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10  Highlights:

11 *  Proposes a three-dimensional dataset design framework (length, feature combination, rainfall distribution) for

12 Al-based urban pluvial flood prediction.

13 . Identifies a threshold effect of data length (~14,400 samples) where model performance significantly improves
14 and then saturates.

15 . Reveals that rainfall distribution dominates model generalization and bias, with mixed-intensity training

16 achieving the best robustness.

17 . Shows that the effectiveness of multi-feature inputs (P+1+D) depends on dataset size, improving stability only

18 when sufficient data are available.

19 . Integrates a hydrological-hydrodynamic model with machine learning, enabling reliable training data

20 generation in data-scarce urban areas.

21 Abstract: Reliable urban flood prediction hinges on how datasets are designed, yet most existing research

22 disproportionately emphasizes network architectures over data foundations. This study systematically investigates
23 how dataset characteristics—scale, feature composition, and rainfall-event distribution—govern predictive

24 performance and generalization in Al-based pluvial flood modeling. A physically calibrated hydrological—

25 hydrodynamic model was employed to generate synthetic datasets with varied temporal lengths, input feature

26 combinations (rainfall, infiltration, drainage), and rainfall-intensity distributions. A long short-term memory (LSTM)
27 network, chosen for its widespread adoption and proven performance in hydrology, was applied as a representative
28  benchmark to assess accuracy, computational cost, and bias under controlled conditions. Results identify: (1) a

29  threshold effect of dataset length (~14,400 samples), beyond which performance gains plateau; (2) rainfall-intensity
30 distribution as the dominant driver of generalization—training solely on light or extreme events induces systematic
31  bias, whereas mixed-intensity datasets substantially enhance robustness; (3) ancillary features (infiltration and

32  drainage) improve stability only when data are sufficiently abundant. These findings quantify trade-offs and pinpoint
33 actionable design levers, offering general insights into dataset design for machine learning models in flood prediction
34 and beyond. By clarifying critical dataset requirements, this study provides transferable guidance for building

35  efficient and balanced datasets in hydrology and broader Earth system sciences.
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38 1. Introduction

39 Global climate change and rapid urbanization have escalated urban pluvial flooding into a global crisis,
40  threatening public safety, mobility, and economic stability (Qi et al., 2021; Wilhelm et al., 2022; Won et al., 2022).
41 High-density cities are particularly vulnerable, as short-duration, high-intensity rainfall events exhibit strong
42 suddenness and spatial heterogeneity, introducing complex spatiotemporal nonlinearities into forecasting tasks (Zhang
43 et al., 2016). Improving the accuracy and timeliness of urban flood prediction has therefore become a central concern
44 in hydrological modeling and urban resilience research.

45 Physically based rainfall-runoff and flood propagation models—such as SWMM, HEC-RAS, and their coupled
46  hydrological-hydrodynamic extensions—have substantially advanced the representation of drainage dynamics and
a7 inundation processes (Chen et al., 2016; Gomes et al., 2021; Chitwatkulsiri and Miyamoto, 2023). Techniques
48 including GIS integration for estuarine systems (Cardoso et al., 2020), real-time storm warning from 2D models
49  (Hofmann and Schittrumpf, 2020), and bidirectional coupling strategies (Jamali et al., 2020; Barreiro et al., 2022)
50  have enriched practical forecasting pathways. Nevertheless, these models remain highly dependent on detailed
51 parameters such as pipe network topology and surface roughness (Fu et al., 2022) and demand laborious calibration
52 (Liu et al., 2017; Hattermann et al., 2018; Her et al., 2019). Such requirements limit their transferability to real-time
53 operations, especially in small and medium-sized cities where data scarcity and limited computational capacity are
54 pervasive obstacles (Yang et al., 2020; Chen et al., 2023).

55 Parallel to these advances, data-driven approaches have gained prominence. Deep learning models have shown
56 remarkable capability in capturing nonlinear hydrological processes and have been widely applied in rainfall-runoff
57  and flood forecasting (Ahani et al., 2018; Pollard et al., 2018; Kim and Han, 2020). Among them, Long Short-Term
58 Memory (LSTM) networks and their variants have become especially prominent in urban hydrology (Zhang et al.,
59  2018; Abbasimehr and Paki, 2022; Zheng et al., 2024). Recent developments include ES-LSTM with exponential
60  smoothing (Hayder et al., 2023), lightweight architectures via knowledge distillation (Ma et al., 2022), swarm-
61 intelligence optimization (Mahmoodzadeh et al., 2022), attention-based mechanisms (Xu et al., 2022; Jhong et al.,
62 2024, Lietal., 2025), and encoder—decoder frameworks that accelerate large-scale simulations (Wei et al., 2024; Ni et
63  al., 2024). Hybrid physics—Al systems that correct the errors of conventional models further demonstrate the promise
64  of deep learning in hydrology (Wenchuan et al., 2024; Zhou et al., 2023). Collectively, these advances confirm that
65  algorithmic innovation continues apace. However, relatively little attention has been devoted to systematic analysis of
66  dataset design—how the scale, feature composition, and distribution of events influence predictive performance and
67  generalization.

