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Abstract. Wood density is a key parameter for estimating forest biomass and carbon stocks. However, the magnitude and the 

drivers of wood density variation in temperate forests, and the implications of this variation for biomass and carbon 

assessments, are not well understood. This study provides a comprehensive analysis of wood density variation in trees of 

western temperate Europe and evaluates its impacts on forest aboveground biomass (AGB) estimates at multiple spatial scales. 15 

From an initial dataset comprising wood density measurements from 110,763 individual trees, representing 156 species across 

mainland France, we analysed a subset of 44 species accounting for 97% of the growing stock and providing sufficient 

observations for modelling. We developed linear models of wood density based on tree, stand, site, and climatic variables, and 

successively examined the contributions of taxonomic identity, environmental factors and their interactions. We also 

constructed a model using variables potentially accessible through spatial layers (i.e., GIS-based data) at broad scales and fine 20 

resolutions, to assess their predictive capacity. Models were applied to French National Forest Inventory (NFI) data to estimate 

aboveground biomass (AGB) across four spatial scales: the national level, biogeographical regions and subregions (both 

delineated through biophysical partitioning of the territory) and individual NFI plots. Our analysis revealed that variation in 

wood density stemmed primarily from interspecific differences (78.5% of the total variance), with the remaining 21.5% 

attributable to intraspecific variability. Our best performing model—combining variables on species identity, tree dimensions, 25 

stand structure, site conditions and climate—explained 82% of total wood density variation, though it captured only a modest 

portion of intraspecific variability, found mainly driven by tree dimensions and mean annual temperature. In contrast, the 

model relying solely on environmental factors and the one based on GIS-layer variables accounted for 14% and 34% of the 

variation, respectively. While accounting for wood density variation had minimal impact on national-scale AGB estimates, it 

caused deviations of up to 30% at finer scales, such as biogeographical subregions and individual NFI plots. These findings 30 

highlight the importance of incorporating wood density variation into forest biomass and carbon assessment, especially at 
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regional to local scales. Given its dominant role, we recommend integrating species identity as much as possible to enhance 

the accuracy of forest biomass and carbon stock assessment across spatial scales. 

1 Introduction 

Wood is a major component of terrestrial biomass (Groombridge and Jenkins, 2002), underpinning a wide range of ecological 35 

and economic functions (Chave et al., 2009), and mediating some of the largest carbon fluxes between land and atmosphere 

(Friedlingstein et al., 2023; Pan et al., 2024). A defining feature of wood is its intrinsic variability: properties such as colour, 

odour, texture, and density can vary markedly—not only between species, but also among individuals of the same species, and 

even within a single tree (Zobel and van Buijtenen, 1989). Among these traits, basic wood density—defined as the ratio of 

oven-dry mass to green volume and hereafter referred to simply as wood density—is particularly important and highly variable 40 

(Zobel and van Buijtenen, 1989). In Europe, for example, wood density ranges from less than 300 kg m⁻³ in species like Salix 

alba, to around 600 kg m⁻³ in Fagus sylvatica, and exceeds 800 kg m⁻³ in Quercus ilex (Cuny et al., 2025; Zanne et al., 2009). 

 

The evolutionary history of trees and their species identity are prominent determinants of global variation in wood density 

(Chave et al., 2006; Kerfriden et al., 2021; Li et al., 2024). Nonetheless, climatic variables such as regional variation in mean 45 

annual temperature and soil moisture do shape the global distribution of wood density, primarily through their effects on 

species composition and assemblage patterns (Mo et al., 2024; Yang et al., 2024). Wood density is also closely linked to 

species’ demographic strategies: fast-growing species typically exhibit lower wood density than slow-growing ones (Chave et 

al., 2009; Fajardo et al., 2024; Nascimento et al., 2005; Sullivan et al., 2025). 

 50 

At the intraspecific level, wood density varies with tree dimensions (Lachenbruch et al., 2011) and environmental conditions 

(Chave et al., 2009), particularly climate (Bouriaud et al., 2015; Dalla-Salda et al., 2009). For instance, maximum wood density 

has been shown to correlate with inter-annual variation in warm seasonal temperatures in several species, making it a valuable 

proxy for reconstructing past climates (Briffa et al., 1998; Hughes et al., 1984). Wood density is also linked to tree growth rate 

within species (Guilley et al., 2004; Saranpää, 2003; but see Fajardo et al., 2024; Fajardo, 2016), a relationship that has been 55 

used to predict wood properties in silvicultural planning (Houllier et al., 1995). 

 

Because it reflects the amount of dry matter per unit volume, wood density is the key parameter for converting tree volume 

into biomass, and subsequently into carbon stocks, based on assumptions about carbon content (Doraisami et al., 2024). It thus 

plays a central role in standard calculation methodologies (Baker et al., 2004; Chave et al., 2004). While tree volume can be 60 

relatively easily estimated from external measurements such as stem diameter and height (Vallet et al., 2006), determining 

wood density requires additional sampling and laboratory analysis. As a result, despite its known variability, wood density is 

often simplified or overlooked in forest biomass and carbon assessment. Interspecific variation is sometimes partially 
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accounted for, but intraspecific variation is generally ignored. For instance, in the Land Use, Land-Use Change, and Forestry 

(LULUCF) sector of IPCC national greenhouse gas inventories, Tier 1 guidelines provide average wood density values at the 65 

species or genus level (see Table 4.13 in Eggleston et al., 2006). 

 

The Global Wood Density (GWD; Chave et al., 2009; Zanne et al., 2009) and Plant Trait (TRY; Kattge et al., 2020) databases 

currently represent the most comprehensive global datasets on wood density, covering approximately 8,000 and 11,000 

species, respectively. Their broad taxonomic and geographic scope is a major strength. However, these datasets compile values 70 

from heterogeneous sources, often based on limited and uneven sampling, and using sometimes poorly documented 

methodologies. This limits their ability to capture intraspecific variation and leads to data gaps, particularly for rare or 

regionally specific species (Flores and Coomes, 2011; Jenkins et al., 2003). 

