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Highlights: 10 
 Proposes a three-dimensional dataset design framework (length, feature combination, rainfall distribution) for 11 

AI-based urban pluvial flood prediction. 12 
 Identifies a threshold effect of data length (~14,400 samples) where model performance significantly improves 13 

and then saturates. 14 
 Reveals that rainfall distribution dominates model generalization and bias, with mixed-intensity training 15 

achieving the best robustness. 16 
 Shows that the effectiveness of multi-feature inputs (P+I+D) depends on dataset size, improving stability only 17 

when sufficient data are available. 18 
 Integrates a hydrological–hydrodynamic model with machine learning, enabling reliable training data 19 

generation in data-scarce urban areas. 20 

Abstract: Reliable urban flood prediction hinges on how datasets are designed, yet most existing research 21 
disproportionately emphasizes network architectures over data foundations. This study systematically investigates 22 
how dataset characteristics—scale, feature composition, and rainfall-event distribution—govern predictive 23 
performance and generalization in AI-based pluvial flood modeling. A physically calibrated hydrological–24 
hydrodynamic model was employed to generate synthetic datasets with varied temporal lengths, input feature 25 
combinations (rainfall, infiltration, drainage), and rainfall-intensity distributions. A long short-term memory (LSTM) 26 
network, chosen for its widespread adoption and proven performance in hydrology, was applied as a representative 27 
benchmark to assess accuracy, computational cost, and bias under controlled conditions. Results identify: (1) a 28 
threshold effect of dataset length (~14,400 samples), beyond which performance gains plateau; (2) rainfall-intensity 29 
distribution as the dominant driver of generalization—training solely on light or extreme events induces systematic 30 
bias, whereas mixed-intensity datasets substantially enhance robustness; (3) ancillary features (infiltration and 31 
drainage) improve stability only when data are sufficiently abundant. These findings quantify trade-offs and pinpoint 32 
actionable design levers, offering general insights into dataset design for machine learning models in flood prediction 33 
and beyond. By clarifying critical dataset requirements, this study provides transferable guidance for building 34 
efficient and balanced datasets in hydrology and broader Earth system sciences. 35 
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1. Introduction 38 

Global climate change and rapid urbanization have escalated urban pluvial flooding into a global crisis, 39 
threatening public safety, mobility, and economic stability (Qi et al., 2021; Wilhelm et al., 2022; Won et al., 2022). 40 
High-density cities are particularly vulnerable, as short-duration, high-intensity rainfall events exhibit strong 41 
suddenness and spatial heterogeneity, introducing complex spatiotemporal nonlinearities into forecasting tasks (Zhang 42 
et al., 2016). Improving the accuracy and timeliness of urban flood prediction has therefore become a central concern 43 
in hydrological modeling and urban resilience research. 44 

Physically based rainfall–runoff and flood propagation models—such as SWMM, HEC-RAS, and their coupled 45 
hydrological–hydrodynamic extensions—have substantially advanced the representation of drainage dynamics and 46 
inundation processes (Chen et al., 2016; Gomes et al., 2021; Chitwatkulsiri and Miyamoto, 2023). Techniques 47 
including GIS integration for estuarine systems (Cardoso et al., 2020), real-time storm warning from 2D models 48 
(Hofmann and Schüttrumpf, 2020), and bidirectional coupling strategies (Jamali et al., 2020; Barreiro et al., 2022) 49 
have enriched practical forecasting pathways. Nevertheless, these models remain highly dependent on detailed 50 
parameters such as pipe network topology and surface roughness (Fu et al., 2022) and demand laborious calibration 51 
(Liu et al., 2017; Hattermann et al., 2018; Her et al., 2019). Such requirements limit their transferability to real-time 52 
operations, especially in small and medium-sized cities where data scarcity and limited computational capacity are 53 
pervasive obstacles (Yang et al., 2020; Chen et al., 2023). 54 

Parallel to these advances, data-driven approaches have gained prominence. Deep learning models have shown 55 
remarkable capability in capturing nonlinear hydrological processes and have been widely applied in rainfall–runoff 56 
and flood forecasting (Ahani et al., 2018; Pollard et al., 2018; Kim and Han, 2020). Among them, Long Short-Term 57 
Memory (LSTM) networks and their variants have become especially prominent in urban hydrology (Zhang et al., 58 
2018; Abbasimehr and Paki, 2022; Zheng et al., 2024). Recent developments include ES-LSTM with exponential 59 
smoothing (Hayder et al., 2023), lightweight architectures via knowledge distillation (Ma et al., 2022), swarm-60 
intelligence optimization (Mahmoodzadeh et al., 2022), attention-based mechanisms (Xu et al., 2022; Jhong et al., 61 
2024; Li et al., 2025), and encoder–decoder frameworks that accelerate large-scale simulations (Wei et al., 2024; Ni et 62 
al., 2024). Hybrid physics–AI systems that correct the errors of conventional models further demonstrate the promise 63 
of deep learning in hydrology (Wenchuan et al., 2024; Zhou et al., 2023). Collectively, these advances confirm that 64 
algorithmic innovation continues apace. However, relatively little attention has been devoted to systematic analysis of 65 
dataset design—how the scale, feature composition, and distribution of events influence predictive performance and 66 
generalization. 67 

Urban pluvial flood data differ fundamentally from riverine hydrological time series: they are often sparse, 68 
intermittent, and strongly constrained by monitoring infrastructure (Nearing et al., 2021; Liu et al., 2024). Scarcity, 69 
imbalance, and uncertainty in rainfall records have been shown to directly impair model generalization, with notable 70 
performance deterioration once data uncertainty exceeds certain thresholds (Dong et al., 2020; Huang et al., 2021; 71 
Ghaith et al., 2022; Chen et al., 2024). To alleviate these challenges, researchers have generated synthetic rainfall–72 
runoff data using physically based models, and such augmentation has been shown to improve learning (Kilsdonk et 73 
al., 2022; Chen et al., 2023). Yet most existing efforts focus narrowly on enlarging dataset size or applying local 74 
corrections, while the fundamental questions of dataset construction—such as the optimal sequence length, the role of 75 
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feature combinations, and the influence of rainfall-intensity distribution—remain insufficiently addressed 76 
(Tikhamarine et al., 2020). Evidence indicates that dataset effects are nonlinear: improvements plateau beyond certain 77 
lengths (He et al., 2019; Śliwowski et al., 2023), diversity often outweighs sheer volume (Fang et al., 2019; Hou et al., 78 
2022; Kratzert et al., 2021; Gupta, 2024), and feature combinations contribute only when supported by sufficient 79 
samples (Paz et al., 2018; Son et al., 2020; Wang and Ying, 2023). Moreover, rainfall intensity distribution strongly 80 
influences generalization, particularly for extremes (Zheng et al., 2024), yet systematic evaluation of this factor is 81 
largely absent. 82 

