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SPASS - new gridded climatological snow datasets for Switzerland:
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Abstract: Gridded information on the past, present and future state of the surface snow cover is an indispensable climate
service for any snow-dominated region like the Alps. Here, we present and evaluate the first long-term gridded datasets of
daily modeled snow water equivalent and snow depth over Switzerland, available at 1 km spatial resolution since 1962
(spanning 60+ years). These climate-oriented datasets are derived from a quantile-mapped temperature-index model (OSHD-
CLQM). The validation against a higher quality but shorter duration dataset - derived from the same model but enhanced with
data assimilation via an ensemble Kalman filter (OSHD-EKF) - shows on the one hand good results regarding bias and
correlation and on the other hand acceptable absolute and relative errors except for ephemeral snow and for shorter time
aggregations like weeks. An evaluation using in-situ station data for yearly, monthly, and weekly aggregations at different
elevation bands shows only slightly better performance scores for OSHD-EKF, highlighting the effectiveness of the quantile-
mapping method used to produce the long-term climatological OSHD-CLQM dataset. For example, yearly maps of gridded
snow depth compared to in-situ data demonstrate an RMSE of 25 cm (20 %) at 2500 m and of 1.5 cm (80 %) at 500 m. For
monthly averages, these numbers increase to 30 cm (25 %) and 3 cm (100 %), respectively. A trend analysis of yearly mean
snow depth from this gridded climatological- and from station-based data revealed a very good agreement on direction and
significance at all elevations. However, at the lowest elevations the strength of the decreasing trend in snow depth is clearly
overestimated by the gridded datasets. Moreover, a comparison of the trends between individual stations and the corresponding
grid points revealed a few cases of larger disagreements in direction and strength of the trend. Together these results imply
that the performance of the new snow datasets is generally encouraging but can vary at low elevations, at single grid points or
for short time windows. Therefore, despite some limitations, the new 60+ years-long OSHD-CLQM gridded snow products
show promise as they provide high-quality and spatially high-resolution information of snow water equivalent and snow depth,

which is of great value for typical climatological products like anomaly maps or elevation dependent long-term trend analysis.

1 Introduction

Snow cover is an integral and crucial component of the Earth’s energy and water balance. It reacts sensitively to climate change
due to its dependence on precipitation and temperatures below freezing. Climate changes lead to changes in the extent,
thickness, density, optical and thermal properties of the snow cover and thus of the Earth's surface and the boundary layer
between the Earth and the atmosphere (Abe, 2022). These changes have far-reaching consequences for glaciers, extreme
events, natural hazards, ecosystems, biodiversity, forests and landscapes, as well as for winter sports and the tourism industry,
both globally and regionally (Mote et al., 2018; Lopez-Moreno et al., 2020; Bozzoli et al., 2024). This also includes the impact
on water resources for irrigation, drinking water and hydropower (IPCC, 2019). Snow as frozen precipitation is of increasing
importance globally in a world facing more frequent droughts on the one hand and more extreme precipitation events on the
other, where snow can dampen immediate runoff but can also cause avalanches or flooding (Barnett et al., 2005). Accurate

information about the past and current evolution of the snow cover is therefore of high importance (Van Ginkel et al., 2020).
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In contrast to the hemispheric level (Mortimer et al., 2020) or other countries (Olefs et al., 2020), Switzerland so far provided
long-term snow cover information based on in-situ data of daily snow depth (Marty and Blanchet, 2012; Scherrer et al., 2013;
Schmucki et al., 2017) and bi-weekly water equivalent of the snow cover (SWE) from national monitoring networks (Marty
et al., 2023), which are only available at about 10 % of the snow depth measuring stations. Both data, snow depth (HS) and
SWE, are regularly published in the annual winter reports (Pielmeier et al., 2024) and in online repositories (Marty, 2020).
Such point-based time series are very valuable because of their lengths and documented measurement history (Buchmann et
al., 2022). However, even though Switzerland has a high density of snow measurement stations, their asymmetric distribution
(especially in terms of altitude) and irregular temporal availability (some had to be abandoned, others recently started from
scratch due to automation) limit their usefulness for climatological applications beyond station-based analyses, i.e. the
provision of altitude-dependent region- or country-wide snow information.

Ideally, snow data would be available on daily scale in a gridded format for many decades. Using interpolated station data for
this purpose (Luomaranta et al., 2019) has several disadvantages because of the above-mentioned asymmetric distribution and
irregular temporal availability of station series. Using remote sensing data (Poussin et al., 2025) is another option but is
hampered by irregular temporal availability (among others due to cloud coverage), possible inhomogeneities (due to different
satellite generations) and limits the start of the time period to the beginning of the 1980’s. A third and often used option is the
use of model or reanalysis data, which is often only available at relatively coarse spatial resolution. In a recent study, Scherrer
et al. (2024) evaluated the usefulness of existing long-term and spatially gridded SWE datasets for Switzerland. Among others,
the authors state that most datasets, including the high-resolution ones, have problems correctly representing small SWE values
at low elevations and they conclude that a km-scale model with assimilated snow measurement data is highly preferable. The
only model in this investigation, which fulfilled these requirements, was the temperature-index model OSHD-EKF, which is
also used in this study as a benchmark dataset for the evaluation.

This model, which is operated by the operational snow hydrological service (OSHD) at WSL Institute for Snow and Avalanche
Research SLF, hereafter referred to as OSHD-EKF and provides daily 1 km gridded information on SWE between 1999 and
today (for details see Mott et al. 2023). The length of this dataset is limited back to 1999 because there are not enough high-
elevation snow stations available for assimilation before that time. To overcome this limitation and make use of the full period
of available gridded datasets (1962 to today), we developed within the project SPAtial Snow climatology for Switzerland
(SPASS) the quantile mapping procedure SnowQM, which was presented in (Michel et al., 2024). This method allows
correcting the not data-assimilated full climatological SWE time series starting in the hydrological year 1962 (OSHD-CL) into
a better-quality dataset (OSHD-CLQM) which mimics the higher-quality shorter duration OSHD-EKF model. For the
development of OSHD-CLQM, the quantile mapping method SnowQM was calibrated and validated with SWE simulations
between 1999 and 2021 using the OSHD-EKF data set as target and was then applied to the OSHD-CL data set over the period
from the hydrological year 1962 to today (Figure 1).

Michel et al. (2024) concluded that the developed quantile-based correction can efficiently reduce the pronounced SWE bias
at high elevations and that the average bias is always close to zero. Moreover, they stated that the mean absolute error can
remain large even after correction and that SnowQM is not expected to do more than a climatological bias correction, meaning
biases at short time scales, like on a single day or month, are not necessarily corrected. Additionally, they mentioned that such
biases can also concern entire winters at low elevated regions. However, quantitative information on elevation-dependent
uncertainties are not provided but are important in mountain regions (Switanek et al., 2024). Moreover, the above-mentioned
OSHD datasets only contain SWE as snow variable. However, SWE is an unusual and elusive variable for the non-scientific
public (e.g. tourism, media), and many applications explicitly need snow depth (HS).

The novelty of our study is therefore, first, the creation of the corresponding gridded datasets for snow depth by applying the
SWE2HS algorithm developed by Aschauer et al. (2023). Second, we compared the OSHD-CLQM datasets to the higher

quality OSHD-EKF and station-based datasets to investigate potential time aggregation- and elevation-dependent biases.
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Third, we also analyzed differences in long-tern trends to get a clearer picture on the potential and the limitations of the
datasets. These 3 aspects combined allow us to provide an unprecedented long-term gridded snow depth dataset and assess its
utility across a range of potential use cases. In the next section (2), we first present the used gridded- and station data, as well
as the evaluation methods applied. In section 3, we explain and discuss the results before summarizing our findings in section

4.

2 Data and methods

2.1 Spatial SWE and HS datasets

As illustrated in Figure 1, the base dataset is OSHD-CL, which provides SWE and is based on a temperature-index model
forced by gridded temperature (TabsD: Meteoswiss, 2021a) and precipitation (RhiresD: Meteoswiss, 2021b) input fields at 1
km spatial resolution as well as an algorithm for the fraction of snow-covered area (Magnusson et al., 2014). As target for the
quantile mapping, we use the higher-quality, but shorter (1999-2023) OSHD-EKF dataset as a benchmark. This dataset was
created using the same model and data, but also assimilating snow data from a time-invariant set of 350 in-situ snow stations
using an ensemble Kalman filter (Magnusson et al., 2014). In a next step, the data were corrected by the SnowQM algorithm,
so such that OSHD-CLQM data finally consist of 1 km daily gridded quantile-mapped SWE data over the domain of
Switzerland between 1962 and 2023 (Michel et al., 2024). The analyses are performed for hydrological years, lasting from
September of the previous year to August of the year of investigation. The hydrological year 2023, for instance, consists of
the period 1 September 2022 to 31 August 2023. This definition is consistent with the settings of the OSHD models, which
sets SWE to zero on 1 September of each year, to only represent seasonal snow, thus operating on an annual cycle starting in
September. The corresponding spatial snow depth datasets were derived by applying the SWE2HS algorithm (Aschauer et al.,
2023) to the SWE data of both models (OSHD-CLQM and OSHD-EKF). This algorithm contains a multilayer snow density
model which uses daily SWE as the sole input.
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Figure 1: Conceptual view of the workflow of the different model- and station-datasets used as well as for which periods
they are available.

2.2 Reference datasets

To evaluate the performance of the long-term OSHD-CLQM dataset, we use as two references: (1) the higher-quality OSHD-
EKF dataset, which limits the comparison to the 1999-2023 period and (2) daily in-situ station data, which limits the
comparison to snow depth.

It is important to mention that OSHD-CLQM is not independent of the first reference as OSHD-EKF was used in the above-
described quantile mapping step to produce OSHD-CLQM (section 2.1). Additionally, some uncertainty is expected when
comparing HS data, as this variable is only available for both datasets through the conversion of SWE using the SWE2HS
algorithm (Aschauer et al., 2023), which may introduce additional errors particularly in challenging conditions such as rain-

On-snow events.
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Figure 2: Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to
validate the gridded datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as
triangles and non-assimilated stations as circles.

When comparing to in-situ data we have to take into account the common grid-to-point mismatch problem. In this regard, it is
important to know that both datasets (CLQM and EKF) are based on the OSHD temperature-index model (OSHD-CL), which
was run in its default mode, where the SWE values represent spatial mean of the respective 1 km grid cells, considering its
predominant land cover types and terrain characteristics. This is in-line with the OSHD’s objective of conducting a
comprehensive assessment of snow and water resources in Switzerland, but it entails issues when comparing to in-situ data,
which represent snow conditions at flat, non-forested, sheltered field sites according to international measurement standards
(WMO, 2024). Indeed, the monitoring sites have been reported to often systematically overrepresent snow depth (Griinewald
and Lehning, 2015), hence negative biases of OSHD-EKF relative to station data are expected, which must be kept in mind
when interpreting respective results. Moreover, elevations above 3000 m are not analyzed as grid points above this elevation
are sometimes affected by too much snow accumulation in the model due to the lack of high-elevation station data for
assimilation into the model (Michel et al., 2024).

As daily in-situ snow depth time-series, we use on the one hand data of 103 stations (Table S1), which have already been used
in the assimilation procedure of OSHD-EKF (Figure 1) and are therefore complete between 1999 and 2023. On the other hand,
for an independent analysis (Figure 6), we use data of 79 independent stations, which have not been used in the data
assimilation step, because they cover only part of the time between 1999-2023. All stations are located between 200 and
2800 m a.s.1. (Figure 2); stations below 2000 m consist of manual measurements only and stations above 2000 m mostly consist
of automatic measurements. The data of these stations have been carefully quality-controlled (physical threshold checks, as
well as temporal und spatial consistency checks) and gap-filled (Aschauer and Marty, 2021). Each station is compared with
its most representative grid point, which was determined based on the selection of the grid cell that contains the station of
interest as well as the eight surrounding grid cells. The grid cell with the smallest elevation difference to the station was chosen
for the comparison as snow depth is generally strongly dependent on elevation (Marty and Blanchet, 2012). The median

elevation difference between the station and the selected grid cell over all stations is 10 m with a standard deviation of 23 m;
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the largest elevation difference is 105 m. The digital elevation model to determine the grid point elevation was provided by

swisstopo (2017).

