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Abstract Contamination of surface water is a concern for public health. Lands used for animal production are sources of fecal 11 

microorganisms that can reach water bodies, impact their quality, and adversely affect their potential uses. Understanding the 12 

mechanisms of microbial transport through surface/subsurface flow is imperative to predict surface water contamination and 13 

to assign management strategies for enhanced water quality. The aim of this work to develop and test a mechanistic numerical 14 

model to simulate watershed-scale surface/subsurface water flow, bacteria release from cow manure, and their fate, as well as 15 

transport to a cattle pond. The integrated surface-subsurface hydrological platform HydroGeoSphere (HGS) was the basis for 16 

the site-specific model. The pond and its environs were monitored for 15 months for E. coli concentrations, which remained 17 

relatively high throughout the study The model was applied to simulate Escherichia coli (E. coli) bacteria transport in a grassed 18 

drainage basin grazed by a permanent herd of approximately 50 cattle. Most model parameter values were adopted from the 19 

literature. The model explicitly accounted for cow excretion to the pond as a source of microbial contamination. The latter was 20 

estimated from the time spent by cows in the pond, which in turn was estimated from imagery obtained with eight trail cameras 21 

installed to cover the pond surface. Images were obtained every 15 min. Simulations for two years showed that the non-22 

calibrated model replicated spatiotemporal patterns and peak E. coli concentration reasonably well. The E. coli cumulative 23 

flux loaded by cattle excretion directly to the pond was around two orders of magnitude greater than that with the surface flow. 24 

The results of this work indicate the opportunity and show the approach to obtaining a moderately accurate forecast of microbes 25 

in cattle ponds using only readily available data. 26 
  27 

1. Introduction 28 

Lands used for animal production, such as cow pastures, are sources of fecal microorganisms that can reach water 29 

bodies, impact their quality, and adversely affect their potential uses. Water runoff during and after rainfall events is an 30 

essential factor causing microbial transport from animal waste on pastures to water sources used for irrigation and recreation. 31 

Public health concerns the fate and transport of pathogenic microorganisms and organisms used as indicators of microbial 32 

pollution, such as Escherichia coli (E. coli).  33 

Mechanistic mathematical modeling has provided essential tools for predicting surface water quality and assessing various 34 

sources causing environmental contamination. Models represented by a compartmental setup use the mass balance, empirical, 35 

and semi-empirical equations (Cho et al., 2016; Bradford et al.; De Brauwere et al., 2014; van der Meulen et al., 2024). The 36 
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mechanistic models are based on the mathematical description of the momentum and mass balance equations. They account 37 

for the physicochemical and biological processes via constitutive relations or sub-models and various sources and sinks 38 

internally or through boundary conditions. One of the most popular models of this type is the Soil and Water Assessment Tool 39 

(SWAT), which has often been used to simulate the fate and transport of E. coli in streams (Sowah et al., 2020; Kondo et al., 40 

2021; Iqbal et al., 2019). Both point and non-point microbial pollution have been simulated. For example, Kuang et al. (2024) 41 

used the SWAT model to evaluate E. coli concentrations in surface water from domestic sewage and manure in China's Three 42 

Gorges Reservoir region. Such models often simulate fecal contamination in rivers, estuaries, and coastal areas (Gao et al. 43 

2015; Wolska et al. 2022). Microbial transport has commonly been approximated as a one-dimensional process. Much less 44 

work has been done to simulate 3D flow and transport in environmental settings.  Currle et al. (2024) gave an example and 45 

developed a model for simulating reactive microbial transport in river-groundwater systems. The model was implemented in 46 

the integrated surface-subsurface hydrological platform HydroGeoSphere (HGS) (Therrien et al., 2010). The authors produced 47 

a synthetic example emphasizing reactive microbial transport in riverbank filtration settings, aiming to quantify microbial 48 

water quality in the aquifer with the pumping wells, which is crucial to improve drinking water management. The HGS 49 

software can be applied to various water bodies, including ponds. 50 

Ponds are important sources of agricultural water in rural environments. From 2.6 to 9 million ponds are used for irrigation, 51 

recreation, providing water to the livestock, and postharvest processing in the United States (Renwick et al., 2006). Little 52 

attention has been paid to modeling microbial water quality in agricultural ponds.  Vazquez et al. (2021) developed a 53 

mechanistic, runoff-driven bacterial transport model to simulate peak bacterial concentration events for two highly variable 54 

irrigation ponds in West Central Florida. The authors assumed that surface runoff driven by rainfall events is the primary 55 

mechanism driving microbial contamination in these ponds. The calibrated model predicted E. coli peak events relatively well, 56 

but did not consider the spatial distribution of pathogens in and around the ponds. 57 

The Georgia Coastal plain, USA, has more than 13,000 farm ponds with typical surface area from one to four hectares 58 

