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Abstract 11 

One of the most basic questions asked of hydrologists is the quantification of 12 

catchment response to climatic variations, i.e., the variations around the average 13 

annual flow given the climatic anomaly of a particular year. This paper presents an 14 

analysis based on 4122 catchments from four continents, where we investigate how 15 

annual streamflow variability depends on climate variables – rainfall and potential 16 

evaporation – and on the synchronicity between precipitation and potential 17 

evaporation. We use catchment data to verify the existence of this link and show that, 18 

in all countries and under the main climates represented, anomalies in this 19 

synchronicity are the second most important factor to explain annual streamflow 20 

anomalies, after precipitation, but before potential evaporation. Introducing the 21 

synchronicity between precipitation and potential evaporation as an independent 22 

variable improves the prediction of annual streamflow variability with an average 23 

additional explained variance of 6 % globally. 24 

 25 
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Notations 27 

We deal in this paper with three hydrological fluxes: precipitation (𝑃௡), streamflow (𝑄௡) 28 

and potential evaporation (𝐸଴௡). The three fluxes are computed at catchment scale, 29 

expressed in millimeters per year, and represent annual totals (index 𝑛 refers to the 30 
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year in question). We use a hydrological year from October 1st of year 𝑛 െ 1 to 31 

September 30th of year 𝑛 in the Northern hemisphere and from April 1st of year 𝑛 to 32 

March 31st of year 𝑛 ൅ 1 in the Southern hemisphere. Anomalies (of 𝑃, 𝑄 and 𝐸଴), noted 33 

Δ, are computed as the difference between the annual value and the long-term average 34 

value, i.e., ∆𝑄௡ ൌ 𝑄௡ െ 𝑄ത, ∆𝑃௡ ൌ 𝑃௡ െ 𝑃ത, etc.   35 

1 Introduction 36 

1.1 On the climate elasticity of streamflow 37 

To assess the impact of climate change on water resources, hydrologists aim to 38 

quantify the amount of change in catchment flow when climatic conditions vary. The 39 

ratio between changes in streamflow and climate is formally defined as the climate 40 

elasticity of streamflow (Schaake and Liu, 1989). The hydrological literature and 41 

common sense both suggest that the best factor explaining the changes in annual 42 

streamflow is the annual precipitation anomaly (e.g., Pardé, 1933a; Leopold, 1974). In 43 

addition, many elasticity studies have also considered the anomaly of potential 44 

evaporation, although it is usually only weakly statistically significant in regression 45 

studies. In this paper, we focus on a third explanatory variable that quantifies the 46 

synchronicity between precipitation and potential evaporation within the year. 47 

1.2 Linear models to predict streamflow anomalies 48 

There is an abundance of literature concerning elasticity studies in hydrology, and our 49 

work builds upon the earlier empirical (i.e., measurement-based) studies of 50 

Sankarasubramanian et al. (2001), Chiew (2006), and Andréassian et al. (2016). Here, 51 

we follow the same principle and use linear regression models based on measured 52 

annual data to evaluate the climate elasticity of streamflow. An alternative approach to 53 

estimating climate elasticities would involve using hydrological models of varying 54 

complexities (e.g., Koster and Suarez, 1999). However, even if models are powerful 55 

investigative tools, they also rely on restrictive assumptions that often limit their 56 

credibility outside their calibration range. This can be particularly problematic in a large-57 

scale study on the impact of climate change. Thus, we favored an approach introducing 58 

the minimal number of hydrological assumptions, hence a linear regression that also 59 

has the advantage of being mathematically extremely simple. 60 



 3 

1.3 The synchronicity between precipitation and potential evaporation impacts 61 

annual streamflow totals 62 

The fact that the time shift between precipitation and potential evaporation, hereon 63 

referred to as “climatic synchronicity”, has a hydrological impact has been known for a 64 

long time, as shown by a few precursors on this topic. For example, in 1933b Pardé 65 

published a classic paper dedicated to the average flow of rivers, where he underlined 66 

that “for identical values of precipitation and temperature, everything else being equal, 67 

the runoff coefficient Q/P will be smaller where the larger part of precipitation falls 68 

during the warm season”. Similarly, Coutagne and de Martonne (1935) discussed 69 

formulas for annual streamflow, and underlined that formulas based only on the 70 

humidity ratio P/E0 are deficient, because they fail to account for “the distribution of 71 

precipitations between seasons, in particular, in the temperate zone, between the 72 

warm and the cold season. Of two years of equal precipitation, the year which will 73 

receive the most part in summer will produce the less annual flow”. Additional classical 74 

studies include Thornthwaite (1948), who proposed to classify climates initially with 75 

two indices (one characterizing the periods of water surplus and the other the periods 76 

of water deficiency), which he subsequently combined into a single index. Also, Turc 77 