 

In France, national estimates of forest biomass and carbon stocks have so far relied on wood density values derived from an 75 

unpublished dataset (CARBOFOR project; Loustau, 2002). Some of these values originate from a 170-year-old source 

(Mathieu, 1855), updated to provide a single average value per species across approximately 50 species. However, these 

estimates are based on small and unbalanced samples—typically fewer than 10 mature trees per species—and fail to capture 

the diversity of conditions encountered in French forests, including variability in tree species, tree size, and environmental 

factors. This raises concerns about the accuracy and representativeness of the resulting biomass and carbon stock estimates. 80 

 

Besides national inventories, remote sensing technologies are increasingly employed to map the spatial distribution of forest 

biomass and carbon (Liu et al., 2023; Santoro and Cartus, 2024; Schwartz et al., 2023). These approaches often rely on canopy 

height estimates derived from lidar or radar data (Pellissier-Tanon et al., 2024), which are converted into volume and biomass 

using allometric equations (Liu et al., 2023; Ma et al., 2024; Schwartz et al., 2023; Yang et al., 2022) or machine learning 85 

models (Su et al., 2025). However, this conversion is typically based on fixed assumptions that overlook wood density 

variability, introducing substantial uncertainties (Chave et al., 2019; Labrière et al., 2023) and, in some cases, systematic biases 

in biomass estimates (Phillips et al., 2019; Sæbø et al., 2022). As such, improving our understanding of wood density 

variation—both within and among species—is increasingly recognised as a critical step toward enhancing the accuracy of 

forest biomass and carbon mapping (Sæbø et al., 2022). 90 

 

Although several recent studies have investigated wood density variation, most have concentrated on interspecific differences 

at the global scale (Mo et al., 2024; Yang et al., 2024) or within tropical forest ecosystems (Phillips et al., 2019; Sullivan et 

al., 2025). In contrast, the present study addresses wood density variation in temperate forests by explicitly disentangling 

interspecific and intraspecific components, and assessing for their impacts on forest biomass estimates at different spatial 95 

scales. 
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To this end, we used the XyloDensMap dataset, which comprises wood density measurements for 110,763 individual trees 

sampled across a network of forest plots evenly distributed throughout mainland France (Cuny et al., 2024, 2025). Based on 

this extensive and spatially representative dataset, our study pursued four main objectives: (1) quantify variation in wood 100 

density at the interspecific and intraspecific levels across temperate forest species; (2) identify and measure the intensity of the 

biotic and abiotic drivers of this variation; (3) map how this variation translates into the spatial distribution of wood density; 

(4) evaluate the impact of accounting for this spatial distribution on biomass and carbon estimates at multiple spatial scales. 

 

To address these objectives, we developed linear models incorporating tree, stand, site, and climate variables. Models were 105 

used to quantify wood density variation at both interspecific and intraspecific levels and to identify its main drivers. They were 

subsequently applied to predict wood density for the 1,221,584 trees measured by the French National Forest Inventory (NFI) 

between 2005 and 2022. This enabled us to map wood density distribution across France and estimate aboveground forest 

biomass at four distinct spatial scales: national totals, totals for biogeographical regions and subregions—both delineated 

through biophysical partitioning of the territory—and individual NFI forest plots. 110 

2 Data and methods 

2.1 Dataset 

2.1.1 The XyloDensMap dataset 

The XyloDensMap open dataset comprises individual wood density measurements from 110,763 wood increment cores 

collected at breast height in mainland France (Cuny et al., 2024, 2025). Data were obtained by combining the spatially 115 

systematic sampling design of the French National Forest inventory (NFI) and a high-throughput method of wood density 

measurement by X-ray Computed Tomography (Freyburger et al., 2009; Jacquin et al., 2019). Owing to the systematic nature 

of the NFI’s annual sampling framework (Bontemps and Bouriaud, 2024; Bouriaud et al., 2023), the XyloDensMap dataset is 

representative of the French forest, especially in terms of species diversity and tree size distribution (Cuny et al., 2025). Full 

details on sampling design, sample processing and wood density measurement are provided in the corresponding data 120 

descriptor (Cuny et al., 2025). 

 

The XyloDensMap dataset provides four different wood density values, depending on whether anhydrous or green volume is 

used as a reference, and whether or not a weighting method is applied to calculate an average wood density representative of 

the entire stem cross-section (Williamson and Wiemann, 2010). The weighted mean basic wood density (hereafter called wood 125 

density) was used here. It corresponds to the ratio of dry mass to green volume that can be used for effective conversion of 

tree green volume into dry biomass under the assumption of the homogeneity of wood density in the whole tree (but see Billard 

et al., 2021). 
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2.1.2 Variables used to model wood density 

The French NFI acquires tens of variables related to tree, stand, soil and flora characteristics. Based on correlation analysis 130 

(with consideration of the variance inflation factors, see below) and current knowledge of the drivers of wood density 

variability (see, e.g., Bergès et al., 2008; Bouriaud et al., 2004, 2015; Franceschini et al., 2013; Guilley et al., 2004; Mo et al., 

2024; Yang et al., 2024), an initial selection was made on these variables to retain a subset of 17 variables  

available for all trees inventoried by the French NFI and of potential interest for modelling wood density (Table 1). Given that 

tree dimensions such as diameter at breast height (DBH) and total height are highly correlated with each other, we decided to 135 

rather use DBH and an indicator of tree slenderness, as estimated from the ratio between the total tree height (in m) and the 

square root of DBH (in cm) (Vallet et al., 2006). 

 

In addition, two climatic normals (mean annual temperature and total annual precipitation averaged over the 1991-2020 period) 

were extracted at a kilometric resolution (Météo France, AURELHY model; see Canellas et al., 2014) for each sample plot 140 

location. Thus, a total of 19 variables encompassing tree, stand, site, and climate characteristics were identified and considered 

for modelling wood density (Table 1; see Supplementary Table S1 for details on each variable calculations). 
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Table 1: Overview of the 19 candidate variables considered for wood density modelling. The column “Accessible via GIS layers” 

specifies whether each variable is restricted to local availability (e.g., National Forest Inventory plots) or could be accessed more 145 
broadly and at finer spatial resolution via geographic information systems (GIS) layers.  

Type of 

variable 
Variable Unit Type Signification Source 

Accessible 

via GIS 

layers 

Species 

identity 

Botanical 

class 
- Categorical 

Tree botanical class (broadleaf or 

conifer) 
NFI No 

Genus - Categorical Tree genus NFI No 

Species - Categorical Tree species NFI No 

Tree 

dimensions 

RW5 mm Continuous Average width of the last five tree rings NFI No 

DBH cm Continuous Tree diameter at breast height NFI No 

SLD - Continuous 

Tree slenderness, as estimated by the 

ratio between the tree height (in m) and 

the square root of the diameter at breast 

height (in cm) 

NFI No 

BAL m² Continuous 

Competition index calculated as the sum 

of the basal areas of all trees with a 

diameter at breast height (DBH) greater 

than that of the subject tree 

NFI No 

Stand 

attributes 

N trees ha-1 Continuous Number of trees per hectare in the stand NFI No 

G m² ha-1 Continuous Basal area per hectare of the stand NFI No 

DQ cm Continuous Quadratic mean diameter of the stand NFI No 

HDOM m Continuous 
Dominant height of the stand (mean 

height of the 100 tallest trees per hectare) 
NFI Yes 

VSTR - Categorical Vertical structure of the stand NFI Yes 

COMP - Categorical 
Forest composition type as estimated 

from the French “BD Forêt” map 
NFI Yes 

Site 

characteristics 

TRO - Discrete Trophic level index NFI No 

RAD - Discrete Solar radiation index NFI No 

SWC mm Continuous Soil water capacity NFI No 

BSR - Categorical Biogeographical subregion NFI Yes 

Climate 

conditions 

TM °C Continuous Mean annual temperature Météo France Yes 

P mm Continuous Total annual precipitation Météo France Yes 

 

2.1.3 Data processing 

The XyloDensMap dataset contains wood density records obtained from wood increment cores that can represent different 

proportions of the tree radius. Given the radial variability of wood density within stems (Lachenbruch et al., 2011), we retained 150 

only those increment cores that represented more than 50% of the tree radius (amounting to 78,377 out of 110,763 cores) to 

ensure a more representative estimate of stem wood density. 
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Due to the systematic sampling of the French NFI, the number of wood density measurements in the XyloDensMap dataset is 

proportional to the abundance of tree species across space, which varies strongly (Bontemps et al., 2019), and has immediate 155 

consequence on the number of wood density measurements available for each species (Cuny et al., 2025). Because of this 

unbalanced distribution, models were built for a subset of species showing at least 150 wood density measurements for the 

sake of model training and testing. This resulted in a dataset with 75,256 individual wood density values for 44 tree species. 