2.3 Spatial and temporal aggregations

Michel et al. 2024 demonstrated that the SWE bias of OSHD-CLQM is not remarkably different between north and south of
the Alps, which are the two main climatic regions in Switzerland. We here focus on elevation dependent biases, as the existence
of snow in the Alps strongly depends on the elevation above sea level (Schoner et al., 2019; Switanek et al., 2024). For this
purpose, we use elevation bands with a width of £250 m which are centered at 500, 1000, 1500, 2000 and 2500 m. Therefore,
we also pool the above-mentioned station data into these elevations bands with the goal to compare all corresponding grid
points in an elevation band to all stations in this elevation band (Table S1 and Table S2).

These elevation bands imply that grid points below 250 m and above 2750 m were not evaluated when comparing with station
data, because there are hardly any stations for assimilation or validation available below and above these thresholds.
Additionally, there are hardly any grid points below 250 m in the domain of Switzerland (see Table S2).

To assess time aggregation dependent biases, we use aggregations of the daily data to weekly, monthly and yearly mean values.
The motivation behind the used temporal units was given by the following: Climatological analyses are often provided by
yearly or monthly reports and we wanted to assess the uncertainty of the new snow products with the goal to include them in
future such reports. Moreover, knowing about the need for timely public information about possible current extraordinary
snow conditions, we also assessed the weekly aggregation level. Daily aggregations were by purpose not assessed as the
quantile mapping method at this scale can be associated with substantial uncertainties and that an interpretation of the results
at this high temporal resolution is not recommended (Michel et al., 2024). Yearly mean values are based on the 6-month period
between November and April, which we will refer to as ‘yearly’ from now on, because it’s the period where snow cover is
predominant in most of the regions in the country and because it’s the period where manual snow depth measurements are
available completely. To compute yearly, monthly or weekly mean values, we always first averaged each grid point over time
for each elevation band. This means that boxplots show the variability across space in each elevation band for each temporal
aggregation. In the case of model-to-station intercomparison (Figure 5, Figure S3), the boxplots were created based on the
number of stations per elevation band (as listed in Table S2).

Moreover, we evaluate time aggregation- and elevation-dependent biases of commonly used climatological anomalies. For
this purpose, the 30-year average between 1991 and 2020 (standard 30-year reference period) is calculated for every grid point
and the ratio between the weekly, monthly or yearly mean values and its reference period is determined. When investigating
performance differences between OSHD-CLQM and OSHD-EKF the evaluation is necessarily based on the period 1999-2023,
which also has the advantage of having more in-situ data (Table S2) available in the different elevation bands (mean per

elevation band is 20 stations, minimum 14 stations, maximum 34 stations).

2.4 Merging gridded datasets for trend analysis

It is not surprising and there are clear indications that the climatology of OSHD-CLQM and OSHD-EKF are not that different
(Figure S1). Hence, we also constructed a new “combined” time series OSHD-Comb (Figure 1), by concatenating the first part
of OSHD-CLQM (1962-1998) with OSHD-EKF (1999 and 2023). This approach allows investigating the impact on trends
when merging the best available datasets for each period.

Long-term trends of all the above mentioned time series are evaluated based on yearly values with the Theil-Sen slope (Theil,
1950; Sen, 1968) and the Mann-Kendall (MK) trend test (Mann, 1945). A positive standardized MK value indicates an

increasing trend, while a negative value demonstrates a decreasing one. Confidence levels of 95% are used as a threshold to
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classify a significant trend (p < 0.05). The Theil-Sen slope estimator provides a measure of the strength of a trend based on a
robust simple non-parametric linear regression. Absolute trends were always calculated as change per decade and relative
trends were calculated for the entire 62-year period as percentage changes between 1962 and 2023 based on the Theil-Sen
slope. Please keep in mind that a direct comparison of percentage changes is only meaningful between indicators of the same
unit and similar absolute values. The thus calculated trends of the model datasets are also compared to the trends from in-situ
station data. The stations available for this comparison cover all elevation levels quite well (Table S2). The same stations are
available for each elevation band as for the 1999-2023 comparison, except for the highest elevation band (2250-2750 m a.s.l.),

where only one station covers the required full period between 1962 and 2023.

2.5 Evaluation metrics

The analyses are mainly based on the two variables describing the mass and depth of snow cover: SWE in millimeters and HS
in cm. Moreover, we also analyze the number of snow days. We define three different classes of snow days: Days with snow
cover of at least 5, 30 or 50 cm of snow depth.

We use four statistical evaluation scores to compare the various datasets: Root mean squared error (RMSE), mean bias (BIAS),
correlation coefficient (R) and mean arctangent absolute percentage error (MAAPE) to evaluate the gridded snow products.
MAAPE (Kim and Kim, 2016) is an adaptation of the mean absolute percentage error (MAPE), to mitigate large percentage
errors occurring only due to small reference values. To get MAAPE, first, like in the case of MAPE, the absolute relative

difference between the target value (§) and the reference value (y;) is calculated.

)

But then the arctan of this relative difference is taken, which maps large values to [0; m/2] and hence limits the maximum
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relative error to 157 %. When we write about relative errors in the results section, we always refer to MAAPE values for better
readability. The scores provide the basis for boxplots of RMSE, BIAS, R and MAAPE in each elevation band (500, 1000,
1500, 2000, 2500 m) for each temporal aggregation (see also 2.3).

3 Results and Discussion

3.1 Analysis of performance scores based on gridded reference dataset

In order to quantify time and elevation dependent uncertainties arising from the quantile mapping, we first evaluated the
OSHD-CLQM model simulation against the OSHD-EKF model simulations used as target dataset (Figure 3). As expected
from the quantile mapping procedure (Cannon et al., 2015), BIAS for SWE is close to zero for all temporal aggregations and
all elevation bands. HS, however, reveals a slightly negative BIAS (ca. -2 cm) for the highest elevation band, because HS has
been derived from SWE by conversion using SWE2HS and therefore has not been directly mapped to match the quantile
distributions of the observed snow depth measurements. For both variables SWE and HS, RMSE and MAAPE demonstrate a
moderate worsening of the score performance for all elevations with temporal aggregation over smaller periods, illustrated e.g.
by RMSE values at 1500 m increasing from 21 to 31 mm SWE or 7 to 11 cm HS going from yearly to weekly aggregation.
Regarding elevation dependence, RMSE is increasing up to 2000 m, but MAAPE and R reveal a clear improvement in score
performance when going from low to high elevations. Indeed, MAAPE scores demonstrate for SWE and HS at 500 m values

of about 37 % for yearly resolution. At the same time, at 2500 m MAAPE is about 8 % at yearly resolution. The same general
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performance increase of MAAPE with elevation is also true for monthly and weekly aggregations, which are about 58% and
65% at 500 m and decrease to 11 % and 13 % at 2500 m. All these comparisons demonstrate that the performance generally
increases with elevation in all evaluation metrics, except BIAS, which is close to zero anyway. The main reason for this better
performance with increasing elevation is the fact that the error indices in this analysis reflect the performance of the quantile
mapping step, which is not really suitable for time series with many zero values, i.e. for regions where the snow cover only

survives for a few days at a time (Michel et al. 2024). Moreover, the signal-to-noise ratio of the quantile mapping is increasing

with elevation due to the larger absolute mount of snow.
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Figure 3: Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the
period 1999-2023 using the OSHD-EKF dataset as reference. Darker shades of red indicate worse scores.

In a second step, we investigated the distribution of the performance scores with the help of boxplots for the same temporal
aggregations and elevation bands. Figure 4 shows the corresponding boxplots for both snow variables. While mean values of
BIAS are close to zero for all elevations bands, whiskers and outliers demonstrate a clear increase of variability of the yearly
values with increasing elevation. Larger BIAS can occur above 2750 m (not shown), where no in-situ data for assimilation is

available, but where such differences are still small in relative terms. This can also be seen by the low MAAPE values in the
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highest elevation band. In contrast, at 500 m MAAPE values demonstrate that the relative error is on average about 40 % but

can be as high as 70 % in rare cases. Similarly, R values show a clear increase in the spread with decreasing elevation.
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Figure 4: Score comparison between models OSHD-CLQM and OSHD-EKF (’reference’) on a yearly resolution at
respective elevation bands (m) for SWE (left) and HS (right). Boxplots were generated from these performance scores
to illustrate the distribution, outliers, mean (green triangle) and median (purple line). The box reflects the 50 % of data
between the lower quartile and upper quartile. The whiskers extend from the boxes’ edges and correspond to 1.5 IQR.
Outliers are represented as individual dots.

The same analysis as in Figure 4 has been undertaken for monthly and weekly performance scores (Figure S2). Monthly scores
reveal the highest RMSE values at 2000 m of about 10 to 70 mm SWE (based on whiskers) or 5 to 20 cm HS, which according
to MAAPE corresponds to a relative error range of 5 to 25 % for HS and SWE. However, in extremes cases (outliers) this error
can be as high as 40 %. At 500 m MAAPE whisker range goes from 40 to 80% for both snow variables but can go up to about
90 % in extreme cases for both variables. This low performance in these extreme cases in this elevation band is also illustrated
by accordingly low R scores of about 0.4 for both variables. Weekly scores demonstrate a similar pattern but slightly lower
performance for RMSE and MAAPE for both variables SWE and HS. Highest relative errors scores (but with small absolute
errors) can again be seen in the lowest elevation band with a MAAPE whisker range demonstrating values between 50 to 80%.
A clearly lower performance for weekly scores can also be seen for R, where in extreme cases values of only 0.2 are found.
These lowest R-scores usually originate from the few lowest grid points in this elevation band. These lowest grid points are
located in separate regions north and south of the main Alpine ridge, which are often characterized by opposing snow
conditions (Scherrer and Appenzeller, 2006), i.e. one region has snow and the other not. This possible divergence is smaller

for yearly values as there is a higher chance for compensation than for monthly or weekly values.
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3.2 Analysis of performance scores based on in-situ station data as reference

After investigating differences between the OSHD-CLQM and OSHD-EKF models, we here now compare HS simulations of
the two gridded models with HS observations at the stations. Note, that point observations do not necessarily represent spatial
means over large grid cells, particularly in complex and steep terrain, and a comparison to results from a model that represents
the existing sub-grid variability is hence confounded.

Figure 5 illustrates that the yearly scores between the stations and the respective model grid points of OSHD-CLQM and
OSHD-EKF show remarkable similarity overall. However, R values of OSHD-EKF stand out as being more consistent and
are found to be higher in all elevation bands, especially at lower elevations. As expected for a model that assimilates snow
observations, OSHD-EKF demonstrates slightly better comparison statistics, but the differences are minor which attests to the
good performance of the quantile mapping procedure. Both models show larger BIAS values at higher elevations, peaking in
the highest elevation band with median values of about -20 cm, which indicates that, as expected, the two models feature less
snow at the highest elevations compared to the station values. There are several reasons for these BIAS values. First, data from
flat field observations at high elevation often show larger values than the surrounding area (Griinewald and Lehning, 2015).
Second, the SWE2HS algorithm sometimes tends to underestimate HS at these elevations (Aschauer et al., 2023). And third,
there is lack of stations for assimilation at thigh elevation (Mott et al., 2023). In relative terms this bias, which is reflected in
the MAAPE score, reveals errors between 20 and 25 % at the elevation band 1500 m and above. This is in strong contrast to

the values of about 80 % at the 500 m elevation band, owing to the very low mean snow depths at these elevations.
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Figure 5: Score comparison between station data and OSHD-CLQM (left) as well as OSHD-EKF (right) in the
respective elevation bands for yearly snow depth values. Median value is illustrated as purple line and mean value as
green triangle.
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The same analysis has been undertaken for monthly and weekly performance scores (Figure S3) and generally reveals the
same pattern (lower performance for smaller time aggregations) as found when intercomparing the two models, with the
difference that the performance decrease going from yearly to monthly or weekly time-windows is now much weaker. OSHD-
EKF stands out again with higher R values, especially at lower elevations. MAAPE median values are again largest at 500 m,
with median values reaching 100% for monthly and 110% for weekly aggregations. These values decrease to 40% and less for
elevations above 1500 m for monthly and weekly time-windows.

