

1 **Validation of SNPP OMPS limb profiler version 2.6 ozone profile**
2 **retrievals against correlative satellite and ground based**
3 **measurements**

4 Nigel A. D. Richards^{1,2}, Natalya A. Kramarova², Stacey M. Frith^{3,2}, Sean M. Davis⁴ and Yue Jia⁵

6 ¹Goddard Earth Sciences Technology and Research (GESTAR II), University of Maryland Baltimore County
7 (UMBC), Baltimore, MD, USA

8 ²NASA Goddard Space Flight Center, Greenbelt, MD, USA

9 ³Science Systems and Applications, Inc., Lanham, MD, USA

10 ⁴NOAA Chemical Sciences Laboratory, Boulder, CO, USA

11 ⁵University of Texas at Dallas, Dallas, TX, USA

12 Correspondence to: nigel.richards@nasa.gov

13

14 **Abstract.** The Ozone Mapping and Profiler Suite Limb Profiler (OMPS LP) was launched onboard the Suomi National
15 Polar-orbiting Partnership (SNPP) satellite in 2011 and began routine science operations in April 2012. The OMPS
16 LP uses measurements of scattered solar radiation in the ultraviolet, visible and near infrared wavelengths to retrieve
17 high vertical resolution profiles of ozone from 12 km (or cloud tops) up to 57 km. In mid-2023, version 2.6 of the
18 OMPS LP ozone profile retrievals was released, featuring improvements in calibration, ~~the~~-retrieval algorithm, and
19 data quality. We evaluate OMPS LP version 2.6 ozone retrievals using correlative data from other satellite instruments
20 and ground based data for the period April 2012 to April 2024. Our results show agreement between OMPS LP and
21 all correlative data sources between 20 and 50 km at all latitudes with differences of less than 10%, with OMPS
22 generally exhibiting a negative bias, except between 32 and 38 km in the tropics and southern mid-latitudes, where
23 the bias is positive. In the tropics and southern mid-latitudes the differences between OMPS LP and MLS, and OMPS
24 LP and SAGE III/ISS are less than $\pm 5\%$ between 20 and 45 km. Above 50 km, the agreement with MLS is still on the
25 order of -5% or better. Larger positive biases, up to -35%, are seen in the upper troposphere lower stratosphere layer
26 (~15 to 20 km) between approximately 40° South and 40° North. We find that OMPS version 2.6 ozone exhibits the
27 same seasonal cycle as compared to all correlative measurement sources and our analysis shows that there is no
28 significant seasonal bias in ~~the~~-OMPS LP. We find ~~small~~ drifts relative to correlative observations at all latitude bands
29 of less than $\pm 0.2\%/\text{yr}$ ($\pm 0.1\%/\text{decade}$) between 25 and 50 km for the 2012-2024 period, with larger drifts
30 above 50 km and below 20 km. These ~~small~~ drifts vary between correlative measurements and straddle the zero line,
31 we therefore conclude that there is no significant systematic drift in OMPS LP version 2.6 ozone for the period 2012
32 to 2024. The drift results represent an improvement in the long term stability of version 2.6 ozone over that of version
33 2.5.

34 **1. Introduction**

35 Stratospheric ozone is crucial for life on Earth as it acts as a protective layer absorbing harmful UV radiation. In 1985,
36 the discovery of the Antarctic ozone hole (Farman et al., 1985) caused global public safety concerns, ultimately leading
37 to the establishment of the Montreal Protocol in 1987. The regulations imposed by the Montreal Protocol have led to
38 a slow recovery in upper stratospheric ozone over the 2000-2020 period. Measurements show a positive trend in upper
39 stratospheric ozone in the range of 1.5-2.2% decade⁻¹ outside of the polar regions at mid-latitudes in both hemispheres
40 and 1.1-1.6% decade⁻¹ in the tropics (WMO, 2022; Godin-Beckmann et al. 2022; SPARC/IO3C/GAW, 2019). These
41 increases are consistent with model simulations showing that they arise from a combination of decreasing ozone-
42 depleting ~~substances~~ concentrations and ~~decreases in upper~~ stratospheric ~~temperatures~~, driven
43 by ~~increases in~~ increasing CO₂ (WMO, 2022). Conversely, there has been an observed decrease in lower stratospheric
44 ozone in the mid-latitudes since 1998 which is mainly driven by natural atmospheric variability and transport processes
45 (Benito-Barca et al. 2025), this leads to insignificant trends in total column ozone in some regions such as the northern
46 mid-latitudes. There is also evidence from both observations and models for a small decrease in tropical lower

49 stratospheric ozone over the same ~~time~~ period of 1-2% decade⁻¹. This decrease has a large uncertainty of $\pm 5\%$ decade⁻¹, but is consistent with climate change-driven acceleration of the large-scale circulation and has a small impact on total column ozone (WMO, 2022). ~~Observations and models disagree on the sign of the trend in lower stratospheric mid-latitude ozone as ozone in this region has large year-to-year variability and so trends have large uncertainties (WMO, 2022).~~

50
51
52
53
54
55 In order to detect such ozone changes, and to continue to monitor the health of the ozone layer, long term, vertically
56 resolved, global observations of stratospheric ozone are needed. The NOAA/NASA Ozone Mapping and Profiler Suite
57 (OMPS) sensors are a series of satellite instruments that are designed to meet this need by providing both total ozone
58 and profile measurements (Flynn et al., 2006). The OMPS consists of three different sensors: a nadir mapper (OMPS
59 NM), a nadir profiler (OMPS NP) and a limb profiler (OMPS LP). The first OMPS was launched onboard the Suomi
60 National Polar-orbiting Partnership (SNPP) satellite in 2011 and consisted of all three OMPS sensors (Kramarova et
61 al., 2014). The second was launched onboard NOAA-20 in 2017 with just the NM and NP on board, and the third,
62 which again consisted of all three sensors, was launched onboard NOAA-21 in 2022. Two more OMPS containing all
63 3 sensors will be launched in the next decade providing decades of continuous ozone observations.

64
65 The validation of remotely sensed observations is crucial, not only to give confidence in scientific conclusions drawn
66 from their use, but to also build community trust in the data and thus encourage their wider use. For this reason, ~~when~~
67 ~~validating such data~~, we need to compare the retrieved data to as many different sources of correlative observations
68 as are available to us. In this study we validate OMPS LP version 2.6 ozone retrievals against ozone profile data from
69 two solar occultation satellite instruments (SAGE III/ISS and ACE-FTS), limb emission satellite Aura MLS, the nadir
70 viewing satellite OMPS NP, a set of ground-based ozonesondes, and the lidar at Mauna-Loa.

71 72 2. The OMPS Limb Profiler ~~and retrieval description~~

73 The Ozone Mapping and Profiler Suite Limb Profiler (OMPS LP) is a series of satellite sensors that perform limb
74 measurements of scattered solar radiation in the ultraviolet, visible and near infrared wavelengths (290 to 1000 nm)
75 (Kramarova et al. 2014) which allow for the retrieval of ozone profiles from the top of clouds up to 57 km. In order
76 to increase the cross-track coverage, the OMPS LP instrument has three observation slits separated horizontally by
77 4.25° (~250 km), but in this study, we only consider measurements from the center (nadir) slit, as this is the data that
78 is currently released to the public (Kramarova 2023). The first OMPS LP was launched onboard the SNPP satellite in
79 October 2011 and began operational observations in April 2012, ~~it is this instrument that will be the focus of this~~
80 ~~paper~~.

81
82 OMPS LP ozone profile retrievals are described in Rault and Loughman (2013) and Kramarova et al. (2018). Recently
83 the retrieval algorithm was updated from version 2.5 to version 2.6. Several incremental improvements ~~in~~
84 ~~calibration; were made, as detailed in Kramarova et al. (2024), which include updated level 1 calibrations, an updated~~
85 ~~level 2 retrieval algorithm and (including combining the UV and visible channels into a single retrieval) and improved~~
86 ~~data quality were made for OMPS LP version 2.6 ozone profile retrievals over version 2.5, including combining the~~
87 ~~UV and visible channels into a single retrieval, as detailed in Kramarova et al. (2024).~~ A filter was also introduced
88 to remove profiles affected by the Hunga Tonga eruption in 2022-2023. This filter is based on retrieved aerosol
89 extinction and results in gaps in OMPS LP ozone observations in the lower stratosphere (12.5-22.5 km) in the southern
90 midlatitudes and tropics (45°S-20°N) that persist for several months after the eruption.

91
92 Validation of version 2.5 showed mean differences with correlative measurements of less than $\pm 10\%$ between 18 and
93 42 km, with a negative bias above 43 km and larger biases in the lower stratosphere and upper troposphere; there was
94 also a positive drift of $\sim 0.5\%$ /yr which ~~is~~ was more pronounced above 35 km (Kramarova et al., 2018). Comparisons
95 of version 2.6 retrievals with Aura MLS by Kramarova et al. (2024) found that the algorithm improvements have
96 helped to reduce vertical oscillation seen in version 2.5 and negative biases above 45 km have been reduced. Mean
97 biases compared to MLS are within $\pm 10\%$ above 20 km and in many places less than $\pm 5\%$; there has also been a
98 reduction in the relative drifts between OMPS LP and MLS to less than 0.2%/yr in the upper stratosphere above 35
99 km (Kramarova et al., 2024).

100

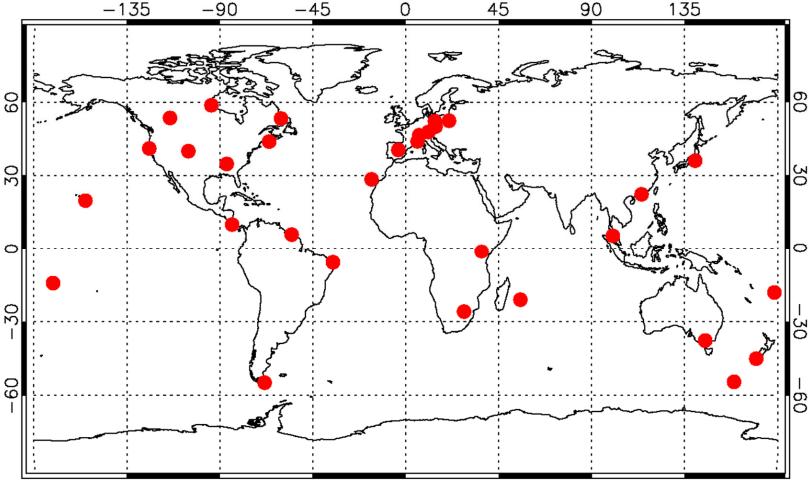
101 This study focuses on the validation of OMPS LP version 2.6 ozone profile retrievals for the period April 2012 to
102 April 2024. All OMPS LP data have been filtered using the suggested quality flags as described in the dataset readme
103 document (Kramarova & DeLand, 2023).

104

105 3. Correlative satellite and ground-based datasets

106 SNPP OMPS LP version 2.6 profiles have previously been compared to MLS (Kramarova et al., 2024). ~~However, Since~~
107 MLS will be decommissioned in the coming year, ~~so we also~~ need to investigate alternative sources of correlative data
108 with which to validate OMPS LP ozone profiles. ~~This study builds on Kramarova et al. (2024) which compared OMPS~~
109 ~~LP version 2.6 to MLS for the period 2012-2021 to include other sources of correlative data and extends the evaluation~~
110 ~~period to April 2024.~~ Ozone sondes observations offer one such dataset, however the geographical ~~and~~, temporal ~~and~~
111 ~~vertical (up to 30 km)~~ extent of the data is limited. Other satellite data are available, and although solar occultation
112 instruments such as ACE-FTS and SAGE III/ISS may not provide such extensive spatial coverage as MLS, they are
113 able to provide high vertical resolution ozone profiles at different latitude bands throughout the year, providing the
114 opportunity for near global seasonal validation of OMPS LP ozone profiles.

115

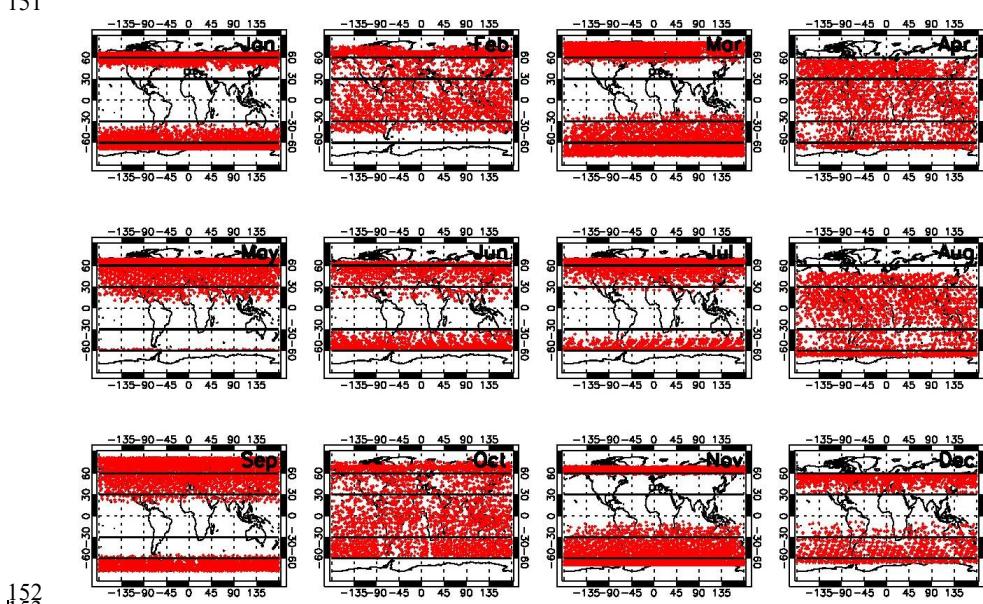

116 3.1. Ozone sondes

117 Ozone sondes provide high accuracy, in situ, ozone profile observations from the surface up to approximately 30 km
118 altitude, however the data are spatiotemporally sparse. In this study we use data from 31 ozone sonde sites distributed
119 throughout the globe; Figure 1 shows a map of sites used and table S1 lists the site names, data sources, principal
120 investigator names and affiliations. Ozone sonde sites were selected for use based on continuity of data for the OMPS
121 LP measurement evaluation period of April 2012 to ~~June~~ April 2024. A recent study by Stauffer et al. (2022), which
122 compared data from a network of 60 ozone sonde stations with satellite data, showed that when compared to Aura
123 OMI, total column ozone was stable to within about $\pm 2\%$ over an 18 year period, with similar results when compared
124 to three other total column satellite instruments. When compared to MLS, stratospheric ozone from sondes agreed to
125 within $\pm 5\%$ from 50 to 10 hPa. The study concluded that overall, global ozone sonde network data are of high quality
126 and stability.