Availability of the 19 candidate predictors and removal of a few outlier values (defined as exceeding four standard deviations 

above and below the mean) led to discard an additional 1,107 wood density records, to reach 74,149 wood density values in 160 

the final subset of data considered for modelling (Supplementary Table S2). 

 

Selected species covered different wood structures types, with nine conifer species (tree rings mainly composed of tracheids 

with decreasing cell-diameter and increasing wall-thickness from early- to latewood) and 35 broadleaf species, including nine 

ring-porous species (tree rings containing many wide vessels in earlywood marking a sharp transition with dense latewood), 165 

12 diffuse-porous species (vessels of similar size evenly distributed across a tree ring), and 14 semi ring-porous species 

(intermediate structure between ring-porous and diffuse-porous species). Selected tree species ensure a 97% coverage of the 

forest growing stock in mainland France (as estimated with the French NFI data from the 2016-2019 collection years and the 

NFI estimation process, which can be run online at https://ocre-gp.ign.fr/ocre).  

2.1.4 Preliminary data exploration 170 

All analyses presented in this study were performed using the R statistical software version 4.3.2 (R Core Team, 2023). 

 

The mean wood density in the final selected dataset was 575 ± 112 kg m-3 (mean ± standard deviation), with individual values 

ranging from approximately 200 kg m-3 to over 1,000 kg m-3. On average, broadleaf species exhibited higher wood density 

than conifers (612 ± 92 vs 438 ± 63 kg m-3). Boxplots by species highlighted large interspecific variation, with a gradient 175 

among broadleaf species from low-density genera such as Populus, Tilia, and Alnus, to high-density genera like Quercus 

(Supplementary Figure S1). Wood density ranged from 381 ± 47 kg m-3 in Populus spp. to 854 ± 67 kg m-3 in Quercus ilex. 

Among conifers, species from the genera Abies and Picea exhibited lower wood density compared to those from Pinus, and 

wood density ranged from 387 ± 44 kg m-3 in Picea abies to 534 ± 42 kg m-3 in Pinus halepensis. 

 180 

These boxplots also revealed substantial intraspecific variation. For example, wood density in Quercus petraea—the broadleaf 

species with the largest growing stock in mainland France—ranged from 436 kg m-3 to 890 kg m-3. Similarly, Abies alba, the 

conifer species with the largest growing stock, showed wood density values ranging from 263 to 605 kg m-3. Density plots 

indicated that within each species, wood density followed a unimodal, bell-shaped distribution (Supplementary Figure S2). 

 185 
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Preliminary exploration of the covariate data shows moderate collinearity among a limited number of variables (Supplementary 

Figure S3). It also revealed potentially non-linear relationships between wood density and the variables related to tree 

dimensions (average width of the last five rings, tree diameter, tree slenderness, and basal area of larger trees), associated to a 

right-skewed distribution of these variables. A logarithm transformation of the predictors linearised the relationships and 

ensured more centred distributions (Supplementary Figure S4). 190 

 

Correlation analyses revealed species-specific relationships between wood density and candidate variables, particularly those 

related to tree dimensions (notably average width of the last five rings, tree diameter and slenderness; Supplementary Table 

S3). For example, the relationship between wood density and the average width of the last five tree rings was systematically 

positive in ring-porous broadleaf species and always negative for conifers, while for semi-ring porous and diffuse porous 195 

broadleaf species the direction of the relationship was negative or positive depending on the species. 

2.2 Modelling approach 

To detect the drivers of wood density variation and the magnitude of their effects, we fitted four linear models using the lm 

function in R, each incorporating different combinations of explanatory variables (Figure 1). These models span a gradient of 

input type and resolution, from those leveraging fine attributes uniquely available through NFI field plot data, such as detailed 200 

tree- and stand-level characteristics, to models relying exclusively on coarser ecological and forest descriptors potentially 

accessible via GIS-layer data for remote sensing applications. This modelling framework was designed to disentangle the 

contributions of different predictive drivers and to assess how data type and granularity influence the accuracy of wood density 

estimates. 

 205 
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Figure 1: Overview of the modelling framework. Data on wood density (dependent variable) and a suite of tree-, stand-, site-, and 

climate-level variables (shown in grey rectangle) were used to develop four statistical models aimed at identifying the main drivers 

of wood density variation. In parallel, two of these models (the “NFI-based model” and the “GIS-based model”), alongside a single 

mean coefficient, were applied to the French National Forest Inventory (NFI) data to predict wood density values and calculate 210 
forest aboveground biomass (AGB) stocks across four spatial scales. 

 

2.2.1 Taxonomic model 

To characterise interspecific variation in wood density and evaluate taxonomic influence, we developed a first linear model 

(hereafter referred to as the “taxonomic model”) incorporating the three following hierarchical taxonomic levels: botanical 215 

class, genus, and species. The model was expressed as follows: 

𝑊𝐷𝑖 = 𝛼 + 𝛽1𝑏𝑐[𝑖 ] + 𝛽2𝑔[𝑖] + 𝛽3𝑠𝑝[𝑖] + 𝜀𝑖 ,         (1) 

where WDi is the wood density of individual i, α is the model intercept, and β1, β2, and β3 are the coefficients associated with 

botanical class (bc), genus (g), and species (sp), respectively. The residual error term εi is assumed to be normally distributed. 

