 

observations to understand the influence of the SM adjustment on L-A interactions with LH, using data from the local warm 

season (MJJAS: May-September for the Northern Hemisphere; NDJFM: November-March for the Southern Hemisphere). We 

employ the TCI metric, which quantifies the statistical influence of SM on LH by multiplying their correlation coefficient by 330 

the variability of LH, enabling its implementation across various temporal scales (i.e., monthly, daily, and hourly) (Fig. 9). At 

monthly and daily timescales, 𝑟(𝑆𝑀, 𝐿𝐻) tend to be negative, resulting in negative TCI values associated with these negative 

correlations, as most flux tower sites are located in energy-limited regions. The coupling strength at the monthly scale is 

stronger than at the daily timescale, despite a larger standard deviation in daily LH, because the monthly time series have 

pronounced seasonal cycles. 335 

For the L-A interactions at the sub-daily time scale, the increased solar radiation during daytime enhances ET, which is 

characteristic of energy-limited coupling, necessarily leading to a daytime decrease in SM and thus resulting in a negative 

𝑟(𝑆𝑀, 𝐿𝐻). However, the data from ISMN typically shows a positive 𝑟(𝑆𝑀, 𝐿𝐻), as discussed previously. In contrast, ISMNadj 

successfully captures the energy-limited coupling, indicated by negative TCI values, and exhibits the strongest coupling 

strength across all temporal scales. The diurnal variation of LH driven by solar radiation is most prominent at sub-daily scales 340 

and progressively smooths out when averaged over longer timescales (Fig. 9c). This suggests that analyzing L-A coupling at 

sub-daily timescales using in-situ SM data without taking into account the physically inconsistent diurnal behavior of dielectric 

SM measurements would impede an accurate understanding of L-A interactions (Fig. 9a and 9b). 
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5 Summary and Conclusions 345 

This study has introduced a Fourier transform-based approach specifically designed to correct temperature-induced errors 

prevalent in SM in-situ measurements obtained from dielectric-based sensors. These temperature-induced inaccuracies arise 

primarily from the sensors’ heightened sensitivity associated with the Maxwell–Wagner polarization effect, which significantly 

affects the dielectric properties of the soil as temperature increases. These errors lead to physically unrealistic diurnal cycles 

characterized by spurious afternoon peaks in SM, particularly near the surface where the diurnal cycle of temperature is greatest. 350 

Afternoon is precisely when evapotranspiration is highest, and soil physics suggests SM should be at its minimum under 

precipitation-free conditions. 

To ameliorate such temperature-induced errors, the proposed adjustment method leverages physically consistent diurnal 

SM time series derived from two reanalysis datasets: ERA5-Land and MERRA-2. These models provide robust, physically 

constrained representations of SM behavior based on water balance closure, making them suitable benchmarks of the diurnal 355 

cycle for correcting the dielectric-based measurements. Specifically, the method adjusts the spectral power of the observed 

SM cycles around daily timescales, aligning them more closely with reliable hourly SM time series. Additionally, a diurnal 

mean correction (20:00–06:00 LST) is incorporated, assuming that the sensor temperature sensitivity is limited during 

nighttime periods when temperature-induced errors are minimal, thereby serving as a baseline for the correction. Notably, it 

underscores that the SM climatology in the observations can have wet bias due to sensor temperature sensitivity.  360 

Validation against reference sensors, whose design is known to have less temperature sensitivity, demonstrates significant 

improvements. Adjusted SM data (ISMNadj) effectively transitions from exhibiting unrealistic afternoon peaks to displaying 

physically reasonable diurnal cycles characterized by morning peaks and subsequent afternoon minima, closely mirroring the 

soil moisture dynamics dictated by evapotranspiration processes (Fig. 5). The skill improvement in ISMNadj, measured by 

temporal correlation of SM hourly time series with the reference observations, is statistically significant, having ΔR ∼ 0.6, 365 

