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Abstract: Gridded information on the past, present and future state of the surface snow cover is an indispensable climate 5 

service for any snow-dominated region like the Alps. Here, we present and evaluate the first long-term gridded datasets of 

daily modeled snow water equivalent and snow depth over Switzerland, available at 1 km spatial resolution since 1962 

(spanning 60+ years). These climate-oriented datasets are derived from a quantile-mapped temperature-index model (OSHD-

CLQM). The validation against a higher quality but shorter duration dataset - derived from the same model but enhanced with 

data assimilation via an ensemble Kalman filter (OSHD-EKF) - shows on the one hand good results regarding bias and 10 

correlation and on the other hand acceptable absolute and relative errors except for ephemeral snow and for shorter time 

aggregations like weeks. An evaluation using in-situ station data for yearly, monthly, and weekly aggregations at different 

elevation bands shows only slightly better performance scores for OSHD-EKF, highlighting the effectiveness of the quantile-

mapping method used to produce the long-term climatological OSHD-CLQM dataset. For example, yearly maps of gridded 

snow depth compared to in-situ data demonstrate an RMSE of 25 cm (20 %) at 2500 m and of 1.5 cm (80 %) at 500 m. For 15 

monthly averages, these numbers increase to 30 cm (25 %) and 3 cm (100 %), respectively. A trend analysis of yearly mean 

snow depth from this gridded climatological- and from station-based data revealed a very good agreement on direction and 

significance at all elevations. However, at the lowest elevations the strength of the decreasing trend in snow depth is clearly 

overestimated by the gridded datasets. Moreover, a comparison of the trends between individual stations and the corresponding 

grid points revealed a few cases of larger disagreements in direction and strength of the trend. Together these results imply 20 

that the performance of the new snow datasets is generally encouraging but can vary at low elevations, at single grid points or 

for short time windows. Therefore, despite some limitations, the new 60+ years-long OSHD-CLQM gridded snow products 

show promise as they provide high-quality and spatially high-resolution information of snow water equivalent and snow depth, 

which is of great value for typical climatological products like anomaly maps or elevation dependent long-term trend analysis. 

1 Introduction 25 

Snow cover is an integral and crucial component of the Earth’s energy and water balance. It reacts sensitively to climate change 

due to its dependence on precipitation and temperatures below freezing. Climate changes lead to changes in the extent, 

thickness, density, optical and thermal properties of the snow cover and thus of the Earth's surface and the boundary layer 

between the Earth and the atmosphere (Abe, 2022). These changes have far-reaching consequences for glaciers, extreme 

events, natural hazards, ecosystems, biodiversity, forests and landscapes, as well as for winter sports and the tourism industry, 30 

both globally and regionally (Mote et al., 2018; López-Moreno et al., 2020; Bozzoli et al., 2024). This also includes the impact 

on water resources for irrigation, drinking water and hydropower (IPCC, 2019). Snow as frozen precipitation is of increasing 

importance globally in a world facing more frequent droughts on the one hand and more extreme precipitation events on the 

other, where snow can dampen immediate runoff but can also cause avalanches or flooding (Barnett et al., 2005). Accurate 

information about the past and current evolution of the snow cover is therefore of high importance (Van Ginkel et al., 2020).  35 
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In contrast to the hemispheric level (Mortimer et al., 2020) or other countries (Olefs et al., 2020), Switzerland so far provided 

long-term snow cover information based on in-situ data of daily snow depth (Marty and Blanchet, 2012; Scherrer et al., 2013; 

Schmucki et al., 2017) and bi-weekly water equivalent of the snow cover (SWE) from national monitoring networks (Marty 

et al., 2023), which are only available at about 10 % of the snow depth measuring stations. Both data, snow depth (HS) and 

SWE, are regularly published in the annual winter reports (Pielmeier et al., 2024) and in online repositories (Marty, 2020). 40 

Such point-based time series are very valuable because of their lengths and documented measurement history (Buchmann et 

al., 2022). However, even though Switzerland has a high density of snow measurement stations, their asymmetric distribution 

(especially in terms of altitude) and irregular temporal availability (some had to be abandoned, others recently started from 

scratch due to automation) limit their usefulness for climatological applications beyond station-based analyses, i.e. the 

provision of altitude-dependent region- or country-wide snow information. 45 

Ideally, snow data would be available on daily scale in a gridded format for many decades. Using interpolated station data for 

this purpose (Luomaranta et al., 2019) has several disadvantages because of the above-mentioned asymmetric distribution and 

irregular temporal availability of station series. Using remote sensing data (Poussin et al., 2025) is another option but is 

hampered by irregular temporal availability (among others due to cloud coverage), possible inhomogeneities (due to different 

satellite generations) and limits the start of the time period to the beginning of the 1980’s. A third and often used option is the 50 

use of model or reanalysis data, which is often only available at relatively coarse spatial resolution. In a recent study, Scherrer 

et al. (2024) evaluated the usefulness of existing long-term and spatially gridded SWE datasets for Switzerland. Among others, 

the authors state that most datasets, including the high-resolution ones, have problems correctly representing small SWE values 

at low elevations and they conclude that a km-scale model with assimilated snow measurement data is highly preferable. The 

only model in this investigation, which fulfilled these requirements, was the temperature-index model OSHD-EKF, which is 55 

also used in this study as a benchmark dataset for the evaluation. 

This model, which is operated by the operational snow hydrological service (OSHD) at WSL Institute for Snow and Avalanche 

Research SLF, hereafter referred to as OSHD-EKF and provides daily 1 km gridded information on SWE between 1999 and 

today (for details see Mott et al. 2023). The length of this dataset is limited back to 1999 because there are not enough high-

elevation snow stations available for assimilation before that time. To overcome this limitation and make use of the full period 60 

of available gridded datasets (1962 to today), we developed within the project SPAtial Snow climatology for Switzerland 

(SPASS) the quantile mapping procedure SnowQM, which was presented in (Michel et al., 2024). This method allows 

correcting the not data-assimilated full climatological SWE time series starting in the hydrological year 1962 (OSHD-CL) into 

a better-quality dataset (OSHD-CLQM) which mimics the higher-quality shorter duration OSHD-EKF model. For the 

development of OSHD-CLQM, the quantile mapping method SnowQM was calibrated and validated with SWE simulations 65 

between 1999 and 2021 using the OSHD-EKF data set as target and was then applied to the OSHD-CL data set over the period 

from the hydrological year 1962 to today (Figure 1).  

Michel et al. (2024) concluded that the developed quantile-based correction can efficiently reduce the pronounced SWE bias 

at high elevations and that the average bias is always close to zero. Moreover, they stated that the mean absolute error can 

remain large even after correction and that SnowQM is not expected to do more than a climatological bias correction, meaning 70 

biases at short time scales, like on a single day or month, are not necessarily corrected. Additionally, they mentioned that such 

biases can also concern entire winters at low elevated regions. However, quantitative information on elevation-dependent 

uncertainties are not provided but are important in mountain regions (Switanek et al., 2024). Moreover, the above-mentioned 

OSHD datasets only contain SWE as snow variable. However, SWE is an unusual and elusive variable for the non-scientific 

public (e.g. tourism, media), and many applications explicitly need snow depth (HS). 75 

The novelty of our study is therefore, first, the creation of the corresponding gridded datasets for snow depth by applying the 

SWE2HS algorithm developed by Aschauer et al. (2023). Second, we compared the OSHD-CLQM datasets to the higher 

quality OSHD-EKF and station-based datasets to investigate potential time aggregation- and elevation-dependent biases. 
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Third, we also analyzed differences in long-tern trends to get a clearer picture on the potential and the limitations of the 

datasets. These 3 aspects combined allow us to provide an unprecedented long-term gridded snow depth dataset and assess its 80 

utility across a range of potential use cases. In the next section (2), we first present the used gridded- and station data, as well 

as the evaluation methods applied. In section 3, we explain and discuss the results before summarizing our findings in section 

4. 

2 Data and methods 

2.1 Spatial SWE and HS datasets 85 

As illustrated in Figure 1, the base dataset is OSHD-CL, which provides SWE and is based on a temperature-index model 

forced by gridded temperature (TabsD: Meteoswiss, 2021a) and precipitation (RhiresD: Meteoswiss, 2021b) input fields at 1 

km spatial resolution as well as an algorithm for the fraction of snow-covered area (Magnusson et al., 2014). As target for the 

quantile mapping, we use the higher-quality, but shorter (1999-2023) OSHD-EKF dataset as a benchmark. This dataset was 

created using the same model and data, but also assimilating snow data from a time-invariant set of 350 in-situ snow stations 90 

using an ensemble Kalman filter (Magnusson et al., 2014). In a next step, the data were corrected by the SnowQM algorithm, 

so such that OSHD-CLQM data finally consist of 1 km daily gridded quantile-mapped SWE data over the domain of 

Switzerland between 1962 and 2023 (Michel et al., 2024). The analyses are performed for hydrological years, lasting from 

September of the previous year to August of the year of investigation. The hydrological year 2023, for instance, consists of 

the period 1 September 2022 to 31 August 2023. This definition is consistent with the settings of the OSHD models, which 95 

sets SWE to zero on 1 September of each year, to only represent seasonal snow, thus operating on an annual cycle starting in 

September. The corresponding spatial snow depth datasets were derived by applying the SWE2HS algorithm (Aschauer et al., 

2023) to the SWE data of both models (OSHD-CLQM and OSHD-EKF). This algorithm contains a multilayer snow density 

model which uses daily SWE as the sole input. 

 100 
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Figure 1: Conceptual view of the workflow of the different model- and station-datasets used as well as for which periods 
they are available. 

 

 105 

2.2 Reference datasets 

To evaluate the performance of the long-term OSHD-CLQM dataset, we use as two references: (1) the higher-quality OSHD-

EKF dataset, which limits the comparison to the 1999-2023 period and (2) daily in-situ station data, which limits the 

comparison to snow depth. 

It is important to mention that OSHD-CLQM is not independent of the first reference as OSHD-EKF was used in the above-110 

described quantile mapping step to produce OSHD-CLQM (section 2.1). Additionally, some uncertainty is expected when 

comparing HS data, as this variable is only available for both datasets through the conversion of SWE using the SWE2HS 

algorithm (Aschauer et al., 2023), which may introduce additional errors particularly in challenging conditions such as rain-

on-snow events. 
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Figure 2: Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to 
validate the gridded datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as 
triangles and non-assimilated stations as circles. 

 120 

When comparing to in-situ data we have to take into account the common grid-to-point mismatch problem. In this regard, it is 

important to know that both datasets (CLQM and EKF) are based on the OSHD temperature-index model (OSHD-CL), which 

was run in its default mode, where the SWE values represent spatial mean of the respective 1 km grid cells, considering its 

predominant land cover types and terrain characteristics. This is in-line with the OSHD’s objective of conducting a 

comprehensive assessment of snow and water resources in Switzerland, but it entails issues when comparing to in-situ data, 125 

which represent snow conditions at flat, non-forested, sheltered field sites according to international measurement standards 

(WMO, 2024). Indeed, the monitoring sites have been reported to often systematically overrepresent snow depth (Grünewald 

and Lehning, 2015), hence negative biases of OSHD-EKF relative to station data are expected, which must be kept in mind 

when interpreting respective results. Moreover, elevations above 3000 m are not analyzed as grid points above this elevation 

are sometimes affected by too much snow accumulation in the model due to the lack of high-elevation station data for 130 

assimilation into the model (Michel et al., 2024). 

As daily in-situ snow depth time-series, we use on the one hand data of 103 stations (Table S1), which have already been used 

in the assimilation procedure of OSHD-EKF (Figure 1) and are therefore complete between 1999 and 2023. On the other hand, 

for an independent analysis (Figure 6), we use data of 79 independent stations, which have not been used in the data 

assimilation step, because they cover only part of the time between 1999-2023. All stations are located between 200 and 135 

2800 m a.s.l. (Figure 2); stations below 2000 m consist of manual measurements only and stations above 2000 m mostly consist 

of automatic measurements. The data of these stations have been carefully quality-controlled (physical threshold checks, as 

well as temporal und spatial consistency checks) and gap-filled (Aschauer and Marty, 2021). Each station is compared with 

its most representative grid point, which was determined based on the selection of the grid cell that contains the station of 

interest as well as the eight surrounding grid cells. The grid cell with the smallest elevation difference to the station was chosen 140 

for the comparison as snow depth is generally strongly dependent on elevation (Marty and Blanchet, 2012). The median 

elevation difference between the station and the selected grid cell over all stations is 10 m with a standard deviation of 23 m; 
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the largest elevation difference is 105 m. The digital elevation model to determine the grid point elevation was provided by 

swisstopo (2017). 