To quantify the relative contribution of each taxonomic level to interspecific variability, we conducted a Type I analysis of 220 

variance (ANOVA) on this model using the anova function in R. 
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2.2.2 Environmental model 

Environmental factors can influence wood density both interspecifically—through species composition—and 

intraspecifically—via tree development and stand conditions. To assess these effects independently of species identity, tree 

dimensions and stand characteristics, we constructed a second model (hereafter referred to as the “environmental model”) 225 

using only site and climate variables. The model was formulated as: 

𝑊𝐷𝑖 = α + 𝛽1 × 𝑇𝑅𝑂𝑖 + 𝛽2 × 𝑅𝐴𝐷𝑖 + 𝛽3 × 𝑆𝑊𝐶𝑖 + 𝛽4 × 𝑇𝑀𝑖 + 𝛽5 × 𝑃𝑖 + 𝜀𝑖,    (2) 

with WDi the wood density of individual i, α the model intercept, and β1, β2, β3, β4, and β5 the model coefficients associated 

with the covariates site trophic index (TRO), solar radiation (RAD), soil water capacity (SWC), mean annual temperature 

(TM) and total annual precipitation (P). εᵢ is the normally distributed residual error term. 230 

2.2.3 NFI-based model 

To identify the most influential drivers of wood density variation, we developed a third model (hereafter referred to as the 

“NFI-based model”) combining species identity and environmental descriptors along with detailed NFI variables related to 

tree- and stand-characteristics. Stand dominant height was excluded due to its correlation with tree slenderness and was instead 

incorporated into a separate model (see below). By comprehensively combining detailed variables at the individual tree and 235 

stand scale, this model aimed to achieve the highest possible precision in explaining wood density variation. 

 

Log-transformations were applied to variables related to tree dimensions (RW5, DBH, SLD, BAL) to linearise relationships 

and normalise distributions. For zero RW5 values (representing trees with ring widths thinner than the field measurement 

resolution), we applied the transformation log (RW5 + 0.1), with 0.1 corresponding to field measurement resolution. Likewise, 240 

log (BAL + 1) was used to accommodate zero BAL values (which represent the largest tree on the plot). To account for species-

specific effects, interaction terms between tree species and each continuous predictor were incorporated. The model took the 

following form: 

𝑊𝐷𝑖  = α𝑠𝑝[𝑖] + β1𝑠𝑝[𝑖] × log(RW5𝑖 + 0.1) + β2𝑠𝑝[𝑖] × log(DBH𝑖) + β3𝑠𝑝[𝑖] × log(SLD𝑖) + β4𝑠𝑝[𝑖] × log(BAL𝑖 + 1) +

β5𝑠𝑝[𝑖] × N𝑖 + β6𝑠𝑝[𝑖] × G𝑖 + β7𝑠𝑝[𝑖] × DQ𝑖 + β8𝑠𝑝[𝑖] × TRO𝑖 + β9𝑠𝑝[𝑖] × RAD𝑖 + β10𝑠𝑝[𝑖] × SWC𝑖 + β11𝑠𝑝[𝑖] × TM𝑖 +245 

β12𝑠𝑝[𝑖] × P𝑖 + 𝜀𝑖,            (3) 

with WDi the wood density of individual i, α the model intercept for the tree of species sp, and β1, β2, β3, … the species-

specific coefficients associated with the covariates (RW5, DBH, SLD, …) that can be found in Table 1. εᵢ is the normally 

distributed residual error term. We assessed multicollinearity using the variance inflation factors (VIFs) computed with the vif 

function from the R package car (Fox and Weisberg, 2019). All VIF values for the selected predictors were below 5, indicating 250 

acceptable levels of collinearity. 
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2.2.4 GIS-based model 

A fourth model (hereafter referred to as the “GIS-based model”) was developed using variables potentially available at the 255 

national scale and at high spatial resolution through GIS layers. This model aimed to assess the feasibility of reconstructing 

wood density variation without relying on detailed tree- or stand-level descriptors such as those provided by NFI data. In 

addition to mean annual temperature and total annual precipitation, four other variables were included, selected either for their 

current availability or potential to be represented through GIS layers: stand dominant height (defined as the mean height of the 

100 tallest trees per hectare), vertical stand structure (four classes determined from NFI data: regular forest, irregular forest, 260 

coppice, forest-coppice mix), stand composition, and biogeographical subregion. Stand dominant height and vertical structure 

were derived from NFI field data but could also be estimated through remote sensing methods (Besic et al., 2025; Martin-

Ducup et al., 2025; Schwartz et al., 2023). Stand composition and biogeographical subregions are already available for the 

entirety of mainland France. Stand composition is provided by the “BD Forêt”, an open access map based on aerial photograph 

analyses that classifies forest cover into 32 forest types (https://www.data.gouv.fr/fr/datasets/bd-foret-r/). Biogeographical 265 

subregions—86 classes in total—are defined by the French NFI as “sufficiently large geographical areas within which the 

combination of values taken by the factors determining forest production or the distribution of forest habitats is original” 

(Cavaignac, 2009; https://inventaire-forestier.ign.fr/spip.php?rubrique267). The “GIS-based model” was expressed as follows: 

𝑊𝐷𝑖 = 𝛼 + β1𝑣𝑠𝑡𝑟[𝑖] + β2𝑐𝑜𝑚𝑝[𝑖] + β3𝑏𝑠𝑟[𝑖] + β4 × 𝑇𝑀𝑖 + β5 × 𝑃𝑖 + β6 × 𝐻𝐷𝑂𝑀𝑖 + 𝜀𝑖,    (4) 

with WDi the wood density of individual i, α the model intercept, β1, β2, β3 the model coefficients associated with the 270 

categorical covariates stand vertical structure (vstr), stand composition (comp) and biogeographical subregion (bsr), and β4, 

β5, β6 the model coefficients associated with the continuous covariates mean annual temperature (TM), total annual 

precipitation (P), and stand dominant height (HDOM). εᵢ is the normally distributed residual error term. 

2.2.5 Model evaluation 

For all models, the dataset was partitioned at species level into 80% for model training and 20% for model testing. Partitioning 275 

was carried out using the createDataPartition function of the R package caret (Kuhn and Max, 2008). Performance of models 

was assessed by computing the mean absolute error (MAE, Willmott and Matsuura, 2005), the mean absolute percentage error 

(MAPE, Armstrong and Collopy, 1992) and the coefficient of determination or R-squared (R2, Mayer and Butler, 1993). In 

order to assess the importance of variables in models, we computed the Lindeman, Merenda and Gold (lmg) index using the 

relaimpo package in R (Groemping, 2006). The index provides the relative contribution of each predictive variable to the R-280 

squared with the consideration of the sequence of variables appearing in the model. 
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2.3 Model application 

2.3.1 Predicting wood density on French NFI data 

We computed wood density for the French National Forest Inventory (NFI) dataset—comprising 1,221,584 trees across 

104,199 plots inventoried between 2005 and 2022 in mainland France—using three distinct approaches that reflect a gradient 285 

in how wood density variability is incorporated into aboveground biomass (AGB) estimates. First, we used the “NFI-based 

model” described in Eq. (3), which provides a detailed representation of wood density variation based on tree-, stand-, site-, 

and climate-level information. Second, we applied the “GIS-based model” outlined in Eq. (4), which captures wood density 

variation using coarser, yet highly resolved, predictors potentially accessible via GIS layers. Lastly, we applied a constant 

mean wood density uniformly across all trees, thereby ignoring wood density variation. This mean value was derived from the 290 

XyloDensMap dataset, based on wood density measurements from increment cores covering more than 50% of the tree radius. 