(Yao et a, 2024). Many of them are used as cattle ponds, given that the average high summer temperature is around 32 oC. It 59 

is common for agricultural producers to impound water by constructing earthen dams across small streams, thereby capturing 60 

and storing surface water. Additional water is often pumped from deeper aquifers to supplement the water supply (Albright et 61 

al., accepted). These ponds tend to be relatively small (~2 ha) and shallow (< 3 m) and may be used for more than one purpose, 62 

including irrigation, recreation, aquaculture, and a source of water for livestock, or "cattle ponds." Cattle ponds are farm ponds 63 

used by cattle and other livestock animals, providing a perennial supply of available water for drinking and cooling on hot 64 

days. Animals stocked in pastures are typically given free access to cattle ponds within the enclosed areas to wander and stay 65 

at will. An essential feature of cattle ponds is the direct input of organic matter and enteric microorganisms into the aquatic 66 

system when the animals eliminate waste. The microbiological quality of water is an essential issue because these waterbodies 67 

are used as a source of drinking water for animals and crop irrigation. This raises concerns regarding microbial contamination 68 

of water that may be used for consumption, either by animals or as irrigation inputs. However, to our knowledge, the microbial 69 
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quality of water in cattle ponds and the factors that influence it are poorly understood, so the scope of the problem is not well 70 

known.  71 

The farmers typically lack the resources to monitor their ponds. That limits opportunities for model calibration. Therefore, 72 

it may be beneficial to apply modeling and to determine the accuracy of simulating the microbial quality of water that can be 73 

achieved without model calibration. 74 

The objectives of this work were to (a) carry out spatiotemporal monitoring of the E. coli concentrations in a typical farm 75 

pond in Georgia where cattle grazed on the surrounding land had uninterrupted access to water to drink and cool off; (b) 76 

monitor and quantify the presence of cattle in the pond, and (c) develop an E. coli fate and transport hydrologic model that 77 

would include transport of manure borne E. coli to the pond, direct deposition of animal waste to the pond, and mixing within 78 

the pond.   79 

2. Materials and Methods 80 

2.1. Study area and environment 81 

The study area is a small watershed (area ~0.45 km2) with a pond within a larger, fenced pasture, located on a privately owned 82 

crop-livestock integrated farm in the southern Coastal Plain of Georgia, USA (Figure 1a). The farm is referred to as the Sumner 83 

Cooperator Farm (SCF). Currently, the area is used for cow grazing. The climate is humid subtropical, with a mean annual 84 

temperature of 18.8 °C and mean annual precipitation of 1174 mm. 85 

The land surface's Digital Elevation Model of 1 m resolution was downloaded from the Open Topography portal 86 

(https://portal.opentopography.org/). The altitude of the land surface varies from 101.8 to 119.7 m (Figure 1b).  87 

 88 
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 89 

 90 

Figure 1. Location from Google Earth(© Google Earth)  images (a) and land topography of the study area (b). The red line represents 91 

the boundary of the simulation domain,  92 

 93 

Soil cover at the site consists of a loamy sand (average of 85% sand, 9% silt, and 7% clay) to depths of 60-80 cm, 94 

underlain by sandy clay loam (average of 62% sand, 8% silt, and 30% clay) containing plinthite, a low permeability layer of 95 

hard iron-rich soil restricting hydraulic connectivity between surface and groundwater (Blume et al., 1987). The latter soil was 96 

used to build the bottom of the pond and the dam. 97 

Weather conditions were monitored by the USDA-ARS Southeast Watershed Research Laboratory (SEWRL) at the 98 

site to measure air temperature and humidity, wind speed, solar radiation, and soil and water temperature. Data were collected 99 

from a climate station located at the SCF noted as "Rain Gage 80" in the SEWRL public data website 100 

(https://radio.tiftonars.org/rg80.htm ). Specifications for instrumentation follow the configurations for the Little River 101 

Experimental Watershed climate stations described in Bosch et al. (2007). 102 

2.2 Quantifying pond use and bacterial concentrations in cattle manure 103 

 104 

N 

0 200 km 
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Cattle use of the pond and the pasture area draining into the pond was evaluated using automated trail cameras. Eight cameras 105 

were fixed to solid structures (e.g., fence posts, trees) and their fields of view (FOVs) captured overlapping images of the pond 106 

at regular intervals. Three comparable camera models were used for the study, including 3 Bushnell 24MP Prime Low Glow 107 

(Model 119932C), 3 CamPark, and 2 Coleman (Model CHD400W) cameras. Cattle in the pond were imaged from July 2022 108 

to December 2023. Secure digital (SD) removable media cards were used to record the imagery and were replaced every 6 to 109 

10 weeks for the duration of the study. Imagery was downloaded and stored on a file server for subsequent analysis. The 110 

imagery was visually assessed for pond use by cattle by a single observer for all days. Images were reviewed from each camera, 111 

and the number of cows in the pond was counted in each image. Tallied viewpoint counts were summed according to the model 112 

finite element mesh (FEM) nodes segmentation of the shoreline described below, multiplied by the time interval of the camera 113 

setting (5 to 30 minutes), and divided by 1440 minutes per day. The resulting values were summed for each shoreline segment 114 

to produce a daily value of "cow days" (Cex). To evaluate the accuracy of the visual assessment, two additional independent 115 

observers conducted validation counts of a sample of the imagery following the same protocol, and agreement among the three 116 

observers (OBS1, OBS2, and OBS3) was evaluated (Table S1). 117 

  Between February and May 2023, 18 fresh cow manure samples were collected from the area around the pond. 118 

Samples were collected into 50-mL conical tubes using a sterilized tongue depressor and were then placed on ice for storage 119 

and transport to the laboratory. Laboratory processing of manure samples occurred within 24 hours of sample collection. 120 