introduced in 1954 his famous formula for long-term actual evaporation. At the very 78 

end of his paper, he wrote that “the most urgent improvement” to his actual evaporation 79 

formula should be the introduction of the “distribution of precipitations and of the 80 

temperature changes within the year.” 81 

Recent studies have also discussed the impact of climate seasonality on water 82 

balance, based on either theoretical or empirical approaches. Among the theoretical 83 

studies, Dooge (1992) presented catchment yield curves where he introduced as a 84 

parameter the length of the dry season. Milly (1994) proposed a theoretical 85 

computation of actual evaporation based on the seasonality of the aridity index. Yokoo 86 

et al. (2008) made theoretical computations on the difference between in-phase and 87 

out-of-phase regimes of precipitation and potential evapotranspiration. Additionally, 88 

Roderick and Farquhar (2011), Feng et al. (2012), Donohue et al. (2012), Berghuijs et 89 

al. (2014) and Jawitz et al. (2022) all made notable developments. Among the empirical 90 

studies, Potter et al. (2005) quantified the impact of rainfall seasonality on mean annual 91 

water balance in Australia. Hickel and Zhang (2006) discussed the antagonistic effects 92 

of climate seasonality and soil moisture storage. More recently, de Lavenne and 93 

Andréassian (2018) proposed a synchronicity index to characterize the phase 94 
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difference between precipitation and potential evaporation, and Feng et al. (2019) 95 

proposed an index of asynchronicity for Mediterranean climates. 96 

1.4 Purpose of the paper 97 

In this paper, we aim to improve the prediction of streamflow elasticity by introducing 98 

anomalies in synchronicity between precipitation and potential evaporation as a 99 

predictor, alongside variability in rainfall and potential evapotranspiration. Our study is 100 

based solely on data analysis, and uses only linear regression models. 101 

2 Test catchments 102 

2.1 Origin of the dataset 103 

As presented in Table 1, we use catchments from nine countries to base our analysis 104 

on a wide range of climates. 105 

 106 
Table 1. Origin of the catchments used in this paper 107 

Country Number of 
catchments 
selected 

Number of 
catchments 
available in 
the original 
dataset 

Dataset Reference 

Australia 546 561 Camels-AUS Fowler et al. (2024) 
Brazil 636 734 Cabra Almagro et al. (2021) 
Denmark 202 304 Camels-DK Liu et al. (2024) 
France 628 654 Camels-FR Delaigue et al. (2024) 
Germany 1094 1555 Camels-DE Loritz et al. (2024) 
Sweden 152 158 Selection by 

G. Lindström 
de Lavenne et al. (2022) 

Switzerland 73 331 Camels-CH Höge et al. (2023) 
United Kingdom 136 670 Camels-UK Coxon et al. (2020) 
USA 655 672 Camels-US Addor et al. (2017) 

 108 

The total number of catchments is 4122, for a total of 162,005 station-years (the 109 

average length of catchment time series is 39 years). We use hydrological years as 110 

defined in the Notations section. 111 

2.2 Catchment selection 112 

The catchments used in this paper were selected from several datasets indicated in 113 

Table 1 and represent approximately 75% of the original catchments. Our catchment 114 
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selection was based on three criteria: record length, catchment memory and regulation 115 

degree. First, we only selected catchments that had more than 20 complete 116 

hydrological years. Second, we selected catchments that exhibit minimal interannual 117 

memory (“memory” as defined by de Lavenne et al., 2022). This criterion was needed 118 

because the equation used here to estimate streamflow elasticity is only hydrologically 119 

warranted for catchments displaying minimum interannual memory, thus allowing a 120 

straightforward computation of annual elasticity coefficients, based only on annual 121 

average values. Finally, catchments identified as significantly regulated by reservoirs 122 

were removed. This identification was done by either asking the datasets authors, or, 123 

where the information was available, by setting a limit equal to 10 mm equivalent 124 

volume storage in dams). For Switzerland, the list of almost natural catchments 125 

published by Muelchi et al. (2022) was utilized. 126 

2.3 Climatic inputs 127 

Where several precipitation products were available in the original dataset, we used 128 

the product recommended by dataset authors as being of the best quality, while 129 

avoiding precipitation data based exclusively on satellite estimates. 130 

In the original datasets, potential evaporation was computed with a variety of different 131 

formulas (Makkink, Morton, FAO-56, Penman-Monteith, Hargreaves, Oudin, etc.). For 132 

the sake of homogeneity, we recomputed it (at the daily time step) for all catchments 133 

using the formula proposed by Oudin et al. (2005), which requires only extraterrestrial 134 

radiation and air temperature. This formula was selected for two reasons: first, it could 135 

be computed, given the available data, for all datasets, and it has been widely used 136 

worldwide and appears appropriate (while of course not perfect) for describing 137 

