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Abstract Contamination of surface water is a concern for public health. Lands used for animal production are sources of fecal
microorganisms that can reach water bodies, impact their quality, and adversely affect their potential uses. Understanding the
mechanisms of microbial transport through surface/subsurface flow is imperative to predict surface water contamination and
to assign management strategies for enhanced water quality. The aim of this work to develop and test a mechanistic numerical
model to simulate watershed-scale surface/subsurface water flow, bacteria release from cow manure, and their fate, as well as
transport to a cattle pond. The integrated surface-subsurface hydrological platform HydroGeoSphere (HGS) was the basis for
the site-specific model. The pond and its environs were monitored for 15 months for E. coli concentrations, which remained
relatively high throughout the study The model was applied to simulate Escherichia coli (E. coli) bacteria transport in a grassed
drainage basin grazed by a permanent herd of approximately 50 cattle. Most model parameter values were adopted from the
literature. The model explicitly accounted for cow excretion to the pond as a source of microbial contamination. The latter was
estimated from the time spent by cows in the pond, which in turn was estimated from imagery obtained with eight trail cameras
installed to cover the pond surface. Images were obtained every 15 min. Simulations for two years showed that the non-
calibrated model replicated spatiotemporal patterns and peak E. coli concentration reasonably well. The E. coli cumulative
flux loaded by cattle excretion directly to the pond was around two orders of magnitude greater than that with the surface flow.
The results of this work indicate the opportunity and show the approach to obtaining a moderately accurate forecast of microbes
in cattle ponds using only readily available data.

1. Introduction

Lands used for animal production, such as cow pastures, are sources of fecal microorganisms that can reach water
bodies, impact their quality, and adversely affect their potential uses. Water runoff during and after rainfall events is an
essential factor causing microbial transport from animal waste on pastures to water sources used for irrigation and recreation.
Public health concerns the fate and transport of pathogenic microorganisms and organisms used as indicators of microbial
pollution, such as Escherichia coli (E. coli).

Mechanistic mathematical modeling has provided essential tools for predicting surface water quality and assessing various
sources causing environmental contamination. Models represented by a compartmental setup use the mass balance, empirical,

and semi-empirical equations (Cho et al., 2016; Bradford et al.; De Brauwere et al., 2014; van der Meulen et al., 2024). The
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mechanistic models are based on the mathematical description of the momentum and mass balance equations. They account
for the physicochemical and biological processes via constitutive relations or sub-models and various sources and sinks
internally or through boundary conditions. One of the most popular models of this type is the Soil and Water Assessment Tool
(SWAT), which has often been used to simulate the fate and transport of E. coli in streams (Sowah et al., 2020; Kondo et al.,
2021; Igbal et al., 2019). Both point and non-point microbial pollution have been simulated. For example, Kuang et al. (2024)
used the SWAT model to evaluate E. coli concentrations in surface water from domestic sewage and manure in China's Three
Gorges Reservoir region. Such models often simulate fecal contamination in rivers, estuaries, and coastal areas (Gao et al.
2015; Wolska et al. 2022). Microbial transport has commonly been approximated as a one-dimensional process. Much less
work has been done to simulate 3D flow and transport in environmental settings. Currle et al. (2024) gave an example and
developed a model for simulating reactive microbial transport in river-groundwater systems. The model was implemented in
the integrated surface-subsurface hydrological platform HydroGeoSphere (HGS) (Therrien et al., 2010). The authors produced
a synthetic example emphasizing reactive microbial transport in riverbank filtration settings, aiming to quantify microbial
water quality in the aquifer with the pumping wells, which is crucial to improve drinking water management. The HGS
software can be applied to various water bodies, including ponds.

Ponds are important sources of agricultural water in rural environments. From 2.6 to 9 million ponds are used for irrigation,
recreation, providing water to the livestock, and postharvest processing in the United States (Renwick et al., 2006). Little
attention has been paid to modeling microbial water quality in agricultural ponds. Vazquez et al. (2021) developed a
mechanistic, runoff-driven bacterial transport model to simulate peak bacterial concentration events for two highly variable
irrigation ponds in West Central Florida. The authors assumed that surface runoff driven by rainfall events is the primary
mechanism driving microbial contamination in these ponds. The calibrated model predicted E. coli peak events relatively well,
but did not consider the spatial distribution of pathogens in and around the ponds.