Briefly, 2g of manure was blended with 200 mL of sterile, deionized water for 2 min on the highest setting. Mixed samples 121 

were then allowed to settle for 15 minutes before aliquots were used to prepare serial dilutions of the manure mixture. Diluted 122 

manure solutions were processed in duplicate using the Colilert method (IDEXX, Westbrook, Maine), which produced a most-123 

probable-number (MPN) of E. coli in each sample. An MPN was then calculated per mass of manure (MPN E. coli kg-1) using 124 

information from a dry weight analysis of the manure.  125 

2.3. Water sampling 126 

Figure 2 shows the locations of the water sampling points for measurements of E. coli concentration and of the camera 127 

viewpoints for monitoring cattle. For the water sampling points, locations with even numbers (2, 4, 6, 8, 10, 12, 14, 16, not 128 

shown) have coordinates the same as as locations with odd numbers (1, 3, 5, 7, 9, 11, 13, and 15), respectively. However, 129 

locations with odd numbers were sampled at the pond surface, whereas locations with even numbers were sampled at a depth 130 

of 50 cm using a peristaltic pump. Locations 17 to 26 were sampled at the surface near the banks.  131 

 132 
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 133 

 134 

Figure 2. Locations of water sampling points (1-26) and cattle monitoring cameras (Viewpoints 1-8). The insert shows an example 135 

of an image taken at monitoring viewpoint 2. Orthoimage from July 7, 2022 by USDA-ARS, Southeast Watershed Research 136 

Laboratory, Remote Sensing and Mapping Group, Tifton, Georgia, USA. The imagery was collected with a Hasselblad L1d-20C 137 

20mp camera using a DJI Mavic 2 Pro L1P drone, and created using Pix4D Mapper image processing software. 138 

 139 

 140 

2.4 Mathematical model 141 

Accounting for the complexity of hydrogeological and hydrochemical processes, we choose the HGS (Therrien et al., 2010) 142 

as a basis for the model. In HGS, the flow of water is simulated in a fully integrated mode; water derived from rainfall inputs 143 

is partitioned into components such as overland and stream flow, evaporation, infiltration, recharge, and subsurface discharge 144 

into surface water features such as lakes, streams, and wetlands in a natural, physics-based fashion. It employs a fully coupled 145 
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numerical approach, allowing the simultaneous solution of both the surface and variably saturated subsurface flow, solute 146 

transport, and heat transfer.   147 

The mathematical model of the watershed flow and transport comprises the following components. The Richards equation 148 

simulates three-dimensional transient subsurface flow in a variably saturated porous medium (PM domain). The van Genuchten 149 

(1980) relations are used to calculate the pressure-saturation relationship and hydraulic conductivity. The two-dimensional 150 

depth-averaged diffusive wave equation describes overland water flow (OVL domain). The subsurface and surface flow 151 

equations are fully coupled. Evapotranspiration affects surface and subsurface flow domains and is modeled as a combination 152 

of transpiration from vegetation and evaporation. Microbial transport is described by 3D and 2D coupled advection-dispersion 153 

equations in the subsurface and surface, respectively. We chose the linear Henry isotherm for simulating E. coli sorption. A 154 

first-order decay reaction describes the bacteria's die-off. The numerical solution of partial differential equations and the initial 155 

and boundary conditions are done by the control volume finite element approach. 156 

 157 

2.4.1. Finite element mesh 158 

The numerical setup of the simulation domain is shown in Figure 3. The lateral boundary was chosen to cover most of the area 159 

where runoff water flows towards the pond. The 2D triangular finite element mesh (FEM) was created using AlgoMesh 160 

software (www.hydroalgorithmics.com/software/algomesh) (Figure 3a). It consists of 2882 nodes and 5595 triangular 161 

elements. The mesh has the highest density of nodes and elements near the pond boundary.  162 

The base of the simulated profile is located at the depth corresponding to an altitude of 100 m. The thickness between the base 163 

and soil surface was divided into three layers (U1-U3, Figure 3b), and each layer was split into 2 to 4 sublayers. The floors of 164 

the layers U2 and U1 are located at depths of 0.1 and 1.0 below the land surface, respectively, thus mimicking the surface 165 

topography. In the model, each sublayer is considered an independent layer defining the height of triangular prisms, which 166 

presents the vertical extension of the 2D plane mesh within each layer (Figure 3c). 167 
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 168 

Figure 3. Numerical model setup: (a) The 2D triangular finite element mesh in the simulation domain. Cowpats (a flat, round piece of cow dung) are 169 

located in the yellow color area. Colored circles represent the location of sources to simulate cattle excretion in the pond. (b) Schematic representation 170 

of numerical mesh layers in the simulated profile. Solid and dashed horizontal lines represent the boundaries between layers and sublayers, 171 

respectively. (c) 3D finite element mesh (FEM).  172 

 173 

2.4.2. Initial conditions 174 

Initial conditions were obtained by running multi-year simulations. For the subsurface flow, a constant head of -2 m in each 175 

node of the finite element mesh was used. For the surface domain, the initial water depth was 10-7 m in each node, i.e., the 176 

pond was assumed to be empty. These initial conditions were corrected during simulations: 1) For two years, a constant 177 

precipitation rate (flux at the soil surface of 0.01 m/day) was simulated to "fill in" the pond with water and establish a steady-178 

state flow regime in the simulation domain; 2) the resulting distribution of heads was taken as a new initial condition and the 179 

https://doi.org/10.5194/egusphere-2025-4138
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

model was run with varying precipitation and evapotranspiration for 6 years to establish a quasi-stationary flow regime; 3) 180 