atmospheric evaporative demand. 138 

2.4 Characteristics of the catchment set 139 

In our dataset, the aridity index, computed as 𝐸଴/𝑃, ranges from 0.1 to 6.3, with a first 140 

quartile of 0.6 and a third quartile of 1.0. The mean and the median of the aridity index 141 

are both 0.8. In order to assess the generality of the results, we will discuss them at 142 

the country scale and also by climatic classes following the Köppen-Geiger 143 

classification (see e.g., Peel et al. 2007 and Table 2). Note that we only give numerical 144 

results for the climatic zones with more than 100 catchments. 145 

 146 
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Table 2. Main climatic zones (in the sense of the Köppen-Geiger classification) represented in 147 

our dataset (we present the zones counting more than 100 catchments) 148 

Köppen-Geiger 
zone 

Name Number of catchments 

Aw Tropical savanna climate with dry winter 344 
Cfa Temperate climate without dry season 

with hot summer 
364 

Cfb Temperate climate without dry season 
with warm summer 

1746 

Csa Temperate climate with dry and hot 
summers 

196 

Dfb Continental climate without dry season 
with warm summer 

956 

Dfc Continental climate without dry season 
with cold summer 

132 

 149 

Finally, Figure 1 presents the 4122 catchments of our dataset with two variants of the 150 

Turc-Budyko non-dimensional graph. On the left-hand graph, each catchment 151 

corresponds to one point, with coordinates representing the average aridity on the x-152 

axis and ‘actual evaporation’ yield, computed as ሺ𝑃 െ 𝑄ሻ/𝑃, on the y-axis. On the right-153 

hand graph, each catchment is represented by a single point, with coordinates 154 

indicating the average humidity on the x-axis and the average streamflow yield, 155 

computed as 𝑄/𝑃, on the y-axis. 156 

  157 
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  158 
Figure 1: Representation of the 4122 catchments in two equivalent forms of the Turc-Budyko 159 

non-dimensional space. The solid blue line corresponds to the water limit (Q=P), and the orange 160 

line corresponds to the energy limit (Q=P-E0). On the left, an additional limit (dotted blue line) is 161 

sometimes improperly referred to as “water limit” in the literature, but it only corresponds to the 162 

physical limit (Q=0), when one estimates the actual evaporation as the difference between 163 

discharge and precipitation. The catchments that are beyond the orange line (i.e., above on the 164 

left and below on the right) are “leaky” (in the sense that they contribute to the recharge of a 165 

regional aquifer) and those which are beyond the blue line (i.e., below on the left and above on 166 

the right) are “gaining” in the sense of a karstic catchment which would drain a larger than 167 

specified catchment (note that in a few cases, data uncertainties might also cause catchments 168 

to be beyond the limits). 169 

3 Method 170 

3.1 Computation of the synchronicity of precipitation and potential evaporation 171 

In this paper, we utilize a modified version of the seasonality index introduced by de 172 

Lavenne and Andréassian (2018): a detailed discussion of the reasons for this change 173 

is provided in the Appendix. The objective of this index (𝛬) is to characterize the 174 

synchronicity between precipitation 𝑃 and potential evaporation 𝐸଴ at the annual time 175 

step. For each year n, we define the part of annual precipitation that is the most easily 176 

accessible to evaporation (i.e., neutralizable by evaporation) as in Eq. 1 and Figure 2: 177 

 178 
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𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑃 െ 𝐸଴ 𝑎𝑚𝑜𝑢𝑛𝑡 ൌ ෍ 𝑚𝑖𝑛 ቀ𝑃௠,௡ ,𝐸଴௠,௡ቁ

ଵଶ

௠ୀଵ

 Eq. 1 

where the index m refers to the calendar month  179 

 180 
Figure 2. two series of precipitation and potential evaporation at catchment scale: the part of 181 

precipitation that is the most easily accessible to evaporation is illustrated in hatched pattern 182 

 183 

The percentage of easily neutralizable precipitation is then defined as Eq. 2, and the 184 

percentage of easily neutralizable potential evaporation as Eq. 3. 185 

λଵ,௡ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡ ,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

𝑃௡
 Eq. 2 

 186 

λଶ,௡ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡ ,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

𝐸଴௡
 Eq. 3 

Because both ratios belong to the interval [0,1], their geometric average will also be 187 

within the same range (Eq. 4). 188 

λଷ,௡ ൌ ඥλଵ,௡λଶ,௡ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡ ,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

ඥ𝑃௡ 𝐸଴௡
 Eq. 4 

Finally, the index 𝛬 rescales and combines λଵ and λଶ into a single quantity, expressed 189 

in mm/yr, representing the average ratio of neutralizable precipitation and neutralizable 190 
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potential evaporation as shown in Eq. 5. For two years with the same annual amounts 191 

of precipitation and potential evaporation, 𝛬 will reach higher values when 𝑃 and 𝐸଴ 192 

are synchronous, and lower values when they are out of phase. 193 

𝛬௡ ൌ λଷ,௡ ∗ 𝑃ത ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡ ,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