 145 

2.3 Spatial and temporal aggregations 

Michel et al. 2024 demonstrated that the SWE bias of OSHD-CLQM is not remarkably different between north and south of 

the Alps, which are the two main climatic regions in Switzerland. We here focus on elevation dependent biases, as the existence 

of snow in the Alps strongly depends on the elevation above sea level (Schöner et al., 2019; Switanek et al., 2024). For this 

purpose, we use elevation bands with a width of ±250 m which are centered at 500, 1000, 1500, 2000 and 2500 m. Therefore, 150 

we also pool the above-mentioned station data into these elevations bands with the goal to compare all corresponding grid 

points in an elevation band to all stations in this elevation band (Table S1 and Table S2). 

These elevation bands imply that grid points below 250 m and above 2750 m were not evaluated when comparing with station 

data, because there are hardly any stations for assimilation or validation available below and above these thresholds. 

Additionally, there are hardly any grid points below 250 m in the domain of Switzerland (see Table S2).  155 

To assess time aggregation dependent biases, we use aggregations of the daily data to weekly, monthly and yearly mean values. 

The motivation behind the used temporal units was given by the following: Climatological analyses are often provided by 

yearly or monthly reports and we wanted to assess the uncertainty of the new snow products with the goal to include them in 

future such reports. Moreover, knowing about the need for timely public information about possible current extraordinary 

snow conditions, we also assessed the weekly aggregation level. Daily aggregations were by purpose not assessed as the 160 

quantile mapping method at this scale can be associated with substantial uncertainties and that an interpretation of the results 

at this high temporal resolution is not recommended (Michel et al., 2024). Yearly mean values are based on the 6-month period 

between November and April, which we will refer to as ‘yearly’ from now on, because it’s the period where snow cover is 

predominant in most of the regions in the country and because it’s the period where manual snow depth measurements are 

available completely. To compute yearly, monthly or weekly mean values, we always first averaged each grid point over time 165 

for each elevation band. This means that boxplots show the variability across space in each elevation band for each temporal 

aggregation. In the case of model-to-station intercomparison (Figure 5, Figure S3), the boxplots were created based on the 

number of stations per elevation band (as listed in Table S2). 

Moreover, we evaluate time aggregation- and elevation-dependent biases of commonly used climatological anomalies. For 

this purpose, the 30-year average between 1991 and 2020 (standard 30-year reference period) is calculated for every grid point 170 

and the ratio between the weekly, monthly or yearly mean values and its reference period is determined. When investigating 

performance differences between OSHD-CLQM and OSHD-EKF the evaluation is necessarily based on the period 1999-2023, 

which also has the advantage of having more in-situ data (Table S2) available in the different elevation bands (mean per 

elevation band is 20 stations, minimum 14 stations, maximum 34 stations). 

 175 

2.4 Merging gridded datasets for trend analysis 

It is not surprising and there are clear indications that the climatology of OSHD-CLQM and OSHD-EKF are not that different 

(Figure S1). Hence, we also constructed a new “combined” time series OSHD-Comb (Figure 1), by concatenating the first part 

of OSHD-CLQM (1962-1998) with OSHD-EKF (1999 and 2023). This approach allows investigating the impact on trends 

when merging the best available datasets for each period. 180 

Long-term trends of all the above mentioned time series are evaluated based on yearly values with the Theil-Sen slope (Theil, 

1950; Sen, 1968) and the Mann-Kendall (MK) trend test (Mann, 1945). A positive standardized MK value indicates an 

increasing trend, while a negative value demonstrates a decreasing one. Confidence levels of 95% are used as a threshold to 
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classify a significant trend (p < 0.05). The Theil-Sen slope estimator provides a measure of the strength of a trend based on a 

robust simple non-parametric linear regression. Absolute trends were always calculated as change per decade and relative 185 

trends were calculated for the entire 62-year period as percentage changes between 1962 and 2023 based on the Theil-Sen 

slope. Please keep in mind that a direct comparison of percentage changes is only meaningful between indicators of the same 

unit and similar absolute values. The thus calculated trends of the model datasets are also compared to the trends from in-situ 

station data. The stations available for this comparison cover all elevation levels quite well (Table S2). The same stations are 

available for each elevation band as for the 1999-2023 comparison, except for the highest elevation band (2250-2750 m a.s.l.), 190 

where only one station covers the required full period between 1962 and 2023. 

 

 

2.5 Evaluation metrics 

The analyses are mainly based on the two variables describing the mass and depth of snow cover: SWE in millimeters and HS 195 

in cm. Moreover, we also analyze the number of snow days. We define three different classes of snow days: Days with snow 

cover of at least 5, 30 or 50 cm of snow depth. 

We use four statistical evaluation scores to compare the various datasets: Root mean squared error (RMSE), mean bias (BIAS), 

correlation coefficient (R) and mean arctangent absolute percentage error (MAAPE) to evaluate the gridded snow products.  

MAAPE (Kim and Kim, 2016) is an adaptation of the mean absolute percentage error (MAPE), to mitigate large percentage 200 

errors occurring only due to small reference values. To get MAAPE, first, like in the case of MAPE, the absolute relative 

difference between the target value (𝑦𝑦�) and the reference value (𝑦𝑦𝑖𝑖) is calculated. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
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��
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But then the arctan of this relative difference is taken, which maps large values to [0; π/2] and hence limits the maximum 

relative error to 157 %. When we write about relative errors in the results section, we always refer to MAAPE values for better 205 

readability. The scores provide the basis for boxplots of RMSE, BIAS, R and MAAPE in each elevation band (500, 1000, 

1500, 2000, 2500 m) for each temporal aggregation (see also 2.3). 

 

3 Results and Discussion 

3.1 Analysis of performance scores based on gridded reference dataset 210 

In order to quantify time and elevation dependent uncertainties arising from the quantile mapping, we first evaluated the 

OSHD-CLQM model simulation against the OSHD-EKF model simulations used as target dataset (Figure 3). As expected 

from the quantile mapping procedure (Cannon et al., 2015), BIAS for SWE is close to zero for all temporal aggregations and 

all elevation bands. HS, however, reveals a slightly negative BIAS (ca. -2 cm) for the highest elevation band, because HS has 

been derived from SWE by conversion using SWE2HS and therefore has not been directly mapped to match the quantile 215 

distributions of the observed snow depth measurements. For both variables SWE and HS, RMSE and MAAPE demonstrate a 

moderate worsening of the score performance for all elevations with temporal aggregation over smaller periods, illustrated e.g. 

by RMSE values at 1500 m increasing from 21 to 31 mm SWE or 7 to 11 cm HS going from yearly to weekly aggregation. 

Regarding elevation dependence, RMSE is increasing up to 2000 m, but MAAPE and R reveal a clear improvement in score 

performance when going from low to high elevations. Indeed, MAAPE scores demonstrate for SWE and HS at 500 m values 220 

of about 37 % for yearly resolution. At the same time, at 2500 m MAAPE is about 8 % at yearly resolution. The same general 
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performance increase of MAAPE with elevation is also true for monthly and weekly aggregations, which are about 58% and 

65% at 500 m and decrease to 11 % and 13 % at 2500 m. All these comparisons demonstrate that the performance generally 

increases with elevation in all evaluation metrics, except BIAS, which is close to zero anyway. The main reason for this better 

performance with increasing elevation is the fact that the error indices in this analysis reflect the performance of the quantile 225 

mapping step, which is not really suitable for time series with many zero values, i.e. for regions where the snow cover only 

survives for a few days at a time (Michel et al. 2024). Moreover, the signal-to-noise ratio of the quantile mapping is increasing 

with elevation due to the larger absolute mount of snow. 

 

 230 
Figure 3: Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the 
period 1999-2023 using the OSHD-EKF dataset as reference. Darker shades of red indicate worse scores. 

 

In a second step, we investigated the distribution of the performance scores with the help of boxplots for the same temporal 

aggregations and elevation bands. Figure 4 shows the corresponding boxplots for both snow variables. While mean values of 235 

BIAS are close to zero for all elevations bands, whiskers and outliers demonstrate a clear increase of variability of the yearly 

values with increasing elevation. Larger BIAS can occur above 2750 m (not shown), where no in-situ data for assimilation is 

available, but where such differences are still small in relative terms. This can also be seen by the low MAAPE values in the 
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highest elevation band. In contrast, at 500 m MAAPE values demonstrate that the relative error is on average about 40 % but 

can be as high as 70 % in rare cases. Similarly, R values show a clear increase in the spread with decreasing elevation. 240 

 

 

 
 

Figure 4: Score comparison between models OSHD-CLQM and OSHD-EKF (’reference’) on a yearly resolution at 245 
respective elevation bands (m) for SWE (left) and HS (right). Boxplots were generated from these performance scores 
to illustrate the distribution, outliers, mean (green triangle) and median (purple line). The box reflects the 50 % of data 
between the lower quartile and upper quartile. The whiskers extend from the boxes’ edges and correspond to 1.5 IQR. 
Outliers are represented as individual dots. 

 250 

The same analysis as in Figure 4 has been undertaken for monthly and weekly performance scores (Figure S2). Monthly scores 

reveal the highest RMSE values at 2000 m of about 10 to 70 mm SWE (based on whiskers) or 5 to 20 cm HS, which according 

to MAAPE corresponds to a relative error range of 5 to 25 % for HS and SWE. However, in extremes cases (outliers) this error 

can be as high as 40 %. At 500 m MAAPE whisker range goes from 40 to 80% for both snow variables but can go up to about 

90 % in extreme cases for both variables. This low performance in these extreme cases in this elevation band is also illustrated 255 

by accordingly low R scores of about 0.4 for both variables. Weekly scores demonstrate a similar pattern but slightly lower 

performance for RMSE and MAAPE for both variables SWE and HS. Highest relative errors scores (but with small absolute 

errors) can again be seen in the lowest elevation band with a MAAPE whisker range demonstrating values between 50 to 80%. 

A clearly lower performance for weekly scores can also be seen for R, where in extreme cases values of only 0.2 are found. 

These lowest R-scores usually originate from the few lowest grid points in this elevation band. These lowest grid points are 260 

located in separate regions north and south of the main Alpine ridge, which are often characterized by opposing snow 

conditions (Scherrer and Appenzeller, 2006), i.e. one region has snow and the other not. This possible divergence is smaller 

for yearly values as there is a higher chance for compensation than for monthly or weekly values. 
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3.2 Analysis of performance scores based on in-situ station data as reference 265 

After investigating differences between the OSHD-CLQM and OSHD-EKF models, we here now compare HS simulations of 

the two gridded models with HS observations at the stations. Note, that point observations do not necessarily represent spatial 

means over large grid cells, particularly in complex and steep terrain, and a comparison to results from a model that represents 

the existing sub-grid variability is hence confounded. 

Figure 5 illustrates that the yearly scores between the stations and the respective model grid points of OSHD-CLQM and 270 

OSHD-EKF show remarkable similarity overall. However, R values of OSHD-EKF stand out as being more consistent and 

are found to be higher in all elevation bands, especially at lower elevations. As expected for a model that assimilates snow 

observations, OSHD-EKF demonstrates slightly better comparison statistics, but the differences are minor which attests to the 

good performance of the quantile mapping procedure. Both models show larger BIAS values at higher elevations, peaking in 

the highest elevation band with median values of about -20 cm, which indicates that, as expected, the two models feature less 275 

snow at the highest elevations compared to the station values. There are several reasons for these BIAS values. First, data from 

flat field observations at high elevation often show larger values than the surrounding area (Grünewald and Lehning, 2015). 

Second, the SWE2HS algorithm sometimes tends to underestimate HS at these elevations (Aschauer et al., 2023). And third, 

there is lack of stations for assimilation at thigh elevation (Mott et al., 2023). In relative terms this bias, which is reflected in 

the MAAPE score, reveals errors between 20 and 25 % at the elevation band 1500 m and above. This is in strong contrast to 280 

the values of about 80 % at the 500 m elevation band, owing to the very low mean snow depths at these elevations. 