This study therefore investigates how dataset length, feature composition, and rainfall-intensity distribution 83 
influence predictive performance and generalization in urban flood prediction. Using synthetic datasets generated from 84 
a calibrated hydrological–hydrodynamic model, we establish a controlled experimental framework to examine 85 
threshold effects, feature interactions, and distributional biases. While LSTM is employed as a representative 86 
benchmark due to its widespread use in hydrology, the insights obtained are intended to be transferable across a broad 87 
range of machine learning models. In doing so, the study provides a data-centric perspective on AI-based flood 88 
forecasting and offers guidance for designing efficient and balanced datasets in hydrology and Earth system sciences. 89 

The remainder of this paper is organized as follows. Section 2 introduces the study design, including the 90 
hydrological–hydrodynamic model setup, synthetic dataset generation, and the benchmark ML framework. Section 3 91 
presents the experimental results, focusing on dataset length, rainfall-intensity distribution, and feature composition. 92 
Section 4 discusses the underlying mechanisms, compares the findings with previous studies, and outlines broader 93 
implications. Finally, Section 5 summarizes the main conclusions and provides directions for future research. 94 
2. Methodology 95 
2.1 Technical Roadmap 96 

This study proposes a structured technical roadmap to investigate how different dataset design strategies influence 97 
the predictive performance of deep learning models in urban pluvial flood scenarios, as illustrated in Figure 1.  98 

 99 

Figure 1: Technical roadmap for dataset generation, model training, and performance evaluation. 100 
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The methodology is organized into three sequential phases, encompassing synthetic data generation, model 101 
training, and performance evaluation. 102 

The first phase involves the construction of rainfall–inundation time-series datasets using InfoWorks ICM 2021.4, 103 
a physically based hydrodynamic modeling platform. The model is pre-calibrated with observed urban waterlogging 104 
data, incorporating adjustments to parameters such as pipe roughness, surface flow coefficients, and land cover types 105 
to ensure simulation reliability. To represent a range of rainfall conditions, synthetic storm events are generated based 106 
on intensity-duration-frequency (IDF) curves for 1- to 10-year return periods. Each event spans 24 hours, followed by 107 
a 6-hour recession period to ensure temporal independence. By aggregating varying numbers of these events, datasets 108 
of different sequence lengths (ranging from 5 to 10 events) are constructed. Moreover, input features are organized 109 
into four distinct combinations—including rainfall, infiltration, and drainage flow—and rainfall intensities are 110 
stratified into light, heavy, and mixed categories to facilitate a multi-dimensional analysis of model behavior. 111 

Next, model training is conducted under a standardized LSTM architecture to ensure consistency across 112 
experimental settings. The model employs a single-layer LSTM network with 64 hidden units, a 30-minute input 113 
sequence length, and a 15-minute step size, allowing it to effectively capture short-term rainfall–runoff dynamics. A 114 
50% overlapping sliding window is applied during data segmentation to maximize feature retention and improve 115 
learning stability. All input features are normalized, and the model is trained for 50 epochs using a batch size of 32 and 116 
a learning rate of 0.005. The training is implemented in PyTorch and executed on an Intel i9 processor with an NVIDIA 117 
RTX 3090 GPU. Each dataset configuration is trained and validated independently using an 80:20 split, enabling 118 
comparative evaluation of convergence speed and stability under different data conditions. 119 

Finally, a multi-metric evaluation scheme is employed to assess model performance from the perspectives of 120 
predictive accuracy, training efficiency, and generalization capacity. Predictive accuracy is quantified using the 121 
Normalized Root Mean Square Error (NRMSE), which accounts for scale sensitivity in runoff predictions. The 122 
coefficient of determination (R²) is used to measure how well the model captures variance in the observed data. In 123 
addition, total training time is recorded to evaluate computational efficiency. To facilitate multi-objective comparison, 124 
radar charts are used to visualize performance across dataset configurations, revealing trade-offs and optimal strategies 125 
in a clear and interpretable manner. 126 

2.2 Rainfall–Runoff Data Generation Method 127 

Due to the high cost and limited spatiotemporal coverage of observed data for urban pluvial flood events, this 128 
study employs physically based simulation to generate controlled, high-fidelity datasets. A hydrological–129 
hydrodynamic model is developed in InfoWorks ICM 2021.4, incorporating calibrated parameters such as pipe 130 
roughness, land cover types, and surface flow coefficients. The model is calibrated using measured inundation data, 131 
and its simulation performance is evaluated using the Nash–Sutcliffe Efficiency (NSE), with values consistently 132 
exceeding 0.5, indicating reliable accuracy for synthetic data generation. 133 

The rainfall input used in simulation is derived from a regional design storm intensity–duration–frequency (IDF) 134 
formula, expressed in the following form: 135 

𝑞𝑞 = 𝑎𝑎(1+𝑏𝑏×log10𝑝𝑝)
(𝑡𝑡+𝑐𝑐)𝑑𝑑

                                     (1) 136 
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where 𝑞𝑞 is the rainfall intensity (L/s·ha), 𝑡𝑡 is the rainfall duration (minutes), and 𝑝𝑝 is the return period (years). The 137 
coefficients 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 are empirical constants fitted to local rainfall statistics. 138 

Based on this formula, design rainfall events for 1-, 2-, ..., up to 10-year return periods are generated, each lasting 139 
24 hours, with a peak factor set to 0.4 to simulate realistic storm profiles. Each event is followed by a 6-hour drainage 140 
period to ensure temporal independence. The generated rainfall curves are illustrated in Figure 2. 141 