ඥ𝑃௡ ∗ 𝐸଴௡
∗ 𝑃ത Eq. 5 

 194 

3.2 Computation of streamflow elasticities 195 

To compute the streamflow elasticities, we solve two linear equations given by Eq. 6 196 

and Eq. 7. 197 

∆𝑄௡ ൌ 𝑒ொ ௉⁄ ∆𝑃௡ ൅ 𝑒ொ ாబ⁄ ∆𝐸଴௡ Eq. 6 

∆𝑄௡ ൌ 𝑒ொ ௉⁄ ∆𝑃௡ ൅ 𝑒ொ ாబ⁄ ∆𝐸଴௡ ൅ 𝑒ொ ௸⁄ ∆𝛬௡ Eq. 7 

Where Δ𝑄௡ (respectively ∆𝑃௡, ∆𝐸଴௡, ∆𝛬௡) represents the deviation from the mean 198 

annual value (anomaly) for variable 𝑄 (respectively 𝑃, 𝐸଴, 𝛬) in mm/y and 𝑒ொ/௉, 𝑒ொ ாబ⁄  199 

and 𝑒ொ ௸⁄  represent the elasticity of streamflow with respect to 𝑃, 𝐸଴, and 200 

𝛬 (dimensionless). 201 

Eq. 6 represents the classical approach to elasticity computation (Andréassian et al., 202 

2016), while Eq. 7 represents the original contribution of this paper, and aims at 203 

determining how far climatic synchronicity explains annual streamflow variability. 204 

The elasticities in Eq. 6 and Eq. 7 are estimated via ordinary least squares (OLS). More 205 

complex statistical models such as generalized least squares are not required because 206 

the selected catchments do not exhibit interannual memory, as explained in the data 207 

section. This absence of interannual memory guarantees the lack of autocorrelation in 208 

annual streamflow, which is an important statistical assumption for OLS. Additionally, 209 

we chose a p-value threshold of 0.05 for all the discussion of results. We compute 210 

elasticity coefficients between anomalies of equal dimensions (in mm/y), and not 211 

between relative anomalies (in %) because with the anomalies expressed in mm/y the 212 

physically-plausible range is known: [0,1] for 𝑒ொ ௉⁄ , [-1,0] for 𝑒ொ ாబ⁄  and 𝑒ொ ௸⁄ . Finally, Eq. 213 

6 and Eq. 7 were solved on a catchment-by-catchment basis, i.e., we computed 4122 214 

distinct regressions. 215 

Figure 3 illustrates this catchment-based computation using the example of the 216 

Meurthe River at Raon-l'Étape (727 km²). For this catchment, annual streamflow 217 
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anomalies exhibit a well-defined dependency on both precipitation and synchronicity 218 

anomalies, with the dependency on potential evaporation anomaly being very weak. 219 

 220 
Figure 3. Example of an elasticity plot for the Meurthe River at Raon-l'Étape (A615103001): each 221 

point corresponds to one hydrological year (for this catchment, 36 hydrological years were 222 

available, from 1975 to 2021). The Pearson correlations of ∆𝑸 with ∆𝑷, ∆𝑬𝟎 and ∆𝜦 are 223 

respectively 0.87, -0.02 and -0.78 224 

 225 

The visual impression of Figure 3 is confirmed by the results of the linear regressions 226 

of Eq. 6 and Eq. 7 in Table 3. Values of the Student’s t-test indicate that precipitation 227 

has a dominant contribution, while the contribution of potential evaporation is not 228 

statistically significant. The introduction of synchronicity increases the R² from 0.75 to 229 

0.80.  230 

 231 

Table 3. Climate elasticity coefficients computed with and without the inclusion of the 232 

synchronicity variable 𝜦 for the example catchment (La Meurthe at Raon-l'Étape) 233 

Formulation 𝒆𝑸 𝑷⁄ [-] 
p-value 
for 𝒆𝑸 𝑷⁄  

𝒆𝑸 𝑬𝟎⁄ [-] 
p-value 
for 𝒆𝑸 𝑬𝟎⁄  

𝒆𝑸 ௸⁄ [-] 
p-value 
for 𝒆𝑸 ௸⁄  R² 

∆𝑄 ൌ 𝑓ሺ∆𝑃,∆𝐸଴ሻ 0.52 < 0.001 0.00 0.99 — — 0.75 
∆𝑄 ൌ 𝑓ሺ∆𝑃,∆𝐸଴,∆𝛬ሻ 0.38 < 0.001 -0.25 0.59 -0.56 < 0.01 0.80 