The Georgia Coastal plain, USA, has more than 13,000 farm ponds with typical surface area from one to four hectares
(Yao et a, 2024). Many of them are used as cattle ponds, given that the average high summer temperature is around 32 °C. It
is common for agricultural producers to impound water by constructing earthen dams across small streams, thereby capturing
and storing surface water. Additional water is often pumped from deeper aquifers to supplement the water supply (Albright et
al., accepted). These ponds tend to be relatively small (~2 ha) and shallow (< 3 m) and may be used for more than one purpose,
including irrigation, recreation, aquaculture, and a source of water for livestock, or "cattle ponds." Cattle ponds are farm ponds
used by cattle and other livestock animals, providing a perennial supply of available water for drinking and cooling on hot
days. Animals stocked in pastures are typically given free access to cattle ponds within the enclosed areas to wander and stay
at will. An essential feature of cattle ponds is the direct input of organic matter and enteric microorganisms into the aquatic
system when the animals eliminate waste. The microbiological quality of water is an essential issue because these waterbodies
are used as a source of drinking water for animals and crop irrigation. This raises concerns regarding microbial contamination

of water that may be used for consumption, either by animals or as irrigation inputs. However, to our knowledge, the microbial
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quality of water in cattle ponds and the factors that influence it are poorly understood, so the scope of the problem is not well
known.

The farmers typically lack the resources to monitor their ponds. That limits opportunities for model calibration. Therefore,
it may be beneficial to apply modeling and to determine the accuracy of simulating the microbial quality of water that can be
achieved without model calibration.

The objectives of this work were to (a) carry out spatiotemporal monitoring of the E. coli concentrations in a typical farm
pond in Georgia where cattle grazed on the surrounding land had uninterrupted access to water to drink and cool off; (b)
monitor and quantify the presence of cattle in the pond, and (c) develop an E. coli fate and transport hydrologic model that
would include transport of manure borne E. coli to the pond, direct deposition of animal waste to the pond, and mixing within

the pond.

2. Materials and Methods
2.1. Study area and environment

The study area is a small watershed (area ~0.45 km?) with a pond within a larger, fenced pasture, located on a privately owned
crop-livestock integrated farm in the southern Coastal Plain of Georgia, USA (Figure 1a). The farm is referred to as the Sumner
Cooperator Farm (SCF). Currently, the area is used for cow grazing. The climate is humid subtropical, with a mean annual
temperature of 18.8 °C and mean annual precipitation of 1174 mm.

The land surface's Digital Elevation Model of 1 m resolution was downloaded from the Open Topography portal
(https://portal.opentopography.org/). The altitude of the land surface varies from 101.8 to 119.7 m (Figure 1b).
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Altitude
above

200 km

FLORIDA

Figure 1. Location from Google Earth(© Google Earth) images (a) and land topography of the study area (b). The red line represents

the boundary of the simulation domain,

Soil cover at the site consists of a loamy sand (average of 85% sand, 9% silt, and 7% clay) to depths of 60-80 cm,
underlain by sandy clay loam (average of 62% sand, 8% silt, and 30% clay) containing plinthite, a low permeability layer of
hard iron-rich soil restricting hydraulic connectivity between surface and groundwater (Blume et al., 1987). The latter soil was
used to build the bottom of the pond and the dam.

Weather conditions were monitored by the USDA-ARS Southeast Watershed Research Laboratory (SEWRL) at the
site to measure air temperature and humidity, wind speed, solar radiation, and soil and water temperature. Data were collected
from a climate station located at the SCF noted as "Rain Gage 80" in the SEWRL public data website
(https://radio.tiftonars.org/rg80.htm ). Specifications for instrumentation follow the configurations for the Little River

Experimental Watershed climate stations described in Bosch et al. (2007).

2.2 Quantifying pond use and bacterial concentrations in cattle manure
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Cattle use of the pond and the pasture area draining into the pond was evaluated using automated trail cameras. Eight cameras
were fixed to solid structures (e.g., fence posts, trees) and their fields of view (FOVs) captured overlapping images of the pond
at regular intervals. Three comparable camera models were used for the study, including 3 Bushnell 24MP Prime Low Glow
(Model 119932C), 3 CamPark, and 2 Coleman (Model CHD400W) cameras. Cattle in the pond were imaged from July 2022
to December 2023. Secure digital (SD) removable media cards were used to record the imagery and were replaced every 6 to
10 weeks for the duration of the study. Imagery was downloaded and stored on a file server for subsequent analysis. The
imagery was visually assessed for pond use by cattle by a single observer for all days. Images were reviewed from each camera,
and the number of cows in the pond was counted in each image. Tallied viewpoint counts were summed according to the model
finite element mesh (FEM) nodes segmentation of the shoreline described below, multiplied by the time interval of the camera
setting (5 to 30 minutes), and divided by 1440 minutes per day. The resulting values were summed for each shoreline segment
to produce a daily value of "cow days" (Cex). To evaluate the accuracy of the visual assessment, two additional independent
observers conducted validation counts of a sample of the imagery following the same protocol, and agreement among the three
observers (OBS1, OBS2, and OBS3) was evaluated (Table S1).