 142 

Figure 2: Rainfall curves generated from intensity-duration-frequency (IDF) formula for different return periods. 143 

By progressively aggregating these events, time-series datasets of varying lengths are created. This allows for 144 
controlled evaluation of how data scale impacts model learning. The corresponding runoff response—represented as 145 
inundation area—is calculated using a simplified water balance model: 146 

𝑄𝑄 = 𝑃𝑃 − 𝐼𝐼 − 𝐷𝐷                                     (2) 147 

where P is total precipitation, III is infiltration estimated via the Horton method, and D is the volume drained through 148 
the sewer system. The residual Q serves as the model’s predictive target, representing surface water accumulation over 149 
time. 150 

2.3 Dataset Design Strategies 151 

This section outlines the design logic for constructing datasets across three key dimensions: input feature 152 
configurations, sequence length, and rainfall intensity distribution. These configurations form the foundation for a 153 
factorial experimental setup that enables systematic evaluation of model behavior under varying data conditions. 154 
2.3.1 Input Feature Configurations 155 

Accurate urban flood prediction requires capturing the complex interplay among rainfall generation, infiltration 156 
processes, and drainage dynamics. To represent these factors, we construct four types of input feature configurations: 157 

1. Configuration 1: Rainfall (P) only 158 
2. Configuration 2: Rainfall (P) + Pipe drainage (D) 159 
3. Configuration 3: Rainfall (P) + Soil infiltration (I) 160 
4. Configuration 4: Rainfall (P) + Infiltration (I) + Drainage (D) 161 
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These configurations reflect varying degrees of hydrological process coupling. Configuration 1 represents the 162 
minimal input case, relying solely on external forcing. Configurations 2 and 3 incorporate key physical subsystems—163 
engineered drainage and soil infiltration—individually. Configuration 4 integrates both, offering the most physically 164 
complete scenario. This structure enables a comparative analysis of the effect of hydrological complexity on model 165 
performance and interpretability. 166 
2.3.2 Sequence Length Design 167 

To evaluate the sensitivity of LSTM model performance to time-series span, six different sequence lengths are 168 
defined, each composed of multiple synthetic rainfall events. A single rainfall event consists of 24 hours of 169 
precipitation followed by a 6-hour recession period. The training sets are then constructed by stacking the following 170 
sequence lengths: 171 

1. Length 1: 9000 samples 172 
2. Length 2: 10800 samples 173 
3. Length 3: 12600 samples 174 
4. Length 4: 14400 samples 175 
5. Length 5: 16200 samples 176 
6. Length 6: 18000 samples 177 
All datasets are split into training, validation, and test sets with a fixed ratio of 6:2:2. This design allows us to 178 

investigate how the amount of temporal information affects learning efficiency, model stability, and prediction 179 
accuracy under different data scales. 180 
2.3.3 Rainfall Intensity Distributions 181 

This experimental dimension is designed to investigate whether the inclusion of extreme rainfall events in the 182 
training dataset is essential for achieving accurate flood predictions, and whether representative samples selected from 183 
the broader rainfall spectrum can support robust model generalization. It also facilitates the examination of potential 184 
predictive biases—such as the tendency of models trained predominantly on heavy rainfall to systematically 185 
overestimate inundation levels. 186 

To explore these aspects, three distinct rainfall classification schemes are defined based on intensity distribution 187 
within the training set: 188 

1. Low-Intensity Training Set: Includes only low-intensity rainfall events in the training set, while validation 189 
contains extreme rainfall scenarios, as shown in Figure 3. 190 

 191 
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Figure 3: Rainfall intensity classification for low-intensity training set. 192 

2. High-Intensity Training Set: Contains primarily high-intensity rainfall events in the training set, with 193 
validation samples representing mild to moderate scenarios, as illustrated in Figure 4. 194 

 195 

Figure 4: Rainfall intensity classification for high-intensity training set. 196 

3. Mixed-Intensity Training Set: Combines low and high rainfall events in the training set and includes 197 
moderate events in validation, as presented in Figure 5. 198 

 199 

Figure 5: Rainfall intensity classification for mixed-intensity training set. 200 

2.4 LSTM Model Configuration and Parameters 201 

A unified LSTM neural network structure is adopted in this study to ensure consistency across experiments. The 202 
model is designed with a sequence length of 30 minutes and a step size of 15 minutes, enabling it to effectively capture 203 
the dynamic response cycle of short-duration rainfall–runoff processes. To enhance data utilization and reduce the risk 204 
of missing critical hydrological features, a 50% overlapping sliding window strategy is applied. 205 

The network architecture consists of a single-layer LSTM with 64 hidden units, providing a balance between 206 
model complexity and computational efficiency—particularly suited for extracting temporal patterns from minute-207 
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level hydrological data. During training, the batch size is set to 32 and the learning rate to 0.005, ensuring stable 208 
gradient updates while allowing the model to converge fully within 50 epochs. This helps mitigate overfitting, 209 
especially when training on limited datasets. 210 

The model is implemented using the PyTorch framework and trained on a computing environment equipped with 211 
an Intel i9 processor and NVIDIA RTX 3090 GPU. Detailed model parameters are listed in Table 1. 212 

Table 1: LSTM Model Configuration and Parameters. 213 
Parameter Value 

Model layers (num_layers) 1 
Sequence length (seq_len) 30 
Step size (step_size) 15 
Number of neurons (hidden_size) 64 
Batch size 32 
Number of epochs (epochs) 50 
Learning rate (lr) 0.005 

2.5 Evaluation Metrics 214 

To comprehensively evaluate how different dataset construction strategies affect model performance, this study 215 
adopts three representative metrics: prediction accuracy, explanatory power, and computational efficiency. These are 216 
detailed as follows: 217 
2.5.1 Normalized Root Mean Square Error (NRMSE) 218 

NRMSE quantifies relative prediction error and is suitable for comparing performance across datasets with 219 
varying rainfall magnitudes. It is defined as: 220 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
�1𝑛𝑛∑ (𝑌𝑌𝑖𝑖−𝑌𝑌�𝑖𝑖)2𝑛𝑛