 234 

4 Results 235 

4.1 Graphical analysis of anomalies by country 236 

To provide a general overview of the correlation between streamflow anomalies and 237 

climatic anomalies, Figure 4 and Figure 5 present an aggregated plot for each country 238 

and for each main climate class, combining the anomalies of all catchments. At this 239 

scale, only general trends are apparent. As expected, streamflow anomaly is clearly 240 
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positively correlated with precipitation anomaly in all countries; streamflow anomaly is, 241 

overall, very weakly negatively correlated with potential evaporation anomaly, 242 

Denmark being the only outlier with a weak positive correlation (it is mainly due to the 243 

year 1990, which was a very dry year in Denmark, but with an unusual cold summer). 244 

Streamflow anomaly is clearly negatively correlated to the synchronicity index anomaly 245 

(𝛬) for all countries. This negative correlation indicates that years with a lower 𝛬 (i.e., 246 

when precipitation and potential evaporation are more out of phase) yield greater 247 

streamflow. This observation is perfectly hydro-logical, and conforms to general 248 

observations previously identified by Pardé (1933a). In the case of Australia, where 249 

streamflow anomalies are clearly negatively correlated to the synchronicity index 250 

anomaly (𝛬) on Figure 4, it is interesting to mention the opposite conclusion of Potter 251 

et al. (2005) who wrote that “the inclusion of seasonally varying forcing alone was not 252 

sufficient to explain variability in the mean annual water balance”. This surprising 253 

conclusion may be an artefact of the index chosen by the authors to describe 254 

seasonality. 255 

Overall, the most surprising fact is that streamflow anomaly appears more strongly 256 

correlated with the synchronicity index anomaly than with the potential evaporation 257 

anomaly. 258 

 259 
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 260 
Figure 4 Scatter plots, for each country, between streamflow anomalies ∆𝑸, and: precipitation 261 

anomalies ∆𝑷 (left), potential evaporation anomalies ∆𝑬𝟎 (middle) and synchronicity index 262 

anomalies ∆𝜦 (right). Each point represents one station-year. Above each scatter plot, we 263 

provide the corresponding Pearson correlation 264 

  265 
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 266 
Figure 4. (continuation) 267 

 268 

 269 
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 270 
Figure 5. Scatter plots, for the main climate classes, between streamflow anomalies ∆𝑸, and: 271 

precipitation anomalies ∆𝑷 (left), potential evaporation anomalies ∆𝑬𝟎 (middle) and synchronicity 272 

index anomalies ∆𝜦 (right). Each point represents one station-year. Above each scatter plot, we 273 

provide the corresponding Pearson correlation 274 

 275 
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4.2 Overall results by catchment 276 

We now analyze the results obtained for each of the 4122 catchments. Table 4 shows 277 

the statistics of the individual regressions for the classical case when synchronicity is 278 

not included as a predictor. This analysis reveals that for all countries and all climate 279 

groups, the precipitation elasticity of streamflow is almost always significant at the 0.05 280 

level. On the other hand, the potential evaporation elasticity of streamflow is not 281 

frequently significant at the 0.05 level. In addition, the regression identifies physically 282 

realistic precipitation elasticity values (between 0 and 1) for almost all catchments 283 

(93% worldwide, and a minimum of 80% across different groupings), whereas potential 284 

evapotranspiration elasticity is frequently physically unrealistic with only 6% of values 285 

in the range [0, 1] globally. 286 

 287 

Table 4. Linear regression results by country for Eq. 6 when regression uses two independent 288 

variables P and E0 to explain streamflow anomaly 289 

Region or 
climate 
class 

Total 
number of 

catchments 

Percentage of 
catchments where 

𝒆𝑸 𝑷⁄  was  

Percentage of 
catchments where 

𝒆𝑸 𝑬𝟎⁄  was  

Mean 
adjusted 

R² significant at the 
0.05 level 

significant and in 
the range [0,1] 

significant at the 
0.05 level 

significant and in 
the range [-1,0] 

By country 
Australia 546 100% 97% 18% 9% 0.67 

Brazil 636 95% 86% 12% 4% 0.61 
Denmark 202 100% 100% 9% 0% 0.51 
France 628 100% 93% 21% 7% 0.71 

Germany 1094 94% 93% 18% 9% 0.47 
Sweden 152 100% 87% 20% 7% 0.65 

Switzerland 73 100% 86% 8% 0% 0.75 
UK 136 99% 89% 25% 2% 0.75 

USA 655 99% 95% 9% 4% 0.65 
By climate class 

Aw 344 93% 91% 16% 7% 0.60 
Cfa 364 100% 90% 3% 0% 0.66 
Cfb 1746 98% 94% 18% 7% 0.60 
Csa 196 99% 96% 7% 1% 0.67 
Dfb 956 96% 94% 21% 9% 0.56 
Dfc 132 99% 80% 29% 10% 0.71 