 

 

 

 285 
Figure 5: Score comparison between station data and OSHD-CLQM (left) as well as OSHD-EKF (right) in the 
respective elevation bands for yearly snow depth values. Median value is illustrated as purple line and mean value as 
green triangle. 
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The same analysis has been undertaken for monthly and weekly performance scores (Figure S3) and generally reveals the 290 

same pattern (lower performance for smaller time aggregations) as found when intercomparing the two models, with the 

difference that the performance decrease going from yearly to monthly or weekly time-windows is now much weaker. OSHD-

EKF stands out again with higher R values, especially at lower elevations. MAAPE median values are again largest at 500 m, 

with median values reaching 100% for monthly and 110% for weekly aggregations. These values decrease to 40% and less for 

elevations above 1500 m for monthly and weekly time-windows. 295 

Similarly, the beginning and end of the snow-covered season has generally a lower performance than mid-winter also at higher 

elevations because the situation is similar as at low elevations during the entire winter. This implies the transition seasons 

between no-snow and snow also at higher elevations have the same potential problems as at low elevations during the entire 

winter. These problems involve among others high spatial variability and no information on the soil temperature, which is 

decisive for the survival of potential snow fall. But since our focus was between November and April this seasonality issue 300 

only affects the 1000 and 1500 m elevation band. 

The above shown station-based comparisons are not independent as the same station data is used in the assimilation step of 

OSHD-EKF, which then also indirectly influences OSHD-CLQM through the quantile-mapping step. In a separate step, we 

therefore additionally analyzed non-assimilated stations with respect to the OSHD-CLQM model (Figure 6). The result 

demonstrates that there is hardly any difference between the BIAS for the assimilated and non-assimilated stations. This 305 

indicates that the assimilation of stations within OSHD-EKF transfers well to unobserved locations, while the quantile mapping 

is capable of inheriting this asset to OSHD-CLQM. As expected, we see generally higher BIAS values above 2000 m, which 

(as explained above) is due to the fact flat field observations at high elevation often show larger values than the surrounding 

area. As shown in Figure 5 these BIAS values are only about 20% in relative terms. Moreover, above 2000 m the errors for 

the non-assimilated stations are in general only about 5 cm larger, which corroborates the performance of the quantile mapping 310 

step for this independent dataset. 

 

 
Figure 6: BIAS of yearly mean snow depth [cm] vs elevation [m] for the comparison of assimilated (red) and non-
assimilated (blue) stations value with respect to the OSHD-CLQM model. The curves are polynomials fits of second 315 
degree. 

 

When looking at the entire country, i.e. grid points of all stations across Switzerland (Figure S4), the analysis reveals a slightly 

better performance for OSHD-EKF, which can be best seen in the clearly smaller number of outliers and the smaller whisker 
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range for MAAPE and R. Differences due to temporal aggregations can best be observed in RMSE, where yearly mean values 320 

are about 10 cm. This value is increasing to about 15 cm for monthly mean values and almost 20 cm for weekly mean values. 

This good performance when averaging over all grid points gives confidence in typical climatological analysis like the 

comparison of the annual snow depth evolution between different climate periods (e.g. 1962-1990 with 1991-2020). The 

corresponding plot (Figure S6) demonstrates a clear decrease of snow depth in recent decades, which is mainly driven by less 

accumulation in spring and an earlier snow disappearance in summer. This finding is not new as it has been found based on 325 

station data (Klein et al., 2016; Marty et al., 2023), but can now also be demonstrated in a quantitative way with gridded data. 

For station data, the mentioned studies explained the snow depth decrease with higher temperatures. 

3.3 Evaluation of trends 

3.3.1 Elevation dependent snow depth trends 

Here, we investigate how long-term HS trends of OSHD-CLQM and OSHD-Comb compare to trends observed at stations in 330 

the different elevation bands. Already Figure 5 demonstrated that compared to station data, median performance scores of 

OSHD-CLQM and OSHD-EKF are generally (except R) very similar, demonstrating the good performance of the quantile 

mapping step. However, focusing on the whiskers of the boxplots, it is obvious that with OSHD-EKF smaller errors (outliers) 

are achieved. Therefore, using OSHD-EKF data instead of OSHD-CLQM data, when possible, i.e. OSHD-Comb, can be an 

asset from 1999 onward, because two datasets only differ after 1999. Any differences in their long-term trends are due to 335 

differences in the most recent period (after 1999). However, the trends of the two model chains after 1999 are still fairly similar 

(Figure S5). 

 

 
Figure 7: Trends of yearly snow depth[cm / decade] calculated using Theil-Sen slopes for the OSHD-CLQM and the 340 
combined model data series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500, 
(b) 1000, (c) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). Significance is indicated with * p < 0.05; 
** p < 0.01; *** p < 0.001. The dashed line indicates the year 1999, before which the yearly values of OSHD-CLQM 
and OSHD-comb are the same. 

 345 

The combined model OSHD-Comb utilizes the OSHD-EKF, which helps capturing short-term variations more accurately in 

the period since 1999. Meanwhile, OSHD-CLQM originates from quantile mapping of the climatological model OSHD-CL 

onto OSHD-EKF aiming to reduce systematic differences in the simulation of OSHD-CL (Michel et al., 2024 and Fig. 1). On 

the other hand, using OSHD-Comb could introduce temporal inconsistencies at the point in time when OSHD-CLQM and 
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OSHD-EKF are combined (1998/1999; see Figure 1), which we investigated by analyzing the involved trends shown in Figure 350 

7. Examining the plots in this figure reveals that the interannual variability in the modelled long-term snow depth time series 

(OSHD-CLQM and OSHD-Comb) agree very well, especially when comparing all elevations (Figure 7f). But both datasets 

also align well with the long-term station data, particularly at elevations of 1000, 1500, 2000 and 2500 m, which demonstrates 

the performance of the quantile mapping step in these elevation bands. The OSHD-Comb trend magnitude is marginally weaker 

than the OSHD-CLQM trend magnitude and thus closer to the station-based trend magnitude for all investigated elevations 355 

with the exception of the 2000 m band. The largest differences between station-based and model-based trends appears, again, 

in the lowest elevation band, which corroborates the findings of Michel et al. (2024) and Figure 5 with large relative errors at 

low elevation. On a closer look at this low elevation band (Figure 7a), we see that largest differences occur during snow-rich 

winters in the first 20 years. These differences are similar when using OSHD-CL (not shown), which indicates that not the 

QM step, but either the meteorological input data and/or the temperature-index model are the main reason for the large biases 360 

in the first two decades in the lowest elevation band and that the QM step fails to correct this. Focusing on the significance of 

the decreasing trends we see that the level of significance agrees well for all data sets and elevation bands, which is also in 

agreements with other studies analyzing station-based trends.  

Notice, there is only one long-term station available in the 2500 m elevation band, which strongly limits the informative value 

of this elevation band. Therefore, an additional analysis for this elevation band has been undertaken for the shorter 24-year 365 

period 2000-2023 (Figure S7), where data from 14 stations are available. This figure corroborates the findings of Figure 7e by 

the similarity and the non-significance of the found trends in this elevation band. The above results agree well with other recent 

studies analyzing station-based trends with mostly significant decreasing trends below about 2000 m (Matiu et al., 2021; Marty 

et al., 2023). 

An example that demonstates the possible differences between the two datasets OSHD-CLQM and OSHD-EKF is illustrated 370 

in Figure 8, which shows climatological anomaly maps for the example of winter 2018 (Nov-Apr) for both datasets. The 

relative snow depth anomaly for this season with respect to the long-term mean (1991-2020) is clearly above average in the 

Alps (see high elevations in Figure 2) and in the south for both datasets, but less consistent patterns appear at low elevations 

in the north. A visual comparison to the station values (marked in Figure 8 as well) demonstrates that OSHD-EKF provides 

the more accurate results regarding these regional differences revealing that the Swiss Plateau experienced clearly below 375 

average snow depth in the 2018 winter season. Moreover, OSHD-EKF in this case appears to exhibit greater spatial uniformity. 

This result is not surprising as already Figure 3 and Figure 4 demonstrated that the performance of quantile mapping approach 

used in OSHD-CLQM is limited in low-snow environments (i.e. at low elevation for Switzerland). 
 

 380 
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Figure 8: Relative snow depth anomaly (%) of winter 2018 (Nov-Apr) with respect to the long-term mean (1991-2020) 
for OSHD-CLQM (top) and OSHD-EKF (bottom). Red indicates below-average, yellow average, and blue signifies 
above-average snow depth. The colored dots and numbers indicate station anomalies.  
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 385 

3.3.2 Snow depth trends at individual stations 

We also conducted a trend comparison based on single grid points, since having available a gridded dataset makes it tempting 

to use information from single grid cells in places where no station measurements are available. We compared the Theil-Sen 

slopes of the yearly means of stations with those of the closest grid point from both the OSHD-CLQM and the OSHD-Comb 

model. The corresponding plot (Figure 9) reveals that in the large majority of the cases the trends well align between models 390 

and stations. Moreover, there seems to be almost no performance difference between the two model chains. However, we can 

also observe that the bias (difference between station and model trend) is large for a small set of station at elevations between 

1200 and 2000 m. Both, OSHD-CLQM and OSHD-Comb show the same eight stations that differ by more than ± 4 cm/decade 

in their trends. Out of these eight stations, there are 5 stations, which show a considerably weaker trend, and 3 stations which 

show a stronger trend in the modeled time series compared to those of the respective stations. 395 

 

 
Figure 9: Scatter plots of station elevation [m] vs difference (station minus model) of the snow depth trend [cm / decade] 
for yearly values in the period 1962-2023, for OSHD-CLQM (left) and OSHD-Comb (right). Differences larger than 1 
and smaller than -1 are depicted with an orange diamond and red square respectively. Stations that show a difference 400 
greater than ± 4 cm/decade are labeled. 

 

Upon closer examination of these stations, we find that one station (7DI0) is located above the tree line and heavily wind 

influenced and subject to several relocations during the investigated period. Moreover, three stations (3UI0, 5KK0, 2ME0) are 

known as inhomogeneous series, due to major shifts in location (Buchmann et al., 2022). These findings reveal that the new 405 

gridded datasets have some potential to find indications of potential inhomogeneities in station time series. However, there are 

also larger differences for four other stations, which compared to trends at neighboring stations and neighboring grid points 

are probably caused by station inhomogenities (3FB0) or problems with the gridded meteorological input data (6BG0, 7MA0, 

SIA0). Interestingly the former three stations are all in southern regions with steep topography and only few precipitation time 

series available as input. These examples also indicate that when comparing station data to model values, we should sometimes 410 

rather use multiple grid points of a larger area for comparison instead of only one single grid cell (see 3.4 and Michel et. al. 

2024). 

Such exceptions do not impact the informative value of the gridded trend results on a larger spatial scale. Indeed, a map 

illustrating of the OSHD-CLQM trends for each grid point in Switzerland separately (Figure 10) reveals significant trends at 

almost all low and mid elevated regions, which corroborates the results of Figure 7. Elevations above 2000 m along the main 415 

alpine ridge and in adjacent inner-alpine dry regions show mostly non-significant decreasing trends, except a small area near 

the southwestern border (Saas Valley) with non-significant increasing trends. The only non-significant region in the lowest 
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elevation band is located in the Rhone valley southeast of the lake of Geneva (southwestern corner of Switzerland). Moreover, 

Figure 10 generally confirms the known weaker absolute trends at lower elevations (Schöner et al., 2019) by the easy visual 

recognizability of the alpine valleys. Finally, Figure 10 also demonstrates a good agreement with a similar analysis, but a 420 

different model, for Austria (Olefs et al., 2020), in which also partly non-significant trends for the Austrian region (Tirol), 

which is adjacent just east of south-eastern Switzerland, were found. In relative terms (Figure S9), the trends become largest 

at low elevation (mainly Swiss plateau), where values between -10 to -20 % per decade are typical. Above 1000 m, however, 

typical relative trends are between -5 and -10 % per decade. 

 425 

 
Figure 10: Trends of yearly mean snow depth (cm/decade) for the period 1962 - 2023 based on Theil-Sen slopes for 
each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m 
are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.  

 430 

3.3.3 Elevation dependent snow day trends 

The number of snow cover days during a season is a useful additional metric as it reflects not only the quantity of snow in the 

Alps but also the duration. The duration of snow cover is important for the energy balance of the Earth’s surface and holds 

important implications for various sectors, including ecology, winter tourism or energy production (hydro and PV power). 