Between February and May 2023, 18 fresh cow manure samples were collected from the area around the pond.
Samples were collected into 50-mL conical tubes using a sterilized tongue depressor and were then placed on ice for storage
and transport to the laboratory. Laboratory processing of manure samples occurred within 24 hours of sample collection.
Briefly, 2g of manure was blended with 200 mL of sterile, deionized water for 2 min on the highest setting. Mixed samples
were then allowed to settle for 15 minutes before aliquots were used to prepare serial dilutions of the manure mixture. Diluted
manure solutions were processed in duplicate using the Colilert method (IDEXX, Westbrook, Maine), which produced a most-
probable-number (MPN) of E. coli in each sample. An MPN was then calculated per mass of manure (MPN E. coli kg-1) using

information from a dry weight analysis of the manure.

2.3. Water sampling

Figure 2 shows the locations of the water sampling points for measurements of E. coli concentration and of the camera
viewpoints for monitoring cattle. For the water sampling points, locations with even numbers (2, 4, 6, 8, 10, 12, 14, 16, not
shown) have coordinates the same as as locations with odd numbers (1, 3, 5, 7, 9, 11, 13, and 15), respectively. However,
locations with odd numbers were sampled at the pond surface, whereas locations with even numbers were sampled at a depth

of 50 cm using a peristaltic pump. Locations 17 to 26 were sampled at the surface near the banks.
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Figure 2. Locations of water sampling points (1-26) and cattle monitoring cameras (Viewpoints 1-8). The insert shows an example
of an image taken at monitoring viewpoint 2. Orthoimage from July 7, 2022 by USDA-ARS, Southeast Watershed Research
Laboratory, Remote Sensing and Mapping Group, Tifton, Georgia, USA. The imagery was collected with a Hasselblad L1d-20C

20mp camera using a DJI Mavic 2 Pro L1P drone, and created using Pix4D Mapper image processing software.

2.4 Mathematical model

Accounting for the complexity of hydrogeological and hydrochemical processes, we choose the HGS (Therrien et al., 2010)
as a basis for the model. In HGS, the flow of water is simulated in a fully integrated mode; water derived from rainfall inputs
is partitioned into components such as overland and stream flow, evaporation, infiltration, recharge, and subsurface discharge

into surface water features such as lakes, streams, and wetlands in a natural, physics-based fashion. It employs a fully coupled
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numerical approach, allowing the simultaneous solution of both the surface and variably saturated subsurface flow, solute
transport, and heat transfer.

The mathematical model of the watershed flow and transport comprises the following components. The Richards equation
simulates three-dimensional transient subsurface flow in a variably saturated porous medium (PM domain). The van Genuchten
(1980) relations are used to calculate the pressure-saturation relationship and hydraulic conductivity. The two-dimensional
depth-averaged diffusive wave equation describes overland water flow (OVL domain). The subsurface and surface flow
equations are fully coupled. Evapotranspiration affects surface and subsurface flow domains and is modeled as a combination
of transpiration from vegetation and evaporation. Microbial transport is described by 3D and 2D coupled advection-dispersion
equations in the subsurface and surface, respectively. We chose the linear Henry isotherm for simulating E. coli sorption. A
first-order decay reaction describes the bacteria's die-off. The numerical solution of partial differential equations and the initial

and boundary conditions are done by the control volume finite element approach.

2.4.1. Finite element mesh

The numerical setup of the simulation domain is shown in Figure 3. The lateral boundary was chosen to cover most of the area
where runoff water flows towards the pond. The 2D triangular finite element mesh (FEM) was created using AlgoMesh
software (www.hydroalgorithmics.com/software/algomesh) (Figure 3a). It consists of 2882 nodes and 5595 triangular
elements. The mesh has the highest density of nodes and elements near the pond boundary.

The base of the simulated profile is located at the depth corresponding to an altitude of 100 m. The thickness between the base
and soil surface was divided into three layers (U1-U3, Figure 3b), and each layer was split into 2 to 4 sublayers. The floors of
the layers U2 and Ul are located at depths of 0.1 and 1.0 below the land surface, respectively, thus mimicking the surface
topography. In the model, each sublayer is considered an independent layer defining the height of triangular prisms, which

presents the vertical extension of the 2D plane mesh within each layer (Figure 3c).
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(a) 2D FEM (b) Soil profile
Z.,=103-117 m

______________ } U3

Zy-0.1m

Zyt-1.0m

Loamy
sand (LS)

Clay (C)

Sandy clay

SN
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Figure 3. Numerical model setup: (a) The 2D triangular finite element mesh in the simulation domain. Cowpats (a flat, round piece of cow dung) are
located in the yellow color area. Colored circles represent the location of sources to simulate cattle excretion in the pond. (b) Schematic representation
of numerical mesh layers in the simulated profile. Solid and dashed horizontal lines represent the boundaries between layers and sublayers,

respectively. (c) 3D finite element mesh (FEM).