 
World 4122 97% 93% 16% 6% 0.61 

Aw - Tropical savanna climate with dry winter, Cfa – Temperate climate without dry season with hot summer, Cfb – Temperate climate 290 
without dry season with warm summer, Csa – Temperate climate with dry and hot summers, Dfb – Continental climate without dry season 291 
with warm summer, Dfc – Continental climate without dry season with cold summer 292 
 293 

Table 5 presents the same statistics, when the synchronicity anomaly (∆𝛬௡) is 294 

introduced into the elasticity regression (Eq. 7). This analysis shows that the average 295 
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efficiency of the regression equation increases across all countries and climate groups 296 

(see also Figure 6). While an increase is expected when an additional predictor is 297 

added to a regression, please note that we are presenting adjusted R² values, which 298 

are designed to take that issue into account. The average additional explained 299 

variance lies in the range 3 %-10 % (6 % globally), depending on the group, and we 300 

consider it a noticeable improvement. Additionally, the synchronicity anomaly (∆𝛬௡) 301 

provides a significant contribution to the regression for 64 % of the catchments, 302 

compared to only 23 % for potential evaporation). 303 

More important, the introduction of the synchronicity anomaly (∆𝛬௡) does not modify 304 

the significance of the other two elasticity coefficients 𝑒ொ ௉⁄  and 𝑒ொ ாబ⁄ . A slight increase 305 

is observed in the proportion of catchments where 𝑒ொ ாబ⁄  coefficient is significant at the 306 

0.05 level (from 16 % to 23 %). Moreover, the utilization of ∆𝛬௡ does not degrade the 307 

physical realism of the elasticity coefficients 𝑒ொ ௉⁄  and 𝑒ொ ாబ⁄ . Once again, a slight 308 

increase is observed in the proportion of catchments where 𝑒ொ ௉⁄  coefficient is 309 

significant and in the physical range [0,1] (from 93 % to 94 %), and where 𝑒ொ ாబ⁄  310 

coefficient is significant at the 0.05 level and in the physical range [-1,0] (from 6 % to 311 

11 %). Finally, only two countries (Switzerland and Brazil) and one climate type (Dfc – 312 

Continental climate without dry season with cold summer) showed lower relevance of 313 

the synchronicity index compared to other regions. We attribute this reduced relevance 314 

in Switzerland and climate zone Dfc to the essentially energy-limited nature of the 315 

catchments as our selection criteria for Switzerland prioritized high-elevation 316 

catchments with minimal anthropogenic impact (see also the Discussion section and 317 

Figure 9). Last, note that in all groupings except Dfc, the number of catchments where 318 

𝑒ொ ௸⁄ is significant at the 0.05 level exceeds that where the 𝑒ொ ாబ⁄  coefficient is significant 319 

at the same level. 320 

  321 
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Table 5. Linear regression results by country for Eq. 7 when regression uses three independent 322 

variables to explain streamflow anomaly (to allow for comparison, the last column reports the 323 

mean R² of Table 4) 324 

Country 

Total 
number of 
catchment

s 

Percentage 
of 

catchments 
where 

𝒆𝑸 𝑷⁄  was  

Percentage 
of 

catchments 
where 𝒆𝑸 𝑬𝟎⁄  

was  

Percentage 
of 

catchments 
where 𝒆𝑸 𝜦⁄  

was 

Mea
n 

adj. 
R² 

Mean 
adj. 
R² 

from 
Tabl
e 4 significan

t at the 
0.05 level 

significan
t and in 

the range 
[0,1] 

significan
t at the 

0.05 level 

significan
t and in 

the range  
[-1,0] 

significan
t at the 

0.05 level 

significan
t and in 

the range 
[-1,0] 

By country 
Australia 546 100% 98% 38% 20% 87% 83% 0.76 0.67 

Brazil 636 90% 84% 13% 5% 25% 22% 0.64 0.61 

Denmark 202 100% 100% 6% 0% 44% 44% 0.56 0.51 

France 628 100% 96% 30% 13% 82% 79% 0.77 0.71 

Germany 1094 97% 97% 27% 16% 79% 76% 0.57 0.47 

Sweden 152 100% 90% 24% 5% 41% 38% 0.69 0.65 

Switzerlan
d 

73 
96% 82% 8% 0% 22% 21% 0.76 

0.75 

UK 136 99% 90% 41% 11% 62% 59% 0.81 0.75 

USA 655 99% 96% 11% 5% 57% 52% 0.71 0.65 

By climate class 
Aw 344 90% 88% 18% 10% 42% 40% 0.67 0.60 

Cfa 364 98% 91% 9% 1% 51% 47% 0.74 0.66 

Cfb 1746 99% 96% 28% 14% 76% 74% 0.71 0.60 

Csa 197 99% 97% 17% 2% 43% 37% 0.73 0.67 

Dfb 956 98% 96% 27% 14% 68% 65% 0.66 0.56 

Dfc 132 98% 82% 30% 8% 30% 29% 0.76 0.71 

 