68 Urban pluvial flood data differ fundamentally from riverine hydrological time series: they are often sparse,
69 intermittent, and strongly constrained by monitoring infrastructure (Nearing et al., 2021; Liu et al., 2024). Scarcity,
70 imbalance, and uncertainty in rainfall records have been shown to directly impair model generalization, with notable
71 performance deterioration once data uncertainty exceeds certain thresholds (Dong et al., 2020; Huang et al., 2021;
72  Ghaith et al., 2022; Chen et al., 2024). To alleviate these challenges, researchers have generated synthetic rainfall—
73 runoff data using physically based models, and such augmentation has been shown to improve learning (Kilsdonk et
74 al., 2022; Chen et al., 2023). Yet most existing efforts focus narrowly on enlarging dataset size or applying local

75  corrections, while the fundamental questions of dataset construction—such as the optimal sequence length, the role of
2
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76 feature combinations, and the influence of rainfall-intensity distribution—remain insufficiently addressed
77 (Tikhamarine et al., 2020). Evidence indicates that dataset effects are nonlinear: improvements plateau beyond certain
78 lengths (He et al., 2019; Sliwowski et al., 2023), diversity often outweighs sheer volume (Fang et al., 2019; Hou et al.,
79 2022; Kratzert et al., 2021; Gupta, 2024), and feature combinations contribute only when supported by sufficient
80  samples (Paz et al., 2018; Son et al., 2020; Wang and Ying, 2023). Moreover, rainfall intensity distribution strongly
81 influences generalization, particularly for extremes (Zheng et al., 2024), yet systematic evaluation of this factor is
82  largely absent.

83 This study therefore investigates how dataset length, feature composition, and rainfall-intensity distribution
84 influence predictive performance and generalization in urban flood prediction. Using synthetic datasets generated from
85  a calibrated hydrological-hydrodynamic model, we establish a controlled experimental framework to examine
86  threshold effects, feature interactions, and distributional biases. While LSTM is employed as a representative
87 benchmark due to its widespread use in hydrology, the insights obtained are intended to be transferable across a broad
88 range of machine learning models. In doing so, the study provides a data-centric perspective on Al-based flood
89  forecasting and offers guidance for designing efficient and balanced datasets in hydrology and Earth system sciences.
90 The remainder of this paper is organized as follows. Section 2 introduces the study design, including the
91  hydrological-hydrodynamic model setup, synthetic dataset generation, and the benchmark ML framework. Section 3
92  presents the experimental results, focusing on dataset length, rainfall-intensity distribution, and feature composition.
93  Section 4 discusses the underlying mechanisms, compares the findings with previous studies, and outlines broader
94 implications. Finally, Section 5 summarizes the main conclusions and provides directions for future research.

95 2. Methodology

96 2.1 Technical Roadmap
97 This study proposes a structured technical roadmap to investigate how different dataset design strategies influence

98 the predictive performance of deep learning models in urban pluvial flood scenarios, as illustrated in Figure 1.
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101 The methodology is organized into three sequential phases, encompassing synthetic data generation, model
102 training, and performance evaluation.

103 The first phase involves the construction of rainfall-inundation time-series datasets using InfoWorks ICM 2021.4,
104 a physically based hydrodynamic modeling platform. The model is pre-calibrated with observed urban waterlogging
105 data, incorporating adjustments to parameters such as pipe roughness, surface flow coefficients, and land cover types
106  to ensure simulation reliability. To represent a range of rainfall conditions, synthetic storm events are generated based
107  onintensity-duration-frequency (IDF) curves for 1- to 10-year return periods. Each event spans 24 hours, followed by
108 a 6-hour recession period to ensure temporal independence. By aggregating varying numbers of these events, datasets
109  of different sequence lengths (ranging from 5 to 10 events) are constructed. Moreover, input features are organized
110 into four distinct combinations—including rainfall, infiltration, and drainage flow—and rainfall intensities are
111  stratified into light, heavy, and mixed categories to facilitate a multi-dimensional analysis of model behavior.

112 Next, model training is conducted under a standardized LSTM architecture to ensure consistency across
113  experimental settings. The model employs a single-layer LSTM network with 64 hidden units, a 30-minute input
114 sequence length, and a 15-minute step size, allowing it to effectively capture short-term rainfall-runoff dynamics. A
115 50% overlapping sliding window is applied during data segmentation to maximize feature retention and improve
116 learning stability. All input features are normalized, and the model is trained for 50 epochs using a batch size of 32 and
117 a learning rate of 0.005. The training is implemented in PyTorch and executed on an Intel i9 processor with an NVIDIA
118  RTX 3090 GPU. Each dataset configuration is trained and validated independently using an 80:20 split, enabling
119 comparative evaluation of convergence speed and stability under different data conditions.

120 Finally, a multi-metric evaluation scheme is employed to assess model performance from the perspectives of
121  predictive accuracy, training efficiency, and generalization capacity. Predictive accuracy is quantified using the
122 Normalized Root Mean Square Error (NRMSE), which accounts for scale sensitivity in runoff predictions. The
123 coefficient of determination (R2) is used to measure how well the model captures variance in the observed data. In
124 addition, total training time is recorded to evaluate computational efficiency. To facilitate multi-objective comparison,
125  radar charts are used to visualize performance across dataset configurations, revealing trade-offs and optimal strategies

126  inaclear and interpretable manner.

127 2.2 Rainfall - Runoff Data Generation Method

128 Due to the high cost and limited spatiotemporal coverage of observed data for urban pluvial flood events, this
129  study employs physically based simulation to generate controlled, high-fidelity datasets. A hydrological—
130  hydrodynamic model is developed in InfoWorks ICM 2021.4, incorporating calibrated parameters such as pipe
131  roughness, land cover types, and surface flow coefficients. The model is calibrated using measured inundation data,
132  and its simulation performance is evaluated using the Nash—Sutcliffe Efficiency (NSE), with values consistently
133 exceeding 0.5, indicating reliable accuracy for synthetic data generation.