127

128

129


130 Figure 1: Location of ozone sonde sites used for validation of SNPP OMPS LP version 2.6 ozone retrievals.

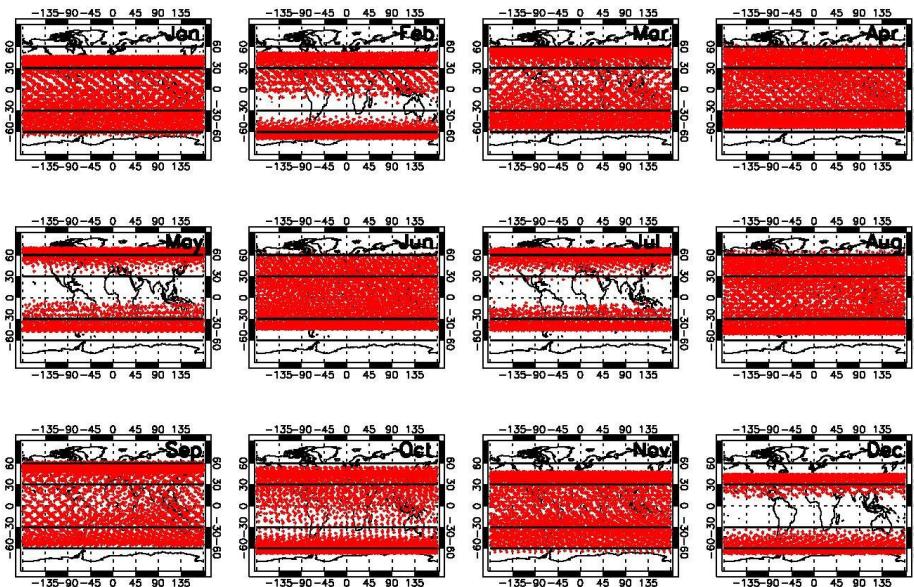
132

133 **3.2. ACE-FTS**

134

135 The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), is a solar occultation satellite
 136 instrument that makes measurements of ozone and other trace gases at sunrise and sunset (Bernath et al., 2005;
 137 Bernath, 2017). ACE-FTS was launched onboard the Canadian Space Agency's SCISAT-1 satellite in 2003 and
 138 therefore provides correlative data for the entire SNPP OMPS LP record. In this study we use ACE-FTS data version
 139 5.2 (Bernath et al., 2025) and apply the quality flags of Sheese & Walker (2023). SinceWe only use observations co-
 140 located with OMPS measurements (see Section 4), and since ACE-FTS only measures at sunset and sunrise, and its
 141 orbit is optimized to provide coverage over polar mid and high latitudes, there are a limited number of co-located
 142 profiles with which to compare for the comparison with global OMPS LP observations, see Fig. 2. ACE-FTS
 143 version 5.2 ozone retrievals have been validated against ozonesonde observations in a study by Zuo et al. (2024).
 144 These results show that ACE-FTS ozone profiles have a general high bias in the stratosphere increasing with altitude
 145 up to ~10% at ~30 km, with generally small insignificant drifts in the stratosphere (0-3%/decade). Comparisons with
 146 ozonesondes only extend up to ~30 km, for higher altitudes, only previous versions have been validated against other
 147 satellite instruments. Validation of ACE-FTS version 4.1 profiles shows that ACE-FTS ozone has a positive bias of
 148 2-9% in the middle stratosphere that is stable to $\pm 0.5\%$ /decade, and a positive bias in the upper stratosphere that
 149 increases with altitude up to ~15% and is stable to within $\pm 1\%$ /decade (Sheese et al., 2022). The estimated precision
 150 for version 4.1 ozone retrievals is on the order of ~5-10% (Sheese et al., 2022).

152
 153 **Figure 2: Co-located SNPP OMPS LP and ACE-FTS observations by month for the period 2012-2024.**


154

155 **3.3. SAGE III/ISS**

156

157 Like ACE-FTS, the Stratospheric Aerosol and Gas Experiment (SAGE) III, is a solar occultation instrument that
 158 makes measurements of ozone profiles at sunrise and sunset (Cisewski et al., 2014). SAGE III/ISS was docked to the
 159 International Space Station (ISS) in 2017 and began collecting data in June, thus providing nearly 8 years of correlative
 160 data to compare with OMPS LP. In this study we use SAGE III/ISS ozone data version 6.0 (SAGE III/ISS data product

161 user's guide, 2025). Owing to the fact that SAGE III/ISS is a solar occultation instrument and is on board the ISS, it
 162 provides limited global coverage which varies seasonally, doesn't extend north/south of ~~60~~approximately 70 degrees
 163 latitude, and has more frequent sampling of the tropics. Therefore Again we only use observations co-located with
 164 OMPS measurements (see Section 4), therefore, as with ACE-FTS there are a limited number of co-located global
 165 profiles with which to compare with OMPS LP, see Fig. 3. The ~~latest~~last version of SAGE III/ISS ozone to be validated
 166 was v5.1 (Wang et al., 2020). Those results showed that SAGE III/ISS ozone has a precision of ~3% in the 20-40 km
 167 altitude range which degrades due to lower signal-to-noise ratios at higher and lower altitudes, reaching ~10-15% in
 168 the upper stratosphere/lower mesosphere (~55 km) and ~20-30% near the tropopause. The mean biases when
 169 compared to ozonesondes, lidars and other satellite correlative measurements are less than 5% for ~15-55 km in the
 170 mid-latitudes and ~20-55 km in the tropics, increasing to 10% near the tropopause and to 15% at 60 km. Subsequent
 171 changes applied in version 5.3 to the ozone retrievals have led to degraded precision (5% in the mid/lower
 172 stratosphere), but increased vertical resolution, a reduction in low-altitude biases and a slight reduction in random
 173 noise. Changes made to version 6 have led to an increase in retrieved ozone of around 3% due to switching to the new
 174 ozone absorption coefficients (SAGE III/ISS data product user's guide, 2025).
 175

176
 177 Figure 3: Co-located ~~SNPP~~ OMPS LP and SAGE III/ISS observations by month for the period 2017-2024.
 178

179 3.4. MLS

180 The Microwave Limb Sounder (MLS, Waters et al., 2006) provides global profile observations of ozone and other
 181 trace species. MLS was launched on board the Aura satellite in 2004 and so provides correlative data for the entire
 182 OMPS LP record to date. In this study we use version 5 of MLS data (Livesey et al., 2022). Since OMPS LP only
 183 measures during the day, we only use MLS daytime observations, we also filter MLS data using criteria recommended
 184 by the MLS Team. Both SNPP and Aura are in similar orbits with very similar equator crossing times and so MLS
 185 provides excellent co-located profiles for global comparisons with OMPS LP. MLS ozone profiles have a precision
 186 of 2-4% in the 18-43 km altitude range and this rapidly degrades outside of this altitude range (Livesey et al., 2022).
 187 The accuracy of MLS ozone profiles ranges from 5 to 10% in the 12-57 km altitude range (Livesey et al., 2022), which
 188 is the altitude range of interest in this study. Comparisons of MLS ozone using satellite, balloon, aircraft and ground-
 189 based data have indicated general agreement at around 5-10% (Livesey et al., 2022). MLS exhibits drifts with respect
 190

191 to ground-based networks of 1.5-2%/decade but with zero drift encompassed by the error bars, at least in the middle
192 stratosphere, and so is not statistically significant (Livesey et al., 2022).

193 **4. Comparison Methodology**

194 In this study we apply common coincidence criteria to all correlative data to match OMPS LP profile sampling. Our
195 spatial coincidence criteria require profiles to be within $\pm 2^\circ$ latitude and less than 1000 km distance from the OMPS
196 profile. In order to maximise the number of comparison profiles, the only time criterion is that the profiles be on the
197 same day. If more than one profile matches these criteria then the spatially closest profile is used. We analyse all
198 profiles on the native OMPS LP coordinate system (number density/altitude), and do not account for the small
199 differences in the vertical resolution of the different measurement systems. Both MLS and ACE report ozone
200 concentrations in volume mixing ratio, in order to convert this to number density for comparison to OMPS we need
201 temperature and pressure information. For MLS, we use GEOS-FPIT temperature and pressure, and for ACE we use
202 temperature and pressure retrieved by ACE itself. No transformation is needed for SAGE III/ISS or ozonesonde data
203 as these data are provided as ozone number density profiles, however these data are provided on different altitude
204 grids to OMPS LP. Ozonesonde data are converted, where necessary, from volume mixing ratio to number density,
205 and from pressure grids to altitude grids, using the pressures and temperatures reported in the original data files, these
206 are then transformed onto the OMPS LP vertical grid via log-linear interpolation. SAGE III/ISS data are provided on
207 a 0.5 km vertical grid and so no interpolation is needed, we simply select matching altitudes for comparison profiles.
208

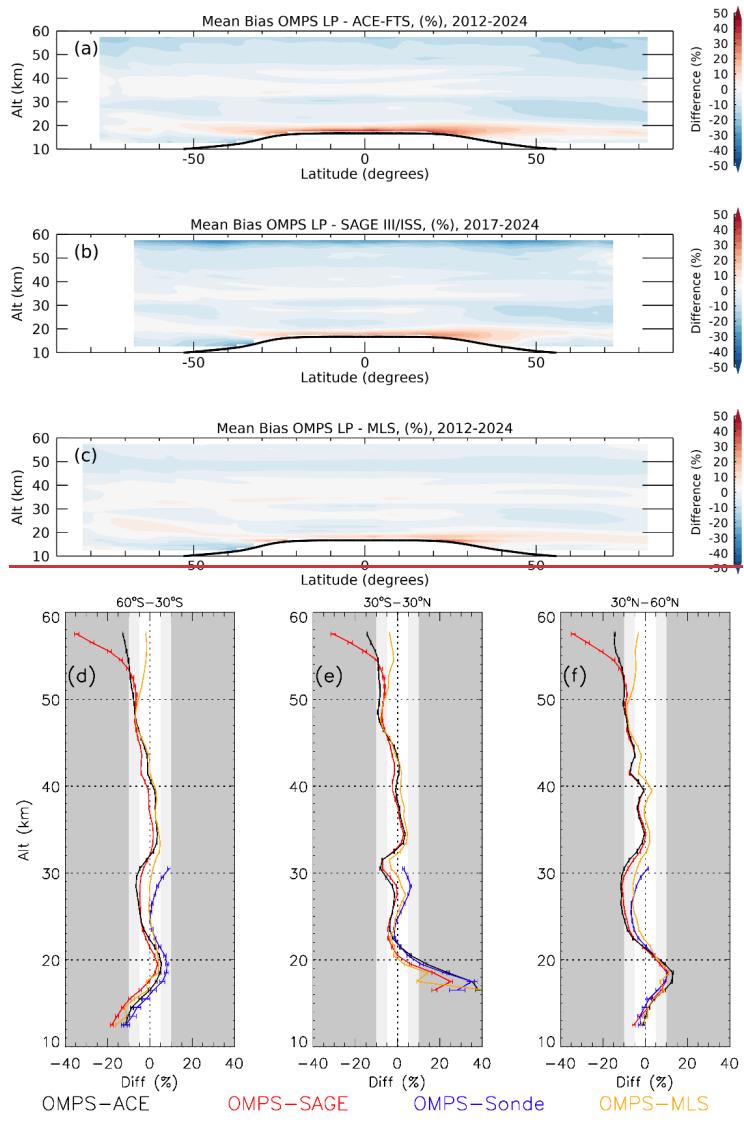
209 Stratospheric ozone exhibits diurnal variability, particularly above 30 km, which is both seasonally and latitudinally
210 dependent. The OMPS LP is a solar scattering instrument with a 1:30 pm equatorial crossing time that makes
211 observations in the sunlit portion of the Earth, whereas both ACE-FTS and SAGE III/ISS are solar occultation
212 instruments that measure ozone only at sunrise and sunset. We must therefore take into account the effects of any
213 diurnal changes in ozone between the OMPS LP observations and those of ACE-FTS and SAGE III/ISS. This is
214 achieved through the use of the Goddard Diurnal Ozone Climatology (GDOC) which is used to adjust both ACE-FTS
215 and SAGE III/ISS observations to the ~~4:30 pm local solar time—the~~ measurement time of OMPS LP. Diurnal
216 adjustment using this climatology has been shown to reduce biases above 30 km (Frith et al. 2020).
217