Finally, the initial conditions were taken from the results obtained at the end of the simulations. 181 

Initially, the prescribed concentration of bacteria was equal to 0 everywhere in the domain. Then, during multi-year 182 

simulations, a concentration distribution was developed in the simulation domain, exhibiting cyclic behavior with time, and it 183 

was accepted as the initial condition for January 1, 2022. 184 

 185 

2.4.3. Boundary conditions and internal source terms 186 

In the study area, the groundwater level of a regional artesian aquifer was detected at around 70 meters above mean sea level 187 

(mamsl) (Watson, 1976), which is 30 m below the bottom (100 m) of the simulated domain. Therefore, the groundwater is not 188 

included in simulations. The free drainage boundary condition at the bottom and no flux at the lateral boundaries were 189 

prescribed. 190 

At the soil surface, time-variable precipitation rate and evapotranspiration were prescribed. The latter is calculated from the 191 

potential evapotranspiration, computed using the Penman-Monteith equation (Monteith, 1981; Danielescu, 2022).  192 

The critical depth boundary condition at the watershed boundary was set to the surface flow domain. The rainfall and 193 

evaporation rates are prescribed as volumetric flow fluxes per unit area.  194 

For the bacteria transport, zero-gradient and zero-concentration conditions were set in the subsurface domain along the inflow 195 

and outflow lateral boundaries, respectively. The third-type (Cauchy) boundary condition was set at the surface, expressing 196 

the balance between bacteria's advective flux at the soil surface and their advective and dispersive fluxes below. The land 197 

surface is divided into a grazing area with cowpats and the rest (Figure 3a). Cowpats were assumed to be uniformly distributed 198 

over the grazing area. The boundary concentration (and mass flux) equals zero in the area free from cowpats. For the grazing 199 

area, a sub-model was developed to calculate the boundary concentration of bacteria. The sub-model simulates the daily 200 

evolution of concentration depending on the load of cowpats and the initial concentration of bacteria (see Appendix A for the 201 

equations). On each specific day, the fate of bacteria concentration in cowpats that were loaded during that and every previous 202 

day was calculated using the Q10 model (Martinez et al., 2013). The latter computes the bacteria's die-off/survival rate 203 

depending on weather conditions. The concentrations of released microorganisms are calculated as a function of precipitation 204 

according to Bradford and Schijven's (2002) equations for each cowpat's load, accounting for the remaining mass of bacteria 205 

during the current day. The resulting boundary concentration is assessed as a sum of those concentrations.  206 

Cattle excretion to the pond was simulated by introducing the internal source terms in the FEM nodes (Figure 3a). The 207 

nearshore pond area, where bathing cattle were observed, was divided into five zones. Each zone includes twenty FEM nodes. 208 

These nodes do not coincide with the water sampling locations. The source rates were calculated from the number of cattle 209 

and the time they spent in the pond (Section 3.1). The time-variable boundary conditions and source/sink terms were prescribed 210 

on a daily scale. 211 

 212 
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2.5. Model parameters 213 

We adopted the values of model parameters from different sources or estimated based on existing experimental data or during 214 

simulations. Tables 1 and 2 present parameter values used in the simulations.  215 

Table 1. The model parameter values for the subsurface domain. 216 

Parameter Soil Source 

Loamy sand Sandy clay 

loam 

Clay 

Hydraulic conductivity Ks, m d-1 1.2(1.28) 0.35(0.36) 0.0001-0.01  Using Rosetta & PSD1 

Porosity  qs 0.39(0.36) 0.45 0.48 (0.46) Using Rosetta & PSD 

Residual water content qr 0.049(0.046) 0.08 0.067(0.098) Using Rosetta & PSD 

van Genuchten α, m-1 3.12(3.6) 2.35(2.29) 2.0 (1.5) Using Rosetta & PSD 

van Genuchten β 1.48(2.02) 1.36(1.35) 1.41(1.25) Using Rosetta & PSD 

Longitudinal dispersivity aL, m 12.5 Assessed by trial-and-error 

Transverse dispersivity aT, m 2.5 Assigned aT=0.2 aL 

E. coli distribution coeff. kD, L kg-1 14.5 Mankin et al. (2007) 

E. coli die-off rate, ks,m,2(20), d-1 0.042(cowpats), 0.111(soil) Martinez et.al. (2013) 

Park et. al. (2016) Parameter 𝑄10,𝑚 1.48(cowpats), 1.65(soil), 

1PSD – particle size distribution 217 

  218 

The geology of the subsurface is not well known. The following composition of soil layers was accepted, based on available 219 

information: loamy sand to a depth of 0.5 m, below which a clay layer of variable thickness extends down to the upper half of 220 

layer U1 (Figure 3b). The lower half of U1 is presented by sandy clay loam. The pond bottom (to 0.5 m depth) and the dam 221 

are built from clay. 222 

 223 

Table 2. The model parameter values for the surface and evapotranspiration domains. 224 