134 The rainfall input used in simulation is derived from a regional design storm intensity—duration—frequency (IDF)
135  formula, expressed in the following form:

136 q= a(1+bxlogiop) (1)

(t+c)d



https://doi.org/10.5194/egusphere-2025-4125
Preprint. Discussion started: 14 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

137  where q is the rainfall intensity (L/s-ha), t is the rainfall duration (minutes), and p is the return period (years). The
138  coefficients a, b, c, d are empirical constants fitted to local rainfall statistics.
139 Based on this formula, design rainfall events for 1-, 2-, ..., up to 10-year return periods are generated, each lasting
140 24 hours, with a peak factor set to 0.4 to simulate realistic storm profiles. Each event is followed by a 6-hour drainage
141  period to ensure temporal independence. The generated rainfall curves are illustrated in Figure 2.
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143 Figure 2: Rainfall curves generated from intensity-duration-frequency (IDF) formula for different return periods.
144 By progressively aggregating these events, time-series datasets of varying lengths are created. This allows for
145 controlled evaluation of how data scale impacts model learning. The corresponding runoff response—represented as
146 inundation area—is calculated using a simplified water balance model:
147 Q=P-I1-D )
148  where P is total precipitation, 111 is infiltration estimated via the Horton method, and D is the volume drained through
149 the sewer system. The residual Q serves as the model’s predictive target, representing surface water accumulation over
150  time.
151 2.3 Dataset Design Strategies
152 This section outlines the design logic for constructing datasets across three key dimensions: input feature
153  configurations, sequence length, and rainfall intensity distribution. These configurations form the foundation for a
154 factorial experimental setup that enables systematic evaluation of model behavior under varying data conditions.
155  2.3.1 Input Feature Configurations
156 Accurate urban flood prediction requires capturing the complex interplay among rainfall generation, infiltration
157  processes, and drainage dynamics. To represent these factors, we construct four types of input feature configurations:
158 1. Configuration 1: Rainfall (P) only
159 2. Configuration 2: Rainfall (P) + Pipe drainage (D)
160 3. Configuration 3: Rainfall (P) + Soil infiltration (1)
161 4.  Configuration 4: Rainfall (P) + Infiltration (I) + Drainage (D)

5
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162 These configurations reflect varying degrees of hydrological process coupling. Configuration 1 represents the
163 minimal input case, relying solely on external forcing. Configurations 2 and 3 incorporate key physical subsystems—
164  engineered drainage and soil infiltration—individually. Configuration 4 integrates both, offering the most physically
165  complete scenario. This structure enables a comparative analysis of the effect of hydrological complexity on model
166  performance and interpretability.

167  2.3.2 Sequence Length Design

168 To evaluate the sensitivity of LSTM model performance to time-series span, six different sequence lengths are
169  defined, each composed of multiple synthetic rainfall events. A single rainfall event consists of 24 hours of
170  precipitation followed by a 6-hour recession period. The training sets are then constructed by stacking the following
171  sequence lengths:

172 1. Length 1: 9000 samples

173 2. Length 2: 10800 samples

174 3. Length 3: 12600 samples

175 4. Length 4: 14400 samples

176 5. Length 5: 16200 samples

177 6. Length 6: 18000 samples

178 All datasets are split into training, validation, and test sets with a fixed ratio of 6:2:2. This design allows us to
179 investigate how the amount of temporal information affects learning efficiency, model stability, and prediction
180  accuracy under different data scales.

181  2.3.3 Rainfall Intensity Distributions

182 This experimental dimension is designed to investigate whether the inclusion of extreme rainfall events in the
183 training dataset is essential for achieving accurate flood predictions, and whether representative samples selected from
184 the broader rainfall spectrum can support robust model generalization. It also facilitates the examination of potential
185  predictive biases—such as the tendency of models trained predominantly on heavy rainfall to systematically
186  overestimate inundation levels.

187 To explore these aspects, three distinct rainfall classification schemes are defined based on intensity distribution
188  within the training set:

189 1.  Low-Intensity Training Set: Includes only low-intensity rainfall events in the training set, while validation
190  contains extreme rainfall scenarios, as shown in Figure 3.
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192 Figure 3: Rainfall intensity classification for low-intensity training set.

193 2. High-Intensity Training Set: Contains primarily high-intensity rainfall events in the training set, with
194 validation samples representing mild to moderate scenarios, as illustrated in Figure 4.
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196 Figure 4: Rainfall intensity classification for high-intensity training set.
197 3. Mixed-Intensity Training Set: Combines low and high rainfall events in the training set and includes
198  moderate events in validation, as presented in Figure 5.
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200 Figure 5: Rainfall intensity classification for mixed-intensity training set.
201 2.4 LSTM Model Configuration and Parameters
202 A unified LSTM neural network structure is adopted in this study to ensure consistency across experiments. The

203 model is designed with a sequence length of 30 minutes and a step size of 15 minutes, enabling it to effectively capture
204 the dynamic response cycle of short-duration rainfall-runoff processes. To enhance data utilization and reduce the risk
205  of missing critical hydrological features, a 50% overlapping sliding window strategy is applied.

206 The network architecture consists of a single-layer LSTM with 64 hidden units, providing a balance between
207 model complexity and computational efficiency—particularly suited for extracting temporal patterns from minute-
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208 level hydrological data. During training, the batch size is set to 32 and the learning rate to 0.005, ensuring stable
209  gradient updates while allowing the model to converge fully within 50 epochs. This helps mitigate overfitting,
210  especially when training on limited datasets.

211 The model is implemented using the PyTorch framework and trained on a computing environment equipped with
212 an Intel i9 processor and NVIDIA RTX 3090 GPU. Detailed model parameters are listed in Table 1.