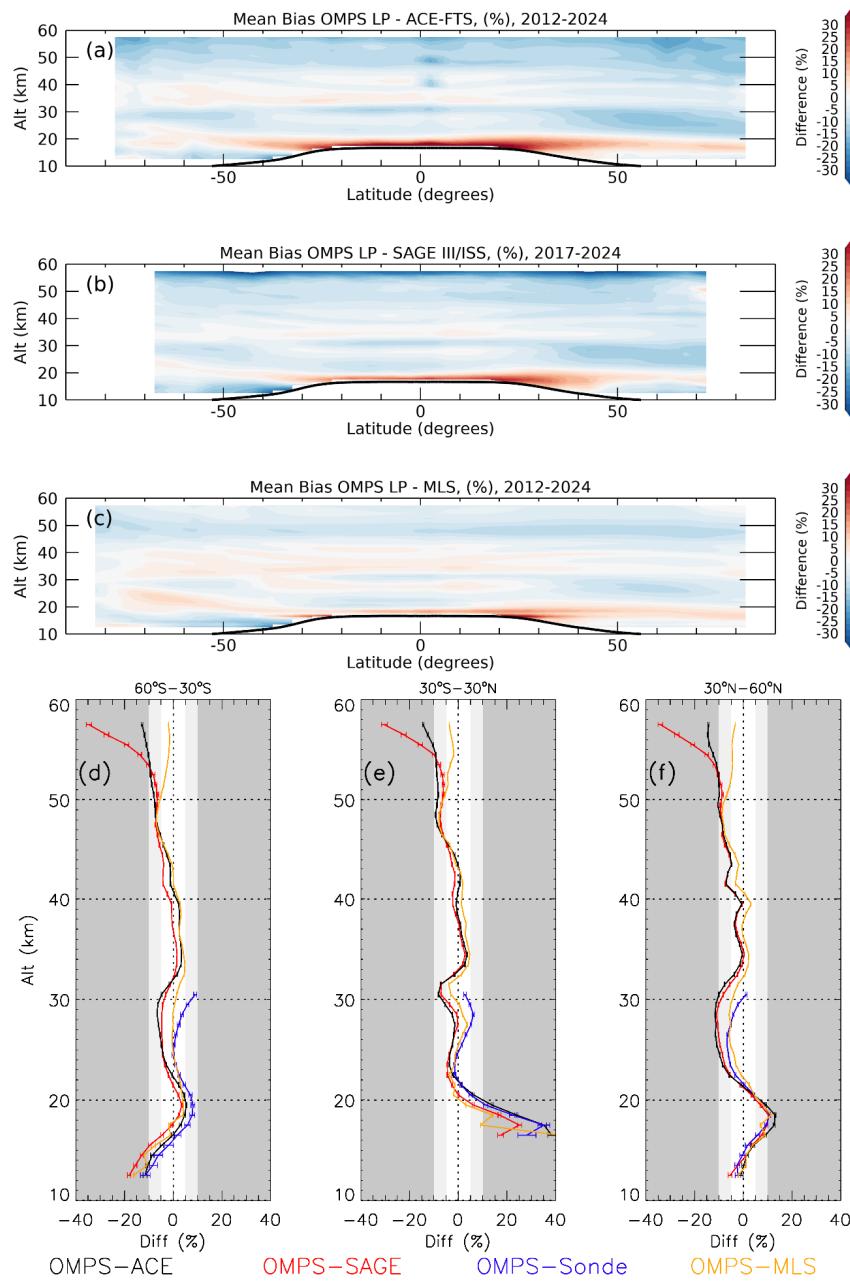
218 Initially matched profiles were averaged into 5 degree zonal means for comparison, ~~but, In addition,~~ owing to limited
219 data coverage from correlative solar occultation satellite observations (see Figs. 2 & 3), the data were further averaged
220 into 3 wide latitude bands to increase the number of observations in each bin for comparison statistics. These bands
221 are 30°S-60°S, 30°S-30°N and 30°N-60°N and exclude the polar regions.
222

224 **5. Results**

225 **5.1. Global profile comparisons**

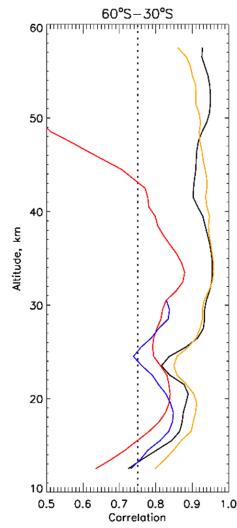
226 The mean biases for SNPP OMPS LP ozone retrievals compared to matched correlative measurements are shown in
227 Fig. 4. The upper panels a-c of figure 14 show zonal mean biases (5° latitude bins) between OMPS LP, ACE-FTS and
228 MLS as a function of altitude for the period 2012-2024 (2017-2024 for SAGE III/ISS). Panels d-f of figure 14 show
229 the mean biases for OMPS LP compared to all correlative measurement sources (ACE-FTS, SAGE III/ISS, MLS and
230 ozonesondes) as a function of altitude for 3 wide latitude bands, averaged over the period 2012-2024 (except SAGE
231 III/ISS, which is 2017-2024). The standard error of the mean for each comparison is also shown as horizontal bars,
232 standard deviations for these comparisons are shown in Fig. S1 in the supplemental material. SNPP OMPS LP version
233 2.6 ozone shows very good agreement with all correlative data sources between ~ 20 and 50 km at all latitudes, with
234 differences of less than $\pm 10\%$, and between 20 and 45 km the differences between OMPS and MLS, and OMPS and
235 SAGE III/ISS are less than 5% in the tropics and southern mid-latitudes. Above 50 km, at all latitudes, the agreement
236 is still on the order of 10% or better, but differences with SAGE III/ISS and ACE-FTS start to increase with increasing
237 altitude above 55 km. This is consistent with the SAGE III/ISS and ACE-FTS validation results which show that both
238 instruments have an increasing positive bias in the upper stratosphere (Wang et al., 2020 and Sheese et al., 2022). It
239


240 is worth noting that without applying a diurnal correction to the ACE-FTS and SAGE III/ISS data the biases relative
241 to these datasets are even larger by up to 10%.


242
243 Below 20 km, the agreement between OMPS LP and correlative measurements varies by latitude, with larger positive
244 biases in the Upper Troposphere Lower Stratosphere (UTLS) layer (~15 to 20 km) between approximately 40° South
245 and 40° North. In the southern mid-latitudes OMPS LP agrees to within ~12% between 12 and 20 km when compared
246 to ACE-FTS, MLS and sondes, but shows slightly larger differences with SAGE III/ISS below 15 km. Below 20 km
247 in the northern mid-latitudes, the biases between OMPS LP and all correlative measurements are comparable, and
248 range from a positive bias of ~10% at 18 km down to a small negative bias of <5% at 12 km.

249
250 Overall, SNPP OMPS LP version 2.6 ozone profile biases do exhibit some vertical structure, with negative biases in
251 the lowest part of the profile (<15 km), followed by a positive bias up to ~20 km, then a negative bias again up to ~32
252 km, then a positive bias up to 40 km and then negative again above 40 km. This vertical pattern is somewhat latitude
253 dependent, with the low altitude negative bias being stronger in the tropics and southern hemisphere, and the positive
254 bias observed between ~32 and 40 km not present at latitudes north of 40°N. However, almost all the biases when
255 compared to correlative data from other satellite instruments (ACE-FTS, SAGE III/ISS and MLS) fall within the
256 reported biases and precisions of those instruments. [These biases represent an improvement over those observed
257 between OMPS LP version 2.5 and MLS, with the largest reduction in biases seen below 31 km, where LP retrievals
258 primarily rely on the visible triplet \(Kramarova et al., 2024\), there is also a reduction in vertical oscillations seen in
259 version 2.5, particularly where the retrieval switches between UV and visible wavelengths \(approximately 28-32 km\).](#)

260
261 Figure 5 shows vertical profiles of correlation coefficients between OMPS LP and matched correlative observations
262 for 3 wide latitude bands. In the mid-latitudes correlations of approximately 0.9 are seen between OMPS LP and ACE-
263 FTS and OMPS LP and MLS at most altitudes, and approximately 0.8 between OMPS LP and SAGE III/ISS between
264 15 and 40 km. Above 40 km the correlation with SAGE III/ISS drops rapidly reaching less than 0.5 at around 50 km,
265 indicating a spread in the biases at higher altitudes, this is also evident in the standard deviations of the profile
266 comparisons shown in Fig. S1. This is consistent with degraded precision and increased noise for SAGE III/ISS
267 measurements above 40 km as noted by Wang et al., (2020). [It should be noted that, although we interpolate SAGE
268 III/ISS observations from a 0.5 km to a 1 km vertical grid, we have not degraded the SAGE III/ISS profiles down to
269 the resolution of OMPS LP, and this may also contribute to the lower correlations at higher altitudes.](#)


270
271 In the tropics, correlations between OMPS LP and MLS are around 0.8 up to 45 km dropping with increasing altitude
272 to 0.5 at 57 km, correlations with SAGE III/ISS are approximately 0.8 up to 37 km and then drop with increasing
273 altitude to 0.1 at 57 km. Correlations with ACE-FTS are between 0.4 and 0.8 throughout the entire vertical range with
274 a stronger correlation below 25 km. The drop in correlations seen at around 25 km at all latitudes and against all
275 correlative sources is likely [due to the fact that because](#) this is where [the peak in ozone density peaks](#) and [it's variability](#)
276 is lower [which leads leading](#) to weaker correlations. The correlations between OMPS LP and MLS and OMPS LP and
277 ACE-FTS are improved at all altitudes and latitudes for version 2.6 over version 2.5, with the largest improvement
278 seen in the tropical lower stratosphere where correlations between version 2.6 and MLS and ACE-FTS are greater
279 than 0.8, whereas version 2.5 correlations were less than 0.7 compared to ACE-FTS and peaked at 0.8 compared to
280 MLS (Kramarova et al., 2018).

285
286
287
288
289
290
291
292

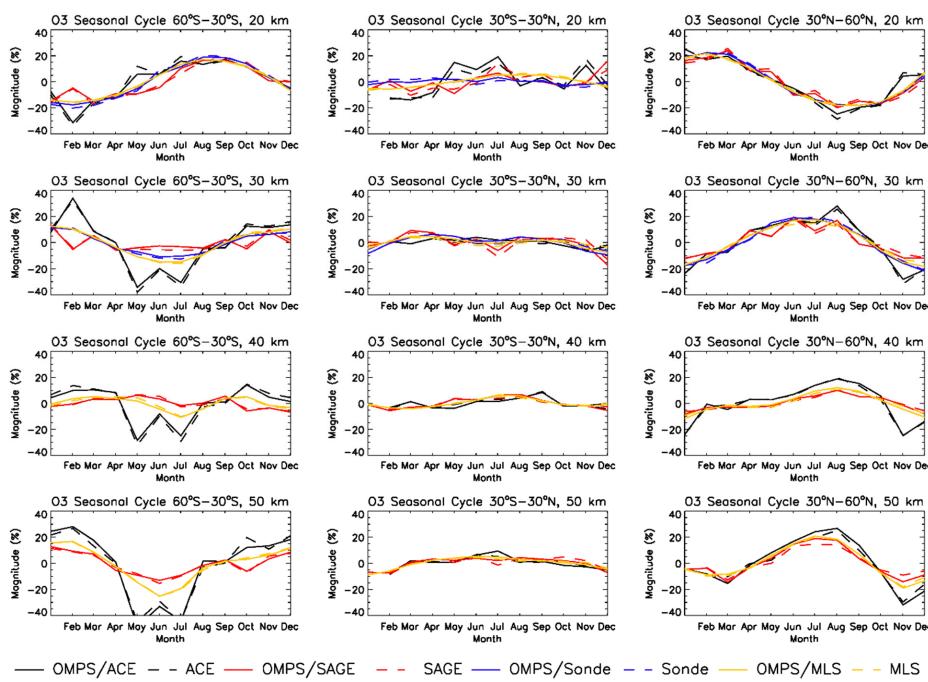
Figure 4: Profile differences between OMPS LP and matched correlative satellite and ground-based observations. Panels (a-c) show zonal mean differences between OMPS LP and ACE-FTS, OMPS LP and SAGE III/ISS and OMPS LP and MLS on a 5° latitude grid. Panels (d-f) show mean profile differences between OMPS LP and ACE-FTS (black), OMPS LP and SAGE III/ISS (blue) and OMPS LP and MLS (Orange) for 3 wide latitude bands, the horizontal bars show 2 times the standard error of the mean (SEM), the white area indicates differences less than 5%, the light grey area 5-10% and the dark grey area represents differences greater than 10%, only data above the tropopause are shown.

OMPS-ACE OMPS-SAGE OMPS-Sonde OMPS-MLS

Figure 5: Vertical profiles of correlation coefficients between OMPS LP and matched correlative observations for 3 wide latitude bands.