Comparing the different datasets in Figure S8 across the five elevation bands reveals on the one hand that the direction of the 435 

trends (mostly decreasing) is the same in all analyses. No trend could be detected in those elevation bands where the number 

of snow days is bounded due to our November to April season definition (low HS threshold at high elevation) or where the 

number of snow days was mostly zero (high HS threshold at low elevation). 

There is generally less agreement in the magnitude of the trends for the number of snow cover days (Figure S8) compared to 

corresponding analysis of mean snow depth (Figure 7). Such a disagreement is not uncommon, as threshold analyses in general 440 

are known for their high sensitivity and limitations of the input data do likely also contribute (see 3.4). At 500 m and with a 5 

cm threshold, models predict over double the decrease compared to stations. This matches the result observed in the mean HS 

trend analysis at 500 m. 
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Having a closer look, we can see that in most instances OSHD-Comb generally demonstrates better agreement compared to 

the year-to-year station fluctuations at stations. Below the elevation band of 2000 m, both models demonstrate a significant 445 

decreasing trend. At the 2000 m elevation, the models only show significance with p > 0.05 at a threshold of 30 cm. However, 

significance is observed at all other thresholds and elevation bands up to 2500 m. The elevation-dependent pattern agrees well 

with that seen for snow day trends in Fig. A1 in Buchmann et al. (2023). The largest decrease in number of snow cover days 

(about 9 days per decade) is found at 1000 m for the 5 cm threshold. This is likely because this elevation band coincides with 

the current mean snowfall limit (Scherrer et al., 2021). Below 1000 m, snow cover days are already rare, leaving little room 450 

for further decline, while above 1000 m, mean winter temperatures remain below freezing, resulting in smaller absolute 

decreases. 

3.4 Limitations regarding input data and involved models  

When utilizing the investigated gridded snow dataset for climatological analyses, the involved uncertainties of the underlying 

input data and methods used to derive SWE and HS should always be considered. They include the following issues. 455 

The gridded temperature and precipitation datasets used as input for the snow model (see 2.1) are not perfectly consistent over 

time as the number of stations available for the spatial analysis on the 1 km grid can vary over time and elevation (Frei, 2014). 

It is important to keep this fact in mind when using the gridded snow datasets for trend analysis. 

Furthermore, there are unresolved small-scale effects in these gridded input datasets. Regarding temperature, among these are 

all kinds of land cover effects (e.g. lakes and urban heat islands) and the influence of local topography. As a result, it must be 460 

expected that spatial variations are underestimated (too smooth), particularly at the scale of the grid-point spacing, and small-

scale patterns may small-scale patterns may not be accurately represented (in both extent and amplitude) at the scale of the 

model grid.  This is particularly true for valley cold pools - their reproduction by the analysis critically depends on the existence 

of in-situ measurements within these pools. Hence cold air pools may be missing completely in un-instrumented valleys (see 

Frei et al. (2014)). Regarding precipitation, possible undetected station and time dependent measurement errors can always be 465 

an issue and the interpolation is limited by small-scale variability of precipitation. The provider of the datasets (MeteoSwiss) 

expects that the effective resolution of the daily gridded precipitation product is in the order of 10 to 20 km, likely even coarser 

in the high mountains. Additionally, measurements by rain gauges are subject to systematic errors, like gauge under-catch, 

which causes an underestimation of precipitation, particularly during days with snowfall and at wind-exposed locations (Yang 

et al., 1999). However, the problem should be, at least partially, mitigated by the QM step, which constrains the model by 470 

assimilation of snow depth observations (OSHD-EKF) and thereby indirectly also corrects for under-catch issues in the gridded 

precipitation dataset. 

When these two gridded datasets (temperature and precipitation) are used as input for the temperature-index based snow model, 

we must be aware that the temperature data represents the daily average from midnight-to-midnight UTC, whereas the 

precipitation data represents the daily average from 06:00 UTC of day D to 06:00 UTC of day D+1. This temporal mismatch 475 

is another reason for possible biases in gridded snow data, especially at shorter time scales. A particularly relevant contributing 

factor in this regard is the use of daily average temperatures to partition precipitation into snowfall and rain. Uncertainties arise 

every time a precipitation event happens at times that are colder (nights) or warmer (days) than the 24h average temperature, 

which is a generic limitation of models that use input data at daily rather than hourly resolution. 

Another factor contributing to the overall uncertainty is the fact that the OSHD-CLQM modelling chain is based on a 480 

temperature-index model with a parameter set (Magnusson et al., 2014) that is applied over the entire six-decade long period. 

This fact and the above-mentioned limitations of the atmospheric input data are a reason why the assimilation of snow 

measurements is an important step and that the corresponding OSHD-EKF datasets are of better quality.  
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A further potential inhomogeneity arises when using OSHD-Comb, as two data sets of different quality are combined here. 

Our analysis demonstrates that the impact is small when using data of the entire country on the current time series length. But 485 

this does not need to be the case for smaller regions or shorter time periods. 

Finally, it is important to keep in mind, that the OSHD datasets provide SWE values, which are then converted to HS. This 

conversion has a RMSE of about 1.5 cm and a BIAS of 1 cm (Aschauer et al., 2023). Therefore, HS has always a slightly 

higher uncertainty than SWE.  

4 Conclusions 490 

We analyzed the potential and limitations of newly developed spatially gridded datasets of snow water equivalent and snow 

depth for climatological applications in Switzerland spanning over 6 decades from 1962 to 2023. Our results demonstrate that 

the use of a long-term gridded snow data has a high potential for climatological analysis, albeit with some limitations. Our 

analysis corroborates the findings of Michel et al. (2024), that the quantile-mapping approach generally achieves good results 

in producing long-term climatological timeseries of snow. In addition, we could for the first time demonstrate in a quantitative 495 

manner how the uncertainty of new gridded climatological snow depth datasets increases with shorter analysis time scales and 

especially for low elevations. 

More specifically, a comparison of the 60+ year-long datasets to station measurements for yearly mean snow depth values 

revealed in general a good performance of the new gridded datasets. We also evaluated how well station-based trends were 

captured in the modelled gridded datasets. In general, the results demonstrated a very good agreement between station- and 500 

model-based trends, i.e. clear decreasing trends for mean snow depth and the snow cover duration (based on snow days) for 

the different elevation bands. Yearly mean snow depth demonstrated an excellent agreement with respect to the decrease per 

decade and the significance of this decrease for the different elevation bands, except for the lowest elevation band, where snow 

is generally scarce. There, the modeled trend was much stronger as the station trend. The same trend overestimation in the 

lowest elevation band was also found when analyzing trends of the number of snow days. However, as often with count data, 505 

the agreement between model- and station-trends was not as good and depended also on the threshold of the snow day 

definition. Generally, as shown by these results, station data is more reliable at low elevation. At higher elevations (i.e.  above 

1000 m a.s.l.), SPASS data (OSHD-CLQM or OSHD-EKF) from larger regions and longer periods are often preferable, as 

they are less location-dependent and are also available in the early and late season (early fall and late spring). 

Moreover, a comparison between long-term trends of mean snow depth calculated using in-situ data from individual stations 510 

and gridded data with the closest grid points revealed a generally good agreement. However, for about 20 % of all stations, the 

disagreement between the trends was larger than 1 cm /decade and sometimes even had the opposite direction, owing to either 

inhomogeneities in the observations or modeling / input data issues. Therefore, we generally recommend using the new SPASS 

datasets for trend analysis with at least some level of spatial aggregation and for elevation above 1000 m, while caution is 

needed for interpretation of data at the grid point level and/or in low-snow regions. Furthermore, we urge caution when using 515 

maximum values, because the applied quantile mapping method does not really capture extreme values as they are corrected 

according to the correction of the 99th quantile (Michel et al., 2024). 

On the other hand, the generally good performance of the new datasets allows for the first time to produce e.g. high resolution 

(1 km), high quality country-wide SWE and snow depth maps of climatological mean values or monthly/seasonal anomaly 

graphs for different regions/elevations. Moreover, except for low elevations, the data provide a reliable basis to analysis 520 

elevation dependent trends of SWE and snow depth. Hence, these datasets are an important basis for applied research in winter 

tourism (Troxler et al., 2023) or hydrology (Chartier-Rescan et al., 2025) in an alpine country like Switzerland. For these 

reasons the two involved institutions (SLF and MeteoSwiss) use the new datasets to regularly provide maps and graphs on the 
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current snow status in Switzerland as a climate service for interested public or businesses (BAFU,2024; WMO, 2024b; SLF, 

2025). 525 

Our results also reveal that it may be worth to make use of the higher-quality, but shorter-term OSHD-EKF dataset, which 

assimilates in-situ snow depth data. This is especially true at low elevation and for shorter time aggregations like month or 

week. This fact also demonstrates that long-term station measurements are still indispensable, as they are needed to produce 

long-term, high-quality gridded snow datasets. 

5 Data Availability 530 

Model data of SWE and HS is available on envidat.ch (doi.org/10.16904/envidat.580). In-situ snow depth data from SLF 

stations can be freely downloaded from: https://www.slf.ch/en/services-and-products/slf-data-service. In-situ snow depth data 

from MeteoSwiss are available on request. 
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Short Summary 

 

This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for 655 

Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ 

measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales. 

Moreover, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based 

changes. 

 660 
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Abstract: Gridded information on the past, present and future state of the surface snow cover is an indispensable climate 5 

service for any snow-dominated region like the Alps. Here, we present and evaluate the first long-term gridded datasets of 

modeled daily modeled snow water equivalent and snow depth (OSHD-CLQM) over Switzerland, available at 1 km spatial 

resolution since 1962 (spanning 60+ years)., which are available for the last 60+ years (since 1962) at 1 km spatial resolution 

over Switzerland These climate-oriented datasets are derived from a quantile-mapped temperature-index model (OSHD-

CLQM). The validation against the a higher quality, but shorter duration OSHD-EKF modeldataset - derived from the same 10 

model but enhanced with data assimilation via an ensemble Kalman filter (OSHD-EKF) -  shows on the one hand good results 

regarding bias and correlation and on the other hand acceptable absolute and relative errors except for ephemeral snow and for 

shorter time aggregations like weeks. An evaluation using in-situ station data for yearly, monthly, and weekly aggregations at 

different elevation bands shows only slightly better performance scores for OSHD-EKF, highlighting the effectiveness of the 

quantile-mapping method used to produce the long-term climatological OSHD-CLQM dataset. For example, yearly maps of 15 

gridded snow depth compared to in-situ data demonstrate an RMSE of 25 cm (20 %) at 2500 m and of 1.5 cm (80 %) at 500 

m. For monthly averages, these numbers increase to 30 cm (25 %) and 3 cm (100 %), respectively. A trend analysis of yearly 

mean snow depth from this gridded climatological- and from station-based data revealed a very good agreement on direction 

and significance at all elevations. However, at the lowest elevations the strength of the decreasing trend in snow depth is clearly 

overestimated by the gridded datasets. Moreover, a comparison of the trends between individual stations and the corresponding 20 

grid points revealed a few cases of larger disagreements in direction and strength of the trend. All Together these results imply 

that the performance of the new snow datasets is generally encouraging but can vary at low elevations, at single grid points or 

for short time windows. Therefore, despite some limitations, the new 60+ years-long OSHD-CLQM gridded snow products 

show promise as they provide high-quality and spatially high-resolution information of snow water equivalent and snow depth, 

which is of great value for typical climatological products like anomaly maps or elevation dependent long-term trend analysis. 25 

1 Introduction 

Snow cover is an integral and crucial component of the Earth’s energy and water balance. It reacts sensitively to climate change 

due to its dependence on precipitation and temperatures below freezing. Climate changes lead to changes in the extent, 

thickness, density, optical and thermal properties of the snow cover and thus of the Earth's surface and the boundary layer 

between the Earth and the atmosphere (Abe, 2022). These changes have far-reaching consequences for glaciers, extreme 30 

events, natural hazards, ecosystems, biodiversity, forests and landscapes, as well as for winter sports and the tourism industry, 

both globally and regionally (Mote et al., 2018; López-Moreno et al., 2020; Bozzoli et al., 2024). This also includes the impact 

on water resources for irrigation, drinking water and hydropower (IPCC, 2019). Snow as frozen precipitation is of increasing 

importance globally in a world facing more frequent droughts on the one hand and more extreme precipitation events on the 

other, where snow can dampen immediate runoff but can also cause avalanches or flooding (Barnett et al., 2005). Accurate 35 

information about the past and current evolution of the snow cover is therefore of high importance (Van Ginkel et al., 2020).  
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In contrast to the hemispheric level (Mortimer et al., 2020) or other countries (Olefs et al., 2020), Switzerland so far provided 

long-term snow cover information based on in-situ data of daily snow depth (Marty and Blanchet, 2012; Scherrer et al., 2013; 

Schmucki et al., 2017) and bi-weekly water equivalent of the snow cover (SWE) from national monitoring networks (Marty 

et al., 2023), which are only available at about 10 % of the snow depth measuring stations. Both data, snow depth (HS) and 40 

SWE, are regularly published in the annual winter reports (Pielmeier et al., 2024) and in online repositories (Marty, 2020). 