compared to the ISMN raw product.  The Fourier-based adjustment successfully mitigates these spurious positive correlations 

between SM and temperature, converting them to physically consistent negative correlations, reflecting the true interactions 

between SM and temperature linked by evapotranspiration dynamics. Moreover, the impact of the diurnal adjustment is 

examined within the Köppen-Geiger climate classification, particularly indicating the efficacy in arid regions characterized by 

pronounced temperature fluctuations with large DTR.  370 

To further validate the effect of the SM diurnal adjustment on characterizing L-A interactions at sub-daily scales, this study 

demonstrates the improvement using flux tower observations. The Terrestrial Coupling Index (TCI), which quantifies the 

statistical relationship between SM and LH, is employed across multiple temporal scales (monthly, daily, and hourly). At 

monthly and daily timescales, 𝑟(𝑆𝑀, 𝐿𝐻) is negative due to most of flux sites located over mid-latitude regions, in which 

increased LH leads to a decrease in SM (energy-limited coupling). However, at sub-daily timescale, original ISMN, 375 

uncorrected SM data erroneously show positive correlations, inconsistent with the physically balanced water budget. After 
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applying the diurnal phase adjustment, hourly SM data of ISMNadj accurately results in negative correlations, thereby 

facilitating an accurate understanding of true L-A coupling at sub-daily scales. 

In conclusion, the Fourier transform-based correction method at sub-daily timescales substantially enhances the realism 

and reliability of SM diurnal cycle in the observations. By rectifying temperature-induced sensor errors, this generalizable 380 

approach significantly improves the reality of SM behavior in observational data. This improvement enhances the reliability 

of in-situ observations providing a robust foundation for comprehensively understanding SM dynamics and L–A interactions 

at sub-daily timescales, an area previously hindered by observational limitations, thereby benefiting model improvement, 

satellite validation, and climate monitoring.  
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Figure  585 

 

Figure 1: Locations of in-situ observation sites of SM (N=1058) from the International SM Network (ISMN). Red and blue dots 

indicate sensors that use electrical properties (dielectric constant) to observe SM and do not use that method, respectively. Sensors 

that operate at high frequences, insensitive to temperature biases, are shaded green. The lower-left figure shows the ratio of diurnal 

variance against total variance in the SM measurements. The bracketed numbers in the lower-right legend denote the number of 590 
sites adopting each corresponding sensor. 
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Figure 2: Boxplot of the temporal correlation within the diurnal cycle of (a) hourly time series of surface SM and soil temperature 595 
for each sensor used to measure SM and (b) modelled surface SM against reference sensors (those with a negative correlation to 

diurnal temperature: TDT, TDR, and cosmic-ray), where median values are denoted beside each boxplot. Values in parentheses in 

the legend represent (a) the number of stations using each sensor type for measuring SM, and (b) the correlation between the 24-

hour diurnal cycles of reference and modelled SM, based on 24-hour cycles constructed by median values across 100 stations at each 

hour. LSMs (green) indicate the averaged SM time series from ERA5-Land (blue) and MERRA-2 (orange).  600 
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Figure 3: Data preprocessing steps for example station REMEDHUS- ElTomillar (41.35°N, 5.49°W): (a) Removal of days with 605 
precipitation events, with yellow shading indicating precipitation dates. (b) Running mean calculated using a 24-hour centered 

moving average. (c) SM anomaly derived by subtracting (b). (d) Adjusted SM anomaly using the Fourier Transform method. (e) 

Reconstruction of time series obtained by adding (d) and (b). (f) Diurnal time series showing the original in-situ observation (green), 

model-based data (blue dashed line), phase adjusted data (yellow dashed line), and the final adjusted result (red line). (g) Mean 

corrected ratio over the global map, with negative percentages in blue and positive percentages in red. 610 
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Figure 4: Power Spectral Density (PSD) analysis of surface SM from (a) in-situ measurement, (b) reanalysis datasets (red: ERA5-

Land, and green: MERRA-2), and (c) diurnally adjusted in-situ measurement at REMEDHUS-ElTomillar station (41.35°N, 5.49°W). 