293
294
295
296

297 **5.2. Seasonal cycle**


298
299
300
301
302
303
304
305
306
307
308
309
310
311

To evaluate how well OMPS LP captures the seasonal cycle in ozone we compare the ozone seasonal cycle for each correlative dataset to co-located OMPS LP observations in 3 wide latitude bands as used previously. The seasonal cycle is calculated by taking each set of co-located OMPS LP and correlative data and subtracting the long-term mean from the monthly mean (for all years) for each latitude band. Figure 6 shows seasonal cycle comparisons between OMPS LP and all correlative measurements (ACE-FTS, SAGE III/ISS, MLS and sondes) at 4 altitudes (20,30,40 and 50 km), the dashed lines represent the correlative observations seasonal cycles and the solid lines represent the co-located OMPS LP seasonal cycles. The shape of the seasonal cycle is generally consistent between OMPS LP and all 3 correlative observation sources at all altitudes and latitudes. The seasonal cycle seen in ACE-FTS differs from the other instruments in the Southern Hemisphere at 30 km and above, this is likely due to the differences in sampling between ACE-FTS and the other instruments (see figures S2 and S3) as the OMPS LP co-located seasonal cycle has also changed from those for the dense coverage satellites (e.g., OMPS-MLS matches).

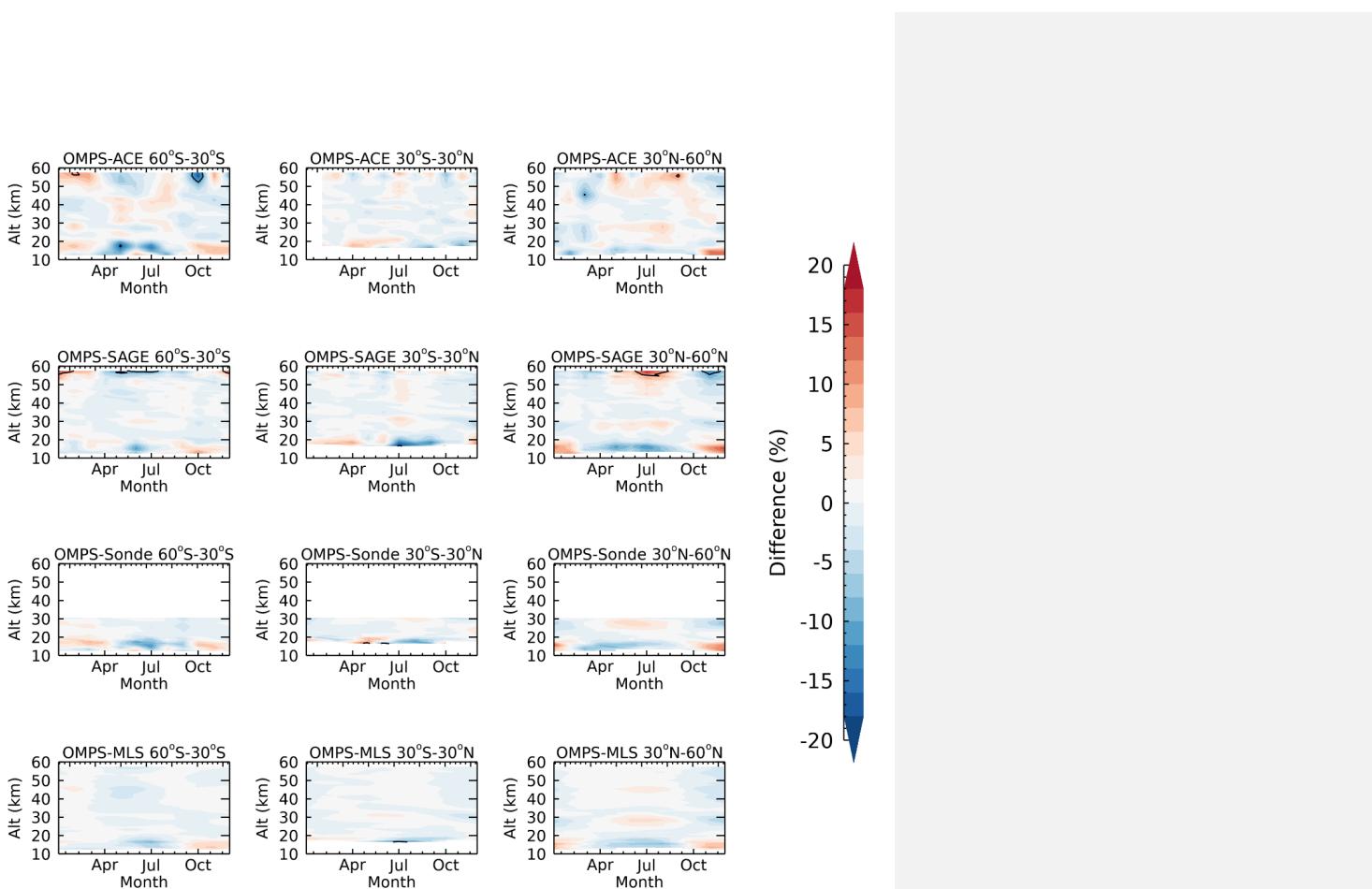

312
313
314
315
316

Figure 7 shows the seasonal cycle biases between OMPS LP and the correlative datasets (difference between solid and dashed lines in Fig. 6). There are small biases evident between the OMPS LP seasonal cycles and the seasonal cycles of correlate observations that vary by altitude and latitude, generally the biases are larger and noisier compared to ACE-FTS and SAGE III/ISS and are smaller and smoother compared to MLS, which may be a consequence of sampling differences. Below 20 km in the mid-latitudes there is a pattern to the seasonal biases that is consistent across

317 all correlative datasets, with a high bias seen in the early part of the year (January–March), followed by a negative bias
 318 in the middle of the year (April–September) and then a positive bias towards the end of the year (October–December).
 319 Despite the pattern, although not the magnitude, of these biases being consistent across all correlative sources they
 320 are, however not statistically significant, as indicated by the absence of black contour lines in Fig. 7. At 30 km a
 321 consistent small positive bias is seen between April and September in the northern mid-latitudes when compared to
 322 all correlative sources that is not present at other latitudes, this bias is significantly smaller than a similar bias observed
 323 in OMPS LP version 2.5 which was attributed to an unexpected thermal sensitivity issue with OMPS LP (Kramarova
 324 et al., 2018; Jaross et al., 2014). However, in version 2.6 this bias is not statistically significant. Above 50 km larger
 325 biases are seen relative to ACE-FTS and SAGE III/ISS in the mid-latitudes with negative biases observed in the
 326 spring/summer months and positive biases in the fall/winter months, some of which are statistically significant as
 327 indicated by the black contours in Fig. 7. However, these biases are not seen when compared to MLS. These results
 328 show that there are no significant biases in the OMPS LP seasonal cycle.
 329
 330

331
 332
 333 **Figure 6: Seasonal cycle in co-located OMPS LP (solid lines) and correlative observations (dashed lines) calculated as**
 334 **monthly mean deviations from the long-term annual mean in % calculated for each instrument independently. OMPS**
 335 **seasonal cycles are calculated using a sub-set of matching profiles for each correlative instrument.**

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
Figure 7: Seasonal cycle biases between OMPS LP and correlative observations, calculated as the differences between the co-located OMPS LP seasonal cycle and the correlative observation seasonal cycle, black contours encompass biases that are larger than 2 standard deviations.

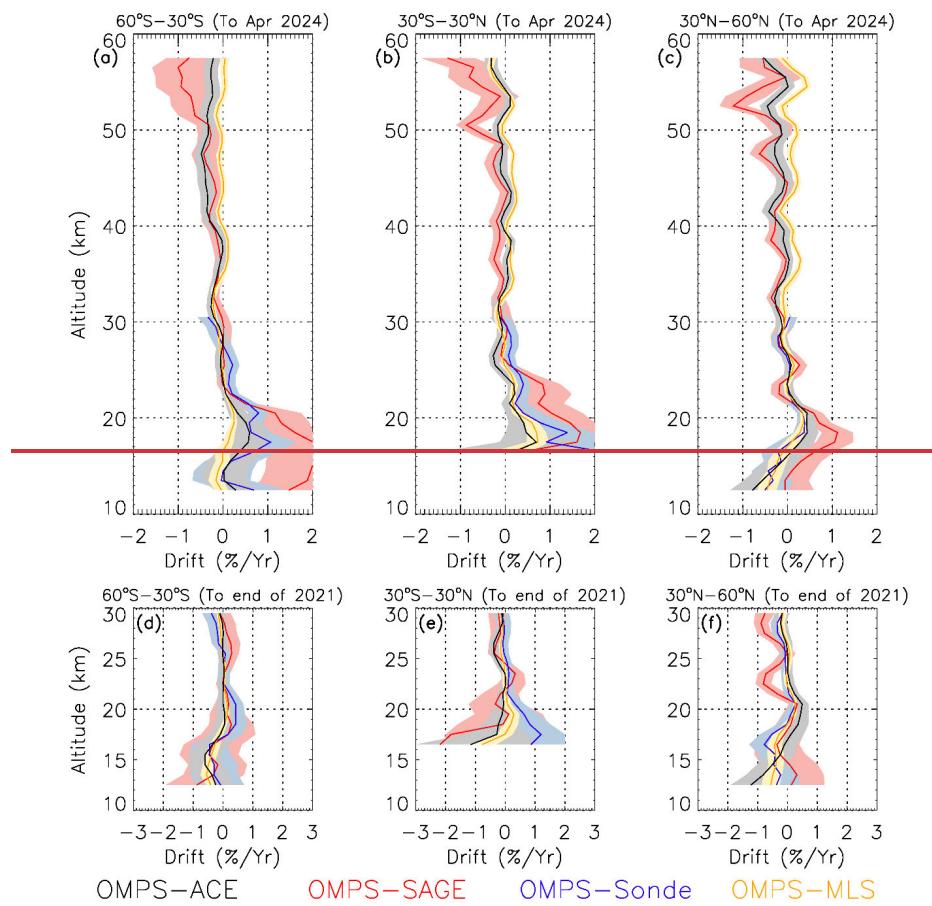
5.3. Long term stability of OMPS LP ozone

In order to assess the stability of OMPS LP version 2.6 ozone retrievals over time we calculate their drift with respect to correlative measurements. Drifts are determined by calculating a linear fit for monthly mean deseasonalized co-located differences between OMPS LP and each correlative dataset within each latitude band. Figure 8 shows the calculated drifts in OMPS LP version 2.6 ozone relative to correlative measurements as a function of altitude above the tropopause; the shaded areas represent 2 sigma for the linear fit.

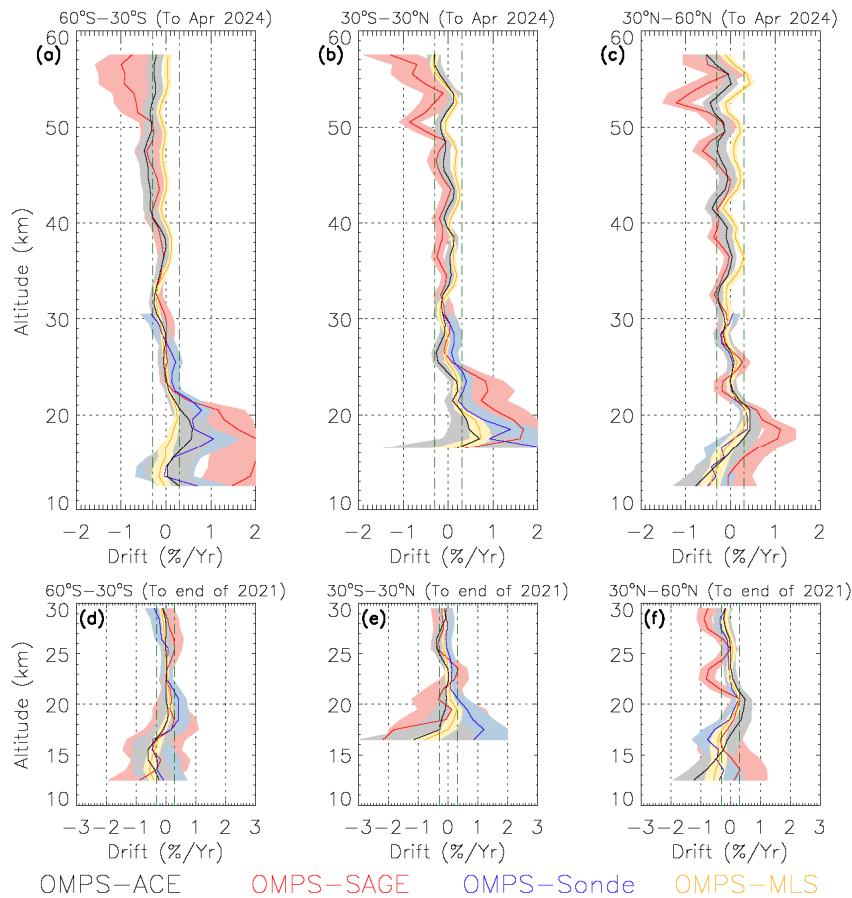
Between 25 and 50 km OMPS LP exhibits a ~~small~~ drift over the 2012-2024 period relative to MLS ~~of~~ less than 0.2 %/yr, which is positive in the tropics and northern mid-latitudes (Fig. 8b-c), and negative in the southern mid-latitudes (Fig. 8a). The drifts relative to ACE-FTS and SAGE III/ISS at these altitudes remain predominantly negative at all latitude bands and rise from less than -0.1 %/year at 25 km to -0.3 %/year at 50 km (Fig. 8a-c), except for the tropics where SAGE III/ISS has a much larger drift at 50 km (-0.8 %/yr) than the other data sources (Fig. 8b), this is due to the shorter time period where SAGE III/ISS and OMPS overlap (see discussion below). The drift relative to sondes appears consistent with MLS and ACE-FTS in the mid-latitudes (Fig. 8a&c), but diverges in the tropics between 2212

358 and 20 km (Fig. 8b), exhibiting a positive relative drift of up to +0.2 %/yr whereas the satellite observations show a
359 small negative drift of up to -0.2 %/yr. The small drifts of opposing signs observed between the different data sources
360 indicate that OMPS LP exhibits no significant systematic drift between 25 and 50 km for the period 2012 to 2024.