2.4.2. Initial conditions

Initial conditions were obtained by running multi-year simulations. For the subsurface flow, a constant head of -2 m in each
node of the finite element mesh was used. For the surface domain, the initial water depth was 10”7 m in each node, i.e., the
pond was assumed to be empty. These initial conditions were corrected during simulations: 1) For two years, a constant
precipitation rate (flux at the soil surface of 0.01 m/day) was simulated to "fill in" the pond with water and establish a steady-

state flow regime in the simulation domain; 2) the resulting distribution of heads was taken as a new initial condition and the
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model was run with varying precipitation and evapotranspiration for 6 years to establish a quasi-stationary flow regime; 3)
Finally, the initial conditions were taken from the results obtained at the end of the simulations.

Initially, the prescribed concentration of bacteria was equal to 0 everywhere in the domain. Then, during multi-year
simulations, a concentration distribution was developed in the simulation domain, exhibiting cyclic behavior with time, and it

was accepted as the initial condition for January 1, 2022.

2.4.3. Boundary conditions and internal source terms

In the study area, the groundwater level of a regional artesian aquifer was detected at around 70 meters above mean sea level
(mamsl) (Watson, 1976), which is 30 m below the bottom (100 m) of the simulated domain. Therefore, the groundwater is not
included in simulations. The free drainage boundary condition at the bottom and no flux at the lateral boundaries were
prescribed.

At the soil surface, time-variable precipitation rate and evapotranspiration were prescribed. The latter is calculated from the
potential evapotranspiration, computed using the Penman-Monteith equation (Monteith, 1981; Danielescu, 2022).

The critical depth boundary condition at the watershed boundary was set to the surface flow domain. The rainfall and
evaporation rates are prescribed as volumetric flow fluxes per unit area.

For the bacteria transport, zero-gradient and zero-concentration conditions were set in the subsurface domain along the inflow
and outflow lateral boundaries, respectively. The third-type (Cauchy) boundary condition was set at the surface, expressing
the balance between bacteria's advective flux at the soil surface and their advective and dispersive fluxes below. The land
surface is divided into a grazing area with cowpats and the rest (Figure 3a). Cowpats were assumed to be uniformly distributed
over the grazing area. The boundary concentration (and mass flux) equals zero in the area free from cowpats. For the grazing
area, a sub-model was developed to calculate the boundary concentration of bacteria. The sub-model simulates the daily
evolution of concentration depending on the load of cowpats and the initial concentration of bacteria (see Appendix A for the
equations). On each specific day, the fate of bacteria concentration in cowpats that were loaded during that and every previous
day was calculated using the Q10 model (Martinez et al., 2013). The latter computes the bacteria's die-off/survival rate
depending on weather conditions. The concentrations of released microorganisms are calculated as a function of precipitation
according to Bradford and Schijven's (2002) equations for each cowpat's load, accounting for the remaining mass of bacteria
during the current day. The resulting boundary concentration is assessed as a sum of those concentrations.

Cattle excretion to the pond was simulated by introducing the internal source terms in the FEM nodes (Figure 3a). The
nearshore pond area, where bathing cattle were observed, was divided into five zones. Each zone includes twenty FEM nodes.
These nodes do not coincide with the water sampling locations. The source rates were calculated from the number of cattle
and the time they spent in the pond (Section 3.1). The time-variable boundary conditions and source/sink terms were prescribed

on a daily scale.
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2.5. Model parameters

EGUsphere\

We adopted the values of model parameters from different sources or estimated based on existing experimental data or during

simulations. Tables 1 and 2 present parameter values used in the simulations.

Table 1. The model parameter values for the subsurface domain.

Parameter Soil Source

Loamy sand Sandy clay | Clay

loam

Hydraulic conductivity K;, m d! 1.2(1.28) 0.35(0.36) | 0.0001-0.01 Using Rosetta & PSD!
Porosity g 0.39(0.36) 0.45 0.48 (0.46) Using Rosetta & PSD
Residual water content 0.049(0.046) 0.08 0.067(0.098) Using Rosetta & PSD
van Genuchten o, m™! 3.12(3.6) 2.35(2.29) | 2.0(1.5) Using Rosetta & PSD
van Genuchten 1.48(2.02) 1.36(1.35) | 1.41(1.25) Using Rosetta & PSD
Longitudinal dispersivity a;, m 12.5 Assessed by trial-and-error
Transverse dispersivity ar, m 2.5 Assigned a7=0.2 a;,
E. coli distribution coeff. kp, L kg! 14.5 Mankin et al. (2007)

E. coli die-off rate, k»,2(20), d!

0.042(cowpats), 0.111(soil)

Martinez et.al. (2013)

Parameter Q1o.m

1.48(cowpats), 1.65(soil),

Park et. al. (2016)

'PSD — particle size distribution

The geology of the subsurface is not well known. The following composition of soil layers was accepted, based on available

information: loamy sand to a depth of 0.5 m, below which a clay layer of variable thickness extends down to the upper half of

layer U1 (Figure 3b). The lower half of U1 is presented by sandy clay loam. The pond bottom (to 0.5 m depth) and the dam

are built from clay.