𝑖𝑖=1

𝑋𝑋
                                 (3) 221 

where 𝑛𝑛 is the number of data points, 𝑌𝑌𝑖𝑖  is the observed value, 𝑌𝑌�𝑖𝑖  is the predicted value, and 𝑋𝑋  is the mean of 222 
observed values. Its normalized nature makes it robust when comparing models trained on light versus heavy rainfall 223 
samples. 224 
2.5.2 Coefficient of Determination (𝐑𝐑𝟐𝟐) 225 

R² reflects the proportion of variance in observed data that is explained by the model. It is a widely used indicator 226 
of model fitting quality and is defined as: 227 

𝑅𝑅2 = 1 − 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡

                                      (4) 228 

where 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 is the sum of squared residuals and 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡 is the total sum of squares. A value closer to 1 indicates better 229 
alignment between predicted and actual water depth values. 230 
2.5.3 Training Time 231 

Training time, measured in seconds, serves as a proxy for model efficiency. Given the identical hardware and 232 
software environments across all experiments, this metric offers a fair basis to compare convergence behavior and 233 
computational overhead across datasets with different sequence lengths and feature complexities. 234 

2.6 Sensitivity Analysis 235 

To further investigate how different dataset construction dimensions influence model performance, this study 236 
applies Multivariate Analysis of Variance (MANOVA) to assess the statistical significance and effect strength of three 237 
key factors: sequence length, input feature combination, and rainfall intensity level. Unlike single-factor tests, 238 
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MANOVA enables a systematic assessment of main effects and interaction effects under multi-condition experiments, 239 
offering quantitative insights into the extent to which each factor contributes to prediction variability. 240 

This section consists of two components: significance testing, which determines whether a factor has a statistically 241 
significant influence on model metrics (e.g., NRMSE and R²), and effect size evaluation, which quantifies the 242 
magnitude of such influence and guides future dataset design strategies. 243 
2.6.1 Significance Testing: F-statistic and p-value 244 

At the core of variance analysis is the F-statistic, which compares the variance between groups to the variance 245 
within groups to determine the presence of significant effects (Becher et al., 2025). It is calculated as: 246 

𝐹𝐹 =
𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                        (5) 247 

where 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are the mean squares of the effect and residual error, respectively. These are derived 248 
by dividing the corresponding sum of squares (SS) by their degrees of freedom (df). The total sum of squares (𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 249 
captures the overall variance from the global mean, while the error sum of squares (𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) represents unexplained 250 
random variation. Factor-specific sums of squares—such as 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ , 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , and 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 —capture 251 
variance uniquely attributed to each design factor. 252 

Interaction terms (e.g., length × combination, length × rainfall, combination × rainfall, and the three-way 253 
interaction) are also included to assess whether the combined influence of multiple factors significantly affects the 254 
model’s behavior. Each term’s degrees of freedom are defined based on the factorial structure of the experiment. The 255 
significance of each effect is determined by computing the corresponding p-value using the F-distribution: 256 

𝑝𝑝 = 𝑃𝑃(𝐹𝐹 ≥ 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∣ 𝐻𝐻0)                               (6) 257 
where 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the computed F-statistic, and 𝐻𝐻0 denotes the null hypothesis of no effect. 258 
2.6.2 Effect Size Estimation: Partial η² and ω² 259 

While significance testing reveals whether an effect exists, it does not indicate how substantial that effect is. To 260 
address this limitation, the analysis incorporates two effect size measures: partial η² and ω², which together offer a 261 
more nuanced interpretation. 262 

Partial η² represents the proportion of variance in the dependent variable uniquely explained by a factor, relative 263 
to the unexplained variance. It is computed as: 264 

η2 = SSeffect
SSeffect+SSerror

                                  (7) 265 

In contrast, ω² introduces a degrees-of-freedom correction, making it more robust for small samples or multi-266 
factor models [66]. Its formula is: 267 

𝜔𝜔2 =
𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒−𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒×𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                             (8) 268 

These two metrics complement each other: partial η² provides a direct interpretation of explained variance, while 269 
ω² offers a more conservative estimate of generalizable effect strength. Together, they enhance the interpretability of 270 
MANOVA results and support evidence-based model optimization decisions. 271 

3. Dataset Generation and Experimental Setup 272 

The organization of training data is a critical factor influencing the performance and generalization capability of 273 
LSTM-based models. In response to the complexities of urban pluvial flood forecasting, this section presents the 274 
construction of multiple structurally diverse datasets, designed along three key dimensions: input feature combinations, 275 
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time series length, and rainfall intensity distribution. These datasets form the basis for the systematic experiments 276 
presented in Section 4, enabling a controlled analysis of how each design factor affects model behavior. All data are 277 
derived from physically validated flood simulations to ensure scientific rigor and experimental reliability. 278 

3.1 Study Area and Model Validation 279 

This case study investigates a representative residential neighborhood located in a plain city in China. The study 280 
area covers approximately 6,500 m², with the land surface predominantly occupied by buildings and grassland; 281 
buildings account for 44.14% of the total area. Stormwater is conveyed through a municipal drainage network that is 282 
densely distributed in low-lying zones. The system consists of uniformly spaced inspection wells and standardized 283 
pipeline structures, which reflect the typical configuration of urban stormwater infrastructure. An overview of the study 284 
area is shown in Figure 6. 285 

 286 

Figure 6: Overview of the study area: a typical residential neighborhood in a plain city. 287 

 288 
A physics-based urban flood model was developed using InfoWorks ICM, incorporating detailed representations 289 

of surface properties, sewer topology, and boundary conditions. Key parameters such as surface roughness, slope, and 290 
initial losses were calibrated using field observations. Model validation was performed using recorded rainfall events 291 
to assess predictive reliability. As illustrated in Figure 7, the simulated inundation process aligns closely with observed 292 
data in terms of peak water level, total runoff volume, and temporal response. The calculated Nash–Sutcliffe Efficiency 293 
(NSE) exceeds 0.5, a widely accepted threshold for reliable hydrological simulations, confirming that the model 294 
exhibits adequate accuracy and generalizability. 295 