Such point-based time series are very valuable because of their lengths and documented measurement history (Buchmann et 

al., 2022). However, even though Switzerland has a high density of snow measurement stations, their asymmetric distribution 

(especially in terms of altitude) and irregular temporal availability (some had to be abandoned, others recently started from 

scratch due to automation) limit their usefulness for climatological applications beyond station-based analyses, i.e. the 45 

provision of altitude-dependent region- or country-wide snow information. 

Ideally, snow data would be available on daily scale in a gridded format for many decades. Using interpolated station data for 

this purpose (Luomaranta et al., 2019) has several disadvantages because of the above-mentioned asymmetric distribution and 

irregular temporal availability of station series. Using remote sensing data (Poussin et al., 2025) is another option but is 

hampered by irregular temporal availability (among others due to cloud coverage), possible inhomogeneities (due to different 50 

satellite generations) and limits the start of the time period back to the beginning of the 1980’s. A third and often used option 

is the use of model or reanalysis data, which is often only available at relatively sparce coarse spatial resolution. In a recent 

study, Scherrer et al. (2024) evaluated the usefulness of existing long-term and spatially gridded SWE datasets for Switzerland. 

Among others, the authors state that most datasets, including the high-resolution ones, have problems correctly representing 

small SWE values at low elevations and they conclude that a km-scale model with assimilated snow measurement data is 55 

highly preferable. The only model in this investigation, which fulfilled these requirements, was the temperature-index model 

OSHD-EKF, which is also used in this study as a benchmark dataset for the evaluation. 

This model, which is operated by the operational snow hydrological service (OSHD) at WSL Institute for Snow and Avalanche 

Research SLF, is from now onhereafter referred to as OSHD-EKF and provides daily 1 km gridded information on SWE 

between 1999 and today (for details see Mott et al. 2023). The length of this dataset is limited back to 1999 because there are 60 

not enough high-elevation snow stations available for assimilation before that time. To overcome this limitation and make use 

of the full period of available gridded datasets (1962 to today), we developed within the project SPAtial Snow climatology for 

Switzerland (SPASS) the quantile mapping procedure SnowQM, which was presented in (Michel et al., 2024). This method 

allows correcting the not data-assimilated full climatological SWE time series starting in the hydrological year 1962 (OSHD-

CL) into a better-quality dataset (OSHD-CLQM) which mimics the higher-quality shorter duration model OSHD-EKF model. 65 

For the development of OSHD-CLQM, the quantile mapping method SnowQM was calibrated and validated with SWE 

simulations between 1999 and 2021 using the OSHD-EKF data set as target and was then applied to the OSHD-CL data set 

over the period from the hydrological year 1962 to today (Figure 1).  

Michel et al. (2024) concluded that the developed quantile-based correction can efficiently reduce the pronounced SWE bias 

at high elevations and that the average bias is always close to zero. Moreover, they stated that the mean absolute error can 70 

remain large even after correction and that SnowQM is not expected to do more than a climatological bias correction, meaning 

biases at short time scales, like on a single day or month, are not necessarily corrected. Additionally, they mentioned that such 

biases can also concern entire winters at low elevated regions. However, quantitative information on elevation-dependent 

uncertainties are not provided but are important in mountain regions (Switanek et al., 2024). Moreover, the above-mentioned 

OSHD datasets only contain SWE as snow variable. However, SWE is an unusual and elusive variable for the non-scientific 75 

public (e.g. tourism, media), and many applications explicitly need snow depth (HS). 

The novelty of our study is therefore, first, the creation of the corresponding gridded datasets for snow depth by applying the 

SWE2HS algorithm developed by Aschauer et al. (2023). Second, we compared the OSHD-CLQM datasets to the higher 

quality OSHD-EKF and station-based datasets to investigate potential time aggregation- and elevation-dependent biases. 
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Third, we also analyzed differences in long-tern trends to get a clearer picture on the potential and the limitations of the 80 

datasets. These 3 aspects combined allow us to provide an unprecedented long-term gridded snow depth dataset and assess its 

utility across a range of potential use cases. In the next section (2), we first present the used gridded- and station data, as well 

as the evaluation methods applied. In section 3, we explain and discuss the results before summarizing our findings in section 

4. 

2 Data and methods 85 

2.1 Spatial SWE and HS datasets 

As illustrated in Figure 1, the base dataset is OSHD-CL, which provides SWE and is based on a temperature-index model 

forced by gridded temperature (TabsD: Meteoswiss, 2021a) and precipitation (RhiresD: Meteoswiss, 2021b) input fields at 1 

km spatial resolution as well as an algorithm for the fraction of snow-covered area (Magnusson et al., 2014). As target for the 

quantile mapping, we use the higher-quality, but shorter (1999-2023) OSHD-EKF dataset as a benchmark. This dataset was 90 

created using the same model and data, but also assimilating snow data from a time-invariant set of 350 in-situ snow stations 

using an ensemble Kalman filter (Magnusson et al., 2014). In a next step, the data were corrected by the SnowQM algorithm, 

so such that OSHD-CLQM data finally consist of 1 km daily gridded quantile-mapped SWE data over the domain of 

Switzerland between 1962 and 2023 (Michel et al., 2024). The analyses are performed for hydrological years, lasting from 

September of the previous year to August of the year of investigation. The hydrological year 2023, for instance, consists of 95 

the period 1 September 2022 to 31 August 2023. This definition is consistent with the settings of the OSHD models, which 

sets SWE to zero on 1 September of each year, to only represent seasonal snow, thus operating on an annual cycle starting in 

September. The corresponding spatial snow depth datasets were derived by applying the SWE2HS algorithm (Aschauer et al., 

2023) to the SWE data of both models (OSHD-CLQM and OSHD-EKF). This algorithm contains a multilayer snow density 

model which uses daily SWE as the sole input. 100 
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Figure 1: Conceptual view of the workflow of the different model- and station-datasets used as well as for which periods 
they are available. 

 105 

 

2.2 Reference datasets 

To evaluate the performance of the long-term OSHD-CLQM dataset, we use as two references: (1) the higher-quality OSHD-

EKF dataset, which limits the comparison to the 1999-2023 period and (2) daily in-situ station data, which limits the 

comparison to snow depth. 110 

It is important to mention that OSHD-CLQM is not independent of the first reference as OSHD-EKF was used in the above-

described quantile mapping step to produce OSHD-CLQM (section 2.1). Additionally, some uncertainty is expected when 

comparing HS data, as this variable is only available for both datasets through the conversion of SWE using the SWE2HS 

algorithm (Aschauer et al., 2023), which may introduce additional errors particularly in challenging conditions such as rain-

on-snow events. 115 
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Figure 2: Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to 
validate the gridded datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as 
triangles and non-assimilated stations as circles. 120 

 

When comparing to in-situ data we have to take into account the common grid-to-point mismatch problem. In this regard, it is 

important to know that both datasets (CLQM and EKF) are based on the OSHD temperature-index model (OSHD-CL), which 

was run in its default mode, where the SWE values represent spatial mean of the respective 1 km grid cells, considering its 

predominant land cover types and terrain characteristics. This is in-line with the OSHD’s objective of conducting a 125 

comprehensive assessment of snow and water resources in Switzerland, but it entails issues when comparing to in-situ data, 

which represent snow conditions at flat, non-forested, sheltered field sites according to international measurement standards 

(WMO, 2024). Indeed, the monitoring sites have been reported to often systematically overrepresent snow depth (Grünewald 

and Lehning, 2015), hence negative biases of OSHD-EKF relative to station data are expected, which must be kept in mind 

when interpreting respective results. Moreover, elevations above 3000 m are not analyzed as grid points above this elevation 130 

are sometimes affected by too much snow accumulation in the model due to the lack of high-elevation station data for 

assimilation into the model (Michel et al., 2024). 

As daily in-situ snow depth time-series, we use on the one hand data of 103 stations (Table S1), which have already been used 

in the assimilation procedure of OSHD-EKF (Figure 1) and are therefore complete between 1999 and -2023. On the other 

hand, for an independent analysis (Figure 6), we use data of 79 independent stations, which have not been used in the data 135 

assimilation step, because they cover only part of the time between 1999-2023. All these stations are located between 200 and 

2800 m a.s.l. (Figure 2);, whereas stations below 2000 m consist of manual measurements only and stations above 2000 m 

mostly consist of automatic measurements. The data of these stations have been carefully quality-controlled (physical threshold 

checks, as well as temporal und spatial consistency checks) and gap-filled (Aschauer and Marty, 2021) in separate steps. Each 

station is compared with its most representative grid point, which was determined based on the selection of the grid cell that 140 

contains the station of interest as well as the eight surrounding grid cells. The grid cell with the smallest elevation difference 

to the station was chosen for the comparison as snow depth is generally strongly dependent on elevation (Marty and Blanchet, 

2012). The median elevation difference between the station and the selected grid cell over all stations is 10 m with a standard 
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deviation of 23 m; the largest elevation difference is 105 m. The digital elevation model to determine the grid point elevation 

was provided by swisstopo (2017). 145 

 

2.3 Spatial and temporal aggregations 

Michel et al. 2024 demonstrated that the SWE bias of OSHD-CLQM is not remarkably different between north and south of 

the Alps, which are the two main climatic regions in Switzerland. We here focus on elevation dependent biases, as the existence 

of snow in the Alps strongly depends on the elevation above sea level (Schöner et al., 2019; Switanek et al., 2024). For this 150 

purpose, we use elevation bands with a width of ±250 m which are centered at 500, 1000, 1500, 2000 and 2500 m. Therefore, 

we also pool the above-mentioned station data into these elevations bands with the goal to compare all corresponding grid 

points in an elevation band to all stations in this elevation band (Table S1 and Table S2). 

These elevation bands imply that grid points below 250 m and above 2750 m were not evaluated when comparing with station 

data, because there are hardly any stations for assimilation or validation available below and above these thresholds. 155 

Additionally, there are hardly any grid points below 250 m in the domain of Switzerland (see Table S2).  

To assess time aggregation dependent biases, we use aggregations of the daily data to weekly, monthly and yearly mean values. 

The motivation behind the used temporal units was given by the following facts: Climatological analysis analyses are often 

provided by yearly or monthly reports and we wanted to assess the uncertainty of the new snow products with the goal to 

include them in future such reports. Moreover, knowing about the need for timely public information about possible current 160 

extraordinary situationssnow conditions, we also assessed the weekly aggregation level. Daily aggregations were by purpose 

not assessed as the quantile mapping method at this scale can be associated with substantial uncertainties and that an 

interpretation of the results at this high temporal resolution is not recommended (Michel et al., 2024). Yearly mean values are 

based on the 6-month period between November and April, which we will refer to as ‘yearly’ from now on, because it’s the 

period where snow cover is predominant in most of the regions in the country and because it’s the period where manual snow 165 

depth measurements are available completely. To compute yearly, monthly or weekly mean values, we always first averaged 

each grid point over time for each elevation band. This means that boxplots show the variability across space in each elevation 

band for each temporal aggregation. In the case of model-to-station intercomparison (Figure 5, Figure S3), the boxplots were 

created based on the number of stations per elevation band (as listed in Table S2). 