361
362 Above 50 km, in the tropics and southern mid-latitudes (Fig. 8a-b), drifts relative to MLS and ACE-FTS remain small
363 (less than 0.2 %/year). In the northern mid-latitudes (Fig. 8c), the drift relative to MLS increases slightly and is
364 positive (up to +0.4 %/yr) whereas the drift relative to ACE-FTS is negative (up to -0.4 %/yr). Again, the fact that the
365 drifts relative to MLS and ACE-FTS are either close to or straddle the zero line, suggests that there is no significant
366 systematic drift in OMPS LP at these altitudes over the 2012-2024 period.


367
368 The eruption of the Hunga volcano in January 2022 caused problems for OMPS LP ozone retrievals because of high
369 aerosol loading at 25 km and below, leading to anomalously high ozone being reported. A filter based on aerosol
370 optical depth was implemented for OMPS LP ozone (Kramarova et al., 2024), this dramatically reduced the number
371 of OMPS LP observations at altitudes below 25 km in the tropical and southern mid-latitude regions in the months
372 following the eruption. However, even after this filter is applied, a higher than normal bias is still observed with
373 respect to correlative observations in these regions that persists throughout 2022 and well into 2023. This positive
374 anomaly is small when compared to MLS, but is larger when compared to ACE-FTS and is largest when compared to
375 SAGE III/ISS as shown in Fig. S2 that demonstrates the time series of differences over the 2020-2025 period. Both
376 SAGE III/ISS and ACE-FTS already had a limited number of observations in these latitude bands depending on the
377 season, and with the reduction of OMPS LP observations the remaining number of matches in the low stratosphere
378 for these two instruments is severely reduced from early 2022 to mid to late 2023 as shown in Fig. S3. The resulting
379 drifts relative to ACE-FTS and particularly SAGE III/ISS below 25 km when calculated up to April 2024 appear to
380 be erroneously large, especially in the tropics and southern mid-latitudes. For these reasons, for altitudes below 25
381 km, we will focus on drifts calculated up to the end of 2021 only, which can be found in panels (d-f) in Fig. 8.

382
383 Between 20 and 25 km OMPS LP exhibits only a small drift (<of less than ±0.3 %/yr) relative to ACE, MLS and
384 sondes over the period 2012-2021 (Fig. 8d-f), with the largest drifts seen at 25 km in the tropics relative to ACE (Fig.
385 8e) and at 20 km in the southern mid-latitudes relative to sondes (Fig. 8d). In the tropics and southern mid-latitudes
386 (Fig. 8d-e) the drifts relative to different data sources straddle the zero line indicating no systematic drift for the time
387 period 2012-2021, in the northern mid-latitudes the drifts are generally all very small less than 0.3%/yr and positive.
388 Below 20 km, for the period 2012-2021, in the mid-latitudes (Fig. 8d&f) the drifts relative to all data sources shows
389 the same structure and start out positive (~+0.2%/yr), but then show an increasing negative trend with decreasing
390 altitude which peaks at ~-0.6%/yr at around 15 km before improving at the bottom of the profile (except for ACE-
391 FTS in the northern hemisphere), with larger drifts seen at lower altitudes in the northern hemisphere. In the tropics
392 there is a large spread in the drifts relative to the four different data sources. The drifts relative to ACE-FTS and MLS
393 are similar and those relative to SAGE III/ISS and sondes have larger errors at these altitudes. ACE-FTS, SAGE
394 III/ISS and MLS all show a negative drift whereas the drift relative to sondes is positive.


395
396 These results represent an improvement in the long-term stability of OMPS LP ozone retrievals for version 2.6 over
397 version 2.5, with a reduction in drifts at all altitudes, particularly in the upper stratosphere where version 2.5 exhibited
398 drifts of 0.5-1%/yr (Kramarova et al., 2018). The observed small drifts and the spread in drifts relative to different
399 correlative data sources indicates that there is no significant systematic drift in OMPS LP version 2.6 above 20 km.

400
401 The drifts relative to SAGE III/ISS have larger magnitudes, sigmas, and different vertical structures to those of other
402 correlative measurements, particularly above 50 km and below 25 km. This is due to the shorter time period available
403 for OMPS LP-SAGE III/ISS comparisons. Once recalculated, the drifts relative to ACE-FTS and MLS above 50 km
404 and below 25 km exhibit similar magnitudes and vertical structures to that of SAGE III/ISS (Fig. S5). Analysis of the
405 time series of differences between OMPS LP and MLS in the 30°N-60°N latitude band for several altitudes over the
406 time period 2012 to 2024 (Fig. S6) show low frequency changes in ozone differences. Because of this the drifts for
407 the periods 2012-2024 and 2017-2024 are quite different with mostly negative drifts for the period 2017-2024,
408 however when we estimate the drift for the whole time period of 2012-2024 the drifts are much smaller. These time-
409 dependent changes in LP ozone are being investigated by the OMPS LP team, who also see time dependent changes
410 in radiance residuals (differences between calculated and measured radiances) at wavelengths that are not used in the
411 ozone retrieval that coincide with observed changes in ozone. Investigation of this behavior in other LP slits (not
412 shown here) suggest that this is not related to a drift in altitude registration. One possible explanation under
413 investigation is a potential shift in wavelength registration.

414

415

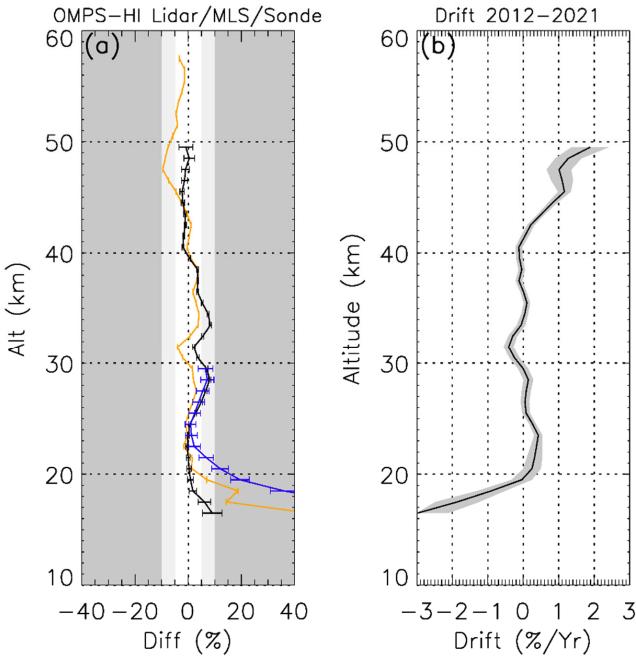
416
417 Figure 8: Relative drifts for OMPS LP version 2.6 ozone in % per year relative to correlative observations, calculated using
418 deseasonalized data from April 2012 to April 2024 for panels (a-c) and April 2012 to December 2021 for panels (d-f), except
419 for SAGE III/ISS for which data starts in June 2017. Shaded areas show 2 sigma for the linear fit, only data above the
420 tropopause is shown. [The vertical dashed-dotted lines indicate a drifts of 0.3%/year, the WMO stability threshold for](#)
421 [stratospheric ozone trend studies \(WMO 2022\).](#)

422

423 6. Comparisons With Other Data Sources

424 In the future we won't be able to rely on having correlative satellite data with either both high vertical resolution and
425 dense global sampling such as MLS, or high vertical resolution and limited global sampling such as SAGE III/ISS or
426 ACE-FTS, as both MLS and SAGE III/ISS are scheduled to end operations in the near future and ACE-FTS is already
427 long past its original planned mission lifetime. With no replacement missions for these instruments likely in the near
428 future we will need to use other sources of correlative data with which to validate OMPS LP ozone retrievals in
429 addition to ozonesondes. Here we investigate the use of lidar data and lower vertical resolution nadir satellite data.

430


431 **6.1. Mauna Loa Lidar**

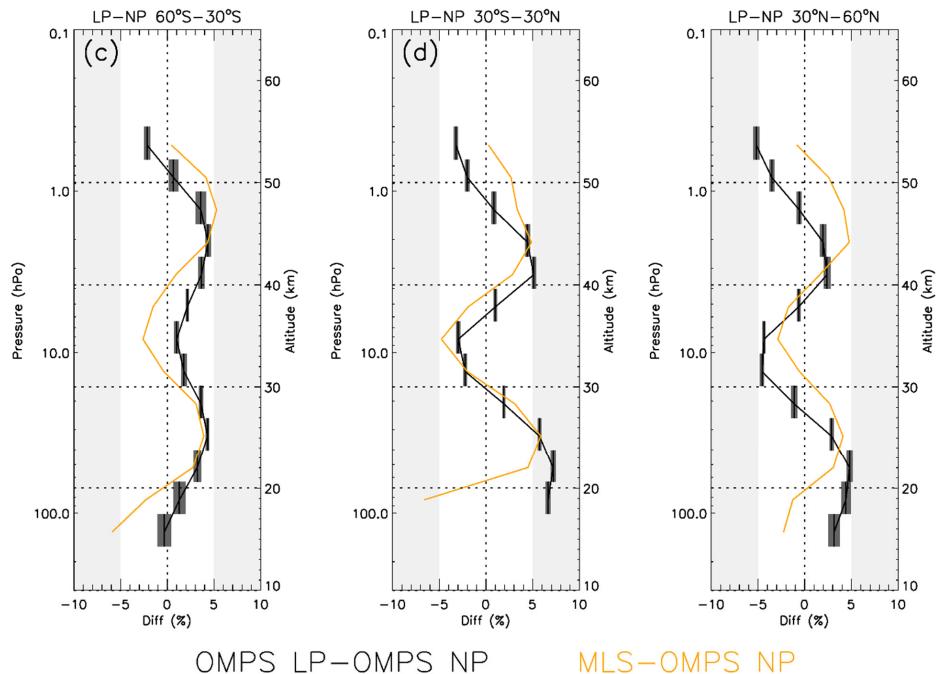
432
 433 One other source of high vertical resolution ozone profile measurements is ground-based lidar observations, of which
 434 there are a limited number of stations located around the globe. Although the global coverage gained from lidar
 435 observations is significantly lower than that of ozonesondes, lidars are able to observe ozone up to higher altitudes
 436 than sondes (up to 50 km), therefore a combination of lidars and ozonesondes may provide a useful dataset for
 437 validation of OMPS LP high vertical resolution ozone profile retrievals, albeit with limited global coverage. Here we
 438 will compare to the Mauna Loa lidar station (MLO). The MLO lidar measures vertical ozone profiles from 15-50 km
 439 at night, several times a week, with a vertical resolution of \sim 1 km near the ozone peak (\sim 25 km) which decreases to
 440 \sim 3 km at the bottom of the profiles and to 8-10 km at the top of the profiles (Leblanc and McDermid, 2000). The
 441 typical instrumental error is a few percent at the ozone peak and increases to 10-15% at \sim 15 km and to more than 40%
 442 above 45 km (Leblanc and McDermid, 2000).

443
 444 In this study we utilize MLO lidar ozone data for the period April 2012 to December 2022 to evaluate OMPS LP
 445 version 2.6 ozone retrievals and compare these results to those of coincident MLS and ozonesonde comparisons to
 446 OMPS LP at this location. Figure 9 shows mean profile differences between OMPS LP and MLO lidar data together
 447 with collocated differences between OMPS LP and MLS and between OMPS LP and ozonesondes launches from the
 448 Hilo station. Between 20 and 45 km OMPS LP exhibits the same vertical structure in biases compared to both the
 449 MLO lidar and MLS, with biases near zero between 20 and 25 km and between 40 and 45 km for both data sources.
 450 Between 25 and 40 km the bias compared to the MLO lidar (\sim 5-10%) is larger than that with MLS ($<5\%$), however
 451 between 23 and 30 km the biases with MLO and ozonesondes agree almost perfectly. Below 20 km the bias compared
 452 to the MLO lidar is less than 10%, which is much smaller than the bias compared to both MLS and ozonesondes,
 453 however the standard deviation of the MLO biases increases dramatically at these altitudes (see Fig. S4), likely as a
 454 result of increased measurement error, and encompass the observed MLS and ozonesondes biases. Above 45 km,
 455 again the MLO lidar and MLS biases differ, with the MLO biases being much smaller than MLS. This is also a region
 456 where the MLO lidar measurement error increases dramatically and so does the standard deviation of the mean
 457 differences, which again encompass the MLS biases.