213  Table 1: LSTM Model Configuration and Parameters.

Parameter Value
Model layers (num_layers) 1
Sequence length (seq_len) 30
Step size (step_size) 15
Number of neurons (hidden_size) | 64
Batch size 32
Number of epochs (epochs) 50
Learning rate (Ir) 0.005
214 2.5 Evaluation Metrics
215 To comprehensively evaluate how different dataset construction strategies affect model performance, this study

216  adopts three representative metrics: prediction accuracy, explanatory power, and computational efficiency. These are
217  detailed as follows:
218  2.5.1 Normalized Root Mean Square Error (NRMSE)
219 NRMSE quantifies relative prediction error and is suitable for comparing performance across datasets with
220  varying rainfall magnitudes. It is defined as:

FIRL (T2
221 NRMSE = "f 3)

222  where n is the number of data points, Y; is the observed value, ¥; is the predicted value, and X is the mean of

223 observed values. Its normalized nature makes it robust when comparing models trained on light versus heavy rainfall

224 samples.
225  2.5.2 Coefficient of Determination (R?)
226 Rz reflects the proportion of variance in observed data that is explained by the model. It is a widely used indicator

227  of model fitting quality and is defined as:

228 R*=1- %“ @
229  where SS,., isthe sum of squared residuals and SS,,, is the total sum of squares. A value closer to 1 indicates better
230  alignment between predicted and actual water depth values.

231  25.3 Training Time

232 Training time, measured in seconds, serves as a proxy for model efficiency. Given the identical hardware and
233 software environments across all experiments, this metric offers a fair basis to compare convergence behavior and

234 computational overhead across datasets with different sequence lengths and feature complexities.

235 2.6 Sensitivity Analysis

236 To further investigate how different dataset construction dimensions influence model performance, this study
237 applies Multivariate Analysis of Variance (MANOVA) to assess the statistical significance and effect strength of three

238 key factors: sequence length, input feature combination, and rainfall intensity level. Unlike single-factor tests,

8
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239 MANOVA enables a systematic assessment of main effects and interaction effects under multi-condition experiments,
240  offering quantitative insights into the extent to which each factor contributes to prediction variability.

241 This section consists of two components: significance testing, which determines whether a factor has a statistically
242 significant influence on model metrics (e.g., NRMSE and R?), and effect size evaluation, which quantifies the
243 magnitude of such influence and guides future dataset design strategies.

244 2.6.1 Significance Testing: F-statistic and p-value

245 At the core of variance analysis is the F-statistic, which compares the variance between groups to the variance
246  within groups to determine the presence of significant effects (Becher et al., 2025). It is calculated as:

247 F = etfect ©)

MSerror
248  where MS,frecr and MS,,.or are the mean squares of the effect and residual error, respectively. These are derived
249 by dividing the corresponding sum of squares (SS) by their degrees of freedom (df). The total sum of squares (SS;o¢q:)
250 captures the overall variance from the global mean, while the error sum of squares (SSe,or) represents unexplained
251 random variation. Factor-specific sums of squares—such as SSicngen, SScombination aNd SSyqinrqu —Capture
252 variance uniquely attributed to each design factor.
253 Interaction terms (e.g., length x combination, length x rainfall, combination x rainfall, and the three-way
254 interaction) are also included to assess whether the combined influence of multiple factors significantly affects the
255  model’s behavior. Each term’s degrees of freedom are defined based on the factorial structure of the experiment. The
256 significance of each effect is determined by computing the corresponding p-value using the F-distribution:
257 P =P(F = Fopservea | Ho) (6)
258  where F,pgerpeq IS the computed F-statistic, and H, denotes the null hypothesis of no effect.
259  2.6.2 Effect Size Estimation: Partial n* and o?
260 While significance testing reveals whether an effect exists, it does not indicate how substantial that effect is. To
261 address this limitation, the analysis incorporates two effect size measures: partial n? and 2, which together offer a
262  more nuanced interpretation.
263 Partial n? represents the proportion of variance in the dependent variable uniquely explained by a factor, relative

264 to the unexplained variance. It is computed as:

ss
265 2 effect 7

n SSeffect+SSerror ( )
266 In contrast, ? introduces a degrees-of-freedom correction, making it more robust for small samples or multi-

267  factor models [66]. Its formula is:

268 w? = SSeffect=Af ef fectXMSerror (8)
SStotat+MSerror

269 These two metrics complement each other: partial n? provides a direct interpretation of explained variance, while
270 ? offers a more conservative estimate of generalizable effect strength. Together, they enhance the interpretability of

271  MANOVA results and support evidence-based model optimization decisions.

272 3. Dataset Generation and Experimental Setup

273 The organization of training data is a critical factor influencing the performance and generalization capability of
274 LSTM-based models. In response to the complexities of urban pluvial flood forecasting, this section presents the

275 construction of multiple structurally diverse datasets, designed along three key dimensions: input feature combinations,
9
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276  time series length, and rainfall intensity distribution. These datasets form the basis for the systematic experiments
277  presented in Section 4, enabling a controlled analysis of how each design factor affects model behavior. All data are

278  derived from physically validated flood simulations to ensure scientific rigor and experimental reliability.

279 3.1 Study Area and Model Validation

280 This case study investigates a representative residential neighborhood located in a plain city in China. The study
281 area covers approximately 6,500 m?, with the land surface predominantly occupied by buildings and grassland,;
282 buildings account for 44.14% of the total area. Stormwater is conveyed through a municipal drainage network that is
283  densely distributed in low-lying zones. The system consists of uniformly spaced inspection wells and standardized
284 pipeline structures, which reflect the typical configuration of urban stormwater infrastructure. An overview of the study
285  areais shown in Figure 6.

Research area

Drainage pipeline

O Manhole
[] Building
highland
H elevation legend
depression
286
287 Figure 6: Overview of the study area: a typical residential neighborhood in a plain city.
288
289 A physics-based urban flood model was developed using InfoWorks ICM, incorporating detailed representations

290  of surface properties, sewer topology, and boundary conditions. Key parameters such as surface roughness, slope, and
291 initial losses were calibrated using field observations. Model validation was performed using recorded rainfall events
292  toassess predictive reliability. As illustrated in Figure 7, the simulated inundation process aligns closely with observed
293  datainterms of peak water level, total runoff volume, and temporal response. The calculated Nash—Sutcliffe Efficiency
294  (NSE) exceeds 0.5, a widely accepted threshold for reliable hydrological simulations, confirming that the model
295  exhibits adequate accuracy and generalizability.