Similarly, the beginning and end of the snow-covered season has generally a lower performance than mid-winter also at higher
elevations because the situation is similar as at low elevations during the entire winter. This implies the transition seasons
between no-snow and snow also at higher elevations have the same potential problems as at low elevations during the entire
winter. These problems involve among others high spatial variability and no information on the soil temperature, which is
decisive for the survival of potential snow fall. But since our focus was between November and April this seasonality issue
only affects the 1000 and 1500 m elevation band.

The above shown station-based comparisons are not independent as the same station data is used in the assimilation step of
OSHD-EKF, which then also indirectly influences OSHD-CLQM through the quantile-mapping step. In a separate step, we
therefore additionally analyzed non-assimilated stations with respect to the OSHD-CLQM model (Figure 6). The result
demonstrates that there is hardly any difference between the BIAS for the assimilated and non-assimilated stations. This
indicates that the assimilation of stations within OSHD-EKF transfers well to unobserved locations, while the quantile mapping
is capable of inheriting this asset to OSHD-CLQM. As expected, we see generally higher BIAS values above 2000 m, which
(as explained above) is due to the fact flat field observations at high elevation often show larger values than the surrounding
area. As shown in Figure 5 these BIAS values are only about 20% in relative terms. Moreover, above 2000 m the errors for
the non-assimilated stations are in general only about 5 cm larger, which corroborates the performance of the quantile mapping

step for this independent dataset.

e CLOM.A
e CLOM_NA

BIAS [cm]

500 1000 1500 2000 3500 3000
Station Elevation [m]

Figure 6: BIAS of yearly mean snow depth [cm] vs elevation [m] for the comparison of assimilated (red) and non-
assimilated (blue) stations value with respect to the OSHD-CLQM model. The curves are polynomials fits of second
degree.

When looking at the entire country, i.e. grid points of all stations across Switzerland (Figure S4), the analysis reveals a slightly

better performance for OSHD-EKF, which can be best seen in the clearly smaller number of outliers and the smaller whisker
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range for MAAPE and R. Differences due to temporal aggregations can best be observed in RMSE, where yearly mean values
are about 10 cm. This value is increasing to about 15 cm for monthly mean values and almost 20 cm for weekly mean values.
This good performance when averaging over all grid points gives confidence in typical climatological analysis like the
comparison of the annual snow depth evolution between different climate periods (e.g. 1962-1990 with 1991-2020). The
corresponding plot (Figure S6) demonstrates a clear decrease of snow depth in recent decades, which is mainly driven by less
accumulation in spring and an earlier snow disappearance in summer. This finding is not new as it has been found based on
station data (Klein et al., 2016; Marty et al., 2023), but can now also be demonstrated in a quantitative way with gridded data.

For station data, the mentioned studies explained the snow depth decrease with higher temperatures.

3.3 Evaluation of trends
3.3.1 Elevation dependent snow depth trends

Here, we investigate how long-term HS trends of OSHD-CLQM and OSHD-Comb compare to trends observed at stations in
the different elevation bands. Already Figure 5 demonstrated that compared to station data, median performance scores of
OSHD-CLQM and OSHD-EKF are generally (except R) very similar, demonstrating the good performance of the quantile
mapping step. However, focusing on the whiskers of the boxplots, it is obvious that with OSHD-EKF smaller errors (outliers)
are achieved. Therefore, using OSHD-EKF data instead of OSHD-CLQM data, when possible, i.e. OSHD-Comb, can be an
asset from 1999 onward, because two datasets only differ after 1999. Any differences in their long-term trends are due to
differences in the most recent period (after 1999). However, the trends of the two model chains after 1999 are still fairly similar

(Figure S5).
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Figure 7: Trends of yearly snow depth[cm / decade] calculated using Theil-Sen slopes for the OSHD-CLQM and the
combined model data series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500,
(b) 1000, (c) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). Significance is indicated with * p < 0.05;
** p <0.01; *** p <0.001. The dashed line indicates the year 1999, before which the yearly values of OSHD-CLQM
and OSHD-comb are the same.

The combined model OSHD-Comb utilizes the OSHD-EKF, which helps capturing short-term variations more accurately in
the period since 1999. Meanwhile, OSHD-CLQM originates from quantile mapping of the climatological model OSHD-CL
onto OSHD-EKF aiming to reduce systematic differences in the simulation of OSHD-CL (Michel et al., 2024 and Fig. 1). On
the other hand, using OSHD-Comb could introduce temporal inconsistencies at the point in time when OSHD-CLQM and
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OSHD-EKF are combined (1998/1999; see Figure 1), which we investigated by analyzing the involved trends shown in Figure
7. Examining the plots in this figure reveals that the interannual variability in the modelled long-term snow depth time series
(OSHD-CLQM and OSHD-Comb) agree very well, especially when comparing all elevations (Figure 7f). But both datasets
also align well with the long-term station data, particularly at elevations of 1000, 1500, 2000 and 2500 m, which demonstrates
the performance of the quantile mapping step in these elevation bands. The OSHD-Comb trend magnitude is marginally weaker
than the OSHD-CLQM trend magnitude and thus closer to the station-based trend magnitude for all investigated elevations
with the exception of the 2000 m band. The largest differences between station-based and model-based trends appears, again,
in the lowest elevation band, which corroborates the findings of Michel et al. (2024) and Figure 5 with large relative errors at
low elevation. On a closer look at this low elevation band (Figure 7a), we see that largest differences occur during snow-rich
winters in the first 20 years. These differences are similar when using OSHD-CL (not shown), which indicates that not the
QM step, but either the meteorological input data and/or the temperature-index model are the main reason for the large biases
in the first two decades in the lowest elevation band and that the QM step fails to correct this. Focusing on the significance of
the decreasing trends we see that the level of significance agrees well for all data sets and elevation bands, which is also in
agreements with other studies analyzing station-based trends.

Notice, there is only one long-term station available in the 2500 m elevation band, which strongly limits the informative value
of this elevation band. Therefore, an additional analysis for this elevation band has been undertaken for the shorter 24-year
period 2000-2023 (Figure S7), where data from 14 stations are available. This figure corroborates the findings of Figure 7e by
the similarity and the non-significance of the found trends in this elevation band. The above results agree well with other recent
studies analyzing station-based trends with mostly significant decreasing trends below about 2000 m (Matiu et al., 2021; Marty
etal., 2023).

An example that demonstates the possible differences between the two datasets OSHD-CLQM and OSHD-EKF is illustrated
in Figure 8, which shows climatological anomaly maps for the example of winter 2018 (Nov-Apr) for both datasets. The
relative snow depth anomaly for this season with respect to the long-term mean (1991-2020) is clearly above average in the
Alps (see high elevations in Figure 2) and in the south for both datasets, but less consistent patterns appear at low elevations
in the north. A visual comparison to the station values (marked in Figure 8 as well) demonstrates that OSHD-EKF provides
the more accurate results regarding these regional differences revealing that the Swiss Plateau experienced clearly below
average snow depth in the 2018 winter season. Moreover, OSHD-EKF in this case appears to exhibit greater spatial uniformity.
This result is not surprising as already Figure 3 and Figure 4 demonstrated that the performance of quantile mapping approach

used in OSHD-CLQM is limited in low-snow environments (i.e. at low elevation for Switzerland).
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Figure 8: Relative snow depth anomaly (%) of winter 2018 (Nov-Apr) with respect to the long-term mean (1991-2020)
for OSHD-CLQM (top) and OSHD-EKF (bottom). Red indicates below-average, yellow average, and blue signifies
above-average snow depth. The colored dots and numbers indicate station anomalies.
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3.3.2 Snow depth trends at individual stations

We also conducted a trend comparison based on single grid points, since having available a gridded dataset makes it tempting
to use information from single grid cells in places where no station measurements are available. We compared the Theil-Sen
slopes of the yearly means of stations with those of the closest grid point from both the OSHD-CLQM and the OSHD-Comb
model. The corresponding plot (Figure 9) reveals that in the large majority of the cases the trends well align between models
and stations. Moreover, there seems to be almost no performance difference between the two model chains. However, we can
also observe that the bias (difference between station and model trend) is large for a small set of station at elevations between
1200 and 2000 m. Both, OSHD-CLQM and OSHD-Comb show the same eight stations that differ by more than =4 cm/decade

in their trends. Out of these eight stations, there are 5 stations, which show a considerably weaker trend, and 3 stations which

show a stronger trend in the modeled time series compared to those of the respective stations.
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Figure 9: Scatter plots of station elevation [m] vs difference (station minus model) of the snow depth trend [cm / decade]
for yearly values in the period 1962-2023, for OSHD-CLQM (left) and OSHD-Comb (right). Differences larger than 1
and smaller than -1 are depicted with an orange diamond and red square respectively. Stations that show a difference
greater than + 4 cm/decade are labeled.

Upon closer examination of these stations, we find that one station (7DI0) is located above the tree line and heavily wind
influenced and subject to several relocations during the investigated period. Moreover, three stations (3UI0, SKKO0, 2MEOQ) are
known as inhomogeneous series, due to major shifts in location (Buchmann et al., 2022). These findings reveal that the new
gridded datasets have some potential to find indications of potential inhomogeneities in station time series. However, there are
also larger differences for four other stations, which compared to trends at neighboring stations and neighboring grid points
are probably caused by station inhomogenities (3FB0) or problems with the gridded meteorological input data (6BG0, TMAO,
SIAO). Interestingly the former three stations are all in southern regions with steep topography and only few precipitation time
series available as input. These examples also indicate that when comparing station data to model values, we should sometimes
rather use multiple grid points of a larger area for comparison instead of only one single grid cell (see 3.4 and Michel et. al.
2024).

Such exceptions do not impact the informative value of the gridded trend results on a larger spatial scale. Indeed, a map
illustrating of the OSHD-CLQM trends for each grid point in Switzerland separately (Figure 10) reveals significant trends at
almost all low and mid elevated regions, which corroborates the results of Figure 7. Elevations above 2000 m along the main
alpine ridge and in adjacent inner-alpine dry regions show mostly non-significant decreasing trends, except a small area near

the southwestern border (Saas Valley) with non-significant increasing trends. The only non-significant region in the lowest
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elevation band is located in the Rhone valley southeast of the lake of Geneva (southwestern corner of Switzerland). Moreover,
Figure 10 generally confirms the known weaker absolute trends at lower elevations (Schoner et al., 2019) by the easy visual
recognizability of the alpine valleys. Finally, Figure 10 also demonstrates a good agreement with a similar analysis, but a
different model, for Austria (Olefs et al., 2020), in which also partly non-significant trends for the Austrian region (Tirol),
which is adjacent just east of south-eastern Switzerland, were found. In relative terms (Figure S9), the trends become largest
at low elevation (mainly Swiss plateau), where values between -10 to -20 % per decade are typical. Above 1000 m, however,

typical relative trends are between -5 and -10 % per decade.

snow Depth Trend [cm [ decade]

Figure 10: Trends of yearly mean snow depth (cm/decade) for the period 1962 - 2023 based on Theil-Sen slopes for
each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m
are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.

3.3.3 Elevation dependent snow day trends

The number of snow cover days during a season is a useful additional metric as it reflects not only the quantity of snow in the
Alps but also the duration. The duration of snow cover is important for the energy balance of the Earth’s surface and holds
important implications for various sectors, including ecology, winter tourism or energy production (hydro and PV power).
Comparing the different datasets in Figure S8 across the five elevation bands reveals on the one hand that the direction of the
trends (mostly decreasing) is the same in all analyses. No trend could be detected in those elevation bands where the number
of snow days is bounded due to our November to April season definition (low HS threshold at high elevation) or where the
number of snow days was mostly zero (high HS threshold at low elevation).

There is generally less agreement in the magnitude of the trends for the number of snow cover days (Figure S8) compared to
corresponding analysis of mean snow depth (Figure 7). Such a disagreement is not uncommon, as threshold analyses in general
are known for their high sensitivity and limitations of the input data do likely also contribute (see 3.4). At 500 m and with a 5
cm threshold, models predict over double the decrease compared to stations. This matches the result observed in the mean HS

trend analysis at 500 m.