 

The “taxonomic model” and “environmental model” were excluded from direct prediction: the “taxonomic model” served to 

explore species identity and its influence (integrated into the “NFI-based model”), while the “environmental model” was used 

to isolate environmental effects (also integrated in the “NFI-based model” and in the “GIS-based model”). 295 

 

Models enabled wood density predictions for 97% of the trees in the NFI dataset. For the remaining 3%—trees belonging to 

species for which no model was developed—we used species-specific mean wood density values calculated from the 

XyloDensMap dataset (based on increment cores covering more than 50% of the tree radius). For rare species present in the 

NFI data but not covered in the XyloDensMap dataset (0.04% of trees), we used genus-level averages (0.01% of trees), or, 300 

when genus-level data were unavailable, botanical class-level averages (broadleaf or conifer; 0.03% of trees). 

2.3.2 Estimating aboveground biomass at multiple scales in French forests 

We used the three types of predicted wood density (“NFI-based model” predictions, “GIS-based model” predictions, constant 

mean) to calculate the aboveground biomass (AGB) of each tree inventoried by the French NFI using the following Eq. (5): 

𝐴𝐺𝐵𝑖 = 0.001 × 𝐴𝐺𝑉𝑖 × 𝑊𝐷𝑖 ,           (5) 305 

where AGB is the tree aboveground biomass of individual i (in tons), AGV is the tree aboveground volume (stem and branches; 

in m3) calculated by French NFI using allometric equations (Vallet et al., 2006), and wood density is the corresponding wood 

density predicted according to one of the three approaches (in kg m-3). 

 

The three AGB values calculated for each tree using the different wood density estimates were then integrated into the standard 310 

NFI processing workflow to estimate forest AGB stocks at four spatial scales: (1) at the national level; (2) across the 11 

biogeographical regions and (3) 86 biogeographical subregions delineated by the French NFI based on biophysical partitioning 
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of the territory (Cavaignac, 2009); and (4) for each of the 104,199 forest plots (700 m² each) inventoried by the French NFI 

from 2005 to 2022 (Figure 1). 

2.3.3 Mapping wood density in France 315 

The wood density predicted using the “NFI-based model” for each tree recorded in the NFI dataset was further used to calculate 

a community-wide mean wood density (CWD; Swenson and Enquist, 2007) for each NFI forest plot, in order to assess the 

implications of the spatial distribution of wood density on forest AGB assessments. To do this, estimated individual wood 

density values were averaged at the plot level, taking into account the weight of each tree in the statistical sampling (as provided 

by the French NFI) as well as the total aerial volume of each tree: 320 

𝐶𝑊𝐷 =
∑ (𝑊𝐷𝑖×𝐴𝐺𝑉𝑖×𝑤𝑖

𝑛
𝑖=1 )

∑ (𝐴𝐺𝑉𝑖×𝑤𝑖
𝑛
𝑖=1 )

 ,          (6) 

where CWD is the community-wide mean wood density (in kg m-3) for a plot of n individuals scaled to per hectare, WDi is the 

predicted wood density (in kg m-3) using the “NFI-based model”, AGVi is the aboveground volume (in m3) and wi is the 

statistical weight in NFI sampling design (in number of stems ha-1) of the ith tree. 

3 Results 325 

3.1 Drivers of wood density variation 

3.1.1 Taxonomic influence on wood density variation 

The “taxonomic model” presented in Eq. 1 revealed that the botanical class alone explained 40.1% of the variance in wood 

density. The finer levels (genus and species) contributed an additional 38.4% of variance, with genus alone representing 30.8% 

(Supplementary Table S4; yet, 32% of studied species were alone in their genus). Altogether, species-level taxonomic 330 

information therefore explained 78.5% of the total variation in wood density, highlighting the dominant role of interspecific 

differences. The remaining 21.5% reflects intraspecific variability. 

3.1.2 Environmental influence on wood density variation 

The “environmental model” presented in Eq. 2 was intended to isolate the influence of environmental factors on wood density, 

deliberately excluding those related to species identity, tree dimensions, and stand structure. This model accounted for 14% of 335 

the total variation in wood density, underscoring the limited explanatory power of environmental descriptors when considered 

in isolation. Among these, mean annual temperature exhibited a strong positive effect, increasing wood density by 

approximately 19.8 ± 0.3 kg m⁻³ per degree Celsius. Variable importance analysis identified mean annual temperature as the 

most influential factor in this model, with a relative importance of 59%. It was followed by the trophic index (22%) and total 
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annual precipitation (16%), while soil water capacity and solar radiation contributed only marginally (2% and 1%, 340 

respectively). 

3.1.3 Identifying the main drivers of wood density variation 

Variation in wood density was further analysed using the “NFI-based model” presented in Eq. (3), integrating variables related 

to tree, stand- site, and climate. This model explained 82% of the total variance in wood density. Within the 21.5% representing 

intraspecific variability, 18% remained unexplained, while 3.5% was attributable to interactions between species and 345 

covariates, thus accounting for a very modest share of intraspecific variation in wood density. 

 

Results from the variable importance analysis showed that tree dimension variables—specifically the mean width of the last 

five annual rings, the diameter at breast height, and tree slenderness—were the most influential on intraspecific variation 

(Figure 2). Mean annual temperature also contributed, though to a lesser extent, while the remaining variables had only 350 

marginal explanatory power. 
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Figure 2: Relative importance (in %) of predictive variables in the “NFI-based model” of wood density variation. Variable 

importance was estimated using the lmg method. For each continuous variable, a species-specific interaction term was included in 355 
the model. For average width of the last five rings, tree diameter at breast height, tree slenderness and basal area of larger trees, a 

log-transformation was applied. 

 

3.1.4 Species-specific patterns of wood density variation 

Looking at intraspecific variation in wood density, the significance of model coefficients in the “NFI-based model” supported 360 

the findings from the variable importance analysis. Across species, tree dimension variables were the most significant 

predictors—particularly the average width of the last five rings and tree slenderness, both significant for 32 out of 44 species, 

followed by the diameter at breast height, significant for 28 species (see Supplementary Table S5). Mean annual temperature 

also showed a strong association with wood density, emerging as a significant predictor in more than half of the species 

examined (24 out of 44). 365 
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All coefficients of the “NFI-based model” are provided in Supplementary Table S6. They revealed clear trends across tree 

botanical classes or wood structure types. For example, the effect (considering significant effects only) of the average width 

of the last five rings on wood density was always positive in ring-porous species, but systematically negative in diffuse porous 

and conifer species (Figure 3). Among semi ring-porous species, the effect was negative solely for Populus tremula. 370 

 

 

Figure 3: Coefficients affected to the average width of the last five tree rings, the diameter at breast height and the mean annual 

temperature in the “NFI-based model” of wood density variation. Error bars represent the standard error around coefficients. 

Unsignificant coefficients are not shown. For the average width of the last five tree rings and the diameter at breast height, 375 
coefficients are for the log-transformed variable. 

 

Regarding the tree diameter at breast height, the effect on wood density was positive across all species, except for Castanea 

sativa, Quercus petraea, and Prunus avium (Figure 3). The effect of the tree slenderness was also positive in conifers, and 
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mostly negative in broadleaf species, with the exception of Arbutus unedo, Carpinus betulus and Tilia cordata (Supplementary 380 

Table S6). 

