Supplement to:

Brief communication: Towards defining the worst-case breach scenarios and potential flood volumes for moraine-dammed lake outbursts

5 Adam Emmer¹, Ashim Sattar², Jan Hrebrina³

¹Department of Geography and Regional Science, University of Graz, 8010 Graz, Austria

²School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, India

³Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

¹⁰ Correspondence to: Adam Emmer (adam.emmer@uni-graz.at OR aemmer@seznam.cz)

Supplement I: The list of analysed events, measured and calculated characteristics.

Asia,	Asia,	Western	Low	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Asia,	Western	Western	Southern	Southern	Low	Low	Low	Low				occurred	the GLOF	in which	RGI region Major
С	ш	S Coast	Low-	W Tien	Е	S and E	Inner Tibet	Е	Hengdua	Ш	П	S and E	ш	Е	Е	S Coast	S Coast	Patagoni	Patagoni	Low-	Low-	Low-	Low-	located	Was	the GLOF	e in which	unit/rang	a.	Major
China	Bhutan	Canada	Peru	Kazakhsta Ortalyk	India	China	China	Nepal	China	Nepal	China	China	China	Nepal	China	Canada	Canada	Chile	Chile	Peru	Peru	Peru	Peru				GLOF	of the	location	Source
CN50195	RGI60-	Klattesine	Caraz	Ortalyk	South	Jinwu Glad	RGI60-	Sabai	Gongzo	Langmoc	Amaciren	RGI60-	CN50201	RGI60-15.02	CN5O252B	Diadem	Cumberla	U-7	Engaño	Palcaraju	RGI60-	Caraz	Kogan	lake	glacier	the burst	that feeds	glacier	the	Name of
3,31 -	3,87	131,11	5,94	2,84	11,71	8,383	3,902	1,77 Tam	28,82	1,31	1,42	1,21	6,49	6,60	8,62	6,19	2,96	3,05	2,53	6,28	9,02	5,94	4,50			polygon lake	from RGI source	derived outburst	area the	Glacier
	3,87 Kuangna	131,11 Klattasine moraine	5,94 Artesonco moraine	2,84 No2, No3	1,71 South	8,383 Jinwuco	3,902 Chongba	īam	28,82 Guangxie	,31 Dig Tsho	,42 Zhangzan	,21 Damenha moraine	6,49 Qunbixia	6,60 Nagma	8,62 Rejieco	6,19 Queen	2,96 Nostetuko moraine	3,05 Cerro	2,53 Engaño	6,28 Palcacoc	9,02 Tullparaju moraine	5,94 Artesonco moraine	4,50 Jancaruris moraine			lake	source	outburst	the	Glacier Name of Material
moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine	moraine			•	ng dam	impoundi	of the	
1995-1996	1990-1991	1971 -	1951-07-06	1973-07-15	2023-10-03	2020-06-26	2001-08-06	1998-09-03	1988-07-14	1985-08-04	1981-07-11	1964-09-26	1940-07-10	1980-06-23		1997-08-12	1983-07-19	1989-03-16	1977-03-11	1941-12-13	1953-03	1951-10-28	1950-10-20					GLOF	date of	Reported
28,66	28,09	51,18	-8,98	43,07	27,91	30,36	28,21	27,74	29,47	27,87	28,07	29,87	27,85	27,87	27,97	51,25	51,21	-46,96	-46,45	-9,39	-9,42	-8,98	-8,86					Ф	coordinat coordinat channel	Y
85,48	90,33	-124,88	-77,64	77,08	88,20	93,63	89,75	86,85	96,50	86,59	86,07	93,04	88,92	87,87	88,89	-124,52	-124,41	-73,26	-72,97	-77,38	-77,34	-77,64	-77,67					Ф	coordinat	×
7,5	4,6	6,5	6,9	6,5	2,3	2,9	5,7	7,4	2,8	4,3	19,5	3,1	4,4	5,4	3,4	2,8	2,3	2,8	3,2	7,7	6,9	6,5	5,9					e slope	channel	X breached running
408	383	315	80	265	667	554	442	425	373	358		203	117	328	382	530	382	177	121	43	88	81	77					(regionally	number	running
1,17	1,22	1,70	1,13	3,80	41,40	10,00	27,10	18,00	3,30	8,00	18,90	2,00	12,40	3,00	4,58	6,50	6,50	140,00	12,50	10,00	3,10	2,80	4,00			outburst	during	released	volume	Total
520																	_											level	lake	Elev
5203 SRTM	4711 SRTM	1658 CDEM	4306 SRTM	3421 SRTM	5166 Sattar et al., 20	4422 Zheng et al., 20	4915 SRTM	4377 SRTM	3837 SRTM	4373 SRTM	4615 SRTM	5216 SRTM	4650 SRTM	4926 SRTM	5444 SRTM	1701 CDEM	1594 CDEM	436 SRTM	689 SRTM	4566 ALOS	4283 ALOS	4288 ALOS	4290 ALOS							DEM
Veh et al., 2019	Veh et al., 2019	Clague and Evans, 2000	Emmer, 2017	Medeu et al., 2022	et al., 202\$Sattar et al., 2025	et al., 202 Zheng et al., 2021	Veh et al., 2019	Ives et al., 2011	Daoming and Qinghua, 1994	Vuichard and Zimmermann, 1987	Ives et al., 2011	Daoming and Qinghua, 1994	Nie et al., 2018	Ives et al., 2011	Veh et al., 2019	Kershaw et al., 2005	Kershaw et al., 2005	Burton et al., 2022	Anacona, et al., 2015	Mergili et al., 2020	Emmer, 2017	Emmer, 2017	Emmer, 2017							Reference

Supplement III: Supplementary input data for the calculations presented in Table 1.

Lake	Total flood volume (million m3)	Citation	Area (m^2)	Toe eleation (m asl)	Crest elevation (m asl)	Outflow (m)	max beach depth (m)	PFV (m^3)
Galong co	469000000	Yang et al., 2023	5630000	5023	5073	530	22,3	125334740
Gepan Gath	12600000	Worni et al., 2013	784400	4068	4095	400	6,1	4757870
	12600000		1050000	4068	4095	400	6,1	6368898
Lower Barun	179000000	Sattar at al 2021	2250000	4456	4542	878	40,0	90110318
Lumding	5200000	Fujita et al., 2013	1310000	4810	4837	451	3,4	4449394
Thorthomi	56380000	Osti et al., 2023	3350000	4410	4460	502	23,7	79486622
	56380000		1410000	4410	4460	502	23.7	33455563