16



445

450

455

460

465

470

475

480

Having a closer look, we can see that in most instances OSHD-Comb generally demonstrates better agreement compared to
the year-to-year station fluctuations at stations. Below the elevation band of 2000 m, both models demonstrate a significant
decreasing trend. At the 2000 m elevation, the models only show significance with p > 0.05 at a threshold of 30 cm. However,
significance is observed at all other thresholds and elevation bands up to 2500 m. The elevation-dependent pattern agrees well
with that seen for snow day trends in Fig. Al in Buchmann et al. (2023). The largest decrease in number of snow cover days
(about 9 days per decade) is found at 1000 m for the 5 cm threshold. This is likely because this elevation band coincides with
the current mean snowfall limit (Scherrer et al., 2021). Below 1000 m, snow cover days are already rare, leaving little room
for further decline, while above 1000 m, mean winter temperatures remain below freezing, resulting in smaller absolute

decreases.

3.4 Limitations regarding input data and involved models

When utilizing the investigated gridded snow dataset for climatological analyses, the involved uncertainties of the underlying
input data and methods used to derive SWE and HS should always be considered. They include the following issues.

The gridded temperature and precipitation datasets used as input for the snow model (see 2.1) are not perfectly consistent over
time as the number of stations available for the spatial analysis on the 1 km grid can vary over time and elevation (Frei, 2014).
It is important to keep this fact in mind when using the gridded snow datasets for trend analysis.

Furthermore, there are unresolved small-scale effects in these gridded input datasets. Regarding temperature, among these are
all kinds of land cover effects (e.g. lakes and urban heat islands) and the influence of local topography. As a result, it must be
expected that spatial variations are underestimated (too smooth), particularly at the scale of the grid-point spacing, and small-
scale patterns may small-scale patterns may not be accurately represented (in both extent and amplitude) at the scale of the
model grid. This is particularly true for valley cold pools - their reproduction by the analysis critically depends on the existence
of in-situ measurements within these pools. Hence cold air pools may be missing completely in un-instrumented valleys (see
Frei et al. (2014)). Regarding precipitation, possible undetected station and time dependent measurement errors can always be
an issue and the interpolation is limited by small-scale variability of precipitation. The provider of the datasets (MeteoSwiss)
expects that the effective resolution of the daily gridded precipitation product is in the order of 10 to 20 km, likely even coarser
in the high mountains. Additionally, measurements by rain gauges are subject to systematic errors, like gauge under-catch,
which causes an underestimation of precipitation, particularly during days with snowfall and at wind-exposed locations (Yang
et al., 1999). However, the problem should be, at least partially, mitigated by the QM step, which constrains the model by
assimilation of snow depth observations (OSHD-EKF) and thereby indirectly also corrects for under-catch issues in the gridded
precipitation dataset.

When these two gridded datasets (temperature and precipitation) are used as input for the temperature-index based snow model,
we must be aware that the temperature data represents the daily average from midnight-to-midnight UTC, whereas the
precipitation data represents the daily average from 06:00 UTC of day D to 06:00 UTC of day D+1. This temporal mismatch
is another reason for possible biases in gridded snow data, especially at shorter time scales. A particularly relevant contributing
factor in this regard is the use of daily average temperatures to partition precipitation into snowfall and rain. Uncertainties arise
every time a precipitation event happens at times that are colder (nights) or warmer (days) than the 24h average temperature,
which is a generic limitation of models that use input data at daily rather than hourly resolution.

Another factor contributing to the overall uncertainty is the fact that the OSHD-CLQM modelling chain is based on a
temperature-index model with a parameter set (Magnusson et al., 2014) that is applied over the entire six-decade long period.
This fact and the above-mentioned limitations of the atmospheric input data are a reason why the assimilation of snow

measurements is an important step and that the corresponding OSHD-EKF datasets are of better quality.
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A further potential inhomogeneity arises when using OSHD-Comb, as two data sets of different quality are combined here.
Our analysis demonstrates that the impact is small when using data of the entire country on the current time series length. But
this does not need to be the case for smaller regions or shorter time periods.

Finally, it is important to keep in mind, that the OSHD datasets provide SWE values, which are then converted to HS. This
conversion has a RMSE of about 1.5 cm and a BIAS of 1 cm (Aschauer et al., 2023). Therefore, HS has always a slightly
higher uncertainty than SWE.

4 Conclusions

We analyzed the potential and limitations of newly developed spatially gridded datasets of snow water equivalent and snow
depth for climatological applications in Switzerland spanning over 6 decades from 1962 to 2023. Our results demonstrate that
the use of a long-term gridded snow data has a high potential for climatological analysis, albeit with some limitations. Our
analysis corroborates the findings of Michel et al. (2024), that the quantile-mapping approach generally achieves good results
in producing long-term climatological timeseries of snow. In addition, we could for the first time demonstrate in a quantitative
manner how the uncertainty of new gridded climatological snow depth datasets increases with shorter analysis time scales and
especially for low elevations.

More specifically, a comparison of the 60+ year-long datasets to station measurements for yearly mean snow depth values
revealed in general a good performance of the new gridded datasets. We also evaluated how well station-based trends were
captured in the modelled gridded datasets. In general, the results demonstrated a very good agreement between station- and
model-based trends, i.e. clear decreasing trends for mean snow depth and the snow cover duration (based on snow days) for
the different elevation bands. Yearly mean snow depth demonstrated an excellent agreement with respect to the decrease per
decade and the significance of this decrease for the different elevation bands, except for the lowest elevation band, where snow
is generally scarce. There, the modeled trend was much stronger as the station trend. The same trend overestimation in the
lowest elevation band was also found when analyzing trends of the number of snow days. However, as often with count data,
the agreement between model- and station-trends was not as good and depended also on the threshold of the snow day
definition. Generally, as shown by these results, station data is more reliable at low elevation. At higher elevations (i.e. above
1000 m a.s.l.), SPASS data (OSHD-CLQM or OSHD-EKF) from larger regions and longer periods are often preferable, as
they are less location-dependent and are also available in the early and late season (early fall and late spring).

Moreover, a comparison between long-term trends of mean snow depth calculated using in-situ data from individual stations
and gridded data with the closest grid points revealed a generally good agreement. However, for about 20 % of all stations, the
disagreement between the trends was larger than 1 cm /decade and sometimes even had the opposite direction, owing to either
inhomogeneities in the observations or modeling / input data issues. Therefore, we generally recommend using the new SPASS
datasets for trend analysis with at least some level of spatial aggregation and for elevation above 1000 m, while caution is
needed for interpretation of data at the grid point level and/or in low-snow regions. Furthermore, we urge caution when using
maximum values, because the applied quantile mapping method does not really capture extreme values as they are corrected
according to the correction of the 99th quantile (Michel et al., 2024).

On the other hand, the generally good performance of the new datasets allows for the first time to produce e.g. high resolution
(1 km), high quality country-wide SWE and snow depth maps of climatological mean values or monthly/seasonal anomaly
graphs for different regions/elevations. Moreover, except for low elevations, the data provide a reliable basis to analysis
elevation dependent trends of SWE and snow depth. Hence, these datasets are an important basis for applied research in winter
tourism (Troxler et al., 2023) or hydrology (Chartier-Rescan et al., 2025) in an alpine country like Switzerland. For these

reasons the two involved institutions (SLF and MeteoSwiss) use the new datasets to regularly provide maps and graphs on the
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current snow status in Switzerland as a climate service for interested public or businesses (BAFU,2024; WMO, 2024b; SLF,
2025).

Our results also reveal that it may be worth to make use of the higher-quality, but shorter-term OSHD-EKF dataset, which
assimilates in-situ snow depth data. This is especially true at low elevation and for shorter time aggregations like month or
week. This fact also demonstrates that long-term station measurements are still indispensable, as they are needed to produce

long-term, high-quality gridded snow datasets.

5 Data Availability

Model data of SWE and HS is available on envidat.ch (doi.org/10.16904/envidat.580). In-situ snow depth data from SLF
stations can be freely downloaded from: https://www slf.ch/en/services-and-products/slf-data-service. In-situ snow depth data

from MeteoSwiss are available on request.
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Short Summary

655 This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for
Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ
measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales.
Moreover, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based
changes.
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Abstract: Gridded information on the past, present and future state of the surface snow cover is an indispensable climate
service for any snow-dominated region like the Alps. Here, we present and evaluate the first long-term gridded datasets of
medeled-daily modeled snow water equivalent and snow depth-(GSHDB-CLOQM) over Switzerland, available at 1 km spatial
resolution since 1962 (spanning 60+ years).;-which-are-availablefor the last 60+ years{(sinee 1962)-at Hm-spatial resolution
over—Switzerland These climate-oriented datasets are derived from a quantile-mapped temperature-index model (OSHD-
CLOM). The validation against the-a higher quality; but shorter duration OSHBD-EKFE medeldataset - derived from the same
model but enhanced with data assimilation via an ensemble Kalman filter (OSHD-EKF) - -shows on the one hand good results

regarding bias and correlation and on the other hand acceptable absolute and relative errors except for ephemeral snow and for

shorter time aggregations like weeks. An evaluation using in-situ station data for yearly, monthly, and weekly aggregations at
different elevation bands shows only slightly better performance scores for OSHD-EKF, highlighting the effectiveness of the
quantile-mapping method used to produce the long-term climatological OSHD-CLQM dataset. For example, yearly maps of
gridded snow depth compared to in-situ data demonstrate an RMSE of 25 cm (20 %) at 2500 m and of 1.5 cm (80 %) at 500
m. For monthly averages, these numbers increase to 30 cm (25 %) and 3 cm (100 %), respectively. A trend analysis of yearly
mean snow depth from this gridded climatological- and from station-based data revealed a very good agreement on direction
and significance at all elevations. However, at the lowest elevations the strength of the decreasing trend in snow depth is clearly
overestimated by the gridded datasets. Moreover, a comparison of the trends between individual stations and the corresponding
grid points revealed a few cases of larger disagreements in direction and strength of the trend. AH-Together these results imply
that the performance of the new snow datasets is generally encouraging but can vary at low elevations, at single grid points or
for short time windows. Therefore, despite some limitations, the new 60+ years-long OSHD-CLQM gridded snow products
show promise as they provide high-quality and spatially high-resolution information of snow water equivalent and snow depth,

which is of great value for typical climatological products like anomaly maps or elevation dependent long-term trend analysis.

1 Introduction

Snow cover is an integral and crucial component of the Earth’s energy and water balance. It reacts sensitively to climate change
due to its dependence on precipitation and temperatures below freezing. Climate changes lead to changes in the extent,
thickness, density, optical and thermal properties of the snow cover and thus of the Earth's surface and the boundary layer
between the Earth and the atmosphere (Abe, 2022). These changes have far-reaching consequences for glaciers, extreme
events, natural hazards, ecosystems, biodiversity, forests and landscapes, as well as for winter sports and the tourism industry,
both globally and regionally (Mote et al., 2018; Lopez-Moreno et al., 2020; Bozzoli et al., 2024). This also includes the impact
on water resources for irrigation, drinking water and hydropower (IPCC, 2019). Snow as frozen precipitation is of increasing
importance globally in a world facing more frequent droughts on the one hand and more extreme precipitation events on the
other, where snow can dampen immediate runoff but can also cause avalanches or flooding (Barnett et al., 2005). Accurate

information about the past and current evolution of the snow cover is therefore of high importance (Van Ginkel et al., 2020).
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In contrast to the hemispheric level (Mortimer et al., 2020) or other countries (Olefs et al., 2020), Switzerland so far provided
long-term snow cover information based on in-situ data of daily snow depth (Marty and Blanchet, 2012; Scherrer et al., 2013;
Schmucki et al., 2017) and bi-weekly water equivalent of the snow cover (SWE) from national monitoring networks (Marty
et al., 2023), which are only available at about 10 % of the snow depth measuring stations. Both data, snow depth (HS) and
SWE, are regularly published in the annual winter reports (Pielmeier et al., 2024) and in online repositories (Marty, 2020).
Such point-based time series are very valuable because of their lengths and documented measurement history (Buchmann et
al., 2022). However, even though Switzerland has a high density of snow measurement stations, their asymmetric distribution
(especially in terms of altitude) and irregular temporal availability (some had to be abandoned, others recently started from
scratch due to automation) limit their usefulness for climatological applications beyond station-based analyses, i.e. the
provision of altitude-dependent region- or country-wide snow information.