Parameter Value Source 

Manning X friction factor Sfx, m−1/3 s 0.3 (grassland), 0.03 (pond) HGS Introductory Manual 

Manning Y friction factor Sfy, m−1/3 s 0.3 (grassland), 0.03 (pond) HGS Introductory Manual 

Rill storage height, m 0.05 (grassland), 0.01 (pond) HGS Introductory Manual 

Coupling length letch, m 0.01 HGS Introductory Manual 

Longitudinal dispersivity aL, m 5-15 Assessed by trial-and-error 

Transverse dispersivity, aT m 1-3 Assigned aT=0.2 aL 

E. coli die off rate, ks,m,2(20), d-1 0.056 Blaustein et. al (2013) 
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Parameter 𝑄10,𝑚 1.415 Blaustein et. al (2013) 

Evaporation depth, m 0.3 HGS Introductory Manual 

 Root depth, m 1.8  

Leaf area index (LAI) 2.08 HGS Introductory Manual 

Transpiration fitting parameters: C1, C2, C3  0.1, 0.05, 2.0 HGS Introductory Manual 

Wilting point pressure head, m -150 HGS Introductory Manual 

Field capacity pressure head, m -3.8 HGS Introductory Manual 

Evaporation limiting pressure heads Min: -1.5, Max: -0.5 HGS Introductory Manual 

Canopy storage parameter 0. HGS Introductory Manual 

 225 

E. coli fate and transport simulations were performed for 2022-2023. To progress the numerical convergence and reduce 226 

simulation time, we use relative concentrations Cr=C/Cmax, where Cmax= 1.4.1010 MPN∙m-3 is the maximum value of boundary 227 

concentration at the soil surface. The value of the longitudinal dispersivity values for the porous media domain was chosen to 228 

be 10 m, considering the scale problem (Neuman, 1990). There is no data concerning longitudinal dispersivity for the overland 229 

flow domain. Therefore, we tested a few values of this parameter from 5 to 15 m. Longitudinal dispersivity equal to 12.5 m 230 

produced a better agreement between simulated and observed concentrations. The transverse dispersivities were 1/5 of the 231 

longitudinal ones for porous media and overland flow domains. 232 

The E. coli temperature-dependent die-off in manure, soil, and water was simulated. The current version of HGS does 233 

not allow the die-off rate in the surface flow domain to be prescribed as a function of temperature. Therefore, this parameter 234 

was calculated for each three-month-long season using mean temperature values and used piecewise by restarting simulations 235 

for each time interval.     236 

3. Results and discussion 237 

3.1. E. coli boundary conditions and internal source terms 238 

All simulations were carried out using available weather data for a time interval from January 1, 2021, to December 31, 2023. 239 

Annual precipitation was 1375, 998, and 1167 mm in 2021, 2022, and 2023, respectively. Figure 4 shows rainfall and calculated 240 

potential evapotranspiration in the study area in 2021-2023. 241 

 242 
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 243 

Figure 4. Precipitation and calculated potential evapotranspiration.  244 

 245 

The surface Cauchy-type boundary concentration at the grazing area (Figure 3a) was calculated using the equations presented 246 

in Appendix A, as described above in section 2.3.3. We assume that 50 cattle (the maximum number of animals that appeared 247 

in monitoring camera photos) were grazing in the watershed. The total grassland area of around 60000 m2 was estimated based 248 

on recent aerial imagery provided in Google Earth (version Pro 7.3). Nennich et al. (2005) estimated the average daily load of 249 

manure of 38.6 and 66.3 kg∙day-1∙cow-1 for dry and lactating cows, respectively. The ratio of urine to feces in dairy cows varies, 250 

but on average, slightly less than one-third of manure is urine. Thus, we estimate average daily feces excretion as 251 

0.5*(38.6+66.3)*0.667=35 kg∙day-1∙cow-1. Monitoring shows that during the day, cows usually graze for at least 12 hours. 252 

Therefore, we estimate solid manure load M0= kg∙day-1∙cow-1*12h/24h*50cows/60000m2 0.0146 kg∙m-2. The initial 253 

concentration of E. coli in fresh cowpats, mi0 = 7.38.108 MPN∙kg-1, was calculated as an average in 16 samples collected in 254 

2023. Other parameters in equations A3-A4 were 𝛼𝑚 = 23.375 h-1, 𝛽𝑚 =  1.732 , and Er=1 (Stoker et al., 2018). No cattle 255 

were observed in the field each year from the beginning of December to the end of February. Figure 5 shows the calculated 256 

boundary concentrations.  257 
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   258 

Figure 5. Simulated temporal variation of E. coli surface boundary concentration at the grazing land.   259 

 260 

The influx of source terms simulating E. coli load by direct cattle excretion to the pond, as described above, with results shown 261 

in Table S1. Validation of the visual assessment of trail camera imagery to derive Cex yielded strong correlations among the 262 

three observers (OBS1 v OBS2, n = 64, R2 = 0.93; OBS1 v OBS3, n = 46, R2= 0.90; OBS2 v OBS3, n = 18, R2= 0.99). It was 263 

assumed that all bacteria were immediately released from manure in the pond. Accounting for the daily cow excretion (as 264 

explained above for the surface boundary concentration) and E. coli concentration in cowpats, we calculated the daily source 265 

rate for each pond zone (Figure 6) as a portion of the daily manure excretion. The rate for each node is one-tenth of the zone 266 

rate. Cattle use monitoring started in July 2022. Therefore, in simulations for the period January-June 2022, where there were 267 

no observations, the calculated rates for 2023 were used.   268 
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   269 

