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Abstract: Gridded information on the past, present and future state of the surface snow cover is an indispensable climate
service for any snow-dominated region like the Alps. Here, we present and evaluate the first long-term gridded datasets of
modeled daily snow water equivalent and snow depth (OSHD-CLOQM), which are available for the last 60+ years (since 1962)
at 1 km spatial resolution over Switzerland. The-eemparisen validation against thea higher quality, but shorter duration sherter
modeldatasetOSHD-EKF model shows on the one hand a good perfermanee-validation results regarding bias and correlation

and on the other hand acceptable absolute and relative errors except for ephemeral snow and for shorter time aggregations like

weeks.

dataset-An evaluation using in-situ station data for yearly, monthly, and weekly aggregations at different elevation bands shows

only slightly better performance scores for OSHD-EKF, highlighting the effectiveness of the quantile-mapping method used

to produce the long-term climatological OSHD-CLQM dataset. For example, yearly maps of gridded snow depth compared to

in-situ data demonstrate an RMSE of 25 ¢cm (20 %) at 2500 m and of 1.5 cm (80 %) at 500 m. For monthly averages, these

numbers increase to 30 cm (25 %) and 3 cm (100 %), respectively. A trend analysis of yearly mean snow depth from this

gridded climatological- and from station-based data revealed a very good agreement on direction and significance at all
elevations. However, at the lowest elevations the strength of the decreasing trend in snow depth is clearly overestimated by
the gridded datasets. Moreover, a comparison of the trends between individual stations and the corresponding grid points
revealed a few cases of larger disagreements in direction and strength of the trend. All these results imply that the performance
of the new snow datasets is generally encouraging but can vary at low elevations, at single grid points or for short time

windows. Therefore, despite some limitations, the new 60+ years-long OSHD-CLOM gridded snow products show promise

as they provide high-quality and spatially high-resolution information of snow water equivalent and snow depth, which is of

great value for typical climatological products like anomaly maps or elevation dependent long-term trend analysis.

1 Introduction

Snow cover is an integral and crucial component of the Earth’s energy and water balance. It reacts sensitively to climate change
due to its dependence on precipitation and temperatures below freezing. Climate changes lead to changes in the extent,
thickness, density, optical and thermal properties of the snow cover and thus of the Earth's surface and the boundary layer
between the Earth and the atmosphere (Abe, 2022). These changes have far-reaching consequences for glaciers, extreme
events, natural hazards, ecosystems, biodiversity, forests and landscapes, as well as for winter sports and the tourism industry,
both globally and regionally (Mote et al., 2018; Lopez-Moreno et al., 2020; Bozzoli et al., 2024). This also includes the impact
on water resources for irrigation, drinking water and hydropower (IPCC, 2019). Snow as frozen precipitation is of increasing

importance globally in a world facing more frequent droughts on the one hand and more extreme precipitation events on the



40

45

50

55

60

65

70

75

other, where snow can dampen immediate runoff but can also cause avalanches or flooding (Barnett et al., 2005). Accurate
information about the past and current evolution of the snow cover is therefore of high importance (Van Ginkel et al., 2020).

In contrast to the hemispheric level (Mortimer et al., 2020) or other countries (Olefs et al., 2020), Switzerland so far provided
long-term snow cover information based on in-situ data of daily snow depth (Marty and Blanchet, 2012; Scherrer et al., 2013;
Schmucki et al., 2017) and bi-weekly water equivalent of the snow cover (SWE) from national monitoring networks (Marty
et al., 2023), which are only available at about 10 % of the snow depth measuring stations. Both data, snow depth (HS) and

SWE,-efwhieh are regularly published in the annual winter reports (Pielmeier et al., 2024) and in online repositories (Marty,
2020). Such point-based time series are very valuable because of their lengths and documented measurement history
(Buchmann et al., 2022). However, even though Switzerland has a high density of snow measurement stations, their

asymmetric distribution (especially in terms of altitude) and irregular temporal availability (some had to be abandoned, others

recently started from scratch due to automation) limit their usefulness for climatological applications beyond station-based

analyses, i.e. the provision of altitude-dependent region- or country-wide snow information.

Ideally, snow data would be available on daily scale in a gridded format for many decades. Using interpolated station data for

this purpose (Luomaranta et al., 2019) has several disadvantages because of the above-mentioned asymmetric distribution and

irregular temporal availability of station series. Using remote sensing data (Poussin et al., 2025) is another option but is

hampered by irregular temporal availability (among others due to cloud coverage), possible inhomogeneities (due to different

satellite generations) and limits the time period back to the beginning of the 1980’s. A third and often used option is the use

of model or reanalysis data, which is often only available at relatively sparce spatial resolution. In a recent study, Scherrer et

al. (2024) evaluated the usefulness of existing long-term and spatially gridded SWE datasets for Switzerland. (Peussin-etal;

resolution ones, have problems correctly representing small SWE values at low elevations and they conclude that a km-scale
model with assimilated snow measurement data is highly preferable. The only model in this investigation, which fulfilled these

requirements, was thea temperature-index model OSHD-EKF, which is also used in this study as a benchmark dataset for the

evaluation.

—This model, which is operated by the
operational snow hydrological service (OSHD) at WSL Institute for Snow and Avalanche Research SLF, is from now on
referred to as OSHD-EKF and provides daily 1 km gridded information on SWE between 1999 and today (for details see Mott
et al. 2023). The length of this dataset is limited back to 1999 because there are not enough high-elevation snow stations
available for assimilation before that time. To overcome this limitation and make use of the full period of available gridded
datasets (1962 to today), we developed within the project SPAtial Snow climatology for Switzerland (SPASS) the quantile
mapping procedure {SnowQM. which was presented in (Michel et al., 2024)3}. This method allows correcting the not data-

assimilated full climatological SWE time series starting in the hydrological year 1962 (OSHD-CL) into a better quality dataset
(OSHD-CLQM) which mimics the higher-quality model OSHD-EKF (Michel-et-al2024). For the development of OSHD-
CLQM, the quantile mapping method SnowQM was calibrated and validated with SWE simulations between 1999 and 2021
using the OSHD-EKF data set as target and was then applied to the OSHD-CL data set over the period from the hydrological
year 1962 to today (Figure 1).

Michel et al. (2024) concluded that the developed quantile-based correction can efficiently reduce the pronounced SWE bias
at high elevations and that the average bias is always close to zero. Moreover, they stated that the mean absolute error can
remain large even after correction and that SnowQM is not expected to do more than a climatological bias correction, meaning

biases at short time scales, like on a single day or month, are not necessarily corrected. Additionally, they mentioned that such
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biases can also concern entire winters at low elevated regions. However, quantitative information on elevation-dependent
uncertainties are not provided but are important in mountain regions (Switanek et al., 2024). Moreover, the above-mentioned

OSHD datasets only contain SWE as snow variable. However.Michel-et-al+2024) -Additionally;-as-SWE is an unusual and

elusive variable for the non-scientific public (e.g. tourism, media), and many applications explicitly need snow depth (HS).