Moreover, we evaluate time aggregation- and elevation-dependent biases of commonly used climatological anomalies. For 170 

this purpose, the 30-year average between 1991 and 2020 (standard 30-year reference period) is calculated for every grid point 

and the ratio between the weekly, monthly or yearly mean values and its reference period is determined. When investigating 

performance differences between OSHD-CLQM and OSHD-EKF the evaluation is necessarily based on the period 1999-2023, 

which also has the advantage of having more in-situ data (Table S2) available in the different elevation bands (mean per 

elevation band is 20 stations, minimum 14 stations, maximum 34 stations). 175 

 

2.4 Merging gridded datasets for trend analysis 

It is not surprising and there are clear indications that the climatology of OSHD-CLQM and OSHD-EKF are not that different 

(Figure S1). Hence, we also constructed a new “combined” time series OSHD-Comb (Figure 1), by concatenating the first part 

of OSHD-CLQM (1962-1998) with OSHD-EKF (1999 and 2023). This approach allows investigating the impact on trends 180 

when merging the best available datasets for each period. 

Long-term trends of all the above mentioned time series are evaluated based on yearly values with the Theil-Sen slope (Theil, 

1950; Sen, 1968) and the Mann-Kendall (MK) trend test (Mann, 1945). A positive standardized MK value indicates an 

increasing trend, while a negative value demonstrates a decreasing one. Confidence levels of 95% are used as a threshold to 
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classify a significant trend (p < 0.05). The Theil-Sen slope estimator provides a measure of the strength of a trend based on a 185 

robust simple non-parametric linear regression. Absolute trends were always calculated as change per decade and relative 

trends were calculated for the entire 62-year period as percentage changes between 1962 and 2023 based on the Theil-Sen 

slope. Please keep in mind that a direct comparison of percentage changes is only meaningful between indicators of the same 

unit and similar absolute values. The thus calculated trends of the model datasets are also compared to the trends from in-situ 

station data. The stations available for this comparison cover all elevation levels quite well (Table S2). The same stations are 190 

available for each elevation band as for the 1999-2023 comparison, except for the highest elevation band (2250-2750 m a.s.l.), 

where only one station covers the required full period between 1962 and 2023. 

 

 

2.5 Evaluation metrics 195 

The analyses are mainly based on the two variables describing the mass and depth of snow cover: SWE in millimeters and HS 

in cm. Moreover, we also analyze the number of snow days. We define three different classes of snow days: Days with snow 

cover of at least 5, 30 or 50 cm of snow depth, which implies that we have three different classes of snow days. 

We use four statistical evaluation scores to compare the various datasets: Root mean squared error (RMSE), mean bias (BIAS), 

correlation coefficient (R) and mean arctangent absolute percentage error (MAAPE) to evaluate the gridded snow products.  200 

MAAPE (Kim and Kim, 2016) is an adaptation of the mean absolute percentage error (MAPE), to mitigate large percentage 

errors occurring only due to small reference values. To get MAAPE, first, like in the case of MAPE, the absolute relative 

difference between the target value (𝑦ො) and the reference value (𝑦௜) is calculated. 
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But then the arctan of this relative difference is taken, which maps large values to [0; π/2] and hence limits the maximum 205 

relative error to 157 %. When we write about relative errors in the results section, we always refer to MAAPE values for better 

readability. The scores finally provide the basise for calculating boxplots of RMSE, BIAS, R and MAAPE in each elevation 

band (500, 1000, 1500, 2000, 2500 m) for each temporal aggregation (see also 2.3). 

 

3 Results and Discussion 210 

3.1 Analysis of performance scores based on gridded reference dataset 
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In order to quantify time and elevation dependent uncertainties arising from the quantile mapping, we first evaluated the 

OSHD-CLQM model simulation against the OSHD-EKF model simulations used as target dataset (

 

Figure 3Figure 3). As expected from the quantile mapping procedure (Cannon et al., 2015), BIAS for SWE is close to zero for 215 

all temporal aggregations and all elevation bands. HS, however, reveals a slightly negative BIAS (ca. -2 cm) for the highest 

elevation band, because HS has been derived from SWE by conversion using SWE2HS and therefore has not been directly 

mapped to match the quantile distributions of the observed snow depth measurements. For both variables SWE and HS, RMSE 

and MAAPE demonstrate a moderate worsening of the score performance for all elevations with temporal aggregation over 

smaller periods, illustrated e.g. by RMSE values at 1500 m increasing from 21 to 31 mm SWE or 7 to 11 cm HS going from 220 

yearly to weekly aggregation. Regarding elevation dependence, RMSE is increasing up to 2000 m, but MAAPE and R reveal 

a clear improvement in score performance when going from low to high elevations. Indeed, MAAPE scores demonstrate for 

SWE and HS at 500 m values of about 37 % for yearly resolution. At the same time, at 2500 m MAAPE is about 8 % at yearly 

resolution. The same general performance increase of MAAPE with elevation is also true for monthly and weekly aggregations, 

which are about 58% and 65% at 500 m and decrease to 11 % and 13 % at 2500 m. All these comparisons demonstrate that 225 

the performance generally increases with elevation in all evaluation metrics, except BIAS, which is close to zero anyway. The 

main reason for this better performance with increasing elevation is the fact that the error indices in this analysis reflect the 

performance of the quantile mapping step, which is not really suitable for time series with many zero values, i.e. for regions 
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where the snow cover only survives for a few days at a time (Michel et al. 2024). Moreover, the signal-to-noise ratio of the 

quantile mapping is increasing with elevation due to the larger absolute mount of snow. 230 

 

 

Figure 3: Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the 
period 1999-2023 using the OSHD-EKF dataset as reference. Darker shades of red indicate worse scores. 

 235 

In a second step, we investigated the distribution of the performance scores with the help of boxplots for the same temporal 

aggregations and elevation bands. Figure 4 shows the corresponding boxplots for both snow variables. While mean values of 

BIAS are close to zero for all elevations bands, whiskers and outliers demonstrate a clear increase of variability of the yearly 

values scores with increasing elevation. Larger BIAS can occur above 2750 m (not shown), where no in-situ data for 

assimilation is available, but where such differences are still small in relative terms. This can also be seen by the low MAAPE 240 

values in the highest elevation band. In contrast, at 500 m MAAPE values demonstrate that the relative error is on average 

about 40 % but can be as high as 70 % in rare cases. Similarly, R values show a clear increase in the spread with decreasing 

elevation. 
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 245 

 

 

Figure 4: Score comparison between models OSHD-CLQM and OSHD-EKF (’reference’) on a yearly resolution at 
respective elevation bands (m) for SWE (left) and HS (right). Boxplots were generated from these performance scores 
to illustrate the distribution, outliers, mean (green triangle) and median (purple line). The box reflects the 50 % of data 250 
between the lower quartile and upper quartile. The whiskers extend from the boxes’ edges and correspond to 1.5 IQR. 
Outliers are represented as individual dots. 

 

The same analysis as in Figure 4 has been undertaken for monthly and weekly performance scores (Figure S2). Monthly scores 

reveal the highest RMSE values at 2000 m of about 10 to 70 mm SWE (based on whiskers) or 5 to 20 cm HS, which according 255 

to MAAPE corresponds to a relative error range of 5 to 25 % for HS and SWE. However, in extremes cases (outliers) this error 

can be as high as 40 %. At 500 m MAAPE whisker range goes from 40 to 80% for both snow variables but can go up to about 

90 % in extreme cases for both variables. This low performance in these extreme cases in this elevation band is also illustrated 

by accordingly low R scores of about 0.4 for both variables. Weekly scores demonstrate a similar pattern but slightly lower 

performance for RMSE and MAAPE for both variables SWE and HS. Highest relative errors scores (but with small absolute 260 

errors) can again be seen in the lowest elevation band with a MAAPE whisker range demonstrating values between 50 to 80%. 

A clearly lower performance for weekly scores can also be seen for R, where in extreme cases values of only 0.2 are found. 

These lowest R-scores usually originate from the few lowest grid points in this elevation band. These lowest grid points are 

located in separate regions north and south of the main Alpine ridge, which are often characterized by opposing snow 

conditions (Scherrer and Appenzeller, 2006), i.e. one region has snow and the other not. This possible divergence is smaller 265 

for yearly values as there is a higher chance for compensation than for monthly or weekly values. 

 

3.2 Analysis of performance scores based on in-situ station data as reference 
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After investigating differences between the OSHD-CLQM and OSHD-EKF models, we here now compare HS simulations of 

the two gridded models with HS observations at the stations. Note, that point observations do not necessarily represent spatial 270 

means over large grid cells, particularly in complex and steep terrain, and a comparison to results from a model that represents 

the existing sub-grid variability is hence confounded. 

Figure 5 illustrates that the yearly scores between the stations and the respective model grid points of OSHD-CLQM and 

OSHD-EKF show remarkable similarity overall. However, R values of OSHD-EKF stand out as being more consistent and 

are found to be higher in all elevation bands, especially at lower elevations. As expected for a model that assimilates snow 275 

observations, OSHD-EKF demonstrates slightly better comparison statistics, but the differences are minor which attests to the 

good performance of the quantile mapping procedure. Both models show larger BIAS values at higher elevations, peaking in 

the highest elevation band with median values of about -20 cm, which indicates that, as expected, the two models feature less 

snow at the highest elevations compared to the station values. There are several reasons for these BIAS values. First, data from 

flat field observations at high elevation often show larger values than the surrounding area (Grünewald and Lehning, 2015). 280 

Second, the SWE2HS algorithm sometimes tends to underestimate HS at these elevations (Aschauer et al., 2023). And third, 

there is lack of stations for assimilation at thigh elevation (Mott et al., 2023). In relative terms this bias, which is reflected in 

the MAAPE score, reveals errors between 20 and 25 % at the elevation band 1500 m and above. This is in strong contrast to 

the values of about 80 % at the 500 m elevation band, owing to the very low mean snow depths at these elevations. 

 285 
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Figure 5: Score comparison between station data and OSHD-CLQM (left) as well as OSHD-EKF (right) in the 
respective elevation bands for yearly snow depth values. Median value is illustrated as purple line and mean value as 290 
green triangle. 

 

The same analysis has been undertaken for monthly and weekly performance scores (Figure S3) and generally reveals the 

same pattern (lower performance for smaller time aggregations) as found when intercomparing the two models, with the 

difference that the performance decrease going from yearly to monthly or weekly time-windows is now much weaker. OSHD-295 
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EKF stands out again with higher R values, especially at lower elevations. MAAPE median values are again largest at 500 m, 

with median values reaching 100% for monthly and 110% for weekly aggregations. These values decrease to 40% and less for 

elevations above 1500 m for monthly and weekly time-windows. 

Similarly, the beginning and end of the snow-covered season has generally a lower performance than mid-winter also at higher 

elevations because the situation is similar as at low elevations during the entire winter. This implies the transition seasons 300 

between no-snow and snow also at higher elevations have the same potential problems as at low elevations during the entire 

winter. These problems involve among others high spatial variability and no information on the soil temperature, which is 

decisive for the survival of potential snow fall. But since our focus was between November and April this seasonality issue 

does only affects the 1000 and 1500 m elevation band. 

The above shown station-based comparisons are not independent as the same station data is used in the assimilation step of 305 

OSHD-EKF, which then also indirectly influences OSHD-CLQM through the quantile-mapping step. In a separate step, we 

therefore additionally analyzed also non-assimilated stations with respect to the OSHD-CLQM model (Figure 6). The result 

demonstrates that there is hardly any difference between the found BIAS for the assimilated and non-assimilated stations. This 

indicates that the assimilation of stations within OSHD-EKF transfers well to unobserved locations, while the quantile mapping 

is capable of inheriting this asset to OSHD-CLQM. As expected, we see generally higher BIAS values above 2000 m, which 310 

(as explained above) is due to the fact flat field observations at high elevation often show larger values than the surrounding 

area. As shown in Figure 5 these BIAS values are only about 20% in relative terms. Moreover, above 2000 m the errors for 

the non-assimilated stations are in general only about 5 cm larger, which corroborates the performance of the quantile mapping 

step for this independent dataset. 

 315 

 
Figure 6: BIAS of yearly mean snow depth [cm] vs elevation [m] for the comparison of assimilated (red) and non-
assimilated (blue) stations value with respect to the OSHD-CLQM model. The curves are polynomials fits of second 
degree. 