Table 2. The model parameter values for the surface and evapotranspiration domains.

Parameter

Value

Source

Manning X friction factor S, m™'3 s

0.3 (grassland), 0.03 (pond)

HGS Introductory Manual

Manning Y friction factor Sy, m™'3 s

0.3 (grassland), 0.03 (pond)

HGS Introductory Manual

Rill storage height, m

0.05 (grassland), 0.01 (pond)

HGS Introductory Manual

Coupling length /e/n, m 0.01 HGS Introductory Manual
Longitudinal dispersivity az, m 5-15 Assessed by trial-and-error
Transverse dispersivity, ar m 1-3 Assigned ar=0.2 a;

E. coli die off rate, k »,2(20), d! 0.056 Blaustein et. al (2013)

10
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Parameter Qom 1.415 Blaustein et. al (2013)
Evaporation depth, m 0.3 HGS Introductory Manual
Root depth, m 1.8

Leaf area index (LAI) 2.08 HGS Introductory Manual
Transpiration fitting parameters: C1, C2, C3 0.1,0.05,2.0 HGS Introductory Manual
Wilting point pressure head, m -150 HGS Introductory Manual
Field capacity pressure head, m -3.8 HGS Introductory Manual
Evaporation limiting pressure heads Min: -1.5, Max: -0.5 HGS Introductory Manual
Canopy storage parameter 0. HGS Introductory Manual

E. coli fate and transport simulations were performed for 2022-2023. To progress the numerical convergence and reduce
simulation time, we use relative concentrations C;=C/Ciax, Where Cina= 1.4:10'° MPN'm? is the maximum value of boundary
concentration at the soil surface. The value of the longitudinal dispersivity values for the porous media domain was chosen to
be 10 m, considering the scale problem (Neuman, 1990). There is no data concerning longitudinal dispersivity for the overland
flow domain. Therefore, we tested a few values of this parameter from 5 to 15 m. Longitudinal dispersivity equal to 12.5 m
produced a better agreement between simulated and observed concentrations. The transverse dispersivities were 1/5 of the
longitudinal ones for porous media and overland flow domains.

The E. coli temperature-dependent die-off in manure, soil, and water was simulated. The current version of HGS does
not allow the die-off rate in the surface flow domain to be prescribed as a function of temperature. Therefore, this parameter
was calculated for each three-month-long season using mean temperature values and used piecewise by restarting simulations

for each time interval.

3. Results and discussion
3.1. E. coli boundary conditions and internal source terms

All simulations were carried out using available weather data for a time interval from January 1, 2021, to December 31, 2023.
Annual precipitation was 1375, 998, and 1167 mm in 2021, 2022, and 2023, respectively. Figure 4 shows rainfall and calculated
potential evapotranspiration in the study area in 2021-2023.

11
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Figure 4. Precipitation and calculated potential evapotranspiration.

The surface Cauchy-type boundary concentration at the grazing area (Figure 3a) was calculated using the equations presented
in Appendix A, as described above in section 2.3.3. We assume that 50 cattle (the maximum number of animals that appeared
in monitoring camera photos) were grazing in the watershed. The total grassland area of around 60000 m? was estimated based
on recent aerial imagery provided in Google Earth (version Pro 7.3). Nennich et al. (2005) estimated the average daily load of
manure of 38.6 and 66.3 kg-day'-cow™! for dry and lactating cows, respectively. The ratio of urine to feces in dairy cows varies,
but on average, slightly less than one-third of manure is urine. Thus, we estimate average daily feces excretion as
0.5%(38.6+66.3)*0.667=35 kg-day'-cow’!. Monitoring shows that during the day, cows usually graze for at least 12 hours.
Therefore, we estimate solid manure load M= kg-day!-cow'*12h/24h*50cows/60000m? 0.0146 kg:m2. The initial
concentration of E. coli in fresh cowpats, m;y = 7.38:103 MPN-kg'! was calculated as an average in 16 samples collected in
2023. Other parameters in equations A3-A4 were a,, = 23.375h!, B,, = 1.732, and E=1 (Stoker et al., 2018). No cattle
were observed in the field each year from the beginning of December to the end of February. Figure 5 shows the calculated

boundary concentrations.