 

The effect of mean annual temperature on wood density was found mainly positive across species, except for Quercus ilex, 

Sambucus nigra and Larix decidua (Figure 3). By contrast, the effect of soil water capacity was negative, with the exception 

of Quercus rubra and Pseudotsuga menziesii (Supplementary Table S6). These results suggest that, within species, trees 385 

growing in warmer and drier regions tend to produce denser wood compared to those in cooler and wetter environments. 

3.1.5 GIS-accessible drivers of wood density variation 

The “GIS-based model” presented in Eq. (4) and using only variables potentially available via GIS layers accounted for 34% 

of wood density variation. According to the lmg method, forest composition type emerged as the most influential predictor, 

with a relative importance of 50%, in line with results from the “taxonomic model”. It was followed by the biogeographical 390 

subregion (27%) and mean annual temperature (11%), while stand structure, total annual precipitation and stand dominant 

height contributed less (5%, 4% and 3%, respectively). 

3.2 Model performance in predicting wood density variation 

Among the different models evaluated, the “NFI-based model” logically achieved the highest performance (Table 2). It showed 

strong agreement between train and test datasets (Figure 4), with an R² of 0.82 and a mean absolute error (MAE) of 37 kg m⁻³ 395 

(approximately 6%). Reflecting the dominant role of tree species identity on wood density, the “taxonomic model” performed 

nearly as well, yielding an R² of 0.79 and a MAE of 41 kg m⁻³ (~7%). 

 

Table 2: Performances of the four models tested for modelling wood density variation. 

Indicator Data 
Taxonomic 

model 

Environmental 

model 

NFI-based 

model 

GIS-based 

model 

R2 
Train 0.79 0.14 0.82 0.34 

Test 0.79 0.14 0.82 0.32 

MAE 

(kg.m-3) 

Train 41 84 37 72 

Test 41 85 37 73 

MAPE 

(%) 

Train 7.0 14.7 6.4 12.6 

Test 7.0 14.7 6.5 12.7 

 400 
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Figure 4: Measured vs. predicted values of wood density on train and test data using the “NFI-based model”. Colour depends on the 

density of points (the darker the colour, the denser the observations). Full blue line: OLS regression line between predicted and 

measured values, dashed black line: reference Y = X. 

 405 

In contrast, the models lacking detailed tree-level information demonstrated lower performance: the “environmental model” 

exhibited limited predictive power, with a R² of 0.14 and a MAE exceeding 80 kg m⁻³ (~15%); the “GIS-based model” showed 

intermediate performance, with an R² just above 0.30 and a MAE slightly over 70 kg m⁻³ (~13%).  

3.3 Simulation of wood density on French NFI data 

Wood density values predicted on NFI data using the “NFI-based model” were consistent with both interspecific and 410 

intraspecific variations observed in the XyloDensMap dataset (Figure 5; see Supplementary Figure S5 for more detailed 

results). On the one hand, interspecific variation was accurately reproduced in the simulated values. Among broadleaf species, 

the simulated values mimicked the trend from dense woods typical of the genus Quercus to lower densities found in genera 

such as Populus or Salix. For conifers, the simulations reflected the trend from denser woods in Pinus species to lighter woods 

in Abies and Picea. On the other hand, intraspecific variation was only partially reconstituted, which aligns with the relatively 415 
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limited proportion of intraspecific wood density variation captured. In contrast, predictions from the “GIS-based model”, while 

able to reflect general density trends, failed to reproduce interspecific variation (Figure 5), due to the absence of species-level 

information, which was not captured by the variables included in the model. The latter was found systematically biased across 

species (magnitude of 62 kg m-3 on average), with the bias negatively correlated with wood density, indicating a clear 

regression toward the mean. This led to bidirectional bias among broadleaved species, while conifers showed exclusively 420 

positive bias, suggesting a risk of systematic underestimation of wood density and biomass stocks in coniferous forests. 

 

 

Figure 5: Wood density values predicted on the French NFI dataset and values observed in the XyloDensMap data selected for 

modelling. Observed values correspond to measurements on wood increment cores, while predicted values were obtained from the 425 
“NFI-based model” (orange) and the “GIS-based model” (blue) developed on these measurements. Results are shown for a subset 

of 17 species. 
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3.7 Spatial variation of wood density in mainland France 

Mapping the community-wide mean wood density (CWD) derived from the individual estimates of the “NFI-based model” 430 

applied to forest plots inventoried by the French NFI revealed distinct spatial patterns across mainland France driven largely 

by forest species composition (Figure 6). Mountainous regions in eastern France or the Aquitaine massif in the southwest, 

dominated by conifer species (Abies alba and Picea abies in eastern France, Pinus pinaster in south-western France), exhibited 

notably low CWD values. In contrast, lowland areas dominated by broadleaf species displayed higher CWD. The 

Mediterranean zone, where broadleaf species characterised by high wood density (notably Quercus ilex and Quercus 435 

pubescens) are prevalent, stood out as a region with particularly elevated CWD. These patterns further underscore the critical 

role of species-level taxonomic information in explaining wood density variation, in line with previous findings. 

 

 

Figure 6: Map of species distribution and community-wide mean wood density in mainland France. A) Species distribution map 440 
(species with the highest percent canopy cover in the corresponding forest NFI plot) and B) community-wide mean wood density 

map, based on the wood density predicted by the “NFI-based model” on each forest plot inventoried by the French NFI between 

2005 and 2022. 

 

3.8 Aboveground biomass estimates at multiple scales across French forests 445 

The application of different methods to infer wood density on French NFI data led to very similar national estimate of 

aboveground biomass (AGB) stocks in French forests. The total forest AGB reached approximately 2.4 gigatons of dry 

biomass, using either the individual wood density values predicted from the models (“NFI-based model” and “GIS-based 

model”), or the single average coefficient. 
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 450 

However, larger differences emerged at finer spatial scales. At the level of the 11 biogeographical regions, the mean absolute 

difference in AGB between estimates from the “NFI-based model” and those using the constant mean was around 8%. This 

discrepancy increased to 10–15% in mountainous regions (Vosges, Jura, Alps) and the Mediterranean zone (Figure 7A). At 

the scale of the 86 biogeographical subregions, differences reached up to 30%, therefore twice as much in magnitude. Notably, 

biomass estimate discrepancies surpassed 10% in more than 25% of the subregions, and exceeded 20% in just under 10% of 455 

them (Figure 7B). 

 

At the NFI forest plot level, the average absolute difference in AGB between estimates derived from the “NFI-based model” 

and those obtained from the average coefficient was 15%. About 60% of plots exhibited differences greater than 10%, 25% 

showed differences above 20%, and 13% showed differences exceeding 30% (Figure 7C). Therefore, this difference tended to 460 

increase toward lower spatial scales, but remained in a comparable order of magnitude. This was found consistent with the 

low contribution of site and stand attributes that predominate at plot level, while tree species attributes are structured at a larger 

spatial scale (see Figure 6). 