Figure 6. Calculated E. coli inputs to the pond through cattle excretion for the five zones. 270 
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 271 

3.2. Flow simulation results 272 

Water flow simulations were carried out for 2021-2023. The saturated hydraulic conductivity of the clay layer was 0.0002 273 

m∙day-1. This value was obtained by trial-and-error fitting to keep the pond from emptying and overflowing during multiannual 274 

simulations. The rest of the parameters are presented in Table 1. During periods with high precipitation, perched water was 275 

developed above the clay layer (around 0.5 m below the land surface, not shown). Daniels et al. (1978) reported that soil 276 

horizons having 10% of platy plinthite will perch water.  277 

Runoff is rarely observed in the area. Simulations show that it usually occurs during and after rain events. The HGS calculates 278 

fluid fluxes through the pond boundary. Water fluxes are computed between active nodes (on the boundary of the pond – dark 279 

blue dots in Figure 3a) and contributing nodes (just outside the pond boundary). The calculated surface water flux represents 280 

simulated runoff to the pond.    281 

 282 

Figure 7. Computed runoff to the pond.    283 

At the beginning of 2021, three significant flow events occurred after intensive 30, 50, and 82 mm rainfalls on February 18, 284 

Mar 1-2, and April 24, respectively. During the rest of the time, the average computed surface flow rate to the pond is around 285 

4.4 m3∙day-1. The latter is a relatively small value given a 650 m-long pond perimeter.  286 

Simulated changes to pond water volume (m3) and water level (mamsl) were tracked over the study period (Figure 8). The 287 

simulated minimal and maximal water levels were 109.03 and 109.37 mamsl. A rise in water level by 0.34 m causes an increase 288 

in water volume from 10770 to 16075 m3. 289 
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 290 

Figure 8. Simulated temporal variation of water volume and level in the pond (above mean sea level).  291 

 292 

 293 

3.3. Bacteria fate and transport simulations 294 

3.3.1. Results for individual locations 295 

 296 

Observed and simulated E. coli concentrations in the interior and nearshore pond sampling locations were compared for each 297 

sample location (Figures 9 and 10). The non-calibrated model tolerably mimicked E. coli concentration patterns and times of 298 

peak events in many of the pond's sampling locations. Concentrations increased during summer and decreased during winter 299 

months.  300 

For the internal sampling locations 1 to 15, correlation coefficients between the monitored and simulated E. coli 301 

concentrations varied between 0.24 and 0.44. An exception was location 7, where the correlation coefficient was  -0.01. For 302 

the near-shore sampling locations 17 to 26, the correlation coefficient varied between -0.15 and 0.32. 303 
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 305 

Figure 9. Observed (blue dots) and simulated (red line) E. coli concentrations at interior sampling locations 1-15. 306 

 307 
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Figure 10. Observed (blue dots) and simulated (red line) E. coli concentrations at nearshore sampling locations 17-26. Dashed circles 309 

indicate winter increases in concentrations on January 18, 2023.  310 

 311 

 The observed differences between simulated and measured concentrations in individual sampling locations might 312 

originate from the model setup and computational features. The simulated concentration peaks strongly depended on the 313 

proximity of the sampling points to the internal source locations, which were constant in time. Cattle frequently moved across 314 

the pond in different directions, which affected the concentration distribution. Most assigned locations for the pond's internal 315 

source were 10-20 m from the nearest sampling point.    316 

The reproduction of mixing in the pond might be locally unsatisfactory. Figure 11 shows the simulated relative E. 317 

coli concentration distribution at the surface for different dates. Concentration in the pond source locations rises during summer 318 

and dissipates in the winter. Simulations show a low E. coli concentration zone in the middle of the pond during the entire 319 

simulation period. For example, the model underpredicts peak concentration at sampling location 15 (Figure 9) in summer 320 

2022 and autumn 2023. This indicates that mixing in the pond was stronger than the dispersion mechanism suggests. Lateral 321 

transport is often dependent on persistent wind-forced circulation. Henderson et al. (2024) describe wind-forced processes 322 

responsible for ponds' vertical mixing or lateral transport. Additional mixing resulting from induced eddies may cause more 323 

rapid cross-pond mixing and potentially affect pond ecology and biogeochemistry. At sampling location 23, the increase in 324 

concentration could be due to the occasional resuspension of bacteria from the bottom sediments during sampling.  325 

 326 

 327 
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 328 

 329 

Figure 11. Simulated spatiotemporal distribution of the relative E. coli concentration at the surface. Cr=C/Cmax, Cmax=1.4 1010 330 

MPN∙m-3, the legend is on a log scale. 331 

 332 

 333 

  334 
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More insight could be expected from considering the specifics of E. coli survival in waters rich in organic matter and 335 

nutrients (Cho et al., 2021). Blaustein et al (2014) analyzed the database on E. coli survival in various surface waters. They 336 

found that the logarithm of   E. coli remained approximately constant or even grew for some "shoulder" time after the 337 

inactivation experiments in wastewaters with high content of organic matter and nutrients. After the "shoulder" period. The 338 

dependence of log C on time changed to a linear decrease. No model has been proposed to estimate the duration of the shoulder 339 

period in wastewater so far. 340 

A sudden rise in E. coli concentration was observed on January 18, 2023, at sampling locations 19, 21, 22, and 23 341 

