
Reviewer: Matajira-Rueda et al. present a novel approach to the optimization of new 
ground-based stations in a greenhouse gas observation network. Many previous 
approaches have relied on the inverse modelling methodology which is traditionally used 
to optimize for the flux estimates using concentration measurements from these ground-
based network stations and prior information. This has computational challenges, as the 
optimization requires running components of the inversion which require extremely large 
datasets, and having to repeat this a large number of times in order to determine which 
set of stations achieves the best result with respect to some objective function, usually 
related to uncertainty reduction. The approach presented by the authors in this paper 
propose a machine-learning approach which is based on identification of clusters in the 
region, and then optimizing the location of sites which observe these clusters. 
Approaches are implemented to reduce the dimensionality of the data to improve on the 
computational time for running the algorithm, which therefore allows for more repeats of 
the process to be undertaken with different starting values to ensure that the optimal 
solution is achieved, rather than a local optimum. 
 
The authors present the approach is a logical and clear manner, and clearly describe each 
step. The manuscript is easy to follow, even if no prior knowledge of inversions or machine 
learning. The figures and tables complement the explanation of the method and 
discussion of results. 
 
I think that the manuscript is sufficient in it’s current form to present the proposed method 
and application. 
 
I think it may be worth emphasizing that regardless of which method is used for optimizing 
the location of measurement stations, there is still a requirement for a thorough 
understanding of the transport model/models that will be used to generate the simulated 
concentrations, as locations where these models are known to perform poorly should be 
excluded from the search space. While the inverse modelling approach may not be used 
for determining the optimal network, the resulting network still needs to be compatible 
with the approach and take into account the challenges that need to be dealt with during 
the inversion procedure in order to achieve estimates of the posterior fluxes.  For example, 
there needs to be an appreciation for the prior information that will be provided for the 
inversion, as the ultimate aim will be to ingest the concentration data from the observation 
network, together with the prior information, to provide estimates of fluxes. Locations that 
are heavily influenced by regions where the prior information is poor or highly uncertain 
can be problematic, as even if a new measurement station in that region contributes 
towards uncertainty reduction, the resulting posterior uncertainty is still very high, 
particularly if this is combined with error in the atmospheric transport model for that 
region. Approaches that use uncertainty reduction as the basis for objective function of 
the network design can penalize regions such as these by manipulating the uncertainty in 



these regions so that the optimization solutions with stations which see these locations 
do not overly dominate at the cost of seeing other regions which new stations can better 
contribute towards characterizing. Regions with high uncertainty are also those regions 
with high concentrations normally, so I think that both approaches would try to find 
solutions that view the same regions. The exception is CO2, as during periods when 
photosynthesis dominates, the concentrations in the surrounding regions influenced by 
air masses passing over these regions may have concentrations that are pulled lower, but 
actually the uncertainty in the models that describe photosynthesis can be very high, so 
if the objective was to improve on the prior fluxes for these regions, it would still be 
desirable to have stations that viewed these regions in the network. Therefore, there may 
need to be some adaptations to the method to account for large negative fluxes, or when 
regions have both large negative fluxes and  anthropogenic fossil fuel contributions. 
 
I’d certainly be interested to see how this method compares to the previous inverse 
modelling based approaches if both are provided with the same inputs. 
  
Specific comments: 
I think some clarifications in the caption would assist to allow the figures and tables be 
more stand-alone. 
Figure 11, 13, 16: It's not clear what is the y-axis of the lower figure. Line 324-333