The novelty of our study is therefore, first, the creation of ~the corresponding gridded datasets for snow depth by applying

Aschauer-et-al{2023) developed-the the SWE2HS algorithm developed by Aschauer et al. (2023 to-convertdatly-SWE-te-HS;

overburden—and-SWEessesswe compared the OSHD-CLQM datasets to the higher quality OSHD-EKFethergridded and

station-based datasets and-to investigate potential time aggregation- and elevation-dependent biases. Third, we also analyzed

differences in long-tern trends -dependen A-i-temporal-ageregation—i)-elevation—iib)-trend-analysis-to get a clearer picture

on their potential and their limitations of the datasets. These 3 aspects combined allow us to provide an unprecedented long-

term gridded snow depth dataset and assess its utility across a range of potential use cases. In the next section (2), we first

present the used gridded- and station data, as well as the evaluation methods applied. In section 3, we explain and discuss the

results before summarizing we-eonehadeour findings in section 4.

2 Data and methods

2.1 Spatial SWE and HS datasets

As illustrated in Figure 1, the base dataset is OSHD-CL, which provides SWE and is based on a temperature-index model

forced by gridded temperature (TabsD: Meteoswiss, 2021a) and precipitation (RhiresD: Meteoswiss, 2021b) input fields at 1

km spatial resolution as well as an algorithm for the fraction of snow-covered area (Magnusson et al., 2014). As target for the

quantile mapping, we use the higher-quality, but shorter (1999-2023) OSHD-EKF dataset as a benchmark. This dataset was

created using the same model and data, but also assimilating snow data from a time-invariant set of 350 in-situ snow stations

using an ensemble Kalman filter (Magnusson et al., 2014). In a next step, the data were corrected by the SnowQM algorithm,

so_such that OSHD-CLOM data finally consists of 1 km daily gridded quantile-mapped SWE data over the domain of
Switzerland_between 1962 and 2023 (Michel et al., 2024). The-main-dataset-of this-stadyis-the-above mentioned-OSHD-

~The analyses are performed
for hydrological years, lasting from September of the previous year to August of the year of investigation. The hydrological
year 2023, for instance, consists of the period 1 September 2022 to 31 August 2023. This definition is consistent with the
settings of the OSHD models, which sets SWE to zero on 1 September of each year, to only represent seasonal snow, thus

operating on an annual cycle starting in September.

1962-t0-2023- The corresponding spatial snow depth datasets were derived by applying the SWE2HS algorithm (Aschauer et
al., 2023) to the SWE data of both models (OSHD-CLQM and OSHD-EKF). This algorithm contains a multilayer snow density

model which uses daily SWE as the sole input.
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| Figure 1: Conceptual view of the workflow of the different model- and station-datasets used as well as for which periods
they are available.

125

2.2 Reference datasets

To evaluate the performance of the long-term OSHD-CLQM dataset, we use as two references: (1) the higher-quality OSHD-
130 EKF dataset, which limits the comparison to the 1999-2023 period and (2) daily in-situ station data, which limits the

comparison to snow depth.
It is important to mention that OSHD-CLQM is not independent of the first reference as OSHD-EKF was used in the above-

described quantile mapping step to produce OSHD-CLQM. Additionally, some bias-uncertainty is expected when comparing

4
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HS data, as this variable is only available for both datasets through the conversion using the SWE2HS algorithm_(Aschauer et

al., 2023), which may introduce additional errors particularly in challenging conditions such as rain-on-snow events.
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Figure 2: Map of Switzerland with the elevation of the individual grid points and the distribution of stations used to
validate the gridded datasets. Stations are colored by elevation band; assimilated stations (OSHD-EKF) are shown as
triangles and non-assimilated stations as circles.

When comparing to in-situ data{secendreference} we have to take into account the common grid-to-point mismatch problem.
In this regard, it is important to know that both datasets (CLQM and EKF) are beth-based on the OSHD temperature--index
model (OSHD-CL), which was run in its default mode, where the SWE values represent spatial mean of the respective grid
cells, considering its predominant land cover types and terrain characteristics. This is in-line with the OSHD’s-EKHs objective
of conducting a comprehensive assessment of snow and water resources in Switzerland, but it entails issues when comparing

to in-situ data, which represent snow conditions at flat, non-forested, sheltered field sites_according to international

measurement standards (WMO, 2024). Indeed, the monitoring sites have been reported to often systematically overrepresent

snow depth (Griinewald and Lehning, 2015), hence negative biases of OSHD-EKF relative to station data are expected-ane
intentional, which must be kept in mind when interpreting respective results. Moreover, elevations above 3000 m are not
analyzed as grid points above this elevation are sometimes affected by too much snow accumulation in the model due to the
lack of high-elevation station data for assimilation into the model (Michel et al., 2024).

As daily in-situ snow depth time-series, we use on the one hand data of 103 stations (Table S1), which have already been used
in the assimilation procedure of OSHD-EKF (Figure 1) and are therefore complete between 1999-2023. On the other hand, for
an independent analysis (Figure 6), we use data of 79 independent stations, which have not been used in the data assimilation
step, because they cover only part of the time between 1999-2023. All these stations are alt-located between 200 and 2800 m
a.s.l. (Figure 2), whereas stations below 2000 m consist of manual measurements only and stations above 2000 m mostly

consist of automatic measurements. The data of these stations have been carefully quality-controlled (physical threshold

checks. as well as temporal und spatial consistency checks) and gap-filled (Aschauer and Marty, 2021) in separate steps.

TFechnieally;-Eeach station is compared with its most representative grid point, which was determined based on the selection
of the grid cell that contains the station of interest as well as the eight surrounding grid cells. The grid cell with the smallest

elevation difference to the station was chosen for the comparison_as snow depth is generally strongly dependent on elevation
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(Marty and Blanchet, 2012). The median elevation difference between the station and the selected grid cell over all stations is
10 m with a standard deviation of 23 m; the largest elevation difference is 105 m. The digital elevation model to determine the

grid point elevation was provided by swisstopo (2017).