World 4122 97% 94% 23% 11% 64% 61% 0.67 0.61 
Aw - Tropical savanna climate with dry winter, Cfa – Temperate climate without dry season with hot summer, Cfb – Temperate climate 325 
without dry season with warm summer, Csa – Temperate climate with dry and hot summers, Dfb – Continental climate without dry season 326 
with warm summer, Dfc – Continental climate without dry season with cold summer 327 

 328 

5 Discussion 329 

Figure 6 illustrates the improvement in explanatory capacity of the regressions due to 330 

the introduction of the synchronicity anomalies. While considerable variability exists, 331 

and some catchments show equivalent performance between the two regression 332 

models (indicated by points on the 1:1 line), the graph confirms that for many 333 

catchments (approximately 66 % of the dataset, where 𝒆𝑸 𝜦⁄  was significant at the 0.05 334 

level), accounting for synchronicity anomalies visibly improves the efficiency of the 335 

linear regression. Because the adjusted R² shows the same trend as the classical R², 336 

this is clearly not a simple effect of the increase of independent variables in the 337 

regression. 338 



 18 

 339 

 340 
Figure 6. Comparison of the performances of the 2-parameter streamflow elasticity model (Eq. 341 

6, which does not account for P-E0 synchronicity) and the 3-parameter model (Eq. 7, which does). 342 

Each point represents one of the 4122 catchments of our dataset. The solid line represents the 343 

median, and the dashed lines represent the first and the third quartiles. As measure of efficiency, 344 

we use the R² on the left plot and the adjusted R² on the right one 345 

 346 

In Figure 7, we summarize the significativity of the 𝑒ொ ௸⁄  coefficient across all the 347 

Köppen climate classes represented in our dataset: 𝑒ொ ௸⁄  is significative at the 0.05 348 

level for 50 % of the catchments in 11 classes (representing 79% of the catchments). 349 

 350 
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 351 
Figure 7. significativity of the P-E0 synchronicity anomalies by Köppen climate class: the dashed 352 

area represents the proportion of catchments for which synchronicity was not deemed 353 

significant  354 

 355 

Figure 8 shows the geographic distribution of the catchments where the P-E0 356 

synchronicity had a significant contribution to explain streamflow anomalies (with a p-357 

value threshold of 0.05). The map brings further elements to Table 5 and illustrate that 358 

there are sub-regions where the coefficient 𝒆𝑸 𝜦⁄  is mostly not significant at the 0.05 359 

level. Based on our knowledge of the climatic specificities of each country, this seems 360 

to be possibly correlated to higher rainfall (cf. the Danish dataset, with the particular 361 

behavior of the West of Jutland, the case of Florida in the US, the case of the Scottish 362 

catchments in Great Britain) and/or to colder areas (cf. the Swiss, Swedish and US 363 

datasets). 364 

 365 
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 366 
Figure 8. map of the 4122 catchments used in this study, each catchment is represented by either 367 

a circle (where the P-E0 synchronicity anomalies had a significant contribution to explain 368 

streamflow anomalies) or a cross (where it was not significant at the 0.05 level). The color of 369 

circles and crosses corresponds to the Köppen climate classes 370 

 371 

To verify this hypothesis, Figure 9 presents the p-values of the 4122 𝑒ொ ௸⁄  coefficients 372 

as a function of the humidity index P/E0. This graph clearly indicates that most of the 373 

humid catchments (Humidity index > 2) lack sensitivity to the P-E0 seasonality, and this 374 

pattern is likely the main explanation for the geographical patterns observed in Figure 375 

8. 376 
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 377 
Figure 9: distribution of the p-values of the 4122 𝒆𝑸 𝜦⁄  coefficients as a function of the humidity 378 

index P/E0. The red points represent the median, the bar represent the interquartile range, and 379 

the dashed line represents the 0.05 threshold. 380 

 381 

6 Conclusion 382 

6.1 Synthesis 383 

In this paper, we investigated the dependency between streamflow elasticity and the 384 

synchronicity of precipitation and potential evaporation, using a dataset of 4122 385 

catchments located in Europe, Australia, North America and South America. Our 386 

analysis provided three main findings. First, we empirically verified the strong 387 

correlation among streamflow anomalies, annual precipitation anomalies, and 388 

synchronous P-E0 anomalies. Second, we demonstrated that the role of the 389 

synchronicity between P and E0 in explaining streamflow anomalies is significantly 390 

more important than that of E0 anomalies. Finally, we showed that introducing 391 

synchronicity between precipitation and potential evaporation as an additional 392 

predictor in the linear regression clearly improves the prediction of annual streamflow 393 

variability. 394 

6.2 Perspectives 395 

Notwithstanding these positive results, some estimated elasticity values remain 396 

outside of their physically acceptable domain (i.e., [0,1] for 𝑒ொ ௉⁄  and [-1,0] for 𝑒ொ ாబ⁄  and 397 