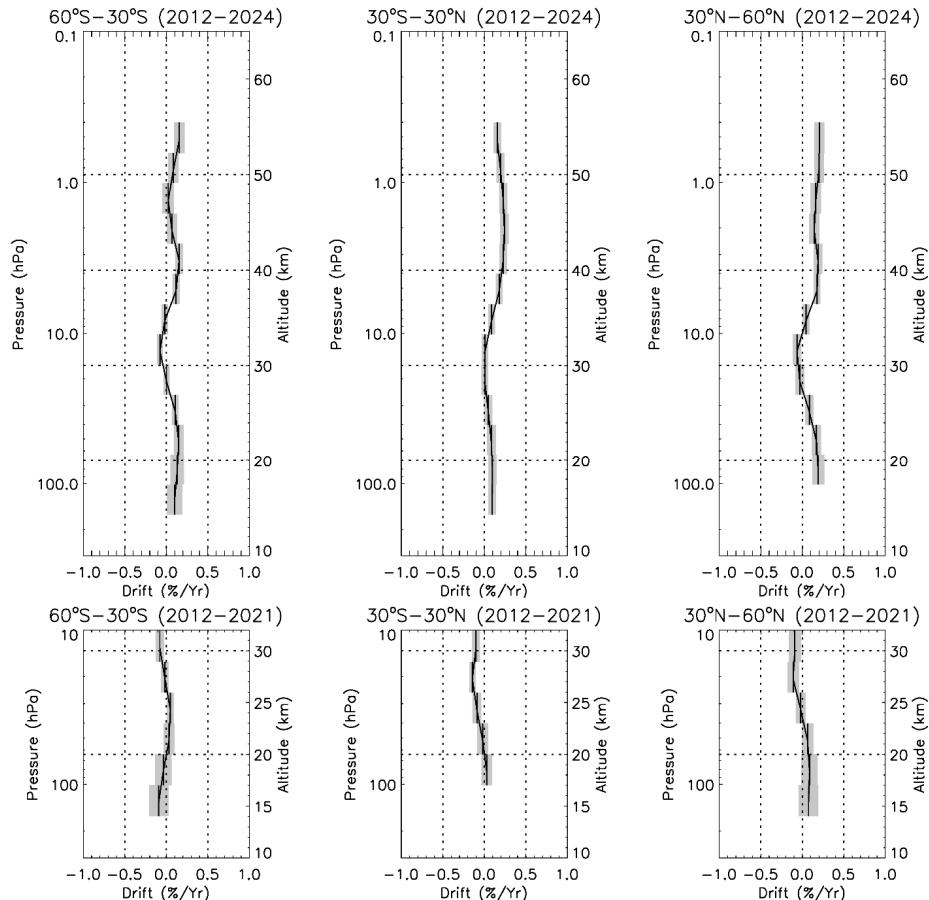
458
 459 Panel (b) of Fig. 9 shows a profile of the relative drift of OMPS LP compared to the MLO lidar. This is determined
 460 by calculating a linear fit for monthly mean deseasonalized co-located differences for the time period of April 2012
 461 up to the end of 2021. Between 20 and 40 km the drift in OMPS LP relative to the MLO lidar is very close to zero
 462 ($\leq 0.1\%/\text{yr}$), with the exception of a small positive drift (of less than $0.4\%/\text{yr}$) between 20 and 24 km and a small
 463 negative drift (of less than $-0.3\%/\text{yr}$) at 32 km. Above 40 km the drift steadily increases with altitude reaching
 464 $+1.2\%/\text{yr}$ at 45 km and $+1.8\%/\text{yr}$ at 50 km, however as previously noted the lidar measurement error increases
 465 dramatically above 40 km as does the standard deviation of the differences, the vertical resolution of the lidar
 466 observations is also degraded to \sim 8-10 km at these altitudes and so any observed trends in OMPS LP with fine vertical
 467 structure, natural or otherwise, would likely lead to large drifts in the differences. Below 20 km drifts become
 468 increasingly negative increasing from $\sim 0\%/\text{yr}$ at 20 km to $\sim 3\%/\text{yr}$ at 16 km, again this is an altitude range with
 469 increased variability in the differences between the two datasets and increased lidar measurement error.

470
 471 The results are broadly consistent with MLS and sonde comparisons in the same location, although the existence of
 472 some differences at higher and lower altitudes together with lidar observation error estimates, variability of differences
 473 and changes in vertical resolution lead us to conclude that such data is most useful for evaluation of OMPS LP ozone
 474 between 20 and 40 km. These results show that lidars can provide a useful dataset with which to evaluate OMPS LP
 475 high vertical resolution ozone profile retrievals once MLS data is no longer available.

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
Figure 9: Mean profile differences and drifts between OMPS LP and Mauna Loa lidar observations. Panel (a) shows the mean profile differences between OMPS LP and lidar (black line), OMPS LP and MLS (yellow line), and OMPS LP and ozone sonde launches from Hilo (blue line), the horizontal bars show 2 times the standard error of the mean (SEM), the white area indicates differences less than 5%, the light grey area 5-10% and the dark grey area represents differences greater than 10%. Panel (b) shows the relative drift in % per year relative to lidar observations, calculated using deseasonalized data from 2012 to 2021. Shaded area shows 1 sigma for the linear fit, only data above the tropopause is shown.


6.2. OMPS Nadir Profiler (NP)

The OMPS nadir profiler (OMPS NP) is a nadir viewing instrument that is part of the OMPS suite of instruments and measures vertical profiles of ozone (McPeters et al., 2019) with limited vertical resolution (6-8 km). Despite the limited vertical resolution, it has a number of advantages as a correlative data source for the evaluation of OMPS LP ozone profiles. It is on board the same spacecraft as OMPS LP, and so its observations are near coincident with LP observations in both space and time, it is able to provide the same global coverage as OMPS LP (every 3-4 days), although its profiles are of low vertical resolution they do cover the full vertical range of OMPS LP ozone retrievals, and there will always be an NP instrument as part of the OMPS to provide data with which to compare. Ozone profile retrievals from SNPP OMPS NP have been demonstrated to agree with observations from NOAA-19 SBUV-2 to within ± 3 % with an average bias of -1.1 % in the upper stratosphere and +1.1 % in the lower stratosphere (McPeters et al., 2019).

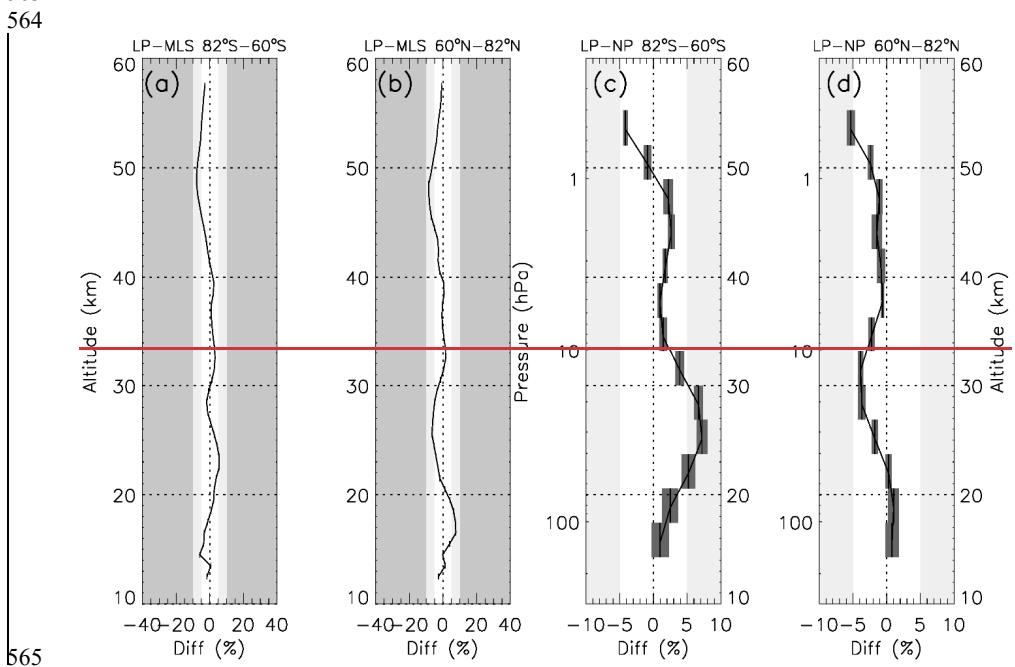

504 In this study we utilize SNPP-OMPS NP ozone profile for the period April 2012 to December 2024 to evaluate OMPS
505 LP version 2.6 ozone retrievals. In order to compare OMPS LP and OMPS NP, OMPS LP profiles were first converted
506 into partial ozone columns according to the OMP-SNPOMPS NP pressure grid, the OMPS NP averaging kernels were
507 then applied to the OMPS LP profiles to degrade them to the OMPS NP vertical resolution. Figure 10 shows mean
508 profile differences between OMPS LP and OMPS NP averaged over the whole measurement time period for 3 wide
509 latitude bands. In general, the biases relative to OMPS NP are less than 5% at all altitudes and all locations, with the
510 exception of the tropical lower stratosphere (below 25 km). The biases for all locations show the same vertical
511 oscillatory structure which is stronger in the tropics and northern mid-latitudes. This manifests as positive biases below
512 ~28 km, negative biases between ~28 and ~36 km, positive biases between ~36 and ~46 km and negative biases above
513 ~46 km for these two regions. Also shown in Fig. 10 are the mean profile differences between MLS and OMPS NP
514 for the same latitude bands (yellow lines). Since the differences between MLS and OMPS NP exhibit the same
515 oscillatory vertical structure as the differences between OMPS LP and OMPS NP, we can conclude that this vertical
516 structure is an artifact of the OMPS NP measurements and not OMPS LP. With this in mind, the biases observed
517 between OMPS LP and OMPS NP are consistent with those seen between OMPS LP and other correlative
518 observations.

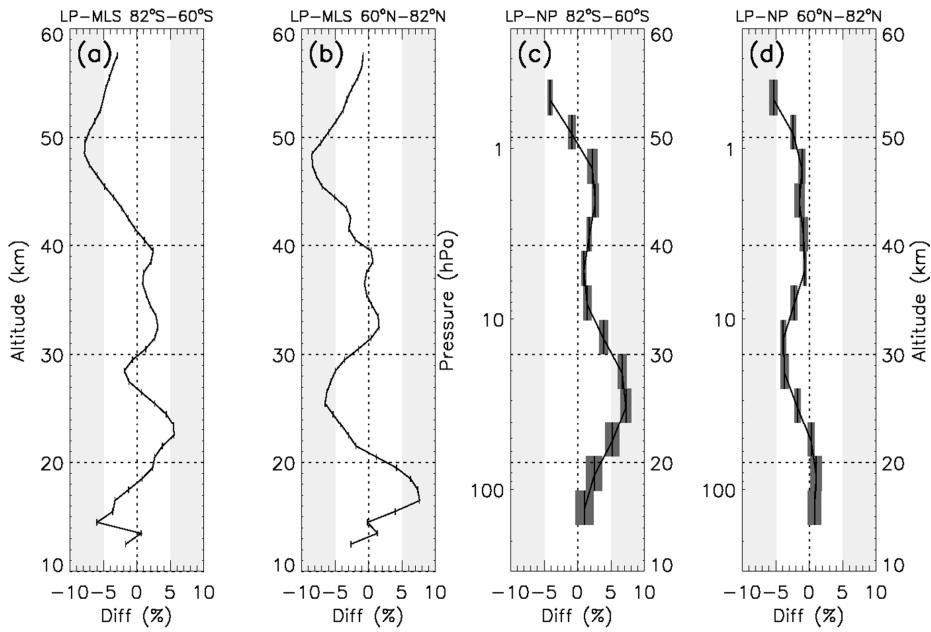
519
520 Figure 11 shows the drift of OMPS LP relative to OMPS NP. This is determined by calculating a linear fit for monthly
521 mean deseasonalized differences for the time period of April 2012 up to the end of 2024 for altitudes above 25 km
522 and up to the end of 2021 for altitudes below 25 km. Between ~13 and ~35 km the drift relative to OMPS NP is small
523 $\leq \pm 0.1\%$ /year in the mid-latitudes, and $\leq \pm 0.2\%$ /yr in the tropics. Above 35 km the drift becomes positive in all latitude
524 bands and increases up to 0.3%/yr. These small drifts fall within the range of drifts seen when comparing OMPS LP
525 with other correlative measurements.

526
527 These results suggest that OMPS NP is able to provide a useful dataset with which to globally evaluate OMPS LP
528 ozone profiles, albeit with limited vertical fidelity. Bias calculations with OMPS NP introduce some oscillatory
529 vertical structures which are a characteristic of the OMPS NP measurements and not OMPS LP. This should be taken
530 into consideration when using OMPS NP to evaluate OMPS LP vertical profiles.