2.3 Spatial and temporal aggregations

Michel et al. 2024 demonstrated that the SWE bias of OSHD-CLQM is not remarkably different between north and south of
the Alps, which are the two main climatic regions in Switzerland. We here focus on elevation dependent biases, as the existence
of snow in the Alps strongly depends on the elevation above sea level (Schoner et al., 2019; Switanek et al., 2024). For this
purpose, we use elevation bands with a width of £250 m which are centered at 500, 1000, 1500, 2000 and 2500 m. Therefore,
we also pool the above-mentioned station data into these elevations bands with the goal to compare all corresponding grid
points in an elevation band to all stations in this elevation band (Table S1 and Table S2).

These elevation bands imply that grid points below 250 m and above 2750 m were not evaluated when comparing with station
data, because there are hardly any stations for assimilation or validation available below and above these thresholds 2758

). Additionally, there are hardly any grid points below 250 m in the domain of Switzerland (see Table S2).

To assess time aggregation dependent biases, we use aggregations of the daily data to weekly, monthly and yearly mean values.

The motivation behind the used temporal units was given by the following facts: Climatological analysis analyses are often

provided by yearly or monthly reports and we wanted to assess the uncertainty of the new snow products with the goal to

include them in future such reports. Moreover, knowing about the need for timely public information about possible current

extraordinary situations, we also assessed the weekly aggregation level. Daily aggregations were by purpose not assessed as

the quantile mapping method at this scale can be associated with substantial uncertainties and that an interpretation of the

results at this high temporal resolution is not recommended (Michel et al., 2024). Yearly mean values are based on the 6-month

period between November and April, which we will refer to as ‘yearly’ from now on, because it’s the period where snow cover
is predominant in most of the regions in the country and because it’s the period where manual snow depth measurements are

available completely. To compute yearly, monthly or weekly mean values, we always first averaged each grid point over time

for each elevation band. This means that boxplots show the variability across space in each elevation band for each temporal

aggregation. In the case of model-to-station intercomparison (Figure 5, Figure S3), the boxplots were created based on the

number of stations per elevation band (as listed in Table S2).

Moreover, we evaluate time aggregation- and elevation-dependent biases of commonly used climatological anomalies. For
this purpose, the 30-year average between 1991 and 2020 (standard 30-year reference period) is calculated for every grid point
and the ratio between the weekly, monthly or yearly mean values and its reference period is determined. Eorthese-comparisens

erformance-differences-between-OSHD OM-and D

band-is20-stationsminimum-14-stations; maximum-34-stations)- When investigating performance differences between OSHD-
CLOM and OSHD-EKF the evaluation is necessarily based on the period 1999-2023. which also has the advantage of having

more in-situ data (Table S2) available in the different elevation bands (mean per elevation band is 20 stations, minimum 14

stations, maximum 34 stations).

2.4 Merging gridded datasets for trend analysis

It is not surprising and there are clear indications that the climatology of OSHD-CLQM and OSHD-EKF are not that different
(Figure S1). Hence, we also constructed a new “combined” time series OSHD-Comb (Figure 1), by concatenating the first part
of OSHD-CLQM (1962-1998) with OSHD-EKF (1999 and 2023). This approach allows investigating the impact on trends

when merging the best available datasets for each period.
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Long-term trends of all the above mentioned time series are evaluated based on yearly values with the Theil-Sen slope (Theil,
1950; Sen, 1968) and the Mann-Kendall (MK) trend test (Mann, 1945). A positive standardized MK value indicates an
increasing trend, while a negative value demonstrates a decreasing one. Confidence levels of 95% are used as a threshold to
classify a significant trend (p < 0.05). The Theil-Sen slope estimator provides a measure of the strength of a trend based on a
robust simple non-parametric linear regression. Absolute trends were always calculated as change per decade and relative
trends were calculated for the entire 62-year period as percentage changes between 1962 and 2023 based on the Theil-Sen
slope. Please keep in mind that a direct comparison of percentage changes is only meaningful between indicators of the same
unit and similar absolute values. The thus calculated trends of the model datasets are also compared to the trends from in-situ
station data. The stations available for this comparison cover all elevation levels quite well (Table S2). The same stations are
available for each elevation band as for the 1999-2023 comparison, except for the highest elevation band (2250-2750 m a.s.l.),

where only one station covers the required full period between 1962 and 2023.

2.5 Evaluation metrics

The analyses are mainly based on the two variables describing the mass and depth of snow cover: SWE in millimeters and HS
in cm. Moreover, we also analyze the number of snow days.-A-snew-day-is-defined-as day-We define three different classes of
snow days: Days with snow cover of at least 5, 30 or 50 cm of snow depth, which implies that we have three different classes

of snow days.

We use four statistical evaluation scores to compare the various datasets: Root mean squared error (RMSE), mean bias (BIAS),
correlation coefficient (R) and mean arctangent absolute percentage error (MAAPE) to evaluate the gridded snow products.
MAAPE (Kim and Kim, 2016) is an adaptation of the mean absolute percentage error (MAPE), to mitigate large percentage
errors occurring only due to small reference values. To get MAAPE, first, like in the case of MAPE, the absolute relative

difference between the target value (§) and the reference value (y;) is calculated.

n
1 R
MAAPE = —Z arctan (|u|>
né Vi

=1
But then the arctan of this relative difference is taken, which maps large values to [0; 7/2] and hence limits the maximum
relative error to 157 %. When we write about relative errors in the results section, we always refer to MAAPE values for better

readability. E

nporal-dimensions—o pondimg—to-the number-ot-hrydrologiealy —when-usmeO

reference); months{(150)orweeks(668)Thesearrays-ofhe scores finally provide the base for calculating boxplots of RMSE,
BIAS, R and MAAPE fereach-temperal-aggregation—with-in each elevation band (500, 1000, 1500, 2000, 2500 m) for each

temporal aggregationas-running-variable (see also 2.3).

3 Results and Discussion

3.1 Analysis of performance scores based on gridded reference dataset



245

Fso

255

In order to quantify time and elevation dependent uncertainties arising from the quantile mapping, we first evaluated the