(Figure 9, dashed circles). The model does not reproduce this increase. The monitoring camera photos show flocks of birds in 342 

the pond near the first three locations 1 to 2 days before the sampling date. At the same time, the model's internal sources on 343 

that day were equal to zero since there were no cattle in the pond. We hypothesized that excretion by birds was a reason for 344 

elevated E. coli concentrations. During the fall and winter, Georgia's inland freshwaters become populated with waterfowl 345 

such as ducks, Canada geese, and migratory birds (Balkcom et al., 2025). One duck generates on average 3.8· 1010 E. coli CFU 346 

per day (Moriarty et al., 2011), which is similar to the daily E. coli output from one cow (4· 10^10 MPN (g wet feces)-1 day-1 347 

in this work). It appears that the contribution of waterfowl can be very substantial in comparison with cattle contributions (see 348 

Figure 5). To our knowledge, the fraction of waterfowl excreta that enters water has not been reported in the literature. Overall, 349 

we concur with Vasquez et al. (2021) who emphasized the need to collect more data on the fecal contamination inputs of the 350 

ponds.  351 

3.4. Results for the pond as a whole 352 

The HGS computed temporal E. coli fluxes entering the pond with surface water. The influxes of E. coli to the pond were 353 

visualized along with their calculated cumulative numbers over time for both sources of runoff (Figure 12a) and direct 354 

excretion (Figure 12b). At the end of simulations, the number of bacteria entering the pond by manure excretion was around 355 

130 times greater than by surface runoff. Simulations show that water was mainly leaving the pond to the subsurface, so 356 

concentrations of E. coli in the subsurface did not affect water quality in the pond. 357 
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 358 

Figure 12. Simulated E. Coli fluxes to the pond: (a) with runoff; (b) excreted into the pond.   359 
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 362 

Simulated and observed concentrations of E. Coli were each averaged over the interior and nearshore sampling 363 

locations (Figure 13). Averaged values of concentrations at the nearshore locations (17-26) were approximately three times 364 

higher than the average of concentrations sampled at interior locations (1-15). Elevated nearshore concentrations may be 365 

explained by flushing bacteria to the pond during runoff and direct excretion by bathing cattle, which, according to monitoring, 366 

spent most of their time grouped close to the shore.  367 

The summary data in Figure 13 show that the model describes seasonal average concentration patterns relatively well. 368 

However, observed concentrations significantly declined during autumn 2022 and 2023 compared to the model simulation. 369 

Clear, shallow water can cause deeper penetration of solar radiation. De Brauwere et al. (2014) indicate that the inactivation 370 

of bacteria is caused by UV irradiation. To account for the latter, some models add a term to the overall decay parameter due 371 

to sunlight (McCorquodale et al., 2004) or use a decay term depending on the intensity of the solar radiation (Kashefipour et 372 

al., 2006). The decrease in the nutrients in water in the fall can also be the reason for the reduction of E. coli concentration. 373 

The descriptive statistics of measured and simulated average concentrations were close when computed over the 374 

observation period. The minimum and maximum averages across the pond concentrations were 3.56 and 525.1 for observed 375 

and 4.08 and 479.4 MPN (100 mL) for simulated data, respectively. The mean logarithms of average concentrations were 376 

1.70+-0.47 and 1.99+-0.67 for the measured and simulated data, respectively. The correlation coefficient between measured 377 

and simulated logarithms of average concentrations was 0.483. This value was significant at a 0.01 significance level and 378 

indicated a moderate correlation. 379 

 380 
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 381 

Figure 13. Average E. coli concentrations in the pond's interior (1-15) and nearshore (17-26) sampling locations. Dashed circles 382 

indicate an autumn decline in concentrations.  383 
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 384 

4. Discussion 385 

Applying mechanistic fate and transport models relies on model parameter values typically obtained via model calibration. 386 

Several factors make the site-specific calibration of microbial fate and transport parameters difficult and sometimes unfeasible. 387 

The spatiotemporal variability of microbial concentrations in ponds is very high (Havelaar et al., 2017; Stocker et al., 2021), 388 

indicating the need to collect large numbers of samples. The collection and analysis of those samples appear to be unfeasible. 389 

That precludes establishing a proper monitoring program for efficient model calibration. The high spatiotemporal variability 390 

emphasized the scale mismatch between the water sample size and the water volume, and this sample is used to characterize a 391 

much larger water volume used for mass balance computation in the hydrological models. 392 

Flow sub-model parameters have satisfactorily estimated more easily obtainable properties, such as clay or sand content 393 

and bulk density (Schaap et al., 2001). Analogous predictive relationships have not been developed, partially because the 394 

potential predictors of microorganism survival or release rate have been shown to be dependent on environmental variables 395 

that were themselves variable in space and time. 396 

Compendia of microorganism release and survival parameters (Park et al., 2016) show that the parameter values 397 

encompass wide numerical ranges and that it is challenging to attribute fate and transport parameter values to specific 398 

environmental conditions or management practices. These factors so far substantially limit the applicability of microbial fate 399 

and transport modeling. On the other hand, such modeling is in demand due to the need for projections of microbial water 400 

quality changes due to environmental changes, adaptation practices, site-specific trade-offs between different water quality 401 

aspects, multiple ownership and management along or around irrigation water sources, etc. 402 