296 These results support the use of the validated model as a reliable data generation engine for constructing high-

297  quality training datasets used in the subsequent deep learning experiments.

298 3.2 Dataset Construction Based on Feature Combinations

299 To evaluate how different types of physical information affect model performance, this study designs four input

300  configurations based on three core hydrological variables involved in urban flood processes:

301 1. P:Rainfall intensity (external driving force)
302 2. I: Soil infiltration volume (controls surface retention and loss)
303 3.  D: Pipe drainage flow (reflects internal drainage capacity and network response)

10
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305 Figure 7: Simulated inundation process aligning with observed data for validation.
306 The prediction target is the inundation area (Y). Each dataset represents a different level of input complexity and
307  physical completeness. The combinations are detailed in Table 2.
308  Table 2: Different Input Feature Combinations Design.
Dataset Configuration Dataset Content Dataset
Width
Configuration 1 Rainfall (P) — Inundation Area (Y) 1
Configuration 2 Rainfall (P) + Pipe Drainage (D) — Inundation Area (Y) 2
Configuration 3 Rainfall (P) + Soil Infiltration (I) — Inundation Area (Y) 2
Configuration 4 Rainfall (P) + Soil Infiltration (I) + Pipe Drainage (D) — Inundation Area (Y) | 3
309
310 These configurations form a progressively enriched feature space, allowing us to investigate the impact of
311 additional physical information on both training efficiency and predictive accuracy.
312 Taking Combination 4 as an example, the input and output data at time step t are structured as:
313 Input = {P®,1® DO} 5 y® 9)
314 The corresponding LSTM prediction structure is formulated as:
315 Y® = sigmoid(w[P®,I®,D®,y¢=D] + b) (10)
316  where Y® denotes the predicted inundation area at time step t; P®, 1), and D® represent rainfall intensity, soil
317 infiltration, and pipe drainage flow at time t, respectively; Y¢~1 is the previous-step output fed back into the model
318  to capture temporal dependency; sigmoid denotes the nonlinear activation function; w is the weight matrix, and b is
319 the bias term.
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320 3.3 Dataset Construction with Varying Sequence Lengths

321 To assess the effect of temporal sequence length on model learning capacity and convergence behavior, this study
322 constructs six datasets of different durations by incrementally aggregating design storm events. Each rainfall event is
323 generated based on return periods ranging from 1 to 10 years and includes 24 hours of rainfall followed by a 6-hour
324 recession phase, totaling 30 hours per event. This ensures that each sample captures the full flood response process,
325  from initiation to dissipation.

326 Longer datasets are constructed by sequentially stacking multiple storm events, thereby simulating varying levels
327  of historical data availability. This approach reflects practical scenarios where models are trained on datasets of
328  different completeness depending on data collection infrastructure or simulation budget. The sample size associated
329  with each dataset is summarized in Table 3.

330  Table 3: Dataset Time Length Settings.

Dataset Length | Number of Samples
Length 1 9000
Length 2 10800
Length 3 12600
Length 4 14400
Length 5 16200
Length 6 18000
331
332 All datasets are processed using a 15-minute time step and overlapping sliding windows to improve data efficiency.

333 The total samples reflect both the number of storm events and the internal segmentation strategy. Each dataset is then
334 splitinto training, validation, and test subsets in a 6:2:2 ratio to ensure consistent model evaluation.

335 This design enables systematic investigation into the trade-offs between dataset length and model performance.
336 Longer sequences offer more comprehensive temporal information, potentially enhancing the model’s ability to
337  capture long-range dependencies. However, excessive length may introduce noise or redundancy and increase training
338  cost. Understanding this balance is critical for optimizing LSTM applications in urban flood forecasting, especially

339  under data-limited conditions.

340 3.4 Model Performance under Different Rainfall Intensity Compositions

341 Building on the rainfall intensity classification described in Section 2.3.3 (see Figures 3-5), this section analyzes
342  how varying the composition of rainfall intensities in the training dataset influences model generalization, particularly

343  inunseen conditions.

344 Three dataset configurations were used to represent distinct training regimes:

345 1. Light-rain training, which includes only low-intensity rainfall events;

346 2. Heavy-rain training, primarily composed of extreme storms; and

347 3. Mixed-rain training, combining both low and high rainfall intensities.

348 All three setups were evaluated using a common validation set to ensure comparability.

349 Experimental results reveal distinct behavioral patterns. Models trained exclusively on low-intensity rainfall

350 exhibit high accuracy under frequent, mild conditions but tend to underestimate peak inundation during rare events. In
351  contrast, heavy-rain-trained models demonstrate strong performance under extreme rainfall but frequently overpredict
352  flooding when tested on moderate or low-intensity scenarios. The mixed-rain training set strikes a balance, achieving
353  stable performance across the spectrum of rainfall intensities and minimizing both overestimation and underestimation

354  tendencies.
12
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355 These results underscore the importance of training data diversity. Overexposure to one rainfall category can
356  result in systematic predictive bias. In urban flood forecasting—where both frequent and extreme events carry practical
357 importance—balanced or strategically composed training sets are crucial for robust model generalization.

358 4. Model Results and Comparative Analysis

359 This section presents a comprehensive evaluation of how different dataset configurations affect the predictive
360  performance of the LSTM model in urban flood forecasting. The analysis focuses on three core variables: input feature
361  combinations, dataset length, and rainfall intensity distribution. These factors were selected for their practical relevance
362 in real-world flood scenarios and their potential to influence both model generalization and training efficiency.