OSHD-CLQM model simulation against the OSHD-EKF model simulations used as target dataset (
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Figure 3Figure3). As expected from the quantile mapping procedure (Cannon et al., 2015), BIAS for SWE is close to zero for
all temporal aggregations and all elevation bands. HS, however, reveals a slightly negative BIAS (ca. -2 cm) for the highest

elevation band, because HS has been derived from SWE by conversion using SWE2HS and therefore has not been directly

mapped to match the quantile distributions of the observed snow depth measurements. For both variables SWE and HS, RMSE
and MAAPE demonstrate a moderate worsening of the score performance for all elevations with temporal aggregation over
smaller periods, illustrated e.g. by RMSE values at 1500 m increasing from 21 to 31 mm SWE or 7 to 11 cm HS going from
yearly to weekly aggregation. Regarding elevation dependence, RMSE is increasing up to 2000 m, but beth-MAAPE and R

reveal a clear improvement in score performance when going from low to high elevations. Indeed, MAAPE scores demonstrate

for SWE and HS at 500 m values of about 37 % for yearly resolution-and-inereases-to-abeut 58% atmonthly-and 65% at-weekly

reselution. At the same time, at 2500 m MAAPE is about 8 % at yearly resolution.-and-inereases-totH-%at-monthlyand 13
opeeel b pamaboon. Dhe oo conlommapes o Lo alindes de sl ooe lognaal b e Fatgrantie-mappie—is-ne

and-1500-m-and-are-more-orless-stable-above:.The same general performance increase of MAAPE with elevation is also true
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for monthly and weekly aggregations, which are about 58% and 65% at 500 m and decrease to 11 % and 13 % at 2500 m. -All

these comparisons demonstrate that Generally-the performance generally increases with elevation in all efthefeur-evaluation

metrics, except BIAS, which is close to zero anyway. Hig

MAAPE): The main reason for this better performance with increasing elevation is the fact that the error indices in this

analysis reflect the performance of the quantile mapping step, which is not really suitable for time series with many zero values,

1.e. for regions where the snow cover only survives for a few days at a time (Michel et al. 2024). Moreover, the signal-to-noise

ratio of the quantile mapping is increasing with elevation due to the larger absolute mount of snow.
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Figure 3: Heatmap of mean SWE (left) and HS (right) evaluation scores for the gridded OSHD-CLQM dataset in the
period 1999-2023 using the OSHD-EKF dataset as reference. Darker shades of red indicate worse scores.

In a second step, we investigated the distribution of the performance scores with the help of boxplots for the same temporal

aggregations and elevation bands. Figure 4 shows the corresponding boxplots

9



275

280

for both snow variables. While mean values of BIAS are close to zero for all elevations bands, whiskers and outliers
demonstrate a clear increase of variability of the yearly values scores with increasing elevation. Larger BIAS can occur above
2750 m (not shown), where no in-situ data for assimilation is available, but where such differences are still small in relative
terms. This can also be seen by the low MAAPE values in the highest elevation band. In contrast, at 500 m MAAPE values
demonstrate that in-90%-ofall-years{see-whiskers)-the relative error is on average about 40 % but can be as high as 70 % in

rare cases. Similarly, R values show a clear increase in the spread with decreasing elevation.
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Figure 4: Score comparison between models OSHD-CLQM and OSHD-EKF (’reference’) on a yearly resolution at
respective elevation bands (m) for SWE (left) and HS (right). Boxplots were generated from these performance scores
to illustrate the distribution, outliers, mean (green triangle) and median (purple line). The box reflects the 50 % of data
between the lower quartile and upper quartile. The whiskers extend from the boxes’ edges and illustrate the datarange

between-the Sth-and 95th-pereentilecorrespond to 1.5 IQR. Outliers are represented as individual dots.
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The same analysis as in Figure 4 has been undertaken for monthly and weekly performance scores (Figure S2). Monthly scores
reveal the highest RMSE values at 2000 m of about 120 to 750 mm SWE (based on whiskers) or 5& to 2043 cm HS, which
according to MAAPE corresponds to a relative error range of 5 to 250 % for HS and SWE. However, in extremes cases
(outliers) this error can be as high as 35 %. At 500 m MAAPE whisker range goes from 430 to 850% for both snow variables
but can go up to about 970 % in extreme cases_for both variables. This low performance in these extreme cases in this elevation
band is also illustrated by accordingly low R scores of fess-than-0-6about 0.4 for both variables. Weekly scores demonstrate a
similar pattern but slightly highervalaeslower performance for RMSE and MAAPE for both variables SWE and HS. Highest

relative errors scores (but en-with the same-small absolute errors) can again be seen in the lowest elevation band with a MAAPE

whisker range demonstrating values between 50 to 870%. A clearly lower performance for weekly scores can also be seen for

R, where in extreme cases values of only 0.2 are found. These lowest R-scores usually originate from the few lowest grid

points in this elevation band. These lowest grid points are located in separate regions north and south of the main Alpine ridge,

which are often characterized by opposing snow conditions (Scherrer and Appenzeller, 2006), i.c. one region has snow and

the other not. This possible divergence is smaller for yearly values as there is a higher chance for compensation than for

monthly or weekly values.

3.2 Analysis of performance scores based on in-situ station data as reference

After investigating differences between the OSHD-CLQM and OSHD-EKF models, we here now compare HS simulations of
the two gridded models with HS observations at the stations. Note, that point observations do not necessarily represent spatial
means over large grid cells, particularly in complex and steep terrain, and a comparison to results from a model that represents
the existing sub-grid variability is hence confounded.

Figure 5 illustrates that the yearly scores between the stations and the respective model grid points of OSHD-CLQM and
OSHD-EKF show remarkable similarity overall. However, R values of OSHD-EKF stand out as being more consistent and
are found to be higher in all elevation bands, especially at lower elevations. As expected for a model that assimilates snow
observations, OSHD-EKF demonstrates slightly better comparison statistics, but the differences are minor which attests to the
good performance of the quantile mapping procedure. Both models show larger BIAS values at higher elevations, peaking in
the highest elevation band with median values of about -20 cm, which indicates that, as expected, the two models feature less
snow at the highest elevations compared to the station values. There are several reasons for these BIAS values. First, data from
flat field observations at high elevation often show larger values than the surrounding area (Griinewald and Lehning, 2015).
Second, the SWE2HS algorithm sometimes tends to underestimate HS at these elevations (Aschauer et al., 2023). And third,
there is lack of stations for assimilation at thigh elevation (Mott et al., 2023). In relative term this bias, which is reflected in
the MAAPE score, reveals errors between +5-20 and 25 % at the elevation band 1500 m and above. This is in strong contrast

to the values of about 80 % at the 500 m elevation band, owing to the very low mean snow depths at these elevations.
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Figure 5: Score comparison between station data and OSHD-CLQM (left) as well as OSHD-EKF (right) in the
respective elevation bands for yearly snow depth values. Median value is illustrated as purple line and mean value as

green triangle.

The same analysis has been undertaken for monthly and weekly performance scores (Figure S3) and generally reveals the

same pattern (lower performance for smaller time aggregations) as found when intercomparing the two models, with the
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difference that the performance decrease going from yearly to monthly or weekly time-windows is now much weaker. OSHD-
EKF stands out again with higher R values, especially at lower elevations. MAAPE median values are again largest at 500 m,
with median values reaching 100% for monthly and 110% for weekly aggregations. These values decrease to 40% and less for
elevations above 1500 m for monthly and weekly time-windows.