The gray shaded area in each panel represents the adjusted frequency windows and the black dotted vertical lines indicate the 20- 615 
and 30-hour variance domains. The yellow line in (c) represents the original power of surface SM in the diurnal time window. 
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Figure 5: (a) Diurnal cycle of surface SM, filtered by a 24-hour running mean from electrical-based ISMN (blue), ISMNadj  

(orange boxplot), and reference sensors (gray line). To compare the impact of diurnal adjustment on electric-based measurements 620 
with the reference sensors, the 20 closest electric-based observations are sampled within 200 km from the reference sensors. (b) 

Boxplot of the temporal correlation coefficient of diurnal time series of surface SM from electrical-based ISMN (blue) and ISMNadj 

(orange) against the corresponding reference observations. 
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 625 

Figure 6: Spatial distribution of the temporal correlation coefficient of hourly time series of surface soil moisture (SM) and 

temperature (TS) from (a) ISMN, (b) the mean of land reanalysis datasets (LSMs: ERA5-Land and MERRA-2), and (c) ISMNadj, 

where red triangles and blue circles indicate positive and negative correlation coefficient, respectively. The diurnal maximum phase 

of surface SM in (d) ISMN, (e) LSMs, and (f) ISMNadj. 

 630 
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Figure 7: (a) Spatial distribution of correlation coefficients between diurnal cycles of SM and TS from ISMN, classified by Trange, 

where upward- and downward-pointing triangles indicate positive and negative correlations, respectively. The lower-left scatter plot 

shows the relationship between climatological DTR and SM, where colors correspond to the same DTR range used in the map. The 635 
spatial correlation coefficient along with its corresponding p-value is also shown. (b) Violin plots of the probability distribution of 

correlation coefficients (on Y axis) of ISMN (blue) and ISMNadj (orange), in the same three categories according to Trange. The 

bracketed numbers below the x-axis represent the number of stations classified in each DTR category. The total number of stations 

is decreased to 745, compared with Fig. 1, because only sites with concurrent SM and TS records for at least 92 days are used to 

calculate the correlation coefficient between variables.  640 
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Figure 8: Same as in Fig. 7b, but grouped by (a) the first-level Köppen-Geiger classification, and the second-level classification 

for (b) Temperate and (b) Continental climate zones. The classification in ERA5-Land (green) and MERRA-2 (red) is also 

represented, corresponding to the in-situ observations. The Polar (N=5) and Unknown (N=5) climate types are excluded in this 

analysis, so 735 stations are used in this classification. 645 
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Figure 9: Violin plot of land coupling and its components from flux tower observations (N=178) in monthly (top row), daily 650 
(second row), and hourly (third row) and diurnally adjusted hourly (bottom row) timescale during the hemispheric warm season 

(Northern and Southern Hemisphere MJJAS and NDJFM, respectively).  Since the diurnal adjustment is conducted only on the SM 

time series, the standard deviation term remains identical to the diurnally unadjusted result. (a) TCI(SM, LH) is used to measure 

the strength of the land coupling, which is a term multiplied by (b) the correlation coefficient between SM and LH and (c) the 

standard deviation of LH. The values in the upper-right corner of each panel indicate the median value.  655 
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 R(𝝆,T) 𝝈(T) 

𝑻𝒎𝒂𝒙 0.497 6.0 K 

𝑻𝒎𝒊𝒏 0.081 4.2 K 

𝑻𝒓𝒂𝒏𝒈𝒆 0.554 4.8 K 

Table 1: The spatial correlation coefficient between 𝝆 

and climatological 𝑻𝒎𝒂𝒙, 𝑻𝒎𝒊𝒏, and 𝑻𝒓𝒂𝒏𝒈𝒆 across 983 

observation sites (left column), along with their standard 660 
deviations (right column).  
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