Ideally, snow data would be available on daily scale in a gridded format for many decades. Using interpolated station data for
this purpose (Luomaranta et al., 2019) has several disadvantages because of the above-mentioned asymmetric distribution and
irregular temporal availability of station series. Using remote sensing data (Poussin et al., 2025) is another option but is
hampered by irregular temporal availability (among others due to cloud coverage), possible inhomogeneities (due to different
satellite generations) and limits the start of the time period baek-to the beginning of the 1980’s. A third and often used option
is the use of model or reanalysis data, which is often only available at relatively sparee-coarse spatial resolution. In a recent
study, Scherrer et al. (2024) evaluated the usefulness of existing long-term and spatially gridded SWE datasets for Switzerland.
Among others, the authors state that most datasets, including the high-resolution ones, have problems correctly representing
small SWE values at low elevations and they conclude that a km-scale model with assimilated snow measurement data is
highly preferable. The only model in this investigation, which fulfilled these requirements, was the temperature-index model
OSHD-EKF, which is also used in this study as a benchmark dataset for the evaluation.

This model, which is operated by the operational snow hydrological service (OSHD) at WSL Institute for Snow and Avalanche
Research SLF, isfromnew-enhereafter referred to as OSHD-EKF and provides daily 1 km gridded information on SWE
between 1999 and today (for details see Mott et al. 2023). The length of this dataset is limited back to 1999 because there are
not enough high-elevation snow stations available for assimilation before that time. To overcome this limitation and make use
of the full period of available gridded datasets (1962 to today), we developed within the project SPAtial Snow climatology for
Switzerland (SPASS) the quantile mapping procedure SnowQM, which was presented in (Michel et al., 2024). This method
allows correcting the not data-assimilated full climatological SWE time series starting in the hydrological year 1962 (OSHD-
CL) into a better-quality dataset (OSHD-CLQM) which mimics the higher-quality shorter duration medel:OSHD-EKF model.
For the development of OSHD-CLQM, the quantile mapping method SnowQM was calibrated and validated with SWE
simulations between 1999 and 2021 using the OSHD-EKF data set as target and was then applied to the OSHD-CL data set
over the period from the hydrological year 1962 to today (Figure 1).

Michel et al. (2024) concluded that the developed quantile-based correction can efficiently reduce the pronounced SWE bias
at high elevations and that the average bias is always close to zero. Moreover, they stated that the mean absolute error can
remain large even after correction and that SnowQM is not expected to do more than a climatological bias correction, meaning
biases at short time scales, like on a single day or month, are not necessarily corrected. Additionally, they mentioned that such
biases can also concern entire winters at low elevated regions. However, quantitative information on elevation-dependent
uncertainties are not provided but are important in mountain regions (Switanek et al., 2024). Moreover, the above-mentioned
OSHD datasets only contain SWE as snow variable. However, SWE is an unusual and elusive variable for the non-scientific
public (e.g. tourism, media), and many applications explicitly need snow depth (HS).

The novelty of our study is therefore, first, the creation of the corresponding gridded datasets for snow depth by applying the
SWE2HS algorithm developed by Aschauer et al. (2023). Second, we compared the OSHD-CLQM datasets to the higher

quality OSHD-EKF and station-based datasets to investigate potential time aggregation- and elevation-dependent biases.
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Third, we also analyzed differences in long-tern trends to get a clearer picture on the potential and the limitations of the
datasets. These 3 aspects combined allow us to provide an unprecedented long-term gridded snow depth dataset and assess its
utility across a range of potential use cases. In the next section (2), we first present the used gridded- and station data, as well
as the evaluation methods applied. In section 3, we explain and discuss the results before summarizing our findings in section

4.

2 Data and methods

2.1 Spatial SWE and HS datasets

As illustrated in Figure 1, the base dataset is OSHD-CL, which provides SWE and is based on a temperature-index model
forced by gridded temperature (TabsD: Meteoswiss, 2021a) and precipitation (RhiresD: Meteoswiss, 2021b) input fields at 1
km spatial resolution as well as an algorithm for the fraction of snow-covered areca (Magnusson et al., 2014). As target for the
quantile mapping, we use the higher-quality, but shorter (1999-2023) OSHD-EKF dataset as a benchmark. This dataset was
created using the same model and data, but also assimilating snow data from a time-invariant set of 350 in-situ snow stations
using an ensemble Kalman filter (Magnusson et al., 2014). In a next step, the data were corrected by the SnowQM algorithm,
so such that OSHD-CLQM data finally consist of 1 km daily gridded quantile-mapped SWE data over the domain of
Switzerland between 1962 and 2023 (Michel et al., 2024). The analyses are performed for hydrological years, lasting from
September of the previous year to August of the year of investigation. The hydrological year 2023, for instance, consists of
the period 1 September 2022 to 31 August 2023. This definition is consistent with the settings of the OSHD models, which
sets SWE to zero on 1 September of each year, to only represent seasonal snow, thus operating on an annual cycle starting in
September. The corresponding spatial snow depth datasets were derived by applying the SWE2HS algorithm (Aschauer et al.,
2023) to the SWE data of both models (OSHD-CLQM and OSHD-EKF). This algorithm contains a multilayer snow density
model which uses daily SWE as the sole input.
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Figure 1: Conceptual view of the workflow of the different model- and station-datasets used as well as for which periods
they are available.

2.2 Reference datasets

To evaluate the performance of the long-term OSHD-CLQM dataset, we use as two references: (1) the higher-quality OSHD-
EKF dataset, which limits the comparison to the 1999-2023 period and (2) daily in-situ station data, which limits the
comparison to snow depth.

It is important to mention that OSHD-CLQM is not independent of the first reference as OSHD-EKF was used in the above-
described quantile mapping step to produce OSHD-CLQM (section 2.1). Additionally, some uncertainty is expected when
comparing HS data, as this variable is only available for both datasets through the conversion of SWE using the SWE2HS
algorithm (Aschauer et al., 2023), which may introduce additional errors particularly in challenging conditions such as rain-

On-snow events.
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Figure 2: Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to
validate the gridded datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as
triangles and non-assimilated stations as circles.

When comparing to in-situ data we have to take into account the common grid-to-point mismatch problem. In this regard, it is
important to know that both datasets (CLQM and EKF) are based on the OSHD temperature-index model (OSHD-CL), which
was run in its default mode, where the SWE values represent spatial mean of the respective 1 km grid cells, considering its
predominant land cover types and terrain characteristics. This is in-line with the OSHD’s objective of conducting a
comprehensive assessment of snow and water resources in Switzerland, but it entails issues when comparing to in-situ data,
which represent snow conditions at flat, non-forested, sheltered field sites according to international measurement standards
(WMO, 2024). Indeed, the monitoring sites have been reported to often systematically overrepresent snow depth (Griinewald
and Lehning, 2015), hence negative biases of OSHD-EKF relative to station data are expected, which must be kept in mind
when interpreting respective results. Moreover, elevations above 3000 m are not analyzed as grid points above this elevation
are sometimes affected by too much snow accumulation in the model due to the lack of high-elevation station data for
assimilation into the model (Michel et al., 2024).

As daily in-situ snow depth time-series, we use on the one hand data of 103 stations (Table S1), which have already been used
in the assimilation procedure of OSHD-EKF (Figure 1) and are therefore complete between 1999 and -2023. On the other
hand, for an independent analysis (Figure 6), we use data of 79 independent stations, which have not been used in the data
assimilation step, because they cover only part of the time between 1999-2023. All-these stations are located between 200 and
2800 m a.s.l. (Figure 2);;—~whereas stations below 2000 m consist of manual measurements only and stations above 2000 m
mostly consist of automatic measurements. The data of these stations have been carefully quality-controlled (physical threshold
checks, as well as temporal und spatial consistency checks) and gap-filled (Aschauer and Marty, 2021)-in-separatesteps. Each
station is compared with its most representative grid point, which was determined based on the selection of the grid cell that
contains the station of interest as well as the eight surrounding grid cells. The grid cell with the smallest elevation difference
to the station was chosen for the comparison as snow depth is generally strongly dependent on elevation (Marty and Blanchet,

2012). The median elevation difference between the station and the selected grid cell over all stations is 10 m with a standard
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deviation of 23 m; the largest elevation difference is 105 m. The digital elevation model to determine the grid point elevation

was provided by swisstopo (2017).

2.3 Spatial and temporal aggregations

Michel et al. 2024 demonstrated that the SWE bias of OSHD-CLQM is not remarkably different between north and south of
the Alps, which are the two main climatic regions in Switzerland. We here focus on elevation dependent biases, as the existence
of snow in the Alps strongly depends on the elevation above sea level (Schoner et al., 2019; Switanek et al., 2024). For this
purpose, we use elevation bands with a width of £250 m which are centered at 500, 1000, 1500, 2000 and 2500 m. Therefore,
we also pool the above-mentioned station data into these elevations bands with the goal to compare all corresponding grid
points in an elevation band to all stations in this elevation band (Table S1 and Table S2).

These elevation bands imply that grid points below 250 m and above 2750 m were not evaluated when comparing with station
data, because there are hardly any stations for assimilation or validation available below and above these thresholds.
Additionally, there are hardly any grid points below 250 m in the domain of Switzerland (see Table S2).

To assess time aggregation dependent biases, we use aggregations of the daily data to weekly, monthly and yearly mean values.
The motivation behind the used temporal units was given by the following—faets: Climatological analysis-analyses are often
provided by yearly or monthly reports and we wanted to assess the uncertainty of the new snow products with the goal to
include them in future such reports. Moreover, knowing about the need for timely public information about possible current
extraordinary siuatienssnow conditions, we also assessed the weekly aggregation level. Daily aggregations were by purpose
not assessed as the quantile mapping method at this scale can be associated with substantial uncertainties and that an
interpretation of the results at this high temporal resolution is not recommended (Michel et al., 2024). Yearly mean values are
based on the 6-month period between November and April, which we will refer to as ‘yearly’ from now on, because it’s the
period where snow cover is predominant in most of the regions in the country and because it’s the period where manual snow
depth measurements are available completely. To compute yearly, monthly or weekly mean values, we always first averaged
each grid point over time for each elevation band. This means that boxplots show the variability across space in each elevation
band for each temporal aggregation. In the case of model-to-station intercomparison (Figure 5, Figure S3), the boxplots were
created based on the number of stations per elevation band (as listed in Table S2).

Moreover, we evaluate time aggregation- and elevation-dependent biases of commonly used climatological anomalies. For
this purpose, the 30-year average between 1991 and 2020 (standard 30-year reference period) is calculated for every grid point
and the ratio between the weekly, monthly or yearly mean values and its reference period is determined. When investigating
performance differences between OSHD-CLQM and OSHD-EKF the evaluation is necessarily based on the period 1999-2023,
which also has the advantage of having more in-situ data (Table S2) available in the different elevation bands (mean per

elevation band is 20 stations, minimum 14 stations, maximum 34 stations).

2.4 Merging gridded datasets for trend analysis

It is not surprising and there are clear indications that the climatology of OSHD-CLQM and OSHD-EKEF are not that different
(Figure S1). Hence, we also constructed a new “combined” time series OSHD-Comb (Figure 1), by concatenating the first part
of OSHD-CLQM (1962-1998) with OSHD-EKF (1999 and 2023). This approach allows investigating the impact on trends
when merging the best available datasets for each period.

Long-term trends of all the above mentioned time series are evaluated based on yearly values with the Theil-Sen slope (Theil,
1950; Sen, 1968) and the Mann-Kendall (MK) trend test (Mann, 1945). A positive standardized MK value indicates an

increasing trend, while a negative value demonstrates a decreasing one. Confidence levels of 95% are used as a threshold to
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classify a significant trend (p < 0.05). The Theil-Sen slope estimator provides a measure of the strength of a trend based on a
robust simple non-parametric linear regression. Absolute trends were always calculated as change per decade and relative
trends were calculated for the entire 62-year period as percentage changes between 1962 and 2023 based on the Theil-Sen
slope. Please keep in mind that a direct comparison of percentage changes is only meaningful between indicators of the same
unit and similar absolute values. The thus calculated trends of the model datasets are also compared to the trends from in-situ
station data. The stations available for this comparison cover all elevation levels quite well (Table S2). The same stations are
available for each elevation band as for the 1999-2023 comparison, except for the highest elevation band (2250-2750 m a.s.l.),

where only one station covers the required full period between 1962 and 2023.