363 To ensure consistency across experiments, all models were trained using the same network architecture and
364  hyperparameters, as described in Section 2.4. Model performance was evaluated using three metrics introduced in
365  Section 2.5: Normalized Root Mean Square Error (NRMSE), coefficient of determination (R?), and training time. In
366 addition to comparing predictive accuracy, this section includes generalization tests and multifactor sensitivity analysis
367  to assess the robustness of model performance under unseen or variable conditions. Together, these analyses aim to
368 provide insights into how data design choices affect the stability, effectiveness, and computational efficiency of LSTM-
369  based flood forecasting models.

370 4.1 Evaluation Using Model Metrics

371  4.1.1 Training Time Analysis

372 To quantify how different dataset configurations influence training efficiency, we begin by analyzing the model
373 training time. As shown in Figure 8, training durations exhibit a clear stepwise increase with longer dataset lengths.
374 The average training times for the six sequence lengths are: 437.972, 525.75, 627.055, 717.861, 804.555, and 896.444
375  seconds. The relative increases between each level are 20.04%, 19.27%, 14.48%, 12.08%, and 11.42%, respectively.
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378 This trend demonstrates that increased data volume significantly impacts computational cost, although the rate of
379 increase tapers off as datasets grow. In contrast, differences in rainfall intensity distribution and input feature
380 combinations have comparatively minor effects on training time, suggesting that data volume—rather than data
381  diversity—is the primary factor influencing training efficiency.
Rainfall Intensity
B Lovw-Intensity Training Set
[ High-Intensity Training Set
900 | M Mixed-Intensity Training Set
300 ﬁ
g
B
500 E i
400
LengthT Length IT Length TIT Length IV Length V Length VI
382 Length
383 Figure 9: Comparison of training durations across different feature combinations.
384 Figures 9 and 10 further illustrate training time trends from two perspectives. Figure 10 compares training
385  durations across feature combinations under the same rainfall category. While training time increases by over 100%
386  from the shortest to longest datasets, the variation between feature combinations remains moderate (e.g., from 50 to
387 200 seconds). Mixed-intensity training sets consistently show the lowest standard deviation (8-15% lower than others),
388 indicating that rainfall diversity improves training stability.
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390 Figure 10: Training time comparisons across rainfall structures within each feature combination.
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Figure 10 presents training time comparisons across rainfall structures within each feature combination. All
combinations maintain stable scalability, confirming their robustness under complex and heterogeneous data
configurations.

4.1.2 NRMSE Analysis

Figure 11 presents the normalized root mean square error (NRMSE) values for all dataset variants. Results

indicate that model performance is significantly influenced by dataset length, rainfall intensity category, and feature

combination.
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Figure 11: NRMSE values across different dataset configurations.
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Figure 12: NRMSE for different rainfall intensity categories.
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402 From the rainfall intensity perspective (Figure 12), the low-intensity and mixed-intensity training sets exhibit
403  marked reductions in NRMSE when the dataset length reaches Level 4. For instance, the NRMSE for the low-intensity
404  dataset decreases by more than 50% and stabilizes thereafter. In contrast, the high-intensity dataset performs poorly
405  under short sequences (e.g., NRMSE of 41.689 for Combination 2 at Length 1), followed by sharp improvement
406  beyond Length 4, with values dropping to between 1.6 and 4.3. This highlights the importance of data volume for
407  accurately capturing extreme rainfall behavior.

408 The mixed-intensity datasets demonstrate strong generalization across scales, maintaining minimal NRMSE
409  variation across combinations (e.g., a range of just 0.028 at Length 4), suggesting that diversified rainfall input
410  enhances model stability.

Combination

- I Combination 1
[ Combination 2
I Combination 3
I Combination 4

30

LengthI LengthII Length III Length IV Length V Length VI

411 Length

412 Figure 13: NRMSE for different feature combinations.

413 From the perspective of feature combinations (Figure 13), the high-intensity group exhibits substantial variability
414  under shorter sequences (e.g., an inter-combination range of 23.945 at Length 1). This variance diminishes with longer
415  datasets, and at Length 6, Combination 3 achieves an exceptionally low NRMSE of 0.139.

416 Combination 4 consistently performs well across all rainfall categories. For low-intensity rainfall at Length 4, it
417  achieves an average NRMSE of 0.161 (within 6.3% of the best-performing setting); for high-intensity rainfall at Length
418 5, the NRMSE is 2.307 (14.6% deviation); and for mixed-intensity rainfall at Length 6, the NRMSE is 0.173 (4.8%
419  deviation). Notably, Combination 4 achieves the overall best performance of 0.117 under the mixed-intensity
420  configuration at Length 6.

421 Some nonlinear anomalies are also observed. For instance, in the mixed-intensity group, the NRMSE drops
422  abruptly from 0.361 to the 0.132-0.163 range at Length 4, followed by unexpected fluctuations at Length 5. The
423 underlying causes of this nonlinearity remain unclear and require further investigation through controlled experiments.
424 413 R2Analysis

425 Figure 14 shows the coefficient of determination (R2) values for the LSTM model across different dataset
426  configurations. The low-intensity and mixed-intensity training sets perform well even with short sequences, achieving
427 R2 values above 0.95 at Length 1. As the dataset length increases, their performance stabilizes further—for example,
428  the mixed-intensity training set reaches an R2 of 0.992 at Length 4.
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Figure 14: Coefficient of determination (R?) values for LSTM models across configurations.

In contrast, the high-intensity training set exhibits a two-stage behavior. When trained on short sequences, the

model fails to generalize, with R2 values falling into the negative range, such as —17.758 at Length 1. However, once

the dataset length exceeds Level 4, model performance improves sharply, with R2 values rising to between 0.071 and

0.289, and continuing upward to between 0.6 and 0.893 at Lengths 5 and 6. These results emphasize the critical role

of sufficient training volume in enabling the model to learn from extreme rainfall events.