12



https://doi.org/10.5194/egusphere-2025-4138
Preprint. Discussion started: 15 October 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

0 | L.II Inl
1/1/2021 7/1/12021 1/1/2022 7/1/2022 1/1/2023 7/1/2023 1/1/2024

E. coli concentration x10° (MPN m'3)
(0]

258 Date

259  Figure 5. Simulated temporal variation of E. coli surface boundary concentration at the grazing land.

260

261 The influx of source terms simulating E. coli load by direct cattle excretion to the pond, as described above, with results shown
262 in Table S1. Validation of the visual assessment of trail camera imagery to derive Cex yielded strong correlations among the
263  three observers (OBS1 v OBS2, n =64, R2=0.93; OBS1 v OBS3, n =46, R>= 0.90; OBS2 v OBS3, n = 18, R>= 0.99). It was
264 assumed that all bacteria were immediately released from manure in the pond. Accounting for the daily cow excretion (as
265 explained above for the surface boundary concentration) and E. coli concentration in cowpats, we calculated the daily source
266 rate for each pond zone (Figure 6) as a portion of the daily manure excretion. The rate for each node is one-tenth of the zone
267 rate. Cattle use monitoring started in July 2022. Therefore, in simulations for the period January-June 2022, where there were

268 no observations, the calculated rates for 2023 were used.
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3.2. Flow simulation results

Water flow simulations were carried out for 2021-2023. The saturated hydraulic conductivity of the clay layer was 0.0002
m-day!. This value was obtained by trial-and-error fitting to keep the pond from emptying and overflowing during multiannual
simulations. The rest of the parameters are presented in Table 1. During periods with high precipitation, perched water was
developed above the clay layer (around 0.5 m below the land surface, not shown). Daniels et al. (1978) reported that soil
horizons having 10% of platy plinthite will perch water.

Runoff is rarely observed in the area. Simulations show that it usually occurs during and after rain events. The HGS calculates
fluid fluxes through the pond boundary. Water fluxes are computed between active nodes (on the boundary of the pond — dark
blue dots in Figure 3a) and contributing nodes (just outside the pond boundary). The calculated surface water flux represents

simulated runoff to the pond.

180 6000
_ 160 - —— Runoff hydrograph
% —— Cumulative runoff - 5000
o 140 1 A
o E
£ 120 1 L 4000 =
£ 2
& 100 - >
> - 3000 o
© 80 - 2
IS4 °
£ 60 A - 2000 2
5 =
g 40 - (@)
o - 1000
20 -
0 T T T T T 0
1/1/2021  7/1/2021 1/1/2022  7/1/2022  1/1/2023  7/1/2023  1/1/2024

Date
Figure 7. Computed runoff to the pond.
At the beginning of 2021, three significant flow events occurred after intensive 30, 50, and 82 mm rainfalls on February 18,
Mar 1-2, and April 24, respectively. During the rest of the time, the average computed surface flow rate to the pond is around
4.4 m3-day’'. The latter is a relatively small value given a 650 m-long pond perimeter.
Simulated changes to pond water volume (m?) and water level (mamsl) were tracked over the study period (Figure 8). The
simulated minimal and maximal water levels were 109.03 and 109.37 mamsl. A rise in water level by 0.34 m causes an increase

in water volume from 10770 to 16075 m?>.
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Figure 8. Simulated temporal variation of water volume and level in the pond (above mean sea level).

3.3. Bacteria fate and transport simulations

3.3.1. Results for individual locations

Observed and simulated E. coli concentrations in the interior and nearshore pond sampling locations were compared for each
sample location (Figures 9 and 10). The non-calibrated model tolerably mimicked E. coli concentration patterns and times of
peak events in many of the pond's sampling locations. Concentrations increased during summer and decreased during winter
months.

For the internal sampling locations 1 to 15, correlation coefficients between the monitored and simulated E. coli
concentrations varied between 0.24 and 0.44. An exception was location 7, where the correlation coefficient was -0.01. For

the near-shore sampling locations 17 to 26, the correlation coefficient varied between -0.15 and 0.32.
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306 Figure 9. Observed (blue dots) and simulated (red line) E. coli concentrations at interior sampling locations 1-15.
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Figure 10. Observed (blue dots) and simulated (red line) E. coli concentrations at nearshore sampling locations 17-26. Dashed circles

indicate winter increases in concentrations on January 18, 2023.

The observed differences between simulated and measured concentrations in individual sampling locations might
originate from the model setup and computational features. The simulated concentration peaks strongly depended on the
proximity of the sampling points to the internal source locations, which were constant in time. Cattle frequently moved across
the pond in different directions, which affected the concentration distribution. Most assigned locations for the pond's internal
source were 10-20 m from the nearest sampling point.