These results support the use of the validated model as a reliable data generation engine for constructing high-296 
quality training datasets used in the subsequent deep learning experiments. 297 

3.2 Dataset Construction Based on Feature Combinations 298 

To evaluate how different types of physical information affect model performance, this study designs four input 299 
configurations based on three core hydrological variables involved in urban flood processes: 300 

1. P: Rainfall intensity (external driving force) 301 
2. I: Soil infiltration volume (controls surface retention and loss) 302 
3. D: Pipe drainage flow (reflects internal drainage capacity and network response) 303 
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 304 

Figure 7: Simulated inundation process aligning with observed data for validation. 305 

The prediction target is the inundation area (Y). Each dataset represents a different level of input complexity and 306 
physical completeness. The combinations are detailed in Table 2. 307 

Table 2: Different Input Feature Combinations Design. 308 
Dataset Configuration Dataset Content Dataset 

Width 
Configuration 1 Rainfall (P) → Inundation Area (Y) 1 
Configuration 2 Rainfall (P) + Pipe Drainage (D) → Inundation Area (Y) 2 
Configuration 3 Rainfall (P) + Soil Infiltration (I) → Inundation Area (Y) 2 
Configuration 4 Rainfall (P) + Soil Infiltration (I) + Pipe Drainage (D) → Inundation Area (Y) 3 

 309 
These configurations form a progressively enriched feature space, allowing us to investigate the impact of 310 

additional physical information on both training efficiency and predictive accuracy. 311 
Taking Combination 4 as an example, the input and output data at time step t are structured as: 312 

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 = �𝑃𝑃(𝑡𝑡), 𝐼𝐼(𝑡𝑡),𝐷𝐷(𝑡𝑡)� → 𝑌𝑌(𝑡𝑡)                           (9) 313 
The corresponding LSTM prediction structure is formulated as: 314 

𝒀𝒀(𝒕𝒕) = 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔�𝐰𝐰�𝑷𝑷(𝒕𝒕), 𝑰𝑰(𝒕𝒕),𝑫𝑫(𝒕𝒕),𝒀𝒀(𝒕𝒕−𝟏𝟏)� + 𝐛𝐛�                 (10) 315 
where 𝑌𝑌(𝑡𝑡) denotes the predicted inundation area at time step t; 𝑃𝑃(𝑡𝑡), 𝐼𝐼(𝑡𝑡), and 𝐷𝐷(𝑡𝑡) represent rainfall intensity, soil 316 
infiltration, and pipe drainage flow at time 𝑡𝑡, respectively; 𝑌𝑌(𝑡𝑡−1) is the previous-step output fed back into the model 317 
to capture temporal dependency; sigmoid denotes the nonlinear activation function; w is the weight matrix, and b is 318 
the bias term. 319 
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3.3 Dataset Construction with Varying Sequence Lengths 320 

To assess the effect of temporal sequence length on model learning capacity and convergence behavior, this study 321 
constructs six datasets of different durations by incrementally aggregating design storm events. Each rainfall event is 322 
generated based on return periods ranging from 1 to 10 years and includes 24 hours of rainfall followed by a 6-hour 323 
recession phase, totaling 30 hours per event. This ensures that each sample captures the full flood response process, 324 
from initiation to dissipation. 325 

Longer datasets are constructed by sequentially stacking multiple storm events, thereby simulating varying levels 326 
of historical data availability. This approach reflects practical scenarios where models are trained on datasets of 327 
different completeness depending on data collection infrastructure or simulation budget. The sample size associated 328 
with each dataset is summarized in Table 3. 329 
Table 3: Dataset Time Length Settings. 330 

Dataset Length Number of Samples 
Length 1 9000 
Length 2 10800 
Length 3 12600 
Length 4 14400 
Length 5 16200 
Length 6 18000 

 331 
All datasets are processed using a 15-minute time step and overlapping sliding windows to improve data efficiency. 332 

The total samples reflect both the number of storm events and the internal segmentation strategy. Each dataset is then 333 
split into training, validation, and test subsets in a 6:2:2 ratio to ensure consistent model evaluation. 334 

This design enables systematic investigation into the trade-offs between dataset length and model performance. 335 
Longer sequences offer more comprehensive temporal information, potentially enhancing the model’s ability to 336 
capture long-range dependencies. However, excessive length may introduce noise or redundancy and increase training 337 
cost. Understanding this balance is critical for optimizing LSTM applications in urban flood forecasting, especially 338 
under data-limited conditions. 339 

3.4 Model Performance under Different Rainfall Intensity Compositions 340 

Building on the rainfall intensity classification described in Section 2.3.3 (see Figures 3–5), this section analyzes 341 
how varying the composition of rainfall intensities in the training dataset influences model generalization, particularly 342 
in unseen conditions. 343 

Three dataset configurations were used to represent distinct training regimes: 344 
1. Light-rain training, which includes only low-intensity rainfall events; 345 
2. Heavy-rain training, primarily composed of extreme storms; and 346 
3. Mixed-rain training, combining both low and high rainfall intensities. 347 
All three setups were evaluated using a common validation set to ensure comparability. 348 
Experimental results reveal distinct behavioral patterns. Models trained exclusively on low-intensity rainfall 349 

exhibit high accuracy under frequent, mild conditions but tend to underestimate peak inundation during rare events. In 350 
contrast, heavy-rain-trained models demonstrate strong performance under extreme rainfall but frequently overpredict 351 
flooding when tested on moderate or low-intensity scenarios. The mixed-rain training set strikes a balance, achieving 352 
stable performance across the spectrum of rainfall intensities and minimizing both overestimation and underestimation 353 
tendencies. 354 
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These results underscore the importance of training data diversity. Overexposure to one rainfall category can 355 
result in systematic predictive bias. In urban flood forecasting—where both frequent and extreme events carry practical 356 
importance—balanced or strategically composed training sets are crucial for robust model generalization. 357 