 

The local magnitude and direction of the differences in AGB depended on the spatial distribution of wood density (Figure 6). 465 

As an obvious rule, neglecting wood density variation led to an underestimation of AGB in forests composed of species 

characterised by high wood density and, on the contrary, to an overestimation of AGB in forests made up of species with low 

wood density. For example, AGB calculated using a single average coefficient was underestimated in the Mediterranean region 

populated by broadleaf species with high wood density such as Quercus ilex (average wood density = 850 kg m-3; Figure 6; 

Figure 7C). On the other hand, it was overestimated in regions populated by conifer species with low wood density, such as 470 

Abies alba (average wood density = 415 kg m-3) and Picea abies (average wood density = 387 kg m-3) in eastern France and 

Pinus pinaster (average wood density = 438 kg m-3) in southwestern France (Figure 6; Figure 7C). 

 

Using wood density values predicted by the “GIS-based model” notably reduced discrepancies across all spatial scales. In the 

11 biogeographical regions, the mean absolute difference in AGB between estimates derived from the “GIS-based model” and 475 

the “NFI-based model” was just 1%, never exceeding 2% in any region (Figure 7D). Across the 86 subregions, the mean 

absolute difference was 2%, with only two subregions exceeding 5% (Figure 7E). At the NFI plot scale, although discrepancies 

remained substantial, they were markedly reduced: differences approximated 10% for around one-third of plots (compared to 

60% of the plots when using the average coefficient) and exceeded 20% for about 9% of plots (versus 25% of the plots when 

using the average coefficient; (Figure 7F). Thus, despite the systematic bias observed at the species level (Figure 5), the “GIS-480 

based model” contributes meaningfully to accounting for wood density variation from regional to local scales. 
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Figure 7: Difference in forest aboveground biomass (AGB) stock depending on the method used to predict wood density: the “NFI-

based model”, the “GIS-based model” or a single average coefficient. Comparisons are presented across three spatial levels: 485 
biogeographical regions (A and D), biogeographical subregions (B and E), and forest plots inventoried by the French NFI (C and 

F). Maps on the left show the difference in AGB between estimates derived from the “NFI-based model” and those using the average 

coefficient. Maps on the right display the difference between estimates derived from the “GIS-based model” and “NFI-based model”. 

All differences are expressed relative to the AGB estimated using the “NFI-based model”. 

 490 
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4 Discussion 

4.1 Characterising wood density variation in temperate forests 

This study, based on a large dataset of wood density measurements collected using a standardised protocol across France, 

provides a comprehensive characterisation of variation in wood density at both interspecific and intraspecific levels across 

temperate forests. Our findings reveal substantial variability between species—78.5% of the total variance—but also within 495 

them, resulting in pronounced spatial patterns in the distribution of wood density. 

 

Across the dataset, wood density values ranged from approximately 300 to 900 kg·m⁻³, varying by a factor of two to three both 

within and between species. These patterns align with those observed in the GenTree dataset, which covers a broader European 

range, although based on fewer individual trees and species (Martínez-Sancho et al., 2020; see Cuny et al., 2025 for comparison 500 

of the two datasets). 

4.2 The diversity in wood density observed in temperate French forests is comparable to that observed worldwide 

While recent studies have primarily examined interspecific variation in wood density at the global scale (Mo et al., 2024; Yang 

et al., 2024) or within tropical forests (Phillips et al., 2019; Sullivan et al., 2025), our study highlights that temperate forests 

exhibit a degree of wood density variability comparable to their tropical counterparts, despite their lower species richness. 505 

Tropical species typically show mean wood density values between 300 and 900 kg m⁻³ (Lewis et al., 2013; Phillips et al., 

2019; Reyes et al., 1992), with a pantropical mean of 619 kg m⁻³ In comparison, we found species-specific averages spanning 

from 380 to 850 kg m⁻³ and a mean value of 575 kg m⁻³ for French forests. 

 

Intraspecific variation was also substantial. For instance, Quercus petraea exhibited wood density values ranging from 510 

approximately 400 to 900 kg m⁻³ in France—comparable to the full range observed across tropical zones. Moreover, intra-tree 

variation (e.g. from pith to bark, base to crown, or between stem and branches) can equal or exceed inter-individual variation 

within a species (Billard et al., 2021; Bouriaud et al., 2015; Franceschini et al., 2010, 2013). 

4.3 What are the drivers of variation in wood density in temperate forests? 

Recent global studies have shown that tree species and hydrothermal conditions (regional temperature and precipitation) are 515 

key drivers of wood density variation (Mo et al., 2024; Yang et al., 2024). Our results, based on more intensive sampling at a 

national scale, confirm that species composition is the dominant factor in temperate forests (Kerfriden et al., 2021), explaining 

nearly 80% of the observed variation in wood density—similar to findings in tropical systems (Farias et al., 2023). While mean 

annual temperature did emerge as a significant predictor, its effect was moderate. 

 520 
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Environmental factors can indirectly influence wood density through species composition, tree dimensions, or stand 

characteristics. As a result, their effects may be partially captured by variables representing these features. For instance, tree-

ring width is known to respond strongly to climatic conditions (George, 2014), and in turn, can significantly influence wood 

density (Guilley et al., 2004; Saranpää, 2003; Zobel and van Buijtenen, 1989). Including tree-ring width as a covariate in 

statistical models can therefore reduce the apparent influence of environmental variables on wood density, as it acts as a 525 

mediating factor (Bergès et al., 2008). Even so, when tree- and stand-level variables were excluded in favour of purely 

environmental predictors within the “environmental model”, the proportion of wood density variance explained by temperature 

and precipitation remained low, indicating that climatic conditions alone account for a limited share of the overall variation at 

this spatial scale. Mean annual temperature, however, showed a strong positive effect on wood density variation, both within 

species (even when tree-ring width was controlled for) and across the entire dataset. 530 

 

This discrepancy with more global studies can likely be attributed to the spatial scale of analysis. At the global level, climatic 

gradients play a dominant role in shaping tree species distributions, from low wood density coniferous species in boreal forests 

to high wood density broadleaf species in tropical forests. In contrast, within a country like France, species distribution is also 

strongly influenced by silvicultural practices, which can uncouple species composition from local climatic conditions 535 

(Bontemps et al., 2019). As a result, the indirect effect of regional variation in climate conditions on wood density—via their 

influence on species composition—is likely more limited at this scale. 

 

Regarding intraspecific variation in wood density, we found that variables related to tree size and growth rate (as estimated by 

the average width of the last five tree-rings) were the most important. The direction of the relationship between growth and 540 

wood density was consistent with known wood anatomical patterns. In ring-porous broadleaves (e.g. Quercus, Fraxinus), 

wider rings tend to contain more latewood, resulting in higher density. In contrast, in conifers, wider rings typically contain a 

greater proportion of earlywood, leading to lower density (Lachenbruch et al., 2011; Zobel and van Buijtenen, 1989). Our 

models reflected these patterns: we observed positive effects of ring width on wood density in ring-porous species, negative 

effects in conifers, and species-specific responses in diffuse- or semi-ring-porous species (e.g. positive in Fagus sylvatica, 545 

negative in Betula pendula), in line with previous findings (Lachenbruch et al., 2011). 