2.5 Evaluation metrics

The analyses are mainly based on the two variables describing the mass and depth of snow cover: SWE in millimeters and HS

in cm. Moreover, we also analyze the number of snow days. We define three different classes of snow days: Days with snow

cover of at least 5, 30 or 50 cm of snow depth
We use four statistical evaluation scores to compare the various datasets: Root mean squared error (RMSE), mean bias (BIAS),
correlation coefficient (R) and mean arctangent absolute percentage error (MAAPE) to evaluate the gridded snow products.

MAAPE (Kim and Kim, 2016) is an adaptation of the mean absolute percentage error (MAPE), to mitigate large percentage
errors occurring only due to small reference values. To get MAAPE, first, like in the case of MAPE, the absolute relative

difference between the target value (¥) and the reference value (y;) is calculated.

)

But then the arctan of this relative difference is taken, which maps large values to [0; 7/2] and hence limits the maximum

n
1
MAAPE = EZ arctan (

i=

|3’i =9
Vi

relative error to 157 %. When we write about relative errors in the results section, we always refer to MAAPE values for better
readability. The scores finally-provide the basise for ealeulating-boxplots of RMSE, BIAS, R and MAAPE in each elevation
band (500, 1000, 1500, 2000, 2500 m) for each temporal aggregation (see also 2.3).

3 Results and Discussion

3.1 Analysis of performance scores based on gridded reference dataset
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In order to quantify time and elevation dependent uncertainties arising from the quantile mapping, we first evaluated the

OSHD-CLQM model simulation against the OSHD-EKF model simulations wused as target dataset (
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Figure 3Figure3). As expected from the quantile mapping procedure (Cannon et al., 2015), BIAS for SWE is close to zero for
all temporal aggregations and all elevation bands. HS, however, reveals a slightly negative BIAS (ca. -2 cm) for the highest
elevation band, because HS has been derived from SWE by conversion using SWE2HS and therefore has not been directly
mapped to match the quantile distributions of the observed snow depth measurements. For both variables SWE and HS, RMSE
and MAAPE demonstrate a moderate worsening of the score performance for all elevations with temporal aggregation over
smaller periods, illustrated e.g. by RMSE values at 1500 m increasing from 21 to 31 mm SWE or 7 to 11 cm HS going from
yearly to weekly aggregation. Regarding elevation dependence, RMSE is increasing up to 2000 m, but MAAPE and R reveal
a clear improvement in score performance when going from low to high elevations. Indeed, MAAPE scores demonstrate for
SWE and HS at 500 m values of about 37 % for yearly resolution. At the same time, at 2500 m MAAPE is about 8 % at yearly
resolution. The same general performance increase of MAAPE with elevation is also true for monthly and weekly aggregations,
which are about 58% and 65% at 500 m and decrease to 11 % and 13 % at 2500 m. All these comparisons demonstrate that
the performance generally increases with elevation in all evaluation metrics, except BIAS, which is close to zero anyway. The
main reason for this better performance with increasing elevation is the fact that the error indices in this analysis reflect the

performance of the quantile mapping step, which is not really suitable for time series with many zero values, i.e. for regions

8



230

235

240

where the snow cover only survives for a few days at a time (Michel et al. 2024). Moreover, the signal-to-noise ratio of the

quantile mapping is increasing with elevation due to the larger absolute mount of snow.
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Figure 3: Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the
period 1999-2023 using the OSHD-EKF dataset as reference. Darker shades of red indicate worse scores.

In a second step, we investigated the distribution of the performance scores with the help of boxplots for the same temporal
aggregations and elevation bands. Figure 4 shows the corresponding boxplots for both snow variables. While mean values of
BIAS are close to zero for all elevations bands, whiskers and outliers demonstrate a clear increase of variability of the yearly
values—seeres with increasing elevation. Larger BIAS can occur above 2750 m (not shown), where no in-situ data for
assimilation is available, but where such differences are still small in relative terms. This can also be seen by the low MAAPE
values in the highest elevation band. In contrast, at 500 m MAAPE values demonstrate that the relative error is on average
about 40 % but can be as high as 70 % in rare cases. Similarly, R values show a clear increase in the spread with decreasing

elevation.
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Figure 4: Score comparison between models OSHD-CLQM and OSHD-EKF (’reference’) on a yearly resolution at
respective elevation bands (m) for SWE (left) and HS (right). Boxplots were generated from these performance scores
to illustrate the distribution, outliers, mean (green triangle) and median (purple line). The box reflects the 50 % of data
between the lower quartile and upper quartile. The whiskers extend from the boxes’ edges and correspond to 1.5 IQR.
Outliers are represented as individual dots.

The same analysis as in Figure 4 has been undertaken for monthly and weekly performance scores (Figure S2). Monthly scores
reveal the highest RMSE values at 2000 m of about 10 to 70 mm SWE (based on whiskers) or 5 to 20 cm HS, which according
to MAAPE corresponds to a relative error range of 5 to 25 % for HS and SWE. However, in extremes cases (outliers) this error
can be as high as 40 %. At 500 m MAAPE whisker range goes from 40 to 80% for both snow variables but can go up to about
90 % in extreme cases for both variables. This low performance in these extreme cases in this elevation band is also illustrated
by accordingly low R scores of about 0.4 for both variables. Weekly scores demonstrate a similar pattern but slightly lower
performance for RMSE and MAAPE for both variables SWE and HS. Highest relative errors scores (but with small absolute
errors) can again be seen in the lowest elevation band with a MAAPE whisker range demonstrating values between 50 to 80%.
A clearly lower performance for weekly scores can also be seen for R, where in extreme cases values of only 0.2 are found.
These lowest R-scores usually originate from the few lowest grid points in this elevation band. These lowest grid points are
located in separate regions north and south of the main Alpine ridge, which are often characterized by opposing snow
conditions (Scherrer and Appenzeller, 2006), i.e. one region has snow and the other not. This possible divergence is smaller

for yearly values as there is a higher chance for compensation than for monthly or weekly values.

3.2 Analysis of performance scores based on in-situ station data as reference

10
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After investigating differences between the OSHD-CLQM and OSHD-EKF models, we here now compare HS simulations of
the two gridded models with HS observations at the stations. Note, that point observations do not necessarily represent spatial
means over large grid cells, particularly in complex and steep terrain, and a comparison to results from a model that represents
the existing sub-grid variability is hence confounded.

Figure 5 illustrates that the yearly scores between the stations and the respective model grid points of OSHD-CLQM and
OSHD-EKF show remarkable similarity overall. However, R values of OSHD-EKF stand out as being more consistent and
are found to be higher in all elevation bands, especially at lower elevations. As expected for a model that assimilates snow
observations, OSHD-EKF demonstrates slightly better comparison statistics, but the differences are minor which attests to the
good performance of the quantile mapping procedure. Both models show larger BIAS values at higher elevations, peaking in
the highest elevation band with median values of about -20 cm, which indicates that, as expected, the two models feature less
snow at the highest elevations compared to the station values. There are several reasons for these BIAS values. First, data from
flat field observations at high elevation often show larger values than the surrounding area (Griinewald and Lehning, 2015).
Second, the SWE2HS algorithm sometimes tends to underestimate HS at these elevations (Aschauer et al., 2023). And third,
there is lack of stations for assimilation at thigh elevation (Mott et al., 2023). In relative terms this bias, which is reflected in
the MAAPE score, reveals errors between 20 and 25 % at the elevation band 1500 m and above. This is in strong contrast to

the values of about 80 % at the 500 m elevation band, owing to the very low mean snow depths at these elevations.

11
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Figure 5: Score comparison between station data and OSHD-CLQM (left) as well as OSHD-EKF (right) in the
respective elevation bands for yearly snow depth values. Median value is illustrated as purple line and mean value as
green triangle.

The same analysis has been undertaken for monthly and weekly performance scores (Figure S3) and generally reveals the
same pattern (lower performance for smaller time aggregations) as found when intercomparing the two models, with the

difference that the performance decrease going from yearly to monthly or weekly time-windows is now much weaker. OSHD-
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EKF stands out again with higher R values, especially at lower elevations. MAAPE median values are again largest at 500 m,
with median values reaching 100% for monthly and 110% for weekly aggregations. These values decrease to 40% and less for
elevations above 1500 m for monthly and weekly time-windows.

Similarly, the beginning and end of the snow-covered season has generally a lower performance than mid-winter also at higher
elevations because the situation is similar as at low elevations during the entire winter. This implies the transition seasons
between no-snow and snow also at higher elevations have the same potential problems as at low elevations during the entire
winter. These problems involve among others high spatial variability and no information on the soil temperature, which is
decisive for the survival of potential snow fall. But since our focus was between November and April this seasonality issue
dees-only affects the 1000 and 1500 m elevation band.

The above shown station-based comparisons are not independent as the same station data is used in the assimilation step of
OSHD-EKF, which then also indirectly influences OSHD-CLQM through the quantile-mapping step. In a separate step, we
therefore additionally analyzed-alse-non-assimilated stations with respect to the OSHD-CLQM model (Figure 6). The result
demonstrates that there is hardly any difference between the found-BIAS for the assimilated and non-assimilated stations. This
indicates that the assimilation of stations within OSHD-EKF transfers well to unobserved locations, while the quantile mapping
is capable of inheriting this asset to OSHD-CLQM. As expected, we see generally higher BIAS values above 2000 m, which
(as explained above) is due to the fact flat ficld observations at high elevation often show larger values than the surrounding
area. As shown in Figure 5 these BIAS values are only about 20% in relative terms. Moreover, above 2000 m the errors for
the non-assimilated stations are in general only about 5 cm larger, which corroborates the performance of the quantile mapping

step for this independent dataset.

e ClLoMA
e CLOM NA

20 1

BIAS [cm]
U
=

500 1000 1500 2000 2500 3000
Station Elevation [m]

Figure 6: BIAS of yearly mean snow depth [cm] vs elevation [m] for the comparison of assimilated (red) and non-
assimilated (blue) stations value with respect to the OSHD-CLQM model. The curves are polynomials fits of second
degree.

When looking at the entire country, i.e. grid points of all stations across Switzerland (Figure S4Figure-S4), the analysis reveals
a slightly better performance for OSHD-EKF, which can be best seen in the clearly smaller number of outliers and the smaller
whisker range for MAAPE and R. Differences due to temporal aggregations can best be observed in RMSE, where yearly
mean values are about 10 cm. This value is increasing to about 15 cm for monthly mean values and almost 20 cm for weekly

mean values. This good performance when averaging over all grid points gives confidence in typical climatological analysis
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like the comparison of the annual snow depth evolution between different climate periods (e.g. 1962-1990 with 1991-2020).
The corresponding plot (Figure S6Eisure-S5) demonstrates a clear decrease of snow depth in recent decades, which is mainly
driven by less accumulation in spring and an earlier snow disappearance in summer. This finding is not new as it has been
found based on station data (Klein et al., 2016; Marty et al., 2023), but can now also be demonstrated in a quantitative way

with gridded data. For station data, the mentioned studies explained the snow depth decrease with higher temperatures.
3.3 Evaluation of trends

3.3.1 Elevation dependent snow depth trends

Here, we investigate how long-term HS trends of OSHD-CLQM and OSHD-Comb compare to trends observed at stations in

the different elevation bands. Already Figure SError! Reference source not found. demonstrated that compared to station

data, median performance scores of OSHD-CLQM and OSHD-EKEF are generally (except R) very similar, demonstrating the
good performance of the quantile mapping step. However, focusing on the whiskers of the boxplots, it is obvious that with

OSHD-EKF smaller errors (outliers) are achieved. Therefore, using OSHD-EKF data instead of OSHD-CLQM data, when

possible, i.e. OSHD-Comb, can be an asset from 1999 onward, because two datasets only differ after 1999. Any differences in

their long-term trends are due to differences in the most recent period (after 1999). -However, the trends of the two model

chains after 1999 are still fairly similar (Figure S5).
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Figure 7: Trends of yearly snow depth[cm / decade] calculated using Theil-Sen slopes for the OSHD-CLQM and the
combined model data series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500,
(b) 1000, (¢) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). Significance is indicated with * p < 0.05;
**p <0.01; *** p <0.001. The dashed line indicates the year 1999, before which the yearly values of OSHD-CLQM
and OSHD-comb are the same.