Similarly, the beginning and end of the snow-covered season has generally a lower performance than mid-winter also at higher

elevations because the situation is similar as at low elevations during the entire winter. This implies the transition seasons

between no-snow and snow also at higher elevations have the same potential problems as at low elevations during the entire

winter. These problems involve among others high spatial variability and no information on the soil temperature, which is

decisive for the survival of potential snow fall. But since our focus was between November and April this seasonality issue

does only affect the 1000 and 1500 m elevation band.

The above shown station-based comparisons are not independent as the same station data is used in the assimilation step of
OSHD-EKF, which then also indirectly influences OSHD-CLQM through the quantile-mapping step. In a separate step, we
therefore additionally analyzed also non-assimilated stations with respect to the OSHD-CLQM model (Figure 6). The result
demonstrates that there is hardly any difference between the found BIAS for the assimilated and non-assimilated stations-the

BlASfernen-assimilated-and-assimilated stationsis-verysimilar. This indicates that the assimilation of stations within OSHD-

EKF transfers well to unobserved locations, while the quantile mapping is capable of inheriting this asset to OSHD-CLQM.

As expected, we see generally higher BIAS values above 2000 m, which (as explained above) is due to the fact flat field
observations at high elevation often show larger values than the surrounding area. As shown in Figure 5 these BIAS values
are only about 20% in relative terms. Moreover, above 2000 m the errors for the non-assimilated stations are in general only

about 5 cm larger, which corroborates the performance of the quantile mapping step for this independent dataset.

e COMA
e CLOM NA

20 1

BIAS [cm]
U
=

500 1000 1500 2000 3500 3000
Statien Elevation [m]

Figure 6: BIAS of yearly mean snow depth [cm] vs elevation [m] for the comparison of assimilated (red) and non-
assimilated (blue) stations value with respect to the OSHD-CLQM model. The curves are polynomials fits of first-second
degree.

When looking at the entire country, i.e. al-grid points_of all stations across Switzerland (Figure S4), the analysis reveals a

slightly better performance for OSHD-EKF, which can be best seen in the clearly smaller number of outliers and the smaller

whisker range for MAAPE and R. Differences due to temporal aggregations can best be observed in RMSE, where for-yearly
mean values a-median RMSE-efare about 10 cm~Eig—S4). This value is increasing to about 15 cm for monthly mean values
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and almost 20 cm for weekly mean values.-

good performance when averaging over all grid points gives confidence in typical climatological analysis like the comparison
of the annual snow depth evolution between different climate periods (e.g. 1962-1990 with 1991-2020). The corresponding
plot (Figure S5) demonstrates a clear decrease of snow depth in recent decades, which is mainly driven by less accumulation
in spring and an earlier snow disappearance in summer. This finding is not new as it has been deseribed-found based onwith

station data and-explained-with-highertemperatures-(Klein et al., 2016; Marty et al., 2023), but can now also be demonstrated

in a quantitative way with gridded data. For station data, the mentioned studies explained the snow depth decrease with higher

temperatures.

3.3 Evaluation ofef-impaet-on trends

3.3.1 Elevation dependent snow depth trends

Here, we investigate how long-term HS trends of OSHD-CLQM and OSHD-Comb compare to trends observed at stations in

the different elevation bands. Already Figure SError! Reference source not found. demonstrated that compared to station

data, median performance scores of OSHD-CLQM and OSHD-EKEF are generally (except R) very similar, demonstrating the
good performance of the quantile mapping step. However, focusing on the whiskers of the boxplots, it is obvious that with

OSHD-EKF smaller errors (outliers) are achieved. Therefore, using OSHD-EKF data instead of OSHD-CLQM data, when

possible, i.e. OSHD-Comb, can be a-gainan asset from 1999 onward.
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Figure 78: Trends of yearly snow depth[cm / decade] calculated using Theil-Sen slopes for the OSHD-CLQM and the
combined model data series (OSHD-Comb), as well as for station measurements for the five elevation bands: (a) 500,
(b) 1000, (¢) 1500, (d) 2000, (e) 2500 m and (f) entire Switzerland (0-3000 m). Significance is indicated with * p < 0.05;
** p <0.01; *** p <0.001. The dashed line indicates the year 1999, before which the yearly values of OSHD-CLQM
and OSHD-comb are the same.

The combined model OSHD-Comb utilizes the OSHD-EKF-frem1999-onwards, which helps capturing short-term variations

more accurately in the period since 1999. Meanwhile, OSHD-CLQM originates from quantile mapping of the climatological

model OSHD-CL onto OSHD-EKF aiming to reduce systematic differences in the simulation of OSHD-CL_(Michel et al.,
2024 and Fig. 1). On the other hand, using OSHD-Comb could introduce temporal inconsistencies at the point in time when
OSHD-CLQM and OSHD-EKF are combined (1998/1999; see Figure 1), which we investigated by analyzing the involved

trends_shown in Figure 7Eisure7. Examining the plots in this figure reveals that the interannual variability in the modelled

long-term snow depth time series (OSHD-CLQM and OSHD-Comb) agree very well, especially when comparing all elevations
(Figure 7Figure-7f). But both datasets also align well with the long-term station data, particularly at elevations of 1000, 1500,
2000 and 2500 m, which demonstrates the performance of the quantile mapping step in these elevation bands. The OSHD-
Comb trend magnitude is marginally weaker than the OSHD-CLQM trend magnitude and thus closer to the station-based trend
magnitude for all investigated elevations with the exception of the 2000 m band. The largest differences between station-based
and model-based trends appears, again, in the lowest elevation band, which corroborates the findings of Michel et al. (2024)
and Figure 5 with large relative errors at low elevation. On a closer look at this low elevation band (Figure 7Eigure7a), we see
that largest differences occur during snow-rich winters in the first 20 years. These differences are similar when using OSHD-
CL_(not shown), which indicates that not the QM step, but either the meteorological input data and/or the temperature-index

model are the main reason for the large biases in the first two decades in the lowest elevation band and that the QM step fails

to correct this. Focusing on the significance of the decreasing trends we see that the level of significance agrees well for all
data sets and elevation bands, which is also in agreements with other studies analyzing station-based trends.