Further analysis from two perspectives—rainfall intensity (Figure 15) and input feature combinations (Figure
16)—reveals more nuanced trends.
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Figure 15: R2 values for low-intensity rainfall scenarios.
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441 Figure 16: R2 values for high-intensity rainfall scenarios.
442 Figure 15 illustrates that in low-intensity scenarios, all feature combinations consistently achieve high R2 values

443  across different sequence lengths. The highest performance is observed at Length 4 using Combination 1, where the
444  Rzreaches 0.992. The difference between combinations also narrows significantly as dataset length increases, with the
445 inter-combination range shrinking from 0.036 at Length 1 to just 0.015 at Length 4. This indicates that the model
446 effectively captures low-intensity flood dynamics regardless of the feature configuration.

447 Figure 16 shows that in high-intensity scenarios, short datasets lead to unstable and inaccurate predictions. Most
448 R2 values at Length 1 are negative—for example, Combination 2 records —16.424—indicating that the model fails to
449 learn meaningful patterns from limited data in the presence of extreme variability. From Length 4 onward, however,
450  Rzvalues improve significantly. For instance, the average R2 for Combination 4 rises from —9.635 at Length 3 to values
451  between —0.189 and 0.289 at Length 4, and continues to increase to between 0.572 and 0.876 at Length 5. At Length
452 6, Combination 3 reaches a peak R2 of 0.893, which represents an improvement of over 1100% compared to its Length
453 1 performance.

454 The mixed-intensity training set once again demonstrates the most stable and robust results. At Length 4, the R?
455  range across all combinations is just 0.028—significantly lower than that of the low-intensity set (0.036) and the high-
456 intensity set (0.828) at the same length. Combination 4, in particular, exhibits cross-scenario robustness. It consistently
457  approaches or exceeds optimal performance in all conditions: R2 values are near 0.893 for mixed-intensity at Length
458 6, while maintaining competitive accuracy for low- and high-intensity cases at Lengths 4 and 5.

459 Although these patterns highlight the advantages of longer datasets and diverse rainfall conditions, the
460 mechanisms behind the sharp improvements in the high-intensity training set remain insufficiently understood. Further
461 controlled studies are needed to quantify the relationship between data volume and model performance, and to
462 determine the threshold at which model generalization behavior transitions from failure to success.

463 4.2 Impact of Rainfall Intensity on Generalization

464 To investigate how different rainfall intensity distributions in the training data affect model generalization, three
465  training strategies were designed with a fixed total dataset size: low-intensity, high-intensity, and mixed-intensity
466 training sets. The corresponding model performances are illustrated in Figure 17.
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Figure 17 clearly demonstrates the following patterns:
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475 1. When the training set includes only low-intensity rainfall events, the model consistently underestimates
476  inundation levels during high-intensity rainfall scenarios.

477 2. Conversely, when the training set includes only high-intensity rainfall events, the model tends to
478  overestimate flooding under low-intensity conditions.

479 3. The mixed-intensity training set substantially improves model fitting across moderate rainfall test samples,
480  achieving the best overall generalization performance.

481 These results underscore the importance of incorporating a diverse range of rainfall intensities during model
482  training. A lack of variability in the training set—particularly the exclusion of either low or high extremes—can
483 introduce significant predictive bias. Therefore, it is recommended that training datasets include representative samples
484  spanning multiple rainfall categories to enhance the model’s robustness and adaptability across different hydrological
485  conditions.

486 4.3 Sensitivity Analysis of Evaluation Metrics

487 This section employs Multi-factor Analysis of Variance (ANOVA) to systematically evaluate the influence of
488 three independent variables—dataset length, rainfall intensity distribution, and input feature combination—on key
489 model performance metrics: training time, normalized root mean square error (NRMSE), and coefficient of
490 determination (R?). The goal is to quantify both the individual effects and interaction effects of these factors to inform

491  data design and model optimization strategies.

492  4.3.1 Sensitivity of Training Time to Input Variables

493 Figure 18 summarizes the ANOVA results for the effects of dataset length, rainfall intensity, and feature
494 combination on model training time.
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496 Figure 18: ANOVA Results for Training Time Sensitivity.
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497 The results indicate that dataset length is the dominant factor affecting training time, with extremely high
498 statistical significance (F = 1893.18, p < 0.001) and a very large effect size (n?> = 0.985). This implies that increased
499 sequence length directly drives higher computational costs. In contrast, rainfall intensity and input feature combination
500  have negligible effects on training duration, with very low 1 and non-significant p-values (p > 0.5), suggesting that
501 their impact on computational efficiency can be reasonably ignored under the current experimental setup.

502  4.3.2 Sensitivity of NRMSE to Input Variables

503 Figure 19 presents the sensitivity results for NRMSE across the three experimental factors.
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505 Figure 19: Sensitivity of NRMSE to Input Variables.
506 Both rainfall intensity (n? = 0.945) and dataset length (n> = 0.870) show strong influence on model error. Among

507 them, rainfall intensity contributes more significantly to the variance in NRMSE, as reflected by its higher adjusted
508  effect size (0 = 0.446 vs. 0.174). Their interaction is also statistically significant (F = 189.15, p < 0.001), suggesting
509 that the performance impact of dataset length varies considerably depending on rainfall conditions. Conversely, feature
510 combination has no statistically meaningful impact (p > 0.7, n* < 0.02), with negligible contribution to prediction error

511  under current configurations.

512  4.3.3 Sensitivity of R2 to Input Variables

513 Figure 20 reports the ANOVA results for the coefficient of determination (R?). Rainfall intensity again emerges
514 as the most influential factor on model fit, with a high F value (F = 381.26, p <0.001) and the largest effect size (0> =
515  0.391). Dataset length is also significant (F = 65.96, 12 = 0.696), indicating that longer time series enhance the model’s
516 explanatory power. Their interaction is notably significant as well (F = 65.98, n? = 0.821), demonstrating that rainfall
517 conditions can amplify the sensitivity of R2 to sequence length. In contrast, feature combination remains statistically

518 irrelevant, with consistently low F values and near-zero effect sizes across all interaction terms.
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520 Figure 20: Sensitivity of R2 to Input Variables
521 5. Discussion
522 The results of this study demonstrate that the way datasets are constructed plays a decisive role in determining

523  the performance and generalization of machine learning models for urban flood forecasting. Three dimensions in
524 particular—dataset length, rainfall-intensity distribution, and feature composition—emerged as critical levers shaping
525  predictive outcomes. Although LSTM was adopted as the benchmark model due to its prominence in hydrological
526  applications, the observed patterns are not limited to a single algorithm but reflect more general properties of data-
527  driven modeling.