The effect of tree diameter, identified as the third most influential predictor in the “NFI-based model” (Figure 2), also merits 

attention due to its quasi-systematic positive association with wood density. Since tree volume and various mechanical 

properties scale as power functions of tree size (King, 1990), this trend likely reflects mechanical constraints inherent to tree 

growth. Moreover, the relationship may have practical relevance in forest ecosystems undergoing maturation (Bontemps et al., 550 

2020). 
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4.4 Why intraspecific variation in wood density remains hard to capture 

Despite consistent relationships with covariates, our models captured only a small part of the intraspecific variation in wood 

density. Several hypotheses may account for this. 

 555 

First, average wood density—whether at the tree-ring or stem level—is known to be a relatively conserved trait under strong 

developmental control (Cuny and Rathgeber, 2016; Siefert et al., 2015; Swenson and Enquist, 2007), with high heritability 

and substantial additive genetic effects (Gaspar et al., 2008; Montes and Weber, 2009; Rozenberg et al., 2001; Soro et al., 

2023). Even though growth traits such as ring width and stem size are correlated with wood density, they typically explain 

only a limited portion of its variation (Bouriaud et al., 2004). The remaining unexplained variance is often captured as a “tree 560 

effect” in statistical models, reflecting individual-level differences not accounted for by measured predictors (Bontemps et al., 

2013; Franceschini et al., 2012; Guilley et al., 2004). Given the significance of this residual variability, advancing genetic 

mapping of tree populations and their diversity may offer a promising avenue for deeper insight (Porth and El-Kassaby, 2014), 

NFI providing an ideal framework for integrating such complementary measurements. 

 565 

Second, certain potentially influential predictors (e.g., tree age and average tree-ring width) were excluded from the main 

analysis, as they were available only for a subset of trees (Cuny et al., 2025). However, when using this subset, incorporating 

these variables only led to a modest improvement in the performance of the “NFI-based model”, with an additional 1% of 

captured intraspecific variation. 

 570 

Finally, we investigated whether the limited explanatory power of our models could stem from the modelling approach itself. 

This hypothesis was first challenged by the comparison of model performance on train and test datasets, which revealed 

remarkably similar results (Table 2). To further assess this, we implemented an additional random forest model using the 

ranger package in R (Wright and Ziegler, 2017), capable of capturing nonlinear relationships and interactions. Using the same 

set of predictors as in the “NFI-based model”, the random forest model yielded comparable predictive accuracy, with a mean 575 

absolute error of 36 kg m⁻³ and an R² of 0.82 on both train and test datasets (Supplementary Figure S6). These findings suggest 

that linear models, despite their simplicity, are well suited to this type of analysis and remain appropriate for predictive 

applications, offering the added benefit of interpretability 

4.5 What method should be used to infer wood density for forest biomass and carbon assessments? Scale matters 

Our results show that the importance of the method chosen to infer wood density and ultimately calculate AGB depends largely 580 

on the spatial scale. At broad spatial scales (e.g., national forest biomass assessments), the choice of the method to infer wood 

density has little impact. Even simplified assumptions, such as using a single average wood density value, produced results 

consistent with those from more detailed models. However, it is important to note that the average coefficient used in this 
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study was derived from comprehensive systematic sampling and weighted by species’ contributions to total growing stock. As 

such, it is highly representative of French forests. Coefficients derived from other, less comprehensive datasets may lead to 585 

lower predictive performances. 

 

At finer spatial scales, our findings demonstrate that using coarse coefficients that ignore wood density variability can introduce 

significant biases in forest biomass estimates. Paradoxically, detailed species-specific coefficients tend to be used at broad 

scales, while spatialised biomass and carbon estimates—particularly those derived from remote sensing—tend to rely on 590 

models that poorly account for wood density variation (Liu et al., 2023; Ma et al., 2024; Schwartz et al., 2023; Yang et al., 

2022). These remote sensing techniques offer great potential for biomass mapping, as they can allow the estimation of tree 

volume and biomass from canopy height. However, currently available remote sensing products do not permit to identify tree 

species, which prevents to incorporate wood density in the derived estimations. As a result, coarse approximations are typically 

used to convert volume into biomass, which can lead to substantial biases compared to ground-based estimates (Phillips et al., 595 

2019; Sæbø et al., 2022). 

 

Our analyses indicate that detailed, tree-level data are essential for accurately modelling wood density variation. Using climatic 

variables and general stand-level descriptors only partially capture this variability. Nonetheless, our “GIS-based model” 

demonstrated that incorporating such descriptors improves estimates of forest biomass and carbon stocks, even at fine spatial 600 

scales. Given that these variables are—or could be—available as GIS layers, this approach may be suitable for spatially explicit 

assessments of forest biomass and carbon stocks. Among all variables, stand composition emerged as the most influential 

factor, reflecting the dominant role of species identity in determining wood density. We relied on the “BD Forêt” database to 

characterise stand composition. While this map is no longer fully up to date, its revision could enhance the accuracy of wood 

density estimates by better capturing current species distributions. However, the exclusion of plot-level attributes revealed a 605 

clear process of regression toward the mean (Figure 5), particularly concerning for coniferous forests, where the bias is 

unidirectional. The generality of this effect in GIS-based developments has been shown to have substantial implications for 

strategic forest planning (Ulvdal et al., 2025). 

 

As a general rule, because tree identity is the primary driver of wood density variation, incorporating species-specific 610 

hypotheses on wood density significantly improves biomass estimates. We therefore encourage remote sensing approaches to 

integrate interspecific variability wherever possible. This can be achieved either by complementing remote data with ground-

based species inventories (Chave et al., 2019) or by leveraging recent advances in species recognition from processed imagery 

(Effendi et al., 2021; Ma et al., 2024). 
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4 Conclusions 615 

• This study provides new insights into wood density variation and its underlying drivers in temperate forests. 

• Species identity emerged as the dominant factor shaping wood density variation, leading to clear spatial patterns aligned 

with species distribution. Intraspecific variation was also substantial and influenced by tree size, growth rate, and mean 

annual temperature—although only partially captured by our models. 

• While accounting for wood density variation has limited impact on aboveground biomass estimates at the national scale—620 

provided that representative coefficients are used—it significantly affects estimates at finer spatial resolutions. 

• Given the strong influence of tree species and the limited predictability of intraspecific variation, we recommend using 

detailed species-level average wood density coefficients for forest biomass and carbon stock assessment. 

• Considering the well-documented inter-individual variability in wood density, future efforts to characterise the genetic 

structure of tree populations at broad scales using high-throughput technologies may offer valuable insights, but remain a 625 

methodological challenge. 
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