The reproduction of mixing in the pond might be locally unsatisfactory. Figure 11 shows the simulated relative E.
coli concentration distribution at the surface for different dates. Concentration in the pond source locations rises during summer
and dissipates in the winter. Simulations show a low E. coli concentration zone in the middle of the pond during the entire
simulation period. For example, the model underpredicts peak concentration at sampling location 15 (Figure 9) in summer
2022 and autumn 2023. This indicates that mixing in the pond was stronger than the dispersion mechanism suggests. Lateral
transport is often dependent on persistent wind-forced circulation. Henderson et al. (2024) describe wind-forced processes
responsible for ponds' vertical mixing or lateral transport. Additional mixing resulting from induced eddies may cause more
rapid cross-pond mixing and potentially affect pond ecology and biogeochemistry. At sampling location 23, the increase in

concentration could be due to the occasional resuspension of bacteria from the bottom sediments during sampling.
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More insight could be expected from considering the specifics of E. coli survival in waters rich in organic matter and
nutrients (Cho et al., 2021). Blaustein et al (2014) analyzed the database on E. coli survival in various surface waters. They
found that the logarithm of E. coli remained approximately constant or even grew for some "shoulder" time after the
inactivation experiments in wastewaters with high content of organic matter and nutrients. After the "shoulder" period. The
dependence of log C on time changed to a linear decrease. No model has been proposed to estimate the duration of the shoulder
period in wastewater so far.

A sudden rise in E. coli concentration was observed on January 18, 2023, at sampling locations 19, 21, 22, and 23
(Figure 9, dashed circles). The model does not reproduce this increase. The monitoring camera photos show flocks of birds in
the pond near the first three locations 1 to 2 days before the sampling date. At the same time, the model's internal sources on
that day were equal to zero since there were no cattle in the pond. We hypothesized that excretion by birds was a reason for
elevated E. coli concentrations. During the fall and winter, Georgia's inland freshwaters become populated with waterfowl
such as ducks, Canada geese, and migratory birds (Balkcom et al., 2025). One duck generates on average 3.8+ 10'° E. coli CFU
per day (Moriarty et al., 2011), which is similar to the daily E. coli output from one cow (4- 10*'® MPN (g wet feces)™! day!
in this work). It appears that the contribution of waterfowl can be very substantial in comparison with cattle contributions (see
Figure 5). To our knowledge, the fraction of waterfowl excreta that enters water has not been reported in the literature. Overall,
we concur with Vasquez et al. (2021) who emphasized the need to collect more data on the fecal contamination inputs of the

ponds.

3.4. Results for the pond as a whole

The HGS computed temporal E. coli fluxes entering the pond with surface water. The influxes of E. coli to the pond were
visualized along with their calculated cumulative numbers over time for both sources of runoff (Figure 12a) and direct
excretion (Figure 12b). At the end of simulations, the number of bacteria entering the pond by manure excretion was around
130 times greater than by surface runoff. Simulations show that water was mainly leaving the pond to the subsurface, so

concentrations of E. coli in the subsurface did not affect water quality in the pond.
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Simulated and observed concentrations of E. Coli were each averaged over the interior and nearshore sampling
locations (Figure 13). Averaged values of concentrations at the nearshore locations (17-26) were approximately three times
higher than the average of concentrations sampled at interior locations (1-15). Elevated nearshore concentrations may be
explained by flushing bacteria to the pond during runoff and direct excretion by bathing cattle, which, according to monitoring,
spent most of their time grouped close to the shore.

The summary data in Figure 13 show that the model describes seasonal average concentration patterns relatively well.
However, observed concentrations significantly declined during autumn 2022 and 2023 compared to the model simulation.
Clear, shallow water can cause deeper penetration of solar radiation. De Brauwere et al. (2014) indicate that the inactivation
of bacteria is caused by UV irradiation. To account for the latter, some models add a term to the overall decay parameter due
to sunlight (McCorquodale et al., 2004) or use a decay term depending on the intensity of the solar radiation (Kashefipour et
al., 2006). The decrease in the nutrients in water in the fall can also be the reason for the reduction of E. coli concentration.

The descriptive statistics of measured and simulated average concentrations were close when computed over the
observation period. The minimum and maximum averages across the pond concentrations were 3.56 and 525.1 for observed
and 4.08 and 479.4 MPN (100 mL) for simulated data, respectively. The mean logarithms of average concentrations were
1.70+-0.47 and 1.99+-0.67 for the measured and simulated data, respectively. The correlation coefficient between measured
and simulated logarithms of average concentrations was 0.483. This value was significant at a 0.01 significance level and

indicated a moderate correlation.
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382  Figure 13. Average E. coli concentrations in the pond's interior (1-15) and nearshore (17-26) sampling locations. Dashed circles
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indicate an autumn decline in concentrations.
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4. Discussion

Applying mechanistic fate and transport models relies on model parameter values typically obtained via model calibration.
Several factors make the site-specific calibration of microbial fate and transport parameters difficult and sometimes unfeasible.
The spatiotemporal variability of microbial concentrations in ponds is very high (Havelaar et al., 2017; Stocker et al., 2021),
indicating the need to collect large numbers of samples. The collection and analysis of those samples appear to be unfeasible.
That precludes establishing a proper monitoring program for efficient model calibration. The high spatiotemporal variability
emphasized the scale mismatch between the water sample size and the water volume, and this sample is used to characterize a
much larger water volume used for mass balance computation in the hydrological models.