528 The effect of dataset length followed a nonlinear trajectory. Expanding the number of samples initially produced
529  significant improvements in predictive accuracy, but beyond approximately 14,400 sequences, the gains plateaued.
530  This saturation indicates that once the essential temporal variability is captured, additional data primarily reinforce
531  already-learned dynamics rather than introduce new information. The fluctuations observed at certain lengths further
532  suggest that the interaction between sequence size and rainfall variability can create instability, reflecting overfitting
533 to recurrent patterns. For practical applications, this implies that indiscriminately increasing dataset size is not always
534 efficient. More effective strategies may include pre-training, transfer learning across basins, or adaptive sequence-
535 length adjustment, which can yield comparable improvements while reducing computational cost.

536 Rainfall-intensity distribution proved to be the dominant factor governing generalization. Models trained on
537 imbalanced datasets—whether dominated by light or extreme rainfall—exhibited systematic biases, underestimating
538 peaks or exaggerating minor events depending on the skew. In contrast, datasets that incorporated a balanced mix of
539 intensities consistently delivered more robust predictions across diverse scenarios. This highlights the necessity of
540  representativeness in dataset design: rare but high-impact rainfall events cannot be ignored or treated as statistical
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541  outliers. Deliberate stratification, targeted augmentation of extremes, or probabilistic weighting may be required to
542  ensure sufficient coverage of critical events, particularly in regions with limited observational records.

543 The contribution of additional hydrological features was more conditional. Incorporating infiltration and drainage
544 information enhanced model stability and reduced variance when data availability was adequate, but in smaller datasets,
545  these inputs increased the risk of overfitting. This outcome reflects the trade-off between richer input dimensionality
546 and the statistical support required to train it. Effective feature engineering should therefore be closely linked to dataset
547 scale and coupled with appropriate regularization. Hydrological knowledge provides an additional safeguard, guiding
548  the selection of features with clear process-based relevance rather than relying solely on statistical correlations.

549 Taken together, the findings redirect attention from network complexity toward data curation. Sophisticated
550  model architectures cannot compensate for insufficient or poorly balanced datasets, whereas carefully constructed data
551  can enable even relatively simple algorithms to perform reliably. Extending this analysis to other neural architectures
552  such as GRU, Transformer, or graph-based networks would help test the generality of these patterns, while cross-city
553  applications could assess the scalability of dataset design strategies under varying hydrological and infrastructural
554 conditions. Embedding process-based knowledge—through rainfall stratification, infiltration dynamics, or drainage
555  topology—directly into dataset construction represents a promising path forward. Collectively, the evidence clarifies
556  three actionable levers—Ilength thresholds, rainfall distribution balance, and conditional feature enrichment—that
557 should guide the design of balanced datasets for reliable, generalizable applications of machine learning in urban flood
558  prediction.

559 6. Conclusion

560 This study reframes urban flood forecasting as a data-design challenge. Controlled experiments with high-fidelity
561 synthetic rainfall-inundation datasets reveal that three factors—dataset length, rainfall-intensity distribution, and
562  feature composition—systematically shape predictive accuracy and generalization. While LSTM served as the
563  benchmark, the patterns observed here reflect broader, architecture-agnostic properties of data-driven hydrological
564  modeling.

565 Dataset length exhibits a clear saturation threshold. Performance improves steeply as the number of training
566  sequences increases, but beyond approximately 14,400 samples gains plateau, while computational costs continue to
567  rise almost linearly. This “sufficiency frontier” suggests that resources are better invested in transfer learning, active
568  sampling, or multi-basin pre-training rather than brute-force expansion. In short: respect the 14k-sample ceiling.

569 Rainfall-intensity distribution emerged as the dominant driver of generalization. Models trained on skewed
570  datasets—whether dominated by light or extreme events—developed systematic biases, either muting peaks or
571 inflating minor floods. Mixed-intensity datasets, by contrast, produced robust skill across the full spectrum of rainfall
572 conditions. The implication is clear: balanced representation of rare, high-impact storms must be treated as a design
573  principle, not an afterthought.

574 Feature enrichment was found to be conditional. Supplementing rainfall with infiltration and drainage inputs
575 improved stability only when the dataset exceeded the sufficiency frontier; under smaller sample budgets, the added
576 complexity exacerbated overfitting. A pragmatic strategy is therefore to start lean with rainfall-only inputs for rapid
577  prototyping and enrich features only once the data budget can support it—start lean, enrich later.

578 These patterns extend beyond LSTM. Preliminary experiments with GRU and temporal convolutional networks

579  yielded similar saturation and bias signatures, underscoring that the identified principles are not architecture-specific.

23



https://doi.org/10.5194/egusphere-2025-4125
Preprint. Discussion started: 14 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

580  Future work should extend these analyses to graph-based networks that incorporate sewer topology, and to multi-city
581  catchments with heterogeneous drainage systems.

582 In summary, the results establish a transferable blueprint for data-centric urban flood forecasting: balance rainfall
583 extremes, respect the sufficiency frontier in dataset length, and enrich features only when statistically supported.
584 Redirecting innovation from increasingly complex models to hydrologically informed data curation provides a pathway
585  toward scalable, reliable, and trustworthy Al in urban flood management.
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