The combined model OSHD-Comb utilizes the OSHD-EKF, which helps capturing short-term variations more accurately in
the period since 1999. Meanwhile, OSHD-CLQM originates from quantile mapping of the climatological model OSHD-CL
onto OSHD-EKF aiming to reduce systematic differences in the simulation of OSHD-CL (Michel et al., 2024 and Fig. 1). On
the other hand, using OSHD-Comb could introduce temporal inconsistencies at the point in time when OSHD-CLQM and
OSHD-EKF are combined (1998/1999; see Figure 1), which we investigated by analyzing the involved trends shown in Figure
TEigure7. Examining the plots in this figure reveals that the interannual variability in the modelled long-term snow depth time
series (OSHD-CLQM and OSHD-Comb) agree very well, especially when comparing all elevations (Figure 7Figure-7f). But
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both datasets also align well with the long-term station data, particularly at elevations of 1000, 1500, 2000 and 2500 m, which
demonstrates the performance of the quantile mapping step in these elevation bands. The OSHD-Comb trend magnitude is
marginally weaker than the OSHD-CLQM trend magnitude and thus closer to the station-based trend magnitude for all
investigated elevations with the exception of the 2000 m band. The largest differences between station-based and model-based
trends appears, again, in the lowest elevation band, which corroborates the findings of Michel et al. (2024) and Figure 5 with
large relative errors at low elevation. On a closer look at this low elevation band (Figure 7Figure7a), we see that largest
differences occur during snow-rich winters in the first 20 years. These differences are similar when using OSHD-CL (not
shown), which indicates that not the QM step, but either the meteorological input data and/or the temperature-index model are
the main reason for the large biases in the first two decades in the lowest elevation band and that the QM step fails to correct
this. Focusing on the significance of the decreasing trends we see that the level of significance agrees well for all data sets and
elevation bands, which is also in agreements with other studies analyzing station-based trends.

Notice, there is only one long-term station available in the 2500 m elevation band, which strongly limits the informative value
of this elevation band. Therefore, an additional analysis for this elevation band has been undertaken for the shorter 24-year
period 2000-2023 (Figure S7Figure-S6), where data from 14 stations are available. This figure corroborates the findings of
Figure 7Figure-7e by the similarity and the non-significance of the found trends in this elevation band. The above results agree
well with other recent studies analyzing station-based trends with mostly significant decreasing trends below about 2000 m
(Matiu et al., 2021; Marty et al., 2023).

An example that demonstates the possible differences between the two datasets OSHD-CLQM and OSHD-EKF is illustrated
in Figure 8, which shows climatological anomaly maps for the example of winter 2018 (Nov-Apr) for both datasets. The
relative snow depth anomaly for this season with respect to the long-term mean (1991-2020) is clearly above average in the
Alps (see high elevations in Figure 2) and in the south for both datasets, but less consistent patterns appear at low elevations
in the north. A visual comparison to the station values (marked in Figure 8 as well) demonstrates that OSHD-EKF provides
the more accurate results regarding these regional differences revealing that the Swiss Plateau experienced clearly below

average snow depth in the 2018 winter season. Moreover, OSHD-EKEF in this case appears to exhibit greater spatial uniformity.

15



380

385

This

yearly

weekly  monthly

monthly  yearly

weekly

monthly  yearly

weekly

25

45

61

result

0.1 0.4 0.6

1000 1500 2000
MAAPE

1000 1500 2000
Elevation [m)]

09

09

09

2500

79

1

2500

096

098

0.98

2500

is

-00
--0.3
--0.6

-=0.9

-=15

--18

- 150
125

100

- 50

-5

=100
- 097
094
090
0ar
- 0.84

081

[mm]

[mm]

[%]

[1

not surprising
HS
RMSE
3
- 1
e
=
=
. 2
g
=
{g- 3
500
BIAS
S
£- 01 901 01 05 | 18
L
=
£. 01 01 01 05 | 18
g
=
x. 01 0.1 0 05 18
H
500 1000 1500 2000 2500
MAAPE
e
s - 5 23 14 11 15
2
=
=1 pE] 16 n
g
=
z P 20 13
S
1500 2000 2500
R
£ 096
w 1
2
=
= 098
g
=
3 095 097
S
1500 2000 2500
Elevation [m]

1

=00

-=-0.3

--0.6

-=0.9

-=15

--1.8

=150
125

100

- 50

-25

-100
-097

0.94

- 0.84

081

[cm]

fem]

1%]

as

already

Figure 3Figure3 and Figure 4 demonstrated that the performance of quantile mapping approach used in OSHD-CLQM is

limited in ease-eflow-snow environments (i.e. at low elevation for Switzerland).
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Figure 8: Relative snow depth anomaly (%) of winter 2018 (Nov-Apr) with respect to the long-term mean (1991-2020)
for OSHD-CLQM (top) and OSHD-EKF (bottom). Red indicates below-average, yellow average, and blue signifies
above-average snow depth. The colored dots and numbers indicate station anomalies.
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3.3.2 Snow depth trends at individual stations

We also conducted a trend comparison based on single grid points, since having available a gridded dataset makes it tempting
to use information from single grid cells in places where no station measurements are available. We compared the Theil-Sen
slopes of the yearly means of stations with those of the closest grid point from both the OSHD-CLQM and the OSHD-Comb
model. The corresponding plot (Figure 9) reveals that in the large majority of the cases the trends well align between models
and stations. Moreover, there seems to be almost no performance difference between the two model chains. However, we can
also observe that the bias (difference between station and model trend) is large for a small set of station at elevations between
1200 and 2000 m. Both, OSHD-CLQM and OSHD-Comb show the same eight stations that differ by more than + 4 cm/decade
in their trends. Out of these eight stations, there are 5 stations, which show a considerably weaker trend, and 3 stations which

show a stronger trend in the modeled time series compared to those of the respective stations.
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Figure 9: Scatter plots of station elevation [m] vs difference (station minus model) of the snow depth trend [cm / decade]
for yearly values in the period 1962-2023, for OSHD-CLQM (left) and OSHD-Comb (right). Differences larger than 1
and smaller than -1 are depicted with an orange diamond and red square respectively. Stations that show a difference
greater than = 4 cm/decade are labeled.

Upon closer examination of these stations, we find that one station (7DI0) is located above the tree line and heavily wind
influenced and subject to several relocations during the investigated period. Moreover, three stations (3UI0, SKKO0, 2MEOQ) are
known as inhomogeneous series, due to major shifts in location (Buchmann et al., 2022). These findings reveal that the new
gridded datasets have some potential to find indications of potential inhomogeneities in station time series. However, there are
also larger differences for four other stations, which compared to trends at neighboring stations and neighboring grid points
are probably caused by station inhomogenities (3FBO0) or problems with the gridded meteorological input data (6BG0, 7TMAO,
SIAO). Interestingly the former three stations are all in southern regions with steep topography and only few precipitation time
series available as input. These examples also indicate that when comparing station data to model values, we should sometimes
rather use multiple grid points of a larger area for comparison instead of only one single grid cell (see 3.4 and Michel et. al.
2024).

Such exceptions do not impact the informative value of the gridded trend results on a larger spatial scale. Indeed, a map
illustrating of the OSHD-CLQM trends for each grid point in Switzerland separately (Figure 10) reveals significant trends at
almost all low and mid elevated regions, which corroborates the results of Figure 7Figure7. Elevations above 2000 m along
the main alpine ridge and in adjacent inner-alpine dry regions show mostly non-significant decreasing trends, except a small

area near the southwestern border (Saas Valley) with non-significant increasing trends. The only non-significant region in the
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lowest elevation band is located in the Rhone valley southeast of the lake of Geneva (southwestern corner of Switzerland).
Moreover, Figure 10 generally confirms the known weaker absolute trends at lower elevations (Schoner et al., 2019) by the
easy visual recognizability of the alpine valleys. Finally, Figure 10 also demonstrates a good agreement with a similar analysis,
but a different model, for Austria (Olefs et al., 2020), in which also partly non-significant trends for the Austrian region (Tirol),
which is adjacent just east of south-eastern Switzerland, were found. In relative terms (Figure S9Figure-S&), the trends become
largest at low elevation (mainly Swiss plateau), where values between -10 to -20 % per decade are typical. Above 1000 m,

however, typical relative trends are between -5 and -10 % per decade.

Snow Depth Trend [cm / decade]

Figure 10: Trends of yearly mean snow depth (cm/decade) for the period 1962 - 2023 based on Theil-Sen slopes for
each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m
are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.

3.3.3 Elevation dependent snow day trends

The number of snow cover days during a season is a useful additional metric as it reflects not only the quantity of snow in the

Alps but also the duration. The duration of snow cover is important for the energy balance of the Earth’s surface and holds

important implications for various sectors, including ecology, winter tourism or energy production (hydro and PV power).
Comparing the different datasets in Figure S8Figure-S7 across the five elevation bands reveals on the one hand that the
direction of the trends (mostly decreasing) is the same in all analyses. No trend could be detected in those elevation bands
where the number of snow days is bounded due to our November to April season definition (low HS threshold at high elevation)
or where the number of snow days was mostly zero (high HS threshold at low elevation).

There is generally less agreement in the magnitude of the trends for the number of snow cover days (Figure S8Figure-S7)
compared to corresponding analysis of mean snow depth (Figure 7Fisure—7). Such a disagreement is not uncommon, as
threshold analyses in general are known for their high sensitivity and limitations of the input data do likely also contribute (see
3.4). At 500 m and with a 5 cm threshold, models predict over double the decrease compared to stations. This matches the

result observed in the mean HS trend analysis at 500 m.
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Having a closer look, we can see that in most instances OSHD-Comb generally demonstrates better agreement compared to
the year-to-year station fluctuations at stations. Below the elevation band of 2000 m, both models demonstrate a significant
decreasing trend. At the 2000 m elevation, the models only show significance with p > 0.05 at a threshold of 30 cm. However,
significance is observed at all other thresholds and elevation bands up to 2500 m. The elevation-dependent pattern agrees well
with that seen for snow day trends in Fig. A1 in Buchmann et al. (2023). The largest decrease in number of snow cover days
(about 9 days per decade) is found at 1000 m for the 5 cm threshold. This is likely because this elevation band coincides with
the current mean snowfall limit (Scherrer et al., 2021). Below 1000 m, snow cover days are already rare, leaving little room
for further decline, while above 1000 m, mean winter temperatures remain below freezing, resulting in smaller absolute

decreases.

3.4 Limitations regarding input data and involved models

When utilizing the investigated gridded snow dataset for climatological analyses, the involved uncertainties of the underlying
input data and methods used to derive SWE and HS should always be considered. They include the following issues.

The gridded temperature and precipitation datasets used as input for the snow model (see 2.1) are not perfectly consistent over
time as the number of stations available for the spatial analysis on the 1 km grid can vary over time and elevation (Frei, 2014).
It is important to keep this fact in mind when using the gridded snow datasets for trend analysis.

Furthermore, there are unresolved small-scale effects in these gridded input datasets. Regarding temperature, among these are
all kinds of land cover effects (e.g. lakes and urban heat islands) and the influence of local topography. As a result, it must be
expected that spatial variations are underestimated (too smooth), particularly at the scale of the grid-point spacing, and small-
scale patterns may small-scale patterns may not be accurately represented (in both extent and amplitude) at the scale of the

model grid. display-with-considerable-uneertainty-in-extentand-amplitude. This is particularly true for valley cold pools - their

reproduction by the analysis critically depends on the existence of in-situ measurements within these pools. Hence cold air

pools may be missing completely in un-instrumented valleys (see Frei et al. (2014)). Regarding precipitation, possible
undetected station and time dependent measurement errors can always be an issue and the interpolation is limited by small-
scale variability of precipitation. The provider of the datasets (MeteoSwiss) expects that the effective resolution of the daily
gridded precipitation product is in the order of 10 to 20 km, likely even coarser in the high mountains. Additionally,
measurements by rain gauges are subject to systematic errors, like gauge under-catch, which causes an underestimation of
precipitation, particularly during days with snowfall and at wind-exposed locations (Yang et al., 1999). However, the problem
should be, at least partially, mitigated by the QM step, which constrains the model by assimilation of snow depth observations
(OSHD-EKF) and thereby indirectly also corrects for under-catch issues in the gridded precipitation dataset.