Flow sub-model parameters have satisfactorily estimated more easily obtainable properties, such as clay or sand content
and bulk density (Schaap et al., 2001). Analogous predictive relationships have not been developed, partially because the
potential predictors of microorganism survival or release rate have been shown to be dependent on environmental variables
that were themselves variable in space and time.

Compendia of microorganism release and survival parameters (Park et al., 2016) show that the parameter values
encompass wide numerical ranges and that it is challenging to attribute fate and transport parameter values to specific
environmental conditions or management practices. These factors so far substantially limit the applicability of microbial fate
and transport modeling. On the other hand, such modeling is in demand due to the need for projections of microbial water
quality changes due to environmental changes, adaptation practices, site-specific trade-offs between different water quality
aspects, multiple ownership and management along or around irrigation water sources, etc.

In this situation, a relatively important question is: What accuracy can be expected in fate and transport predictions made
with average or typical fate and transport parameter values? In other words, given the high spatial variability of microbial
concentrations, how significant are the differences between observed and simulated concentrations with average parameter
concentrations? The answers to those questions are surprisingly scarce, as the published modeling reports focus on calibration
results. These questions have not been researched for agricultural ponds. Results of this work show that if the animal behavior
patterns are known, the seasonal trends and magnitudes of pond water microbial pollution can be estimated. Quantifying such
patterns for cattle ponds has not been done so far. However, it presents a promising avenue for research.

We realize that the system parameters we have studied are subject to multiple sources of uncertainty. Quantifying this
uncertainty and running ensemble simulations with parameters treated as random values presents an interesting avenue for
future research. Results of this work, obtained with mean parameter values from various sources, indicate that determining the

statistical properties of the bacteria sources can be a first feasible step in that direction.
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5. Conclusions

This study developed the first mechanistic numerical model for bacteria transport from grazing land around a cattle pond. The
model was based on the HGS software, simulating fully coupled surface-subsurface flow and transport. The model was tested
to simulate E. coli fate and transport in a small pastureland watershed in Georgia, USA, using observations from 2021-2023.
The primary goal was to simulate the temporal and spatial distribution of E. coli concentration in the pond. All parameters for
this simulation were taken from the literature or estimated from published data. The exception was the rate of E. coli input to
the pond from the direct depositions from animals, since such data were not found in the literature. The non-calibrated model
could mimic E. coli temporal concentration patterns and peak times reasonably well in most of the pond's sampling locations.
There were seasonal differences in correspondence between simulated and measured E. coli time series, and the magnitude of
concentration peaks was poorly predicted in some sampling locations. Predictions of the average across-pond concentrations
were expected to be moderately accurate. Quantification of microbial inputs for cattle ponds has not been done so far. Still, it

presents a promising avenue to estimate the microbial water quality in cow ponds using the data accumulated in past research.
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Data will be made available on request.

Appendix A: Equations to calculate E. coli concentration released from cowpats at the soil surface (37-kind boundary

condition concentration).

For day ¢, the content of microorganism in the applied manure is calculated by (Franz et al., 2008; Martinez et al., 2013):
m;(t) = my(t — e *sm (A1)
Where ks is the rate coefficient which is the function of temperature T at time ¢, (d!)

ks,m,lr t S ts,m,l

A2
ks,m,z (T)' t> ts,m,l ( )

ks,m = {

&sm,1 1s the duration of the first stage, d, T is the average daily temperature, °C, and k; ,,, 1and kg ,, , (T) the survival rates at the
first and second survival stages are respectively.
The bacterial population may grow, remain stable, or die off during the first survival stage, and decrease during the second

stage of survival. On the second stage, the values of kg, , (T) can be described with the Q10 model (Martinez et al., 2013).

T-20

Ksim2(T) = Kom2(20)Q, 0%, (A3)

where k; ,, 2(20) is the survival rate at 20 °C, Qomreflects the sensitivity of kg ,,, , to a temperature that is equal to the change
in survival rate occurring as temperature changes by 10 °C.

The concentration of released microorganism C,, is calculated according to Bradford and Schijven (2002) as

am M —
Crman(t) = ﬁ = % 1+ appfmt) (A+1/Bm) (A4)
Cn () = ME - Cran (t) (AS)

Where M., is the cumulative cowpat mass released into the aqueous phase (g), R is rain intensity, cm/h, o, (h") and 3, are

fitting parameters defining the shape of the release curve, and Mj is the initial mass of cowpats (g/cm?), Cyan is the aqueous
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471 manure concentration (g cm?), m; is content of microorganism in the cowpats (CFU g'!), E, is microorganism release
472 efficiency.
473
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