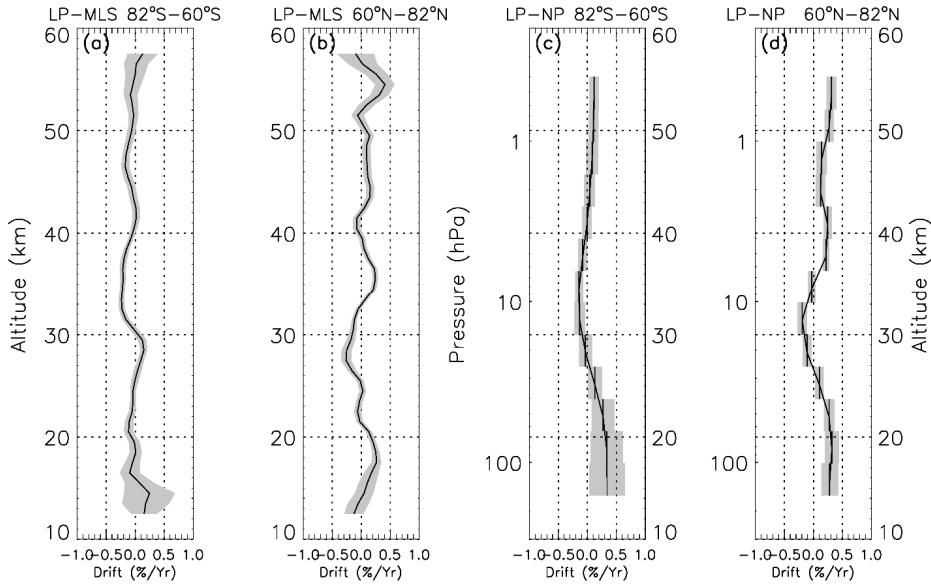
532
 533
 534
 535
 536
 537
 Figure 10: Mean profile differences between OMPS LP and OMPS NP (black) for 3 wide latitude bands, the horizontal
 532 shading show 2 times the standard error of the mean (SEM), the white area indicates differences less than 5%, the light
 533 area 5-10%. Also shown in yellow are mean profile differences between MLS and OMPS-NP. Only data above the
 534 tropopause are shown.
 535

538
 539
 540 Figure 11: Relative drifts for OMPS LP version 2.6 ozone in % per year relative to OMPS NP, calculated using
 541 deseasonalized data from April 2012 to December 2021. Shaded areas show 2 sigma for the linear fit, only data above the
 542 tropopause is shown.
 543


544 7. Comparisons in Polar Regions


545 Previously, we limited our comparisons geographically to exclude polar regions (latitudes greater than 60) owing to
 546 sparse data in this region from all correlative data sources. However, MLS and OMPS NP have sufficient data
 547 coverage that extends to latitudes greater than 60 degrees to evaluate OMPS LP ozone retrievals in these important
 548 regions.
 549

550 Figure 12 shows mean profile differences between OMPS LP and correlative observations in two wide polar latitude
 551 bands, 82S-60S and 60N-82N. The biases relative to MLS are generally less than $\pm 5\%$ except between 45 and 55 km
 552 in the southern hemisphere where biases peak at -8% at 48 km, in the northern hemisphere there are 3 altitude regions


553 where the bias relative to MLS exceeds $\pm 5\%$, 15-20 km, 23-30 km and 45-50 km, but those biases are still less than
 554 $\pm 10\%$. Compared to OMPS NP, LP biases are generally less than $\pm 5\%$ except for approximately 25 to 30 km in the
 555 southern hemisphere, and above ~ 52 km in the northern hemisphere.
 556

557 Figure 13 shows relative drift profiles between OMPS LP and correlative observations for the two polar regions. The
 558 drift relative to MLS is less than $\pm 0.2\%/\text{yr}$ at all altitudes in the polar regions except in the northern hemisphere at 18
 559 km and between ~ 53 and 55 km. Drifts of less than $\pm 0.3\%/\text{yr}$ are seen relative to OMPS NP at all altitudes in both
 560 polar regions, with drifts less than $\pm 0.1\%/\text{yr}$ above 25 km in the southern hemisphere, and less than $\pm 0.2\%/\text{yr}$ between
 561 25 and 45 km in the northern hemisphere.
 562

566
567 Figure 12: Mean profile differences between OMPS LP and correlative datasets in two polar latitude bands, 60S-90S and
568 60N-90N. Panels (a) and (b) show the mean profile differences between OMPS LP and MLS, the horizontal bars show 2
569 times the standard error of the mean (SEM). Panels (c) and (d) show the mean profile differences between OMPS LP and
570 OMPS NP, the horizontal shading show 2 times the standard error of the mean (SEM). The white area indicates differences
571 less than 5%, the light grey area 5-10% and the dark grey area represents differences greater than 10%, only data above
572 the tropopause are shown.
573
574

575
576 **Figure 13:** Relative drifts for OMPS LP version 2.6 ozone in % per year, calculated using deseasonalized data from April
577 2012 to December 2024 for two polar latitude bands, 60S–90S and 60N–90N. Panels (a) and (b) show drifts relative to MLS.
578 Panels (c) and (d) show drifts relative to OMPS NP. Shaded areas show 2 sigma for the linear fit, only data above the
579 tropopause is shown.

580

581 **8. Discussion**

582
583 Currently the best source of correlative data with which to evaluate OMPS LP ozone profile retrievals is Aura MLS
584 as it is able to provide high vertical resolution profiles with dense geospatial sampling. However, MLS is scheduled
585 to be decommissioned within the next year, and so other sources of data must be found. In this paper, in addition to
586 MLS, we have used solar occultation satellite instrument data from ACE-FTS and SAGE III/ISS to evaluate OMPS
587 LP ozone profiles. Although solar occultation instruments are able to provide high vertical resolution ozone profiles
588 the number of profiles observed per day by these instruments is very small compared to OMPS LP, and their spatial
589 coverage is very limited and varies seasonally. The limited number of observations and lack of spatial coverage means
590 that in order to make meaningful global comparisons one must average over wide latitude bands and longer time
591 scales. It also means that longer time periods are needed in order to calculate reliable drifts. Ozone sondes and lidar
592 observations are able to provide high vertical resolution ozone profiles with which to evaluate OMPS LP profiles,
593 however they lack the geospatial coverage afforded by a satellite instrument such as MLS. Together, independent
594 solar occultation and ozonesonde measurements can be used to continuously monitor for potential drifts in OMPS LP,
595 while LP provides the near global coverage necessary to ensure geographically representative trends. Finally, the
596 OMPS NP series of instruments, which is able to provide full global coverage coincident with OMPS LP, but with
597 limited vertical resolution, offers a source of data with which to evaluate OMPS LP ozone profiles, and there will
598 always be an OMPS NP instrument on the same satellite platform as all future OMPS LP instruments. Therefore, in
599 the future when MLS data is no longer available, a combination of ozonesondes, lidars and OMPS NPs will be needed
600 in order to globally evaluate OMPS LP ozone profiles, with OMPS NP providing the global coverage and ozonesondes
601 and lidars providing the high vertical resolution information needed to interpret any vertical structure seen in the
602 OMPS LP/NP comparisons.

603 **9.8. Conclusions**

604
 605 In mid-2023 a new version of OMPS LP ozone profile retrievals, version 2.6, was released. Version 2.6 includes a
 606 number of incremental improvements in calibration, the retrieval algorithm and data quality. In order to evaluate this
 607 latest version of OMPS LP ozone profile data, we compared OMPS LP version 2.6 ozone retrievals against correlative
 608 data from other satellite instruments (MLS, ACE-FTS and SAGE III/ISS) and ozonesondes for the time period 2012-
 609 2024 in three wide latitude bands from 60°S to 60°N. [Table 1 summarizes our results showing mean biases and drifts](#)
 610 [for 3 wide latitude bands \(30°S-60°S, 30°S-30°N and 30°N-60°N\) at 5 km altitude intervals.](#)

611
 612 Our results show very good agreement between OMPS LP and all correlative data sources between 2015 and 50 km
 613 at all latitudes with differences of less than 10%, with OMPS generally exhibiting a negative bias, except between 32
 614 and 38 km in the tropics and southern mid-latitudes, where the bias is positive. Between 20 and 45 km in the tropics
 615 and southern mid-latitudes the differences between OMPS LP and MLS, and OMPS LP and SAGE III/ISS are less
 616 than $\pm 5\%$. Above 50 km, the agreement with MLS is still on the order of -5% or better, but differences with SAGE
 617 III/ISS and ACE-FTS start to increase with increasing altitude, which is consistent with the SAGE III/ISS and ACE-
 618 FTS validation results which show that both instruments have an increasing positive bias in the upper stratosphere.
 619 Below 20 km, larger positive biases, up to $\sim 35\%$, are seen in the tropical tropopause layer (~ 15 to 20 km) between
 620 approximately 40° S and 40° N. In the southern mid-latitudes OMPS LP agrees to within $\sim 12\%$ between 12 and 20
 621 km when compared to ACE-FTS and sondes, but shows slightly larger differences with MLS and SAGE III/ISS below
 622 15 km. Below 20 km in the northern mid-latitudes, the biases between OMPS LP and all correlative measurements
 623 are comparable, and range from a positive bias of $\sim 10\%$ at 18 km down to a small negative bias of $< 5\%$ at 12 km.
 624 Almost all of the observed biases when compared to correlative satellite data fall within the reported biases and
 625 precisions of those instruments, particularly in the 20 to 45 km altitude range.

626
 627 We now have more than 12 years of OMPS LP ozone retrievals, and this allows us to evaluate both the seasonal cycle
 628 and the long-term stability of the data, which we have done by comparing to satellite and ozonesonde data. We find
 629 that OMPS version 2.6 ozone exhibits the same seasonal cycle as compared to all correlative measurement sources
 630 and our analysis shows that there is no significant seasonal bias in the OMPS LP.

631
 632 To evaluate the long term stability of OMPS LP ozone we calculate the drifts between OMPS LP and correlative data
 633 sources using deseasonalized monthly mean differences, [see table 1](#). We find [small drifts mean](#) relative [to all](#)
 634 [correlative observations drifts](#) at all latitude bands of less than $\pm 0.2\%/\text{yr}$ ($\pm 0.1\%/\text{yr}$) [decade](#) between 25 and 50 km,
 635 with larger drifts [above 50 km \(of up to \$\pm 0.4\%/\text{yr}\$ and \$\pm 5\%/\text{decade}\$ \)](#) below 20 km ([up to \$\pm 0.6\%/\text{yr}\$](#)), these represent an
 636 improvement over OMPS LP version 2.5 ozone. However, there is a spread in these drifts between correlative sources
 637 that often straddles the zero line. [In order to confidently detect long-term ozone trends in the stratosphere, a threshold](#)
 638 [stability requirement of 3% per decade for ozone stratospheric profiles has been set by the World Meteorological](#)
 639 [Organisation \(WMO 2022\).](#) We therefore conclude that there is no significant systematic drift in OMPS LP version
 640 2.6 ozone for the period 2012 to 2024 and that [it is suitable for use in OMPS LP data meets current WMO requirements](#)
 641 [for long-term stratospheric ozone trend studies.](#) Whilst relative drifts calculated over shorter time periods can be larger,
 642 as demonstrated here for the period 2017-2024, analysis of ozone difference time series does not show any clear,
 643 consistent drifts in OMPS LP ozone over the entire record.

644
 645 Finally, we investigated the possible use of lidar and OMPS NP observations for the future evaluation of OMPS LP
 646 ozone profile retrievals. We find that although neither data source is able to provide a suitable replacement dataset in
 647 terms of high vertical resolution and high geospatial global coverage alone, a combination of OMPS NP, ozonesondes
 648 and lidars would provide a reasonable dataset with which to evaluate OMPS LP ozone retrievals. OMPS NP would
 649 provide dense global sampling with near perfect colocation with OMPS LP, but with limited vertical resolution,
 650 whereas ozonesondes and lidars may have sparse spatiotemporal coverage but are able to provide high vertical
 651 resolution data.

652
 653 [Currently the best source of correlative data with which to evaluate OMPS LP ozone profile retrievals is Aura MLS](#)
 654 [as it is able to provide high vertical resolution profiles with dense geospatial sampling. However, MLS is scheduled](#)
 655 [to be decommissioned within the next year, and so other sources of data must be found. In this paper, in addition to](#)
 656 [MLS, we have used solar occultation satellite instrument data from ACE-FTS and SAGE III/ISS to evaluate OMPS](#)
 657 [LP ozone profiles. Although solar occultation instruments are able to provide high vertical resolution ozone profiles](#)

658 the number of profiles observed per day by these instruments is very small compared to OMPS LP, and their spatial
 659 coverage is very limited and varies seasonally. The limited number of observations and lack of spatial coverage means
 660 that in order to make meaningful global comparisons one must average over wide latitude bands and longer time
 661 scales. It also means that longer time periods are needed in order to calculate reliable drifts. Ozone sondes and lidar
 662 observations are able to provide high vertical resolution ozone profiles with which to evaluate OMPS LP profiles,
 663 however they lack the geospatial coverage afforded by a satellite instrument such as MLS. Together, independent
 664 solar occultation and ozone sonde measurements can be used to continuously monitor for potential drifts in OMPS LP,
 665 while LP provides the near global coverage necessary to ensure geographically representative trends. Finally, the
 666 OMPS NP series of instruments, which is able to provide full global coverage coincident with OMPS LP, but with
 667 limited vertical resolution, offers a source of data with which to evaluate OMPS LP ozone profiles, and there will
 668 always be an OMPS NP instrument on the same satellite platform as all future OMPS LP instruments. Therefore, in
 669 the future when MLS data is no longer available, a combination of ozone sondes, lidars and OMPS NPs will be needed
 670 in order to globally evaluate OMPS LP ozone profiles, with OMPS NP providing the global coverage and ozone sondes
 671 and lidars providing the high vertical resolution information needed to interpret any vertical structure seen in the
 672 OMPS LP/NP comparisons. There will also be some overlap between successive OMPS LP instruments which we
 673 can exploit in order to cross-calibrate/validate them, this will enable us to determine any bias offsets between them.
 674

675 With the potential upcoming “data desert” in satellite observations of atmospheric composition with high vertical
 676 resolution (Salawitch et al., 2025), the OMPS LP series of instruments will serve as a critical bridge connecting records
 677 from Aura MLS and SAGE III with future missions, like the ESA’s Atmospheric Limb Tracker for Investigation of
 678 the Upcoming Stratosphere (ALTUS). ALTUS will be launched in 2027 and will carry a high-resolution spectral
 679 imager that measures in UV, VIS and NIR ranges. ALTUS will acquire observations in 3 modes - limb scattering,
 680 solar and stellar occultation - to retrieve profiles of ozone, aerosol and other trace gases in the stratosphere and
 681 mesosphere.