When these two gridded datasets (temperature and precipitation) are used as input for the temperature-index based snow model,
we must be aware that the temperature data represents the daily average from midnight-to-midnight UTC, whereas the
precipitation data represents the daily average from 06:00 UTC of day D to 06:00 UTC of day D+1. This temporal mismatch
is another reason for possible biases in gridded snow data, especially at shorter time scales. A particularly relevant contributing
factor in this regard is the use of daily average temperatures to partition precipitation into snowfall and rain. Uncertainties arise
every time a precipitation event happens at times that are colder (nights) or warmer (days) than the 24h average temperature,
which is a generic limitation of models that use input data at daily rather than hourly resolution.

Another factor contributing to the overall uncertainty is the fact that the OSHD-CLQM modelling chain is based on a
temperature-index model with a parameter set (Magnusson et al., 2014) that is applied over the entire six-decade long period.
This fact and the above-mentioned limitations of the atmospheric input data are a reason why the assimilation of snow

measurements is an important step and that the corresponding OSHD-EKF datasets are of better quality.
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A further potential inhomogeneity arises when using OSHD-Comb, as two data sets of different quality are combined here.
Our analysis demonstrates that the impact is small when using data of the entire country on the current time series length. But
this does not need to be the case for smaller regions or shorter time periods.

Finally, it is important to keep in mind, that the OSHD datasets provide SWE values, which are then converted to HS. This
conversion has a RMSE of about 1.5 cm and a BIAS of 1 cm (Aschauer et al., 2023). Therefore, HS has always a slightly
higher uncertainty than SWE.

4 Conclusions

We analyzed the potential and limitations of newly developed spatially gridded datasets of snow water equivalent and snow
depth for climatological applications in Switzerland spanning over 6 decades from 1962 to 2023. Our results demonstrate that
the use of a long-term gridded snow data has a high potential for climatological analysis, albeit with some limitations. Our
analysis corroborates the findings of Michel et al. (2024), that the quantile-mapping approach generally achieves good results
in producing long-term climatological timeseries of snow. In addition, we could for the first time demonstrate in a quantitative
manner how the uncertainty of new gridded climatological snow depth datasets increases with shorter analysis time scales and
especially for low elevations.

More specifically, a comparison of the 60+ year-long datasets to station measurements for yearly mean snow depth values
revealed in general a good performance of the new gridded datasets. We also evaluated how well station-based trends were
captured in the modelled gridded datasets. In general, the results demonstrated a very good agreement between station- and
model-based trends, i.e. clear decreasing trends for mean snow depth and the snow cover duration (based on snow days) for
the different elevation bands. Yearly mean snow depth demonstrated an excellent agreement with respect to the decrease per
decade and the significance of this decrease for the different elevation bands, except for the lowest elevation band, where snow
is generally scarce. There, the modeled trend was much stronger as the station trend. The same trend overestimation in the
lowest elevation band was also found when analyzing trends of the number of snow days. However, as often with count data,
the agreement between model- and station-trends was not as good and depended also on the threshold of the snow day
definition. Generally, as shown by these results, station data is more reliable at low elevation. At higher elevations (i.e. above

1000 m a.s.l.), SPASS data (OSHD-CLOM or OSHD-EKF) from larger regions and longer periods are often preferable, as

they are less location-dependent and are also available in the early and late season (early fall and late spring).

Moreover, a comparison between long-term trends of mean snow depth calculated using in-situ data from individual stations
and gridded data with the closest grid points revealed a generally good agreement. However, for about 20 % of all stations, the
disagreement between the trends was larger than 1 cm /decade and sometimes even had the opposite direction, owing to either
inhomogeneities in the observations or modeling / input data issues. Therefore, we generally recommend using the new SPASS
datasets for trend analysis with at least some level of spatial aggregation and for elevation above 1000 m, while caution is
needed for interpretation of data at the grid point level and/or in low-snow regions. Furthermore, we urge caution when using
maximum values, because the applied quantile mapping method does ean-by-definitionnot really capture extreme values_as

they are corrected according to the correction of the 99th quantile (Michel et al., 2024).

On the other hand, the generally good performance of the new datasets allows for the first time to produce e.g. high resolution
(1 km), high quality country-wide SWE and snow depth maps of climatological mean values or monthly/seasonal anomaly
graphs for different regions/elevations. Moreover, except for low elevations, the data provide a reliable basis to analysis
elevation dependent trends of SWE and snow depth. Hence, these datasets are an important basis for applied research in winter
tourism (Troxler et al., 2023) or hydrology (Chartier-Rescan et al., 2025) in an alpine country like Switzerland. For these

reasons the two involved institutions (SLF and MeteoSwiss) use the new datasets to regularly provide maps and graphs on the

21



530

535

540

545

550

555

current snow status in Switzerland as a climate service for interested public or businesses (BAFU,2024; WMO, 2024b; SLF,
2025).

Our results also reveal that it may be worth to make use of the higher-quality, but shorter-term OSHD-EKF dataset, which
assimilates in-situ snow depth data. This is especially true at low elevation and for shorter time aggregations like month or
week. This fact also demonstrates that long-term station measurements are still indispensable, as they are needed to produce

long-term, high-quality gridded snow datasets.

5 Data Availability

Model data of SWE and HS is available on envidat.ch (doi.org/10.16904/envidat.580). In-situ snow depth data from SLF
stations can be freely downloaded from: https://www slf.ch/en/services-and-products/slf-data-service. In-situ snow depth data

from MeteoSwiss are available on request.
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Short Summary

660 This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for
Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ
measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales.
Moreover, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based
changes.
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10 Supplement

10.1 Additional Tables

670 Table S1: List of stations and corresponding altitude used for comparison in each elevation band. Station with a number
at the beginning or end of the listed station indicatives are maintained by SLF and stations without any number are
maintained by MeteoSwiss.

250 -750 m 751-1250 m 1251-1750 m 1751-2250 m 2251-2750 m
Stat Alti Stat Alti Stat Alti Stat Alti Stat Alti
BAS 316 LAG 755 58I 1273 75D 1751 TUJ2 2262
OTL 366 1LB 800 2ST 1280 7SN 1752 BOG2 2299
GVE 410 7BR 800 1WE 1280 2TR 1780 CMA2 2325
DEM 416 STG 802 1LS 1300 4SF 1790 NAS2 2350
SNS 439 5KU 815 3BR 1310 6RI 1800 JUL2 2426
ALT 449 EIN 910 3FB 1310 SIA 1801 | GOM3 2427
KOP 483 ELM 965 1MI 1320 7MA 1810 PMA2 2429
NEU 483 CHD 985 2ME 1320 1HB 1825 EGH2 2500
SIO 485 7PV 1015 1AD 1325 5AR 1845 5WIJ 2536
LAN 538 2EN 1023 3UI 1340 7MZ 1850 ATT2 2550
BER 548 GTT 1055 4UL 1345 1GH 1970 DIA2 2569
CHU 572 20G 1060 1LC 1360 4SH 2000 ANV3 2589
MER 592 ROB 1078 75T 1387 7Dl 2090 VIN2 2729
SMA 604 AIR 1139 1SM 1390 7AG 2090 LAG2 2730

VIS 662 250 1150 4AMS 1430

MAS 718 D1S 1190 2AN 1440

1GS 1190 4W| 1450

1GA 1190 5SP 1457

5KK 1190 5IN 1460

3MG 1190 5S5A 1510

6CB 1215 6BG 1525

5DF 1560

4GR 1560

1GB 1565

4MO 1590

47E 1600

65B 1640

1IMR 1650

4BP 1670

7CA 1690

77U 1710

7FA 1710

7LD 1710

52V 1735

675

27



Table S2: Number of available stations in the two different comparison periods, as well as the number of grid points in
absolute and relative terms per elevation band.

Label Elevation band # of stations # of stations # of grid % of grid

1999-2023 1962-2023 points points

<250 m 72 0.2

500 m 250-750 m 16 16 13405 34

1000 m 751-1250 m 21 21 8056 20

1500 m 1251-1750 m 34 34 5880 15

2000 m 1751-2250 m 16 16 5592 14

2500 m 2251-2750 m 16 1 4731 12

> 2750 m 2105 5

680

10.2 Additional Figures
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685 Figure S1: Climatology of monthly SWE values of OSHD-EKF and OSHD-CLQM in the 2000 m elevation band
between the common period 1999- 2001. Numbers is the boxplots indicate monthly median values.
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Figure S2: Score comparison between models CLQM and EKF (’reference’) on a monthly (a,b) and weekly (c,d)
resolution at respective elevation bands for SWE (a,c) and HS (b,d). Median value is illustrated as purple line and mean
value as green triangle.
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Figure S3: Score comparison between stations data and OSHD-CLQM (a,c) as well as OSHD-EKF (b,d) for monthly
(a,b) and weekly (c,d) snow depth values in the respective elevation bands. Median value is illustrated as purple line

and mean value as green triangle.
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Figure S4: Score comparison between all stations and the respective model gridpoints of OSHD-CLQM (left) and
OSHD-EKF (right) for yearly, monthly and weekly snow depth values. Median value is illustrated as purple line and
mean value as green triangle.

31



! (a) 500 m —— Stations (-0.42 cm/decade) 40 {b) 1000 m —— Stations (-4.15 cm/decade) | 70 1 (¢) 1500 m
6 —— EKF (-0.59 cm/decade) — EKF (-1.94 cm/decade) )
—— CLQM (-0.41 cm/decade) —— CLOM (-2.37 cm/decade) 60
5 30
f— 50
Ee /| WY
=3 20 o A ‘ 40
g /A .
T
s N/ 'Il\‘,.!-_!ﬂ\n
10 \’ 201 — stations (-5.26 cm/decade)
1 10 ~——— EKF (-5.85 cm/decade)}
—— CLOM (-8.48 cm/decade) ©
® 3600 2005 2010 2015 2020 ® 2000 2005 2010 2015 2020 0 2000 2005 2010 2015 2020
200
. (d) £ 000 m o
A o
— 80 TS N '
g7 ;A\Mr\ ;
(7]
T w0 20
—— Stations (-7.46 cm/decade) 501 — Stations (-10.44 cm/decade)
201 . exF (.8.66 cmidecade) —— EKF (-188 cm/decade) 107 EkF (-4.05 cmidecade)
= CLOM (-9.18 cm/decade) —— CLOM (-4.49 cm/decade) ——— CLOM {-4.57 cm/decade)
° 2000 2005 2010 2015 2020 ® 2000 2005 2010 2015 2020 0 000 2005 2010 2015 2020
710 Water Year Water Year Water Year
Figure S5: Same as Figure 7, but for 1999-2023. Trends of yvearly snow depth[cm / decade] calculated using Theil-Sen
slopes for the OSHD-CLOM and the combined model data series (OSHD-Comb), as well as for station measurements
for the five elevation bands: (a) 500, (b) 1000, (c¢) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m).
Significance is indicated with * p <0.05: ** p <0.01; *** p <0.001.
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| Figure S65: Annual evolution of snow depth from the OSHD-CLQM model for the two 30-year reference periods 1962-
1990 (blue) and 1991-2020 (red). The daily values are calculated based on all grid points between 0 and 3000 m in
Switzerland.
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Figure S76: Trends of yearly snow depth [cm / decade] calculated using Thiel-Sen slopes for the OSHD-CLQM and the
OSHD-EKEF, as well as for station measurements (mean of 16 stations) for the highest elevation band (2500 m). Possible
significance is indicated with * p <0.05; ** p <0.01; *** p < 0.001.
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Figure S87: Trends of median snow days for three different thresholds (5,30, 50 cm) using Theil-Sen-slope regression
for OSHD-CLQM and OSHD-comb, as well as stations across five elevation bands: (a) 500, (b) 1000, (c) 1500, (d) 2000,
and (e) 2500 m. Significance is indicated with * p < 0.05; ** p <0.01; *** p <0.001. The dashed line indicates the year
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1999, before which the yearly values of OSHD-CLQM and OSHD-comb are the same.
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735

Snow Depth Trend [% / decade]

| Figure S98: Relative trends of yearly mean snow depth (%/decade) for the period 1962 - 2023 based on Theil-Sen slopes
for each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000
m are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.
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