 320 

When looking at the entire country, i.e. grid points of all stations across Switzerland (Figure S4Figure S4), the analysis reveals 

a slightly better performance for OSHD-EKF, which can be best seen in the clearly smaller number of outliers and the smaller 

whisker range for MAAPE and R. Differences due to temporal aggregations can best be observed in RMSE, where yearly 

mean values are about 10 cm. This value is increasing to about 15 cm for monthly mean values and almost 20 cm for weekly 

mean values. This good performance when averaging over all grid points gives confidence in typical climatological analysis 325 
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like the comparison of the annual snow depth evolution between different climate periods (e.g. 1962-1990 with 1991-2020). 

The corresponding plot (Figure S6Figure S5) demonstrates a clear decrease of snow depth in recent decades, which is mainly 

driven by less accumulation in spring and an earlier snow disappearance in summer. This finding is not new as it has been 

found based on station data (Klein et al., 2016; Marty et al., 2023), but can now also be demonstrated in a quantitative way 

with gridded data. For station data, the mentioned studies explained the snow depth decrease with higher temperatures. 330 

3.3 Evaluation of trends 

3.3.1 Elevation dependent snow depth trends 

Here, we investigate how long-term HS trends of OSHD-CLQM and OSHD-Comb compare to trends observed at stations in 

the different elevation bands. Already Figure 5Error! Reference source not found. demonstrated that compared to station 

data, median performance scores of OSHD-CLQM and OSHD-EKF are generally (except R) very similar, demonstrating the 335 

good performance of the quantile mapping step. However, focusing on the whiskers of the boxplots, it is obvious that with 

OSHD-EKF smaller errors (outliers) are achieved. Therefore, using OSHD-EKF data instead of OSHD-CLQM data, when 

possible, i.e. OSHD-Comb, can be an asset from 1999 onward, because two datasets only differ after 1999. Any differences in 

their long-term trends are due to differences in the most recent period (after 1999).  However, the trends of the two model 

chains after 1999 are still fairly similar (Figure S5). 340 

 

 

Figure 7: Trends of yearly snow depth[cm / decade] calculated using Theil-Sen slopes for the OSHD-CLQM and the 
combined model data series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500, 
(b) 1000, (c) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). Significance is indicated with * p < 0.05; 345 
** p < 0.01; *** p < 0.001. The dashed line indicates the year 1999, before which the yearly values of OSHD-CLQM 
and OSHD-comb are the same. 

 

The combined model OSHD-Comb utilizes the OSHD-EKF, which helps capturing short-term variations more accurately in 

the period since 1999. Meanwhile, OSHD-CLQM originates from quantile mapping of the climatological model OSHD-CL 350 

onto OSHD-EKF aiming to reduce systematic differences in the simulation of OSHD-CL (Michel et al., 2024 and Fig. 1). On 

the other hand, using OSHD-Comb could introduce temporal inconsistencies at the point in time when OSHD-CLQM and 

OSHD-EKF are combined (1998/1999; see Figure 1), which we investigated by analyzing the involved trends shown in Figure 

7Figure 7. Examining the plots in this figure reveals that the interannual variability in the modelled long-term snow depth time 

series (OSHD-CLQM and OSHD-Comb) agree very well, especially when comparing all elevations (Figure 7Figure 7f). But 355 
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both datasets also align well with the long-term station data, particularly at elevations of 1000, 1500, 2000 and 2500 m, which 

demonstrates the performance of the quantile mapping step in these elevation bands. The OSHD-Comb trend magnitude is 

marginally weaker than the OSHD-CLQM trend magnitude and thus closer to the station-based trend magnitude for all 

investigated elevations with the exception of the 2000 m band. The largest differences between station-based and model-based 

trends appears, again, in the lowest elevation band, which corroborates the findings of Michel et al. (2024) and Figure 5 with 360 

large relative errors at low elevation. On a closer look at this low elevation band (Figure 7Figure 7a), we see that largest 

differences occur during snow-rich winters in the first 20 years. These differences are similar when using OSHD-CL (not 

shown), which indicates that not the QM step, but either the meteorological input data and/or the temperature-index model are 

the main reason for the large biases in the first two decades in the lowest elevation band and that the QM step fails to correct 

this. Focusing on the significance of the decreasing trends we see that the level of significance agrees well for all data sets and 365 

elevation bands, which is also in agreements with other studies analyzing station-based trends.  

Notice, there is only one long-term station available in the 2500 m elevation band, which strongly limits the informative value 

of this elevation band. Therefore, an additional analysis for this elevation band has been undertaken for the shorter 24-year 

period 2000-2023 (Figure S7Figure S6), where data from 14 stations are available. This figure corroborates the findings of 

Figure 7Figure 7e by the similarity and the non-significance of the found trends in this elevation band. The above results agree 370 

well with other recent studies analyzing station-based trends with mostly significant decreasing trends below about 2000 m 

(Matiu et al., 2021; Marty et al., 2023). 

An example that demonstates the possible differences between the two datasets OSHD-CLQM and OSHD-EKF is illustrated 

in Figure 8, which shows climatological anomaly maps for the example of winter 2018 (Nov-Apr) for both datasets. The 

relative snow depth anomaly for this season with respect to the long-term mean (1991-2020) is clearly above average in the 375 

Alps (see high elevations in Figure 2) and in the south for both datasets, but less consistent patterns appear at low elevations 

in the north. A visual comparison to the station values (marked in Figure 8 as well) demonstrates that OSHD-EKF provides 

the more accurate results regarding these regional differences revealing that the Swiss Plateau experienced clearly below 

average snow depth in the 2018 winter season. Moreover, OSHD-EKF in this case appears to exhibit greater spatial uniformity. 
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This result is not surprising as already 380 

 

Figure 3Figure 3 and Figure 4 demonstrated that the performance of quantile mapping approach used in OSHD-CLQM is 

limited in case of low-snow environments (i.e. at low elevation for Switzerland). 

 

 385 
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Figure 8: Relative snow depth anomaly (%) of winter 2018 (Nov-Apr) with respect to the long-term mean (1991-2020) 
for OSHD-CLQM (top) and OSHD-EKF (bottom). Red indicates below-average, yellow average, and blue signifies 
above-average snow depth. The colored dots and numbers indicate station anomalies.  
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 390 

3.3.2 Snow depth trends at individual stations 

We also conducted a trend comparison based on single grid points, since having available a gridded dataset makes it tempting 

to use information from single grid cells in places where no station measurements are available. We compared the Theil-Sen 

slopes of the yearly means of stations with those of the closest grid point from both the OSHD-CLQM and the OSHD-Comb 

model. The corresponding plot (Figure 9) reveals that in the large majority of the cases the trends well align between models 395 

and stations. Moreover, there seems to be almost no performance difference between the two model chains. However, we can 

also observe that the bias (difference between station and model trend) is large for a small set of station at elevations between 

1200 and 2000 m. Both, OSHD-CLQM and OSHD-Comb show the same eight stations that differ by more than ± 4 cm/decade 

in their trends. Out of these eight stations, there are 5 stations, which show a considerably weaker trend, and 3 stations which 

show a stronger trend in the modeled time series compared to those of the respective stations. 400 

 

 

Figure 9: Scatter plots of station elevation [m] vs difference (station minus model) of the snow depth trend [cm / decade] 
for yearly values in the period 1962-2023, for OSHD-CLQM (left) and OSHD-Comb (right). Differences larger than 1 
and smaller than -1 are depicted with an orange diamond and red square respectively. Stations that show a difference 405 
greater than ± 4 cm/decade are labeled. 

 

Upon closer examination of these stations, we find that one station (7DI0) is located above the tree line and heavily wind 

influenced and subject to several relocations during the investigated period. Moreover, three stations (3UI0, 5KK0, 2ME0) are 

known as inhomogeneous series, due to major shifts in location (Buchmann et al., 2022). These findings reveal that the new 410 

gridded datasets have some potential to find indications of potential inhomogeneities in station time series. However, there are 

also larger differences for four other stations, which compared to trends at neighboring stations and neighboring grid points 

are probably caused by station inhomogenities (3FB0) or problems with the gridded meteorological input data (6BG0, 7MA0, 

SIA0). Interestingly the former three stations are all in southern regions with steep topography and only few precipitation time 

series available as input. These examples also indicate that when comparing station data to model values, we should sometimes 415 

rather use multiple grid points of a larger area for comparison instead of only one single grid cell (see 3.4 and Michel et. al. 

2024). 

Such exceptions do not impact the informative value of the gridded trend results on a larger spatial scale. Indeed, a map 

illustrating of the OSHD-CLQM trends for each grid point in Switzerland separately (Figure 10) reveals significant trends at 

almost all low and mid elevated regions, which corroborates the results of Figure 7Figure 7. Elevations above 2000 m along 420 

the main alpine ridge and in adjacent inner-alpine dry regions show mostly non-significant decreasing trends, except a small 

area near the southwestern border (Saas Valley) with non-significant increasing trends. The only non-significant region in the 
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lowest elevation band is located in the Rhone valley southeast of the lake of Geneva (southwestern corner of Switzerland). 

Moreover, Figure 10 generally confirms the known weaker absolute trends at lower elevations (Schöner et al., 2019) by the 

easy visual recognizability of the alpine valleys. Finally, Figure 10 also demonstrates a good agreement with a similar analysis, 425 

but a different model, for Austria (Olefs et al., 2020), in which also partly non-significant trends for the Austrian region (Tirol), 

which is adjacent just east of south-eastern Switzerland, were found. In relative terms (Figure S9Figure S8), the trends become 

largest at low elevation (mainly Swiss plateau), where values between -10 to -20 % per decade are typical. Above 1000 m, 

however, typical relative trends are between -5 and -10 % per decade. 

 430 

 

Figure 10: Trends of yearly mean snow depth (cm/decade) for the period 1962 - 2023 based on Theil-Sen slopes for 
each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m 
are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.  

 435 

3.3.3 Elevation dependent snow day trends 

The number of snow cover days during a season is a useful additional metric as it reflects not only the quantity of snow in the 

Alps but also the duration. The duration of snow cover is important for the energy balance of the Earth’s surface and holds 

important implications for various sectors, including ecology, winter tourism or energy production (hydro and PV power). 

Comparing the different datasets in Figure S8Figure S7 across the five elevation bands reveals on the one hand that the 440 

direction of the trends (mostly decreasing) is the same in all analyses. No trend could be detected in those elevation bands 

where the number of snow days is bounded due to our November to April season definition (low HS threshold at high elevation) 

or where the number of snow days was mostly zero (high HS threshold at low elevation). 

There is generally less agreement in the magnitude of the trends for the number of snow cover days (Figure S8Figure S7) 

compared to corresponding analysis of mean snow depth (Figure 7Figure 7). Such a disagreement is not uncommon, as 445 

threshold analyses in general are known for their high sensitivity and limitations of the input data do likely also contribute (see 

3.4). At 500 m and with a 5 cm threshold, models predict over double the decrease compared to stations. This matches the 

result observed in the mean HS trend analysis at 500 m. 
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Having a closer look, we can see that in most instances OSHD-Comb generally demonstrates better agreement compared to 

the year-to-year station fluctuations at stations. Below the elevation band of 2000 m, both models demonstrate a significant 450 

decreasing trend. At the 2000 m elevation, the models only show significance with p > 0.05 at a threshold of 30 cm. However, 

significance is observed at all other thresholds and elevation bands up to 2500 m. The elevation-dependent pattern agrees well 

with that seen for snow day trends in Fig. A1 in Buchmann et al. (2023). The largest decrease in number of snow cover days 

(about 9 days per decade) is found at 1000 m for the 5 cm threshold. This is likely because this elevation band coincides with 

the current mean snowfall limit (Scherrer et al., 2021). Below 1000 m, snow cover days are already rare, leaving little room 455 

for further decline, while above 1000 m, mean winter temperatures remain below freezing, resulting in smaller absolute 

decreases. 

3.4 Limitations regarding input data and involved models  

When utilizing the investigated gridded snow dataset for climatological analyses, the involved uncertainties of the underlying 

input data and methods used to derive SWE and HS should always be considered. They include the following issues. 460 

The gridded temperature and precipitation datasets used as input for the snow model (see 2.1) are not perfectly consistent over 

time as the number of stations available for the spatial analysis on the 1 km grid can vary over time and elevation (Frei, 2014). 

It is important to keep this fact in mind when using the gridded snow datasets for trend analysis. 