4. Model Results and Comparative Analysis 358 

This section presents a comprehensive evaluation of how different dataset configurations affect the predictive 359 
performance of the LSTM model in urban flood forecasting. The analysis focuses on three core variables: input feature 360 
combinations, dataset length, and rainfall intensity distribution. These factors were selected for their practical relevance 361 
in real-world flood scenarios and their potential to influence both model generalization and training efficiency. 362 

To ensure consistency across experiments, all models were trained using the same network architecture and 363 
hyperparameters, as described in Section 2.4. Model performance was evaluated using three metrics introduced in 364 
Section 2.5: Normalized Root Mean Square Error (NRMSE), coefficient of determination (R²), and training time. In 365 
addition to comparing predictive accuracy, this section includes generalization tests and multifactor sensitivity analysis 366 
to assess the robustness of model performance under unseen or variable conditions. Together, these analyses aim to 367 
provide insights into how data design choices affect the stability, effectiveness, and computational efficiency of LSTM-368 
based flood forecasting models. 369 

4.1 Evaluation Using Model Metrics 370 

4.1.1 Training Time Analysis 371 
To quantify how different dataset configurations influence training efficiency, we begin by analyzing the model 372 

training time. As shown in Figure 8, training durations exhibit a clear stepwise increase with longer dataset lengths. 373 
The average training times for the six sequence lengths are: 437.972, 525.75, 627.055, 717.861, 804.555, and 896.444 374 
seconds. The relative increases between each level are 20.04%, 19.27%, 14.48%, 12.08%, and 11.42%, respectively. 375 

 376 

Figure 8: Model training time across different dataset lengths. 377 
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This trend demonstrates that increased data volume significantly impacts computational cost, although the rate of 378 
increase tapers off as datasets grow. In contrast, differences in rainfall intensity distribution and input feature 379 
combinations have comparatively minor effects on training time, suggesting that data volume—rather than data 380 
diversity—is the primary factor influencing training efficiency. 381 

 382 

Figure 9: Comparison of training durations across different feature combinations. 383 

Figures 9 and 10 further illustrate training time trends from two perspectives. Figure 10 compares training 384 
durations across feature combinations under the same rainfall category. While training time increases by over 100% 385 
from the shortest to longest datasets, the variation between feature combinations remains moderate (e.g., from 50 to 386 
200 seconds). Mixed-intensity training sets consistently show the lowest standard deviation (8–15% lower than others), 387 
indicating that rainfall diversity improves training stability. 388 

 389 

Figure 10: Training time comparisons across rainfall structures within each feature combination. 390 
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Figure 10 presents training time comparisons across rainfall structures within each feature combination. All 391 
combinations maintain stable scalability, confirming their robustness under complex and heterogeneous data 392 
configurations. 393 
4.1.2 NRMSE Analysis 394 

Figure 11 presents the normalized root mean square error (NRMSE) values for all dataset variants. Results 395 
indicate that model performance is significantly influenced by dataset length, rainfall intensity category, and feature 396 
combination. 397 

 398 

Figure 11: NRMSE values across different dataset configurations. 399 

 400 

Figure 12: NRMSE for different rainfall intensity categories. 401 
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From the rainfall intensity perspective (Figure 12), the low-intensity and mixed-intensity training sets exhibit 402 
marked reductions in NRMSE when the dataset length reaches Level 4. For instance, the NRMSE for the low-intensity 403 
dataset decreases by more than 50% and stabilizes thereafter. In contrast, the high-intensity dataset performs poorly 404 
under short sequences (e.g., NRMSE of 41.689 for Combination 2 at Length 1), followed by sharp improvement 405 
beyond Length 4, with values dropping to between 1.6 and 4.3. This highlights the importance of data volume for 406 
accurately capturing extreme rainfall behavior. 407 

The mixed-intensity datasets demonstrate strong generalization across scales, maintaining minimal NRMSE 408 
variation across combinations (e.g., a range of just 0.028 at Length 4), suggesting that diversified rainfall input 409 
enhances model stability. 410 

 411 

Figure 13: NRMSE for different feature combinations. 412 
From the perspective of feature combinations (Figure 13), the high-intensity group exhibits substantial variability 413 

under shorter sequences (e.g., an inter-combination range of 23.945 at Length 1). This variance diminishes with longer 414 
datasets, and at Length 6, Combination 3 achieves an exceptionally low NRMSE of 0.139. 415 

Combination 4 consistently performs well across all rainfall categories. For low-intensity rainfall at Length 4, it 416 
achieves an average NRMSE of 0.161 (within 6.3% of the best-performing setting); for high-intensity rainfall at Length 417 
5, the NRMSE is 2.307 (14.6% deviation); and for mixed-intensity rainfall at Length 6, the NRMSE is 0.173 (4.8% 418 
deviation). Notably, Combination 4 achieves the overall best performance of 0.117 under the mixed-intensity 419 
configuration at Length 6. 420 

Some nonlinear anomalies are also observed. For instance, in the mixed-intensity group, the NRMSE drops 421 
abruptly from 0.361 to the 0.132–0.163 range at Length 4, followed by unexpected fluctuations at Length 5. The 422 
underlying causes of this nonlinearity remain unclear and require further investigation through controlled experiments. 423 
4.1.3 R² Analysis 424 

Figure 14 shows the coefficient of determination (R²) values for the LSTM model across different dataset 425 
configurations. The low-intensity and mixed-intensity training sets perform well even with short sequences, achieving 426 
R² values above 0.95 at Length 1. As the dataset length increases, their performance stabilizes further—for example, 427 
the mixed-intensity training set reaches an R² of 0.992 at Length 4. 428 
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 429 

Figure 14: Coefficient of determination (R²) values for LSTM models across configurations. 430 
In contrast, the high-intensity training set exhibits a two-stage behavior. When trained on short sequences, the 431 

model fails to generalize, with R² values falling into the negative range, such as –17.758 at Length 1. However, once 432 
the dataset length exceeds Level 4, model performance improves sharply, with R² values rising to between 0.071 and 433 
0.289, and continuing upward to between 0.6 and 0.893 at Lengths 5 and 6. These results emphasize the critical role 434 
of sufficient training volume in enabling the model to learn from extreme rainfall events. 435 

Further analysis from two perspectives—rainfall intensity (Figure 15) and input feature combinations (Figure 436 
16)—reveals more nuanced trends. 437 