Notice, there is only one long-term station available in the 2500 m elevation band, which strongly limits the informative value
of this elevation band. Therefore, an additional analysis for this elevation band has been undertaken for the shorter 24-year
period 2000-2023 (Figure S6), where data from 14 stations are available. This figure corroborates the findings of Figure
Tkigure—7e by ' '

of the found trends in this elevation band. The above results agree well with other recent studies analyzing station-based trends

as-the similarity and the non-significance

with mostly significant decreasing trends below about 2000 m (Matiu et al., 2021; Marty et al., 2023).
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An example that demonstates the possible differences between the two datasets OSHD-CLQM and OSHD-EKF is illustrated

in Figure 8, which shows climatological anomaly maps for the example of winter 2018 (Nov-Apr) for both datasets. The

relative snow depth anomaly for this season with respect to the long-term mean (1991-2020) is clearly above average in the

Alps (see high elevations in Figure 2) and in the south for both datasets, but less consistent patterns appear at low elevations

in the north. A visual comparison to the station values (marked in Figure 8 as well) demonstrates that OSHD-EKF provides

the more accurate results regarding these regional differences revealing that the Swiss Plateau experienced clearly below

average snow depth in the 2018 winter season. Moreover, OSHD-EKF in this case appears to exhibit greater spatial uniformity.

This result is not surprising as already
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Figure 3 and Figure 4 demonstrated that the performance of quantile mapping approach used in OSHD-CLQM is limited in

case of low-snow environments (i.e. at low elevation for Switzerland).

17



200 300

0 15 25 50 75 90 110 135
Winter 2018 HS anomaly [%]

| Figure 87: Relative snow depth anomaly (%) of winter 2018 (Nov-Apr) with respect to the long-term mean (1991-2020)
435 for OSHD-CLQM (top) and OSHD-EKF (bottom). Red indicates below-average, yellow average, and blue signifies
above-average snow depth. The colored dots and numbers indicate station anomalies.
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3.3.2 Snow depth trends at individual stations

We also conducted a trend comparison based on single grid points, since having available a gridded datasets makes it tempting

to use information from single grid cells in places where no station measurements are available.fillmissing-snow-information

- We compared the Theil-Sen slopes of the yearly means
of stations with those of the closest grid point from both the OSHD-CLQM and the OSHD-Comb model. The corresponding
plot (Figure 9) reveals that in the large majority of the cases the trends well align between models and stations. Moreover,
there seems to be almost no performance difference between the two model chains. However, we can also observe that the
bias (difference between station and model trend) is large for a small set of station at elevations between 1200 and 2000 m.
Both, OSHD-CLQM and OSHD-Comb show the same eight stations that differ by more than + 4 cm/decade in their trends.
Out of these eight stations, there are 5 stations, which show a considerably weaker trend, and 3 stations which show a stronger

trend in the modeled time series compared to those of the respective stations.
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Figure 9: Scatter plots of station elevation [m] vs difference (station minus model) of the snow depth trend [cm / decade]
for yearly values in the period 1962-2023, for OSHD-CLQM (left) and OSHD-Comb (right). Differences larger than 1
and smaller than -1 are depicted with an orange diamond and red square respectively. Stations that show a difference
greater than = 4 cm/decade are labeled.

Upon closer examination of these stations, we find that one station (7DI0) is located above the tree line and heavily wind
influenced and subject to several relocations during the investigated period. Moreover, three stations (3UI0, SKKO0, 2MEO) are
known as inhomogeneous series, due to major shifts in location (Buchmann et al., 2022). These findings reveal that the new
gridded datasets have some potential to find indications of potential inhomogeneities in station time series. However, there are
also larger differences for four other stations, which compared to trends at neighboring stations and neighboring grid points
are probably caused by station inhomogenities (3FB0) or problems with the gridded meteorological input data (6BG0, 7TMAO,
SIAO0). Interestingly the former three stations are all in southern regions with steep topography and only few precipitation time
series available as input. These examples also indicate that when comparing station data to model values, we should sometimes
rather use multiple grid points of a larger area for comparison instead of only one single grid cell (see 3.4 and Michel et. al.
2024).

Such exceptions do not impact the informative value of the gridded trend results on a larger spatial scale. Indeed, a map
illustrating of the OSHD-CLQM trends for each grid point in Switzerland separately (Figure 10) reveals significant trends at
almost all low and mid elevated regions, which corroborates the results of Figure 7Eigure7. Elevations above 2000 m along

the main alpine ridge and in adjacent inner-alpine dry regions show mostly non-significant decreasing trends, except a small
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area near the southwestern border (Saas Valley) with non-significant increasing trends. The only non-significant region in the
lowest elevation band is located in the Rhone valley southeast of the lake of Geneva (southwestern corner of Switzerland).
Moreover, Figure 10 generally confirms the known weaker absolute trends at lower elevations (Schoner et al., 2019) by the
easy visual recognizability of the alpine valleys. Finally, Figure 10 also demonstrates a good agreement with a similar analysis,
but a different model, for Austria (Olefs et al., 2020), in which also partly non-significant trends for the Austrian region (Tirol),
which is adjacent just east of south-eastern Switzerland, were found. In relative terms (Figure S8), the trends become largest

at low elevation (mainly Swiss plateau), where values between -10 to -20 % per decade are typical. Above 1000 m, however,

typical relative trends are between -5 and -10 % per decade.

Snow Depth Trend [cm / decade]

Figure 10: Trends of yearly mean snow depth (cm/decade) for the period 1962 - 2023 based on Theil-Sen slopes for
each 1-km grid point of the OSHD-CLQM model in Switzerland. Water bodies appear white, elevations above 3000 m
are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.

3.3.3 Elevation dependent snow day trends

The number of snow cover days during a season is a useful additional metric as it reflects not only the quantity of snow in the

Alps but also the duration. The duration of snow covers is important for the energy balance and holds important implications

for various sectors, including ecology, winter tourism or energy production (hydro and PV power) hydrepewer. Comparing

the different datasets in Figure S7 across the five elevation bands reveals on the one hand that the direction of the trends
(mostly decreasing) is the same in all analyses. No trend could be detected in those elevation bands where the number of snow
days is bounded due to our November to April season definition (low HS threshold at high elevation) or where the number of
snow days was mostly zero (high HS threshold at low elevation).

There is generally less agreement in the magnitude of the trends for the number of snow cover days (Figure S7) compared to

corresponding analysis of mean snow depth (Figure 7). Such a disagreement is not uncommon, as threshold analyses in general
are known for their high sensitivity and limitations of the input data do likely also contribute (see 3.4). At 500 m and with a 5
cm threshold, models predict over double the decrease compared to stations. This matches the result observed in the mean HS

trend analysis at 500 m.
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Having a closer look, we can deteet-see that in most instances OSHD-Comb generally demonstrates better agreement compared
towith the year-to-year station fluctuations_at stations. Below the elevation band of 2000 m, both models demonstrate a
significantly decreasing trend. At the 2000 m elevation, the models only show significance with p > 0.05 at a threshold of 30
cm. However, significance is observed at all other thresholds and elevation bands up to 2500 m. The elevation-dependent
pattern agrees well with that seen for snow day trends in Fig. A1 in Buchmann et al. (2023). The largest decrease in number

of snow cover days (about 9 days per decade) is found at 1000 m for the 5 cm threshold;-. This is likely because this elevation

band coincides with the current mean snowfall limit (Scherrer et al., 2021). Below 1000 m, snow cover days are already rare

leaving little room for further decline, while above 1000 m, mean winter temperatures remain below freezing, resulting in

smaller absolute decreases.whi

3.4 Limitations regarding input data and involved models

When utilizing the investigated gridded snow dataset for climatological analyses, the involved uncertainties of the underlying
input data and methods used to derive SWE and HS should always be considered. They include the following issues.