In this situation, a relatively important question is: What accuracy can be expected in fate and transport predictions made 403 

with average or typical fate and transport parameter values? In other words, given the high spatial variability of microbial 404 

concentrations, how significant are the differences between observed and simulated concentrations with average parameter 405 

concentrations? The answers to those questions are surprisingly scarce, as the published modeling reports focus on calibration 406 

results. These questions have not been researched for agricultural ponds. Results of this work show that if the animal behavior 407 

patterns are known, the seasonal trends and magnitudes of pond water microbial pollution can be estimated. Quantifying such 408 

patterns for cattle ponds has not been done so far. However, it presents a promising avenue for research. 409 

We realize that the system parameters we have studied are subject to multiple sources of uncertainty. Quantifying this 410 

uncertainty and running ensemble simulations with parameters treated as random values presents an interesting avenue for 411 

future research. Results of this work, obtained with mean parameter values from various sources, indicate that determining the 412 

statistical properties of the bacteria sources can be a first feasible step in that direction. 413 

 414 
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5. Conclusions 415 

This study developed the first mechanistic numerical model for bacteria transport from grazing land around a cattle pond. The 416 

model was based on the HGS software, simulating fully coupled surface-subsurface flow and transport. The model was tested 417 

to simulate E. coli fate and transport in a small pastureland watershed in Georgia, USA, using observations from 2021-2023. 418 

The primary goal was to simulate the temporal and spatial distribution of E. coli concentration in the pond.  All parameters for 419 

this simulation were taken from the literature or estimated from published data. The exception was the rate of E. coli input to 420 

the pond from the direct depositions from animals, since such data were not found in the literature. The non-calibrated model 421 

could mimic E. coli temporal concentration patterns and peak times reasonably well in most of the pond's sampling locations. 422 

There were seasonal differences in correspondence between simulated and measured E. coli time series, and the magnitude of 423 

concentration peaks was poorly predicted in some sampling locations. Predictions of the average across-pond concentrations 424 

were expected to be moderately accurate. Quantification of microbial inputs for cattle ponds has not been done so far. Still, it 425 

presents a promising avenue to estimate the microbial water quality in cow ponds using the data accumulated in past research. 426 
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 444 

Appendix A: Equations to calculate E. coli concentration released from cowpats at the soil surface (3rd-kind boundary 445 

condition concentration).  446 

For day t, the content of microorganism in the applied manure is calculated by (Franz et al., 2008; Martinez et al., 2013): 447 

 448 

𝑚𝑖(𝑡) = 𝑚𝑖(𝑡 − 1)𝑒−𝑘𝑠,𝑚    (A1) 449 

 451 

Where 𝑘𝑠,𝑚 is the rate coefficient which is the function of temperature T at time 𝑡, (d-1) 450 

 452 

      𝑘𝑠,𝑚 = {
𝑘𝑠,𝑚,1, 𝑡 ≤ 𝑡𝑠,𝑚,1

𝑘𝑠,𝑚,2(𝑇), 𝑡 > 𝑡𝑠,𝑚,1   
         (A2) 453 

 454 

t𝑠,𝑚,1 is the duration of the first stage, d, T is the average daily temperature, °C, and 𝑘𝑠,𝑚,1and 𝑘𝑠,𝑚,2(𝑇) the survival rates at the 455 

first and second survival stages are respectively.  456 

The bacterial population may grow, remain stable, or die off during the first survival stage, and decrease during the second 457 

stage of survival. On the second stage, the values of 𝑘𝑠,𝑚,2(𝑇) can be described with the Q10 model (Martinez et al., 2013). 458 

 459 

𝑘𝑠,𝑚,2(𝑇) = 𝑘𝑠,𝑚,2(20)𝑄10,𝑚

𝑇−20

10          (A3) 460 

 461 

where 𝑘𝑠,𝑚,2(20) is the survival rate at 20 ºC, 𝑄10,𝑚 reflects the sensitivity of 𝑘𝑠,𝑚,2 to a temperature that is equal to the change 462 

in survival rate occurring as temperature changes by 10 °C.  463 

The concentration of released microorganism Cm is calculated according to Bradford and Schijven (2002) as 464 

𝐶𝑚𝑎𝑛(𝑡) =
𝑑𝑀𝑚𝑎𝑛

𝑅𝑑𝑡
=

𝑀0𝛼𝑚

𝑅
(1 + 𝛼𝑚𝛽𝑚𝑡)−(1+1/𝛽𝑚)      (A4) 465 

   466 

𝐶𝑚(𝑡) = 𝑚𝑖𝐸𝑟𝐶𝑚𝑎𝑛(𝑡)     (A5)   467 

 468 

Where Mman is the cumulative cowpat mass released into the aqueous phase (g), R is rain intensity, cm/h, m (h-1) and m are 469 

fitting parameters defining the shape of the release curve, and M0 is the initial mass of cowpats (g/cm2), Cman is the aqueous 470 
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manure concentration (g cm-3), mi is content of microorganism in the cowpats (CFU g-1), Er is microorganism release 471 

efficiency. 472 

  473 
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