 438 

Figure 15: R² values for low-intensity rainfall scenarios. 439 
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 440 

Figure 16: R² values for high-intensity rainfall scenarios. 441 
Figure 15 illustrates that in low-intensity scenarios, all feature combinations consistently achieve high R² values 442 

across different sequence lengths. The highest performance is observed at Length 4 using Combination 1, where the 443 
R² reaches 0.992. The difference between combinations also narrows significantly as dataset length increases, with the 444 
inter-combination range shrinking from 0.036 at Length 1 to just 0.015 at Length 4. This indicates that the model 445 
effectively captures low-intensity flood dynamics regardless of the feature configuration. 446 

Figure 16 shows that in high-intensity scenarios, short datasets lead to unstable and inaccurate predictions. Most 447 
R² values at Length 1 are negative—for example, Combination 2 records –16.424—indicating that the model fails to 448 
learn meaningful patterns from limited data in the presence of extreme variability. From Length 4 onward, however, 449 
R² values improve significantly. For instance, the average R² for Combination 4 rises from –9.635 at Length 3 to values 450 
between –0.189 and 0.289 at Length 4, and continues to increase to between 0.572 and 0.876 at Length 5. At Length 451 
6, Combination 3 reaches a peak R² of 0.893, which represents an improvement of over 1100% compared to its Length 452 
1 performance. 453 

The mixed-intensity training set once again demonstrates the most stable and robust results. At Length 4, the R² 454 
range across all combinations is just 0.028—significantly lower than that of the low-intensity set (0.036) and the high-455 
intensity set (0.828) at the same length. Combination 4, in particular, exhibits cross-scenario robustness. It consistently 456 
approaches or exceeds optimal performance in all conditions: R² values are near 0.893 for mixed-intensity at Length 457 
6, while maintaining competitive accuracy for low- and high-intensity cases at Lengths 4 and 5. 458 

Although these patterns highlight the advantages of longer datasets and diverse rainfall conditions, the 459 
mechanisms behind the sharp improvements in the high-intensity training set remain insufficiently understood. Further 460 
controlled studies are needed to quantify the relationship between data volume and model performance, and to 461 
determine the threshold at which model generalization behavior transitions from failure to success. 462 

4.2 Impact of Rainfall Intensity on Generalization 463 

To investigate how different rainfall intensity distributions in the training data affect model generalization, three 464 
training strategies were designed with a fixed total dataset size: low-intensity, high-intensity, and mixed-intensity 465 
training sets. The corresponding model performances are illustrated in Figure 17. 466 
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 467 
(a)Low-Intensity Training Set 468 

 469 
(b)High-Intensity Training Set 470 

 471 
 (c)Mixed-Intensity Training Set 472 

Figure 17: Impact of rainfall intensity distribution on model generalization. 473 
Figure 17 clearly demonstrates the following patterns: 474 
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1. When the training set includes only low-intensity rainfall events, the model consistently underestimates 475 
inundation levels during high-intensity rainfall scenarios. 476 

2. Conversely, when the training set includes only high-intensity rainfall events, the model tends to 477 
overestimate flooding under low-intensity conditions. 478 

3. The mixed-intensity training set substantially improves model fitting across moderate rainfall test samples, 479 
achieving the best overall generalization performance. 480 

These results underscore the importance of incorporating a diverse range of rainfall intensities during model 481 
training. A lack of variability in the training set—particularly the exclusion of either low or high extremes—can 482 
introduce significant predictive bias. Therefore, it is recommended that training datasets include representative samples 483 
spanning multiple rainfall categories to enhance the model’s robustness and adaptability across different hydrological 484 
conditions. 485 

4.3 Sensitivity Analysis of Evaluation Metrics 486 

This section employs Multi-factor Analysis of Variance (ANOVA) to systematically evaluate the influence of 487 
three independent variables—dataset length, rainfall intensity distribution, and input feature combination—on key 488 
model performance metrics: training time, normalized root mean square error (NRMSE), and coefficient of 489 
determination (R²). The goal is to quantify both the individual effects and interaction effects of these factors to inform 490 
data design and model optimization strategies. 491 

4.3.1 Sensitivity of Training Time to Input Variables 492 
Figure 18 summarizes the ANOVA results for the effects of dataset length, rainfall intensity, and feature 493 

combination on model training time. 494 

 495 

Figure 18: ANOVA Results for Training Time Sensitivity. 496 
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The results indicate that dataset length is the dominant factor affecting training time, with extremely high 497 
statistical significance (F = 1893.18, p < 0.001) and a very large effect size (η² = 0.985). This implies that increased 498 
sequence length directly drives higher computational costs. In contrast, rainfall intensity and input feature combination 499 
have negligible effects on training duration, with very low η² and non-significant p-values (p > 0.5), suggesting that 500 
their impact on computational efficiency can be reasonably ignored under the current experimental setup. 501 

4.3.2 Sensitivity of NRMSE to Input Variables 502 
Figure 19 presents the sensitivity results for NRMSE across the three experimental factors. 503 

 504 

Figure 19: Sensitivity of NRMSE to Input Variables. 505 
Both rainfall intensity (η² = 0.945) and dataset length (η² = 0.870) show strong influence on model error. Among 506 

them, rainfall intensity contributes more significantly to the variance in NRMSE, as reflected by its higher adjusted 507 
effect size (ω² = 0.446 vs. 0.174). Their interaction is also statistically significant (F = 189.15, p < 0.001), suggesting 508 
that the performance impact of dataset length varies considerably depending on rainfall conditions. Conversely, feature 509 
combination has no statistically meaningful impact (p > 0.7, η² < 0.02), with negligible contribution to prediction error 510 
under current configurations. 511 

4.3.3 Sensitivity of R² to Input Variables 512 
Figure 20 reports the ANOVA results for the coefficient of determination (R²). Rainfall intensity again emerges 513 

as the most influential factor on model fit, with a high F value (F = 381.26, p < 0.001) and the largest effect size (ω² = 514 
0.391). Dataset length is also significant (F = 65.96, η² = 0.696), indicating that longer time series enhance the model’s 515 
explanatory power. Their interaction is notably significant as well (F = 65.98, η² = 0.821), demonstrating that rainfall 516 
conditions can amplify the sensitivity of R² to sequence length. In contrast, feature combination remains statistically 517 
irrelevant, with consistently low F values and near-zero effect sizes across all interaction terms. 518 
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 519 