The gridded temperature and precipitation datasets used as input for the snow model (see 2.1) are not perfectly consistent over
time as the number of stations available for the spatial analysis on the 1 km grid can vary over time and elevation (Frei, 2014).

It is important to keep this fact in mind when using the gridded snow datasets for trend analysis. This-petential-inhomegeneity

Furthermore, there are unresolved small-scale effects in these gridded input datasets. Regarding temperature, among these are

all kinds of land cover effects (e.g. lakes and urban heat islands) and the influence of local topography. As a result, it must be
expected that spatial variations are underestimated (too smooth), particularly at the scale of the grid-point spacing, and small-
scale patterns may display with considerable uncertainty in extent and amplitude. This is particularly true for valley cold pools:
- tFheir reproduction by the analysis critically depends on the existence of in-situ measurements within these pools. Hence
cold air pools may be missing completely in un-instrumented valleys (see Frei et al. (2014)). Regarding precipitation, possible
undetected station and time dependent measurement errors can always be an issue and the interpolation is limited by small-
scale variability of precipitation. The provider of the datasets (MeteoSwiss) expects that the effective resolution of the daily
gridded precipitation product is in the order of 10 to 20 km, likely even coarser in the high mountains. Additionally,
measurements by rain gauges are subject to systematic errors, like gauge under-catch, which causes an underestimation of
precipitation, particularly during days with snowfall and at wind-exposed locations (Yang et al., 1999). However, the problem
should be, at least partially, mitigated by the QM step, which constrains the model by assimilation of snow depth observations
(OSHD-EKF) and thereby indirectly also corrects for under-catch issues in the gridded precipitation dataset.

When these two gridded datasets (temperature and precipitation) are used as input for the temperature-index based snow model,
we must be aware that the temperature data represents the daily average from midnight-to-midnight UTC, whereas the
precipitation data represents the daily average from 06:00 UTC of day D to 06:00 UTC of day D+1. This temporal mismatch

is another reason for possible biases in gridded snow data, especially at shorter time scales. A particularly relevant contributing

factor in this regard is the use of daily average temperatures to partition precipitation into snowfall and rain. Uncertainties arise

every time a precipitation event happens at times that are colder (nights) or warmer (days) than the 24h average temperature

which is a generic limitation of models that use input data at daily rather than hourly resolution.

Another factor contributing to the overall uncertainty is the fact that the OSHD-CLOM modelling chain is based on a

temperature-index model with a parameter set (Magnusson et al., 2014) that is applied over the entire six-decade long period.

This fact and the above-mentioned Fhese-limitations of the atmospheric input data are the-a reason why the assimilation of

21



540

545

550

555

560

565

70

575

snow measurements is an important step and that the corresponding OSHD-EKF datasets are ofhas-a better quality. Alse-the

A further potential inhomogeneity arises when using OSHD-Comb, as two data sets of different quality are combined here.

Our analysis demonstrates that the impact is small when using data of the entire country on the current time series length. But

this does not need to be the case for smaller regions or shorter time periods.

FurthermereFinally, it is important to keep in mind, that the OSHD datasets provide SWE values, which are then converted to
HS. This conversion has a RMSE of about 1.5 cm and a BIAS of 1 cm (Aschauer et al., 2023). Therefore, HS has always a
slightly higher uncertainty than SWE.

4 Conclusions

We analyzed the potential and limitations of newly developed spatially gridded datasets of snow water equivalent and snow
depth for climatological applications in Switzerland spanning over 6 decades from 1962 to 2023. Our results demonstrate that
the use of a long-term gridded snow data has a high potential for climatological analysis, albeit with some limitations. Our
analysis corroborates the findings of Michel et al. (2024), that the quantile-mapping approach generally achieves good results
in producing long-term climatological timeseries of snow. In addition, we could for the first time demonstrate in a quantitative
manner how the uncertainty of new gridded climatological snow depth datasets increases with shorter analysis time scales and
especially for low elevations.

More specifically, a comparison of the 60+ year-long datasets to station measurements for yearly mean snow depth values
revealed in general a good performance of the new gridded datasets. We also evaluated how well station-based trends were
captured in the modelled gridded datasets. In general, the results demonstrated a very good agreement between station- and
model-based trends, i.e. clear decreasing trends for mean snow depth and the snow cover duration (based on snow days) for
the different elevation bands. Yearly mean snow depth demonstrated an excellent agreement with respect to the decrease per
decade and the significance of this decrease for the different elevation bands, except for the lowest elevation band, where snow
is generally scarce. There, the modeled trend was much stronger as the station trend. The same trend overestimation in the
lowest elevation band was also found when analyzing trends of the number of snow days. However, as often with count data,
the agreement between model- and station-trends was not as good and depended also on the threshold of the snow day

definition. Generally, as shown by these results, station data is more reliable at low elevation. At higher elevations (i.e. above

1000 m a.s.l.), SPASS data from larger regions and longer periods are often preferable, as they are less location-dependent and

are also available in the early and late season (early fall and late spring).

Moreover, a comparison between long-term trends of mean snow depth calculated using in-situ data from individual stations
and gridded data with the closest grid points revealed a generally good agreement. However, for about 20 % of all stations, the
disagreement between the trends was larger than 1 cm /decade and sometimes even had the opposite direction, owing to either
inhomogeneities in the observations or modeling / input data issues. Therefore, we generally recommend using the new SPASS
datasets for trend analysis with at least some level of spatial aggregation and for elevation above 1000 m, while caution is

needed for interpretation of data at the pixel-grid point level and/or in low-snow regions. Furthermore, we urge caution when
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using maximum values, because the applied quantile mapping method can by definition not really capture extreme values for

reasons-already-mentionedin-(Michel et al., 2024).