Altitude (km)	60°S to 30°S		30°S to 30°N		30°N to 60°N	
	Bias (%)	Drift (%/decade)	Bias (%)	Drift (%/decade)	Bias (%)	Drift (%/decade)
15.5	-5.84 (± 2.84)	-4.74 (± 0.89)	-	-	3.34 (± 0.28)	-3.50 (± 0.62)
20.5	4.32 (± 1.08)	1.87 (± 3.02)	2.32 (± 3.88)	1.14 (± 2.57)	4.14 (± 0.07)	3.44 (± 1.07)
25.5	-2.31 (± 1.81)	0.44 (± 1.48)	-0.86 (± 0.94)	-0.40 (± 2.15)	-8.15 (± 1.66)	0.93 (± 0.17)
30.5	0.65 (± 9.54)	-2.38 (± 0.47)	-3.90 (± 6.14)	-1.41 (± 0.08)	-5.29 (± 6.24)	-0.54 (± 0.69)
35.5	2.61 (± 0.50)	-0.22 (± 0.59)	2.58 (± 0.38)	0.91 (± 0.19)	-0.43 (± 0.58)	1.24 (± 1.55)
40.5	-0.21 (± 1.29)	-1.75 (± 1.24)	-0.35 (± 1.29)	-0.22 (± 0.55)	-2.02 (± 1.79)	-1.06 (± 1.37)
45.5	-4.57 (± 0.33)	-2.12 (± 3.30)	-4.07 (± 0.11)	0.22 (± 1.50)	-6.76 (± 0.32)	0.54 (± 2.24)
50.5	-6.48 (± 0.78)	-2.11 (± 1.44)	-6.61 (± 0.71)	-1.16 (± 0.25)	-8.41 (± 0.86)	0.11 (± 2.84)
55.5	-10.59 (± 25.79)	-1.21 (± 2.26)	-9.43 (± 15.23)	-2.32 (± 0.12)	-13.18 (± 21.80)	1.59 (± 4.49)

691
 692 **Table 1: Mean biases and relative drifts at 9 specified altitudes for 3 wide latitude bands. The mean biases were derived by**
 693 **using the relative biases between OMPS LP and all high vertical resolution observations (Ozone sondes, MLS, ACE-FTS**
 694 **and SAGE III/ISS) for the period April 2012 to April 2024 (2017-2024 for SAGE III/ISS). The mean drifts were calculated**
 695 **using only the relative drifts for which there were data for the whole OMPS LP time period (2012-2024) and therefore**

696 [exclude SAGE III/ISS data. The numbers in brackets represent the unbiased estimator of the standard error of the mean](#)
697 [as described in equation 5.1 in the 2018 LOTUS report \(SPARC/IO3C/GAW, 2019\).](#)
698

700 **699 Data Availability**

701 SNPP OMPS LP version 2.6 ozone profile data are available at the NASA Goddard Earth Sciences Data and
702 Information Services Center (GES DISC): <https://disc.gsfc.nasa.gov/>
703
704 MLS data are available at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC):
705 <https://disc.gsfc.nasa.gov/>
706
707 ACE-FTS data are available via the ACE/SCISAT database: <https://databace.scisat.ca/>
708
709 SAGE III/ISS data are available at the NASA Langley Atmospheric Science Data Center (ASDC):
710 <https://asdc.larc.nasa.gov/>
711
712 Ozone sonde data are available at the NASA Goddard Atmospheric composition Validation Data Center (AVDC):
713 <https://avdc.gsfc.nasa.gov/>
714
715 Mauna Loa lidar data are available via the Network for the Detection of Atmospheric Composition Change (NDACC):
716 <https://ndacc.larc.nasa.gov/>
717
718 OMPS NP data are available at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC):
719 <https://disc.gsfc.nasa.gov/>
720

721 **721 Author contribution**

722 NK directed the work, NR and NK devised the comparison methodology, NR carried out the work and NK and NR
723 analyzed the results. SD and YJ performed the comparisons between OMPS LP and the MLO lidar station. NR
724 prepared the manuscript with contributions from all co-authors.
725

726 **726 Competing interests**

727 Some of the authors are members of the editorial board of Atmospheric Measurement Techniques.
728

729 **729 Acknowledgements**

730 731 This research is supported by the GESTAR II Cooperative Agreement with NASA Goddard Space Flight Center

732 **732 References**

733 Benito-Barca, S., Abalos, M., Calvo, N., Garny, H., Birner, T., Abraham, N. L., et al. (2025). Recent lower
734 stratospheric ozone trends in CCM-2022 models: Role of natural variability and transport. *Journal of Geophysical*
735 *Research: Atmospheres*, 130, e2024JD042412. <https://doi.org/10.1029/2024JD042412>
736
737 Bernath, P. F. (2017). The Atmospheric Chemistry Experiment (ACE). *Journal of Quantitative Spectroscopy and*
738 *Radiative Transfer*, 186, 3–16. <https://doi.org/10.1016/j.jqsrt.2016.04.006>

739 Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., et al. (2005). Atmospheric
 740 Chemistry Experiment (ACE): Mission overview. *Geophysical Research Letters*, 32, L15S01.
 741 <https://doi.org/10.1029/2005GL022386>

742 Bernath, P., Boone, C., Lecours, M., Crouse, J., Steffen, J., Schmidt, M. (2025). Global Satellite-Based Atmospheric
 743 Profiles from Atmospheric Chemistry Experiment SciSat Level 2 Processed Data, v5.2, 2004-2024. Federated
 744 Research Data Repository. <https://doi.org/10.20383/103.01245>

745 Cisewski, M., Joseph Zawodny, Joseph Gasbarre, Richard Eckman, Nandkishore Topiwala, Otilia Rodriguez-
 746 Alvarez, Dianne Check, and Steve Hall "The Stratospheric Aerosol and Gas Experiment (SAGE III) on the
 747 International Space Station (ISS) Mission", *Proc. SPIE 9241, Sensors, Systems, and Next-Generation Satellites*
 748 *XVIII*, 924107 (11 November 2014); <https://doi.org/10.1117/12.2073131>

749 Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of ozone in Antarctica reveal seasonal
 750 ClOx/NOx interaction. *Nature*, 315(6016), 207–210. <https://doi.org/10.1038/315207a0>

751 Flynn, L. E., Sefor, C. J., Larsen, J. C., & Xu, P. (2006). The ozone mapping and profiler suite. In J. J. Qu, W. Gao,
 752 M. Kafatos, R. E. Murphy, & V. V. Salomonson (Eds.), *Earth science satellite remote sensing* (pp. 279–296).
 753 Springer. https://doi.org/10.1007/978-3-540-37293-6_15

754 Frith, S. M., Bhartia, P. K., Oman, L. D., Kramarova, N. A., McPeters, R. D., and Labow, G. J.: Model-based
 755 climatology of diurnal variability in stratospheric ozone as a data analysis tool, *Atmos. Meas. Tech.*, 13, 2733–
 756 2749, <https://doi.org/10.5194/amt-13-2733-2020>—
 757 [Godin-Beckmann, S., Azouz, N., Bandyopadhyay, P., et al. \(2023\). Updated trends of the stratospheric ozone vertical](https://doi.org/10.5194/acp-22-11657-2022)
 758 [distribution in the 60° S–60° N latitude range based on the LOTUS regression model. Atmospheric Chemistry and](https://doi.org/10.5194/acp-22-11657-2022)
 759 [Physics](https://doi.org/10.5194/acp-22-11657-2022), 23(9), 4871–4899. <https://doi.org/10.5194/acp-22-11657-2022>

760 Kramarova, N. A., Nash, E. R., Newman, P. A., Bhartia, P. K., McPeters, R. D., Rault, D. F., et al. (2014). Measuring
 761 the Antarctic ozone hole with the new ozone mapping and profiler suite (OMPS). *Atmospheric Chemistry and*
 762 *Physics*, 14(5), 2353–2361. <https://doi.org/10.5194/acp-14-2353-2014>

763 Kramarova, N. A., Bhartia, P. K., Jaross, G., Moy, L., Xu, P., Chen, Z., et al. (2018). Validation of ozone profile
 764 retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements. *Atmospheric*
 765 *Measurement Techniques*, 11(5), 2837–2861. <https://doi.org/10.5194/amt-11-2837-2018>

766 Kramarova, N. A. (2023). OMPS-NPP L2 LP ozone (O3) vertical profile swath daily center slit V2.6 [Dataset]. *NASA*
 767 *Goddard Earth Sciences Data and Information Services Center*. <https://doi.org/10.5067/8MO7DEDYTBH7>

768 Kramarova, N. A., & DeLand, M. (2023). README document for the Suomi-NPP OMPS LP L2 O3 daily product
 769 (version 2.6) (p. 36). Goddard Earth Sciences Data and Information Services Center (GES DISC). Retrieved from
 770 https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_LP_L2_O3_DAILY_2.6/summary?keywords=OMPS

771 Kramarova, N. A., Xu, P., Mok, J., Bhartia, P. K., Jaross, G., Moy, L., et al. (2024). Decade-long ozone profile record
 772 from Suomi NPP OMPS Limb Profiler: Assessment of version 2.6 data. *Earth and Space Science*, 11,
 773 e2024EA003707. <https://doi.org/10.1029/2024EA003707>

774 Leblanc, T., and I. Stuart McDermid. (2000). Stratospheric ozone climatology from lidar measurements at Table
 775 Mountain (34.4°N, 117.7°W) and Mauna Loa (19.5°N, 155.6°W). *Journal of Geophysical Research*, 105, 14613–
 776 14623. <https://doi.org/10.1029/2000JD900030>

777 Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Santee, M. L., Schwartz, M. J., et al. (2022). *Version 5.0x*
 778 *Level 2 and 3 data quality and description document* (Tech. Rep. No. JPL D-105336 Rev. B). Jet Propulsion
 779 Laboratory. Downloaded from https://mls.jpl.nasa.gov/data/v5.0_data_quality_document.pdf

780 McPeters, R., Frith, S., Kramarova, N., Ziemke, J., and Labow, G.: Trend quality ozone from NPP OMPS: the version
 781 2 processing, *Atmos. Meas. Tech.*, 12, 977–985. <https://doi.org/10.5194/amt-12-977-2019>, 2019.

782 Rault, D. F., & Loughman, R. P. (2013). The OMPS limb profiler environmental data record algorithm theoretical
 783 basis document and expected performance. *IEEE Transactions on Geoscience and Remote Sensing*, 51(5), 2505–
 784 2527. <https://doi.org/10.1109/TGRS.2012.2213093>

785 SAGE III/ISS Data Products User's Guide, Version 6.0, 2025, https://asdc.larc.nasa.gov/documents/sageiii-iss/guide/data_product_users_guide_6.0.pdf

786 Salawitch, R. J., J. B. Smith, H. Selkirk, et al. (2025). *The Imminent Data Desert: The Future of Stratospheric*
 787 *Monitoring in a Changing Climate*, *Bulletin of the American Meteorological Society*,
 788 <https://doi.org/10.1175/BAMS-D-23-0281.1>

789 Sheese, Patrick; Walker, Kaley, 2023, Data Quality Flags for ACE-FTS Level 2 Version 5.2 Data Set, *Borealis*,
 790 *V16*. <https://doi.org/10.5683/SP3/NAYNFF>

791 SPARC/IO3C/GAW, 2019: *SPARC/IO3C/GAW Report on Long-term Ozone Trends and Uncertainties in the*
 792 *Stratosphere. I*. Petropavlovskikh, S. Godin-Beckmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.),

Formatted: Font: 12 pt

794 [SPARC Report No. 9, GAW Report No. 241, WCRP-17/2018, doi: 10.17874/f899e57a20b, available at www.sparc-climate.org/publications/sparc-reports](http://www.sparc-climate.org/publications/sparc-reports)
795
796 Stauffer, R. M., Thompson, A. M., Kollonige, D. E., Tarasick, D. W., van Malderen, R., Smit, H. G. J., Vömel, H.,
797 Morris, G. A., Johnson, B. J., Cullis, P. D., Stübi, R., Davis, J., and Yan, M. M. (2022). An examination of the
798 recent stability of ozonesonde global network data, *Earth and Space Science*, 9, e2022EA002459,
799 <https://doi.org/10.1029/2022EA002459>, 2022
800 Wang, H. J. R., Damadeo, R., Flittner, D., Kramarova, N., Taha, G., Davis, S., et al. (2020). Validation of SAGE
801 III/ISS solar occultation ozone products with correlative satellite and ground based measurements. *Journal of
802 Geophysical Research: Atmospheres*, 125, e2020JD032430. <https://doi.org/10.1029/2020JD032430>
803 WMO (World Meteorological Organization). (2022). Scientific assessment of ozone depletion: 2022 (GAW report
804 No. 278) (p. 509). WMO. Downloaded from <https://ozone.unep.org/science/assessment/sap>
805 World Meteorological Organisation: GCOS-22: The 2022 GCOS ECVs Requirements, WMO GCOS-245, World
806 Meteorological Organisation, <https://library.wmo.int/idurl/4/58111> (last access: 1 December 2025), 2022.