Furthermore, there are unresolved small-scale effects in these gridded input datasets. Regarding temperature, among these are 

all kinds of land cover effects (e.g. lakes and urban heat islands) and the influence of local topography. As a result, it must be 465 

expected that spatial variations are underestimated (too smooth), particularly at the scale of the grid-point spacing, and small-

scale patterns may small-scale patterns may not be accurately represented (in both extent and amplitude) at the scale of the 

model grid. display with considerable uncertainty in extent and amplitude. This is particularly true for valley cold pools - their 

reproduction by the analysis critically depends on the existence of in-situ measurements within these pools. Hence cold air 

pools may be missing completely in un-instrumented valleys (see Frei et al. (2014)). Regarding precipitation, possible 470 

undetected station and time dependent measurement errors can always be an issue and the interpolation is limited by small-

scale variability of precipitation. The provider of the datasets (MeteoSwiss) expects that the effective resolution of the daily 

gridded precipitation product is in the order of 10 to 20 km, likely even coarser in the high mountains. Additionally, 

measurements by rain gauges are subject to systematic errors, like gauge under-catch, which causes an underestimation of 

precipitation, particularly during days with snowfall and at wind-exposed locations (Yang et al., 1999). However, the problem 475 

should be, at least partially, mitigated by the QM step, which constrains the model by assimilation of snow depth observations 

(OSHD-EKF) and thereby indirectly also corrects for under-catch issues in the gridded precipitation dataset. 

When these two gridded datasets (temperature and precipitation) are used as input for the temperature-index based snow model, 

we must be aware that the temperature data represents the daily average from midnight-to-midnight UTC, whereas the 

precipitation data represents the daily average from 06:00 UTC of day D to 06:00 UTC of day D+1. This temporal mismatch 480 

is another reason for possible biases in gridded snow data, especially at shorter time scales. A particularly relevant contributing 

factor in this regard is the use of daily average temperatures to partition precipitation into snowfall and rain. Uncertainties arise 

every time a precipitation event happens at times that are colder (nights) or warmer (days) than the 24h average temperature, 

which is a generic limitation of models that use input data at daily rather than hourly resolution. 

Another factor contributing to the overall uncertainty is the fact that the OSHD-CLQM modelling chain is based on a 485 

temperature-index model with a parameter set (Magnusson et al., 2014) that is applied over the entire six-decade long period. 

This fact and the above-mentioned limitations of the atmospheric input data are a reason why the assimilation of snow 

measurements is an important step and that the corresponding OSHD-EKF datasets are of better quality.  
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A further potential inhomogeneity arises when using OSHD-Comb, as two data sets of different quality are combined here. 

Our analysis demonstrates that the impact is small when using data of the entire country on the current time series length. But 490 

this does not need to be the case for smaller regions or shorter time periods. 

Finally, it is important to keep in mind, that the OSHD datasets provide SWE values, which are then converted to HS. This 

conversion has a RMSE of about 1.5 cm and a BIAS of 1 cm (Aschauer et al., 2023). Therefore, HS has always a slightly 

higher uncertainty than SWE.  

4 Conclusions 495 

We analyzed the potential and limitations of newly developed spatially gridded datasets of snow water equivalent and snow 

depth for climatological applications in Switzerland spanning over 6 decades from 1962 to 2023. Our results demonstrate that 

the use of a long-term gridded snow data has a high potential for climatological analysis, albeit with some limitations. Our 

analysis corroborates the findings of Michel et al. (2024), that the quantile-mapping approach generally achieves good results 

in producing long-term climatological timeseries of snow. In addition, we could for the first time demonstrate in a quantitative 500 

manner how the uncertainty of new gridded climatological snow depth datasets increases with shorter analysis time scales and 

especially for low elevations. 

More specifically, a comparison of the 60+ year-long datasets to station measurements for yearly mean snow depth values 

revealed in general a good performance of the new gridded datasets. We also evaluated how well station-based trends were 

captured in the modelled gridded datasets. In general, the results demonstrated a very good agreement between station- and 505 

model-based trends, i.e. clear decreasing trends for mean snow depth and the snow cover duration (based on snow days) for 

the different elevation bands. Yearly mean snow depth demonstrated an excellent agreement with respect to the decrease per 

decade and the significance of this decrease for the different elevation bands, except for the lowest elevation band, where snow 

is generally scarce. There, the modeled trend was much stronger as the station trend. The same trend overestimation in the 

lowest elevation band was also found when analyzing trends of the number of snow days. However, as often with count data, 510 

the agreement between model- and station-trends was not as good and depended also on the threshold of the snow day 

definition. Generally, as shown by these results, station data is more reliable at low elevation. At higher elevations (i.e.  above 

1000 m a.s.l.), SPASS data (OSHD-CLQM or OSHD-EKF) from larger regions and longer periods are often preferable, as 

they are less location-dependent and are also available in the early and late season (early fall and late spring). 

Moreover, a comparison between long-term trends of mean snow depth calculated using in-situ data from individual stations 515 

and gridded data with the closest grid points revealed a generally good agreement. However, for about 20 % of all stations, the 

disagreement between the trends was larger than 1 cm /decade and sometimes even had the opposite direction, owing to either 

inhomogeneities in the observations or modeling / input data issues. Therefore, we generally recommend using the new SPASS 

datasets for trend analysis with at least some level of spatial aggregation and for elevation above 1000 m, while caution is 

needed for interpretation of data at the grid point level and/or in low-snow regions. Furthermore, we urge caution when using 520 

maximum values, because the applied quantile mapping method does can by definition not really capture extreme values as 

they are corrected according to the correction of the 99th quantile (Michel et al., 2024). 

On the other hand, the generally good performance of the new datasets allows for the first time to produce e.g. high resolution 

(1 km), high quality country-wide SWE and snow depth maps of climatological mean values or monthly/seasonal anomaly 

graphs for different regions/elevations. Moreover, except for low elevations, the data provide a reliable basis to analysis 525 

elevation dependent trends of SWE and snow depth. Hence, these datasets are an important basis for applied research in winter 

tourism (Troxler et al., 2023) or hydrology (Chartier-Rescan et al., 2025) in an alpine country like Switzerland. For these 

reasons the two involved institutions (SLF and MeteoSwiss) use the new datasets to regularly provide maps and graphs on the 
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current snow status in Switzerland as a climate service for interested public or businesses (BAFU,2024; WMO, 2024b; SLF, 

2025). 530 

Our results also reveal that it may be worth to make use of the higher-quality, but shorter-term OSHD-EKF dataset, which 

assimilates in-situ snow depth data. This is especially true at low elevation and for shorter time aggregations like month or 

week. This fact also demonstrates that long-term station measurements are still indispensable, as they are needed to produce 

long-term, high-quality gridded snow datasets. 

5 Data Availability 535 

Model data of SWE and HS is available on envidat.ch (doi.org/10.16904/envidat.580). In-situ snow depth data from SLF 

stations can be freely downloaded from: https://www.slf.ch/en/services-and-products/slf-data-service. In-situ snow depth data 

from MeteoSwiss are available on request. 
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Short Summary 

 

This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for 660 

Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ 

measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales. 

Moreover, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based 

changes. 
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10 Supplement 

10.1 Additional Tables 

Table S1: List of stations and corresponding altitude used for comparison in each elevation band. Station with a number 670 
at the beginning or end of the listed station indicatives are maintained by SLF and stations without any number are 
maintained by MeteoSwiss. 

250 – 750 m 751-1250 m 1251-1750 m 1751-2250 m 2251-2750 m 
Stat Alti Stat Alti Stat Alti Stat Alti Stat Alti 
BAS 316 LAG 755 5SI 1273 7SD 1751 TUJ2 2262 
OTL 366 1LB 800 2ST 1280 7SN 1752 BOG2 2299 
GVE 410 7BR 800 1WE 1280 2TR 1780 CMA2 2325 

DEM 416 STG 802 1LS 1300 4SF 1790 NAS2 2350 
SNS 439 5KU 815 3BR 1310 6RI 1800 JUL2 2426 
ALT 449 EIN 910 3FB 1310 SIA 1801 GOM3 2427 
KOP 483 ELM 965 1MI 1320 7MA 1810 PMA2 2429 
NEU 483 CHD 985 2ME 1320 1HB 1825 EGH2 2500 
SIO 485 7PV 1015 1AD 1325 5AR 1845 5WJ 2536 

LAN 538 2EN 1023 3UI 1340 7MZ 1850 ATT2 2550 
BER 548 GTT 1055 4UL 1345 1GH 1970 DIA2 2569 
CHU 572 2OG 1060 1LC 1360 4SH 2000 ANV3 2589 
MER 592 ROB 1078 7ST 1387 7DI 2090 VIN2 2729 
SMA 604 AIR 1139 1SM 1390 7AG 2090 LAG2 2730 

VIS 662 2SO 1150 4MS 1430     
MAS 718 D1S 1190 2AN 1440     

  1GS 1190 4WI 1450     
  1GA 1190 5SP 1457     
  5KK 1190 5IN 1460     
  3MG 1190 5SA 1510     
  6CB 1215 6BG 1525     
    5DF 1560     
    4GR 1560     
    1GB 1565     
    4MO 1590     
    4ZE 1600     
    6SB 1640     
    1MR 1650     
    4BP 1670     
    7CA 1690     
    7ZU 1710     
    7FA 1710     
    7LD 1710     
    5ZV 1735     
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Table S2: Number of available stations in the two different comparison periods, as well as the number of grid points in 
absolute and relative terms per elevation band. 

Label Elevation band # of stations 
1999-2023 

# of stations 
1962-2023 

# of grid 
points 

% of grid 
points 

< 250 m    72 0.2 

500 m 250-750 m 16 16 13405 34 

1000 m 751-1250 m 21 21 8056 20 

1500 m 1251-1750 m 34 34 5880 15 

2000 m 1751-2250 m 16 16 5592 14 

2500 m 2251-2750 m 16 1 4731 12 

> 2750 m    2105 5 
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10.2 Additional Figures 

 

 

Figure S1: Climatology of monthly SWE values of OSHD-EKF and OSHD-CLQM in the 2000 m elevation band 685 
between the common period 1999- 2001. Numbers is the boxplots indicate monthly median values. 
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 690 

Figure S2: Score comparison between models CLQM and EKF (’reference’) on a monthly (a,b) and weekly (c,d) 
resolution at respective elevation bands for SWE (a,c) and HS (b,d). Median value is illustrated as purple line and mean 
value as green triangle. 
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Figure S3: Score comparison between stations data and OSHD-CLQM (a,c) as well as OSHD-EKF (b,d) for monthly 
(a,b) and weekly (c,d) snow depth values in the respective elevation bands. Median value is illustrated as purple line 700 
and mean value as green triangle. 
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 705 
Figure S4: Score comparison between all stations and the respective model gridpoints of OSHD-CLQM (left) and 
OSHD-EKF (right) for yearly, monthly and weekly snow depth values. Median value is illustrated as purple line and 
mean value as green triangle. 
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 710 

Figure S5: Same as Figure 7, but for 1999-2023. Trends of yearly snow depth[cm / decade] calculated using Theil-Sen 
slopes for the OSHD-CLQM and the combined model data series (OSHD-Comb), as well as for station measurements 
for the five elevation bands: (a) 500, (b) 1000, (c) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). 
Significance is indicated with * p < 0.05; ** p < 0.01; *** p < 0.001.  

 715 

 

Figure S65: Annual evolution of snow depth from the OSHD-CLQM model for the two 30-year reference periods 1962-
1990 (blue) and 1991-2020 (red). The daily values are calculated based on all grid points between 0 and 3000 m in 
Switzerland. 
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Figure S76: Trends of yearly snow depth [cm / decade] calculated using Thiel-Sen slopes for the OSHD-CLQM and the 
OSHD-EKF, as well as for station measurements (mean of 16 stations) for the highest elevation band (2500 m). Possible 
significance is indicated with * p < 0.05; ** p < 0.01; *** p < 0.001.  
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Figure S87:  Trends of median snow days for three different thresholds (5,30, 50 cm) using Theil-Sen-slope regression 
for OSHD-CLQM and OSHD-comb, as well as stations across five elevation bands: (a) 500, (b) 1000, (c) 1500, (d) 2000, 730 
and (e) 2500 m. Significance is indicated with * p < 0.05; ** p < 0.01; *** p < 0.001. The dashed line indicates the year 
1999, before which the yearly values of OSHD-CLQM and OSHD-comb are the same. 
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Figure S98: Relative trends of yearly mean snow depth (%/decade) for the period 1962 - 2023 based on Theil-Sen slopes 
for each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 
m are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.  
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