On the other hand, the generally good performance of the new datasets allows for the first time to produce e.g. high resolution

(1 km), high quality country-wide SWE and snow depth maps of climatological mean values or monthly/seasonal anomaly
graphs for different regions/elevations. Moreover, except for low elevations, the data provide a reliable basis to analysis
elevation dependent trends of SWE and snow depth. Hence, these datasets are an important basis for applied research in winter
tourism (Troxler et al., 2023) or hydrology (Chartier-Rescan et al., 2025)_in an alpine country like Switzerland. For these
reasons the two involved institutions (SLF and MeteoSwiss) will use the new datasets to regularly provide maps (WMO;
2024b-SEE2025) and graphs on the current snow status in Switzerland as a climate service for interested public or businesses

(BAFU.2024; WMO, 2024b; SLF, 2025).

Our results also reveal that e it may be worth

to make use of the higher-quality, but shorter-term OSHD-EKF dataset, which assimilates in-situ snow depth data. This is

especially true at low elevation and for shorter time aggregations like month or week. This fact also demonstrates that long-

term station measurements are still indispensable, as they are sti-needed to produce long-term, high-quality gridded snow

datasets.

5 Data Availability

Model data of SWE and HS is available on envidat.ch (doi.org/10.16904/envidat. 5 SOEREwill-be-provided). In-situ snow depth

data from SLF stations can be freely downloaded from: https://www.slf.ch/en/services-and-products/sif-data-service. In-situ

snow depth data from MeteoSwiss are available on request.
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720 Short Summary

This work presents the first long-term (since 1962), daily, 1 km gridded dataset of snow depth and water storage for
Switzerland. Its quality was assessed by comparing yearly, monthly, and weekly values to a higher-quality model and in-situ
measurements. Results show good overall performance, though some limitations exist at low elevations and short timescales.
725 Moreover, the dataset effectively captures trends, offering valuable insights for climate monitoring and elevation-based

changes.
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730 10 Supplement

10.1 Additional Tables

Table S1: List of stations and corresponding altitude used for comparison in each elevation band. Station with a number
at the beginning or end of the listed station indicatives are maintained by SLF and stations without any number are
maintained by MeteoSwiss.

250 -750 m 751-1250 m 1251-1750 m 1751-2250 m 2251-2750 m
Stat Alti Stat Alti Stat Alti Stat Alti Stat Alti
BAS 316 LAG 755 58I 1273 75D 1751 TUJ2 2262
OTL 366 1LB 800 2ST 1280 7SN 1752 BOG2 2299
GVE 410 7BR 800 1WE 1280 2TR 1780 CMA2 2325
DEM 416 STG 802 1LS 1300 4SF 1790 NAS2 2350
SNS 439 5KU 815 3BR 1310 6RI 1800 JUL2 2426
ALT 449 EIN 910 3FB 1310 SIA 1801 | GOM3 2427
KOP 483 ELM 965 1MI 1320 7MA 1810 PMA2 2429
NEU 483 CHD 985 2ME 1320 1HB 1825 EGH2 2500
SIO 485 7PV 1015 1AD 1325 5AR 1845 5WIJ 2536
LAN 538 2EN 1023 3UI 1340 7MZ 1850 ATT2 2550
BER 548 GTT 1055 4UL 1345 1GH 1970 DIA2 2569
CHU 572 20G 1060 1LC 1360 4SH 2000 ANV3 2589
MER 592 ROB 1078 75T 1387 7Dl 2090 VIN2 2729
SMA 604 AIR 1139 1SM 1390 7AG 2090 LAG2 2730

VIS 662 250 1150 4AMS 1430

MAS 718 D1S 1190 2AN 1440

1GS 1190 4W| 1450

1GA 1190 5SP 1457

5KK 1190 5IN 1460

3MG 1190 5S5A 1510

6CB 1215 6BG 1525

5DF 1560

4GR 1560

1GB 1565

4MO 1590

47E 1600

65B 1640

1IMR 1650

4BP 1670

7CA 1690

77U 1710

7FA 1710

7LD 1710

52V 1735

735
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Table S2: Number of available stations in the two different comparison periods, as well as the number of grid points in
absolute and relative terms per elevation band.

Label Elevation band # of stations # of stations # of grid % of grid
1999-2023 1962-2023 points points
<250m 72 0.2
500 m 250-750 m 16 16 13405 34
1000 m 751-1250 m 21 21 8056 20
1500 m 1251-1750 m 34 34 5880 15
2000 m 1751-2250 m 16 16 5592 14
2500 m 2251-2750 m 16 1 4731 12
>2750m 2105 5
740
10.2 Additional Figures
745
Monthly SWE [1999 - 2021] - 2000m
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Figure S1: Climatology of monthly SWE values of OSHD-EKF and OSHD-CLQM in the 2000 m elevation band
between the common period 1999- 2001. Numbers is the boxplots indicate monthly median values.
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Figure S2: Score comparison between models CLQM and EKF (’reference’) on a monthly (a,b) and weekly (c,d)
resolution at respective elevation bands for SWE (a,c) and HS (b,d). Median value is illustrated as purple line and mean
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760 Figure S3: Score comparison between stations data and OSHD-CLQM (a,c) as well as OSHD-EKF (b,d) for monthly
(a,b) and weekly (c,d) snow depth values in the respective elevation bands. Median value is illustrated as purple line

and mean value as green triangle.
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Figure S4: Score comparison between all stations and the respective model gridpoints of OSHD-CLQM (left) and
OSHD-EKF (right) for yearly, monthly and weekly snow depth values. Median value is illustrated as purple line and
770 mean value as green triangle.
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Figure S5: Annual evolution of snow depth from the OSHD-—-CLQM model for the two 30-year reference periods 1962-
1990 (blue) and 1991-2020 (red). The daily values are calculated based on all grid points between 0 and 3000 m in
Switzerland.
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Figure S6: Trends of yearly snow depth [cm / decade] calculated using Thiel-Sen slopes for the OSHD-CLQM and the
OSHD--EKF, as well as for station measurements (mean of 16 stations) for the highest elevation band (2500 m). Possible
significance is indicated with * p < 0.05; ** p <0.01; *** p <0.001.
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Figure S7: Trends of median snow days for three different thresholds (5,30, 50 cm) using Theil-Sen-slope regression
for OSHD-CLQM and OSHD-comb, as well as stations across five elevation bands: (a) 500, (b) 1000, (c) 1500, (d) 2000,
and (e) 2500 m. Significance is indicated with * p < 0.05; ** p <0.01; *** p <0.001. The dashed line indicates the year
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1999, before which the yearly values of OSHD-CLQM and OSHD-comb are the same.
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Snow Depth Trend [% / decade]

Figure S8: Relative trends of vearly mean snow depth (%/decade) for the period 1962 - 2023 based on Theil-Sen slopes
for each 1-km grid point of the OSHD-CLOM model in Switzerland. Water bodies appear white, elevations above 3000
795 m are colored in grey and non-hatched areas indicate significant trends at 95% confidence level, p < 0.05.
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