𝑒ொ ௸⁄ ). For precipitation elasticity (𝑒ொ ௉⁄ ), 93% of the catchments were within the physical 398 

range, out of a total of 97% where precipitation elasticity was significant. For potential 399 
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evaporation elasticity (𝑒ொ ாబ⁄ ), a lack of physical realism occurs in most of the cases 400 

(i.e., only 11% of the catchments were within the physical range, out of a total of 23% 401 

where potential evaporation elasticity was significant). This is very likely due to a 402 

sensitivity problem in the regression, which contributes to the difficulty in obtaining 403 

realistic elasticity coefficients. Finally, for synchronicity elasticity (𝑒ொ ௸⁄ ), 61% of the 404 

catchments were within the physical range out of a total of 64% where synchronicity 405 

elasticity was significant. In the future, we aim to investigate alternative statistical 406 

models that could better constrain the elasticity coefficients within their physically 407 

realistic domain. 408 
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12 Appendix: further details to justify our choice for the 549 

synchronicity index 550 

There is no unique solution for choosing a measure of synchronicity between 551 

Precipitation and Potential Evaporation. In a previous paper (de Lavenne & 552 

Andréassian, 2018) we presented a non-dimensional index (𝜆ሻ, defined as follows (Eq. 553 

8): 554 

𝜆 ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

∑ 𝑚𝑎𝑥 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

 

Eq. 8 

 

A reviewer of this paper remarked that our interpretation of this index did not hold in 555 

extreme cases. Thus, we modified it in order to improve its interpretability. We also 556 

tried to replace it with simpler versions, and we would like to present these alternatives 557 

in order to save time and effort for those who would like to keep working on this topic. 558 

The first simplification which was tested (called here 𝑆1) consisted in using directly the 559 

synchronous 𝑃 െ 𝐸଴ amount: 560 

𝑆1ሺ𝑛ሻ ൌ ෍ 𝑚𝑖𝑛 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ

ଵଶ

௠ୀଵ

 
Eq. 9 

 

𝑆1 was an interesting solution because it yielded directly a value in mm/y, without the 561 

need for rescaling, and it clearly represented the precipitation volume that was the 562 

most easily accessible to evaporation. In the linear regression, it did give very high 563 

average adjusted R² (world average of 0.67, the same as for the solution retained). 564 

The reason why we did not consider this solution was that there was a correlation 565 

between ∆𝑆1 and ∆𝑃 for many catchments (average correlation of +0.58 over the 4122 566 

catchments, reaching +0.74 over the Australian catchments), and introducing two 567 

correlated variables in a regression equation is clearly bad statistical practice. 568 

To avoid this high correlation, we tested a normalization using annual precipitation, 569 

which we redimensionalized using the average interannual precipitation as in Eq. 10 570 

below: 571 

𝑆2ሺ𝑛ሻ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

𝑃௡
∗ 𝑃ത 

Eq. 10 
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The problem we found with 𝑆2 was that it yielded a constant value (equal to 𝑃ത) for 572 

many arid catchments, where for most of the years 
∑ ቀ௉೘,೙∩ாబ೘,೙ቁ
భమ
೘సభ

௉೙
ൌ 1 because 573 

𝑃௠,௡ ≪ 𝐸଴௠,௡. 574 

We also tested a normalization using annual potential evaporation, which we 575 

redimensionalized using the average interannual potential evaporation as in Eq. 11 576 

below: 577 

𝑆3ሺ𝑛ሻ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

𝐸଴௡
∗ 𝐸଴തതത 

Eq. 11 

 

But 𝑆3 behaved similarly as 𝑆1 (clearly because the 
ாబതതതത

ாబ೙
 ratio is always close to 1), and 578 

the issue of having highly correlated values of ∆𝑆3 and ∆𝑃 reappeared. 579 

 580 

This is why we finally opted for combining 𝑆2 and 𝑆3 using a geometric average (which 581 

correlation with the annual P is low: -0.10 on average), which was then 582 

redimensionalized using the average interannual precipitation. This yielded 𝛬௡, which 583 

has the desired dimension (mm/y), and was used throughout this paper. 584 

 585 

𝛬௡ ൌ
∑ 𝑚𝑖𝑛 ቀ𝑃௠,௡,𝐸଴௠,௡ቁ
ଵଶ
௠ୀଵ

ඥ𝑃௡𝐸଴௡
∗ 𝑃ത 

Eq.4 

 586 