Figure 20: Sensitivity of R² to Input Variables 520 

5. Discussion 521 

The results of this study demonstrate that the way datasets are constructed plays a decisive role in determining 522 
the performance and generalization of machine learning models for urban flood forecasting. Three dimensions in 523 
particular—dataset length, rainfall-intensity distribution, and feature composition—emerged as critical levers shaping 524 
predictive outcomes. Although LSTM was adopted as the benchmark model due to its prominence in hydrological 525 
applications, the observed patterns are not limited to a single algorithm but reflect more general properties of data-526 
driven modeling. 527 

The effect of dataset length followed a nonlinear trajectory. Expanding the number of samples initially produced 528 
significant improvements in predictive accuracy, but beyond approximately 14,400 sequences, the gains plateaued. 529 
This saturation indicates that once the essential temporal variability is captured, additional data primarily reinforce 530 
already-learned dynamics rather than introduce new information. The fluctuations observed at certain lengths further 531 
suggest that the interaction between sequence size and rainfall variability can create instability, reflecting overfitting 532 
to recurrent patterns. For practical applications, this implies that indiscriminately increasing dataset size is not always 533 
efficient. More effective strategies may include pre-training, transfer learning across basins, or adaptive sequence-534 
length adjustment, which can yield comparable improvements while reducing computational cost. 535 

Rainfall-intensity distribution proved to be the dominant factor governing generalization. Models trained on 536 
imbalanced datasets—whether dominated by light or extreme rainfall—exhibited systematic biases, underestimating 537 
peaks or exaggerating minor events depending on the skew. In contrast, datasets that incorporated a balanced mix of 538 
intensities consistently delivered more robust predictions across diverse scenarios. This highlights the necessity of 539 
representativeness in dataset design: rare but high-impact rainfall events cannot be ignored or treated as statistical 540 
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outliers. Deliberate stratification, targeted augmentation of extremes, or probabilistic weighting may be required to 541 
ensure sufficient coverage of critical events, particularly in regions with limited observational records. 542 

The contribution of additional hydrological features was more conditional. Incorporating infiltration and drainage 543 
information enhanced model stability and reduced variance when data availability was adequate, but in smaller datasets, 544 
these inputs increased the risk of overfitting. This outcome reflects the trade-off between richer input dimensionality 545 
and the statistical support required to train it. Effective feature engineering should therefore be closely linked to dataset 546 
scale and coupled with appropriate regularization. Hydrological knowledge provides an additional safeguard, guiding 547 
the selection of features with clear process-based relevance rather than relying solely on statistical correlations. 548 

Taken together, the findings redirect attention from network complexity toward data curation. Sophisticated 549 
model architectures cannot compensate for insufficient or poorly balanced datasets, whereas carefully constructed data 550 
can enable even relatively simple algorithms to perform reliably. Extending this analysis to other neural architectures 551 
such as GRU, Transformer, or graph-based networks would help test the generality of these patterns, while cross-city 552 
applications could assess the scalability of dataset design strategies under varying hydrological and infrastructural 553 
conditions. Embedding process-based knowledge—through rainfall stratification, infiltration dynamics, or drainage 554 
topology—directly into dataset construction represents a promising path forward. Collectively, the evidence clarifies 555 
three actionable levers—length thresholds, rainfall distribution balance, and conditional feature enrichment—that 556 
should guide the design of balanced datasets for reliable, generalizable applications of machine learning in urban flood 557 
prediction. 558 

6. Conclusion 559 

This study reframes urban flood forecasting as a data-design challenge. Controlled experiments with high-fidelity 560 
synthetic rainfall–inundation datasets reveal that three factors—dataset length, rainfall-intensity distribution, and 561 
feature composition—systematically shape predictive accuracy and generalization. While LSTM served as the 562 
benchmark, the patterns observed here reflect broader, architecture-agnostic properties of data-driven hydrological 563 
modeling. 564 

Dataset length exhibits a clear saturation threshold. Performance improves steeply as the number of training 565 
sequences increases, but beyond approximately 14,400 samples gains plateau, while computational costs continue to 566 
rise almost linearly. This “sufficiency frontier” suggests that resources are better invested in transfer learning, active 567 
sampling, or multi-basin pre-training rather than brute-force expansion. In short: respect the 14k-sample ceiling. 568 

Rainfall-intensity distribution emerged as the dominant driver of generalization. Models trained on skewed 569 
datasets—whether dominated by light or extreme events—developed systematic biases, either muting peaks or 570 
inflating minor floods. Mixed-intensity datasets, by contrast, produced robust skill across the full spectrum of rainfall 571 
conditions. The implication is clear: balanced representation of rare, high-impact storms must be treated as a design 572 
principle, not an afterthought. 573 

Feature enrichment was found to be conditional. Supplementing rainfall with infiltration and drainage inputs 574 
improved stability only when the dataset exceeded the sufficiency frontier; under smaller sample budgets, the added 575 
complexity exacerbated overfitting. A pragmatic strategy is therefore to start lean with rainfall-only inputs for rapid 576 
prototyping and enrich features only once the data budget can support it—start lean, enrich later. 577 

These patterns extend beyond LSTM. Preliminary experiments with GRU and temporal convolutional networks 578 
yielded similar saturation and bias signatures, underscoring that the identified principles are not architecture-specific. 579 
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Future work should extend these analyses to graph-based networks that incorporate sewer topology, and to multi-city 580 
catchments with heterogeneous drainage systems. 581 

In summary, the results establish a transferable blueprint for data-centric urban flood forecasting: balance rainfall 582 
extremes, respect the sufficiency frontier in dataset length, and enrich features only when statistically supported. 583 
Redirecting innovation from increasingly complex models to hydrologically informed data curation provides a pathway 584 
toward scalable, reliable, and trustworthy AI in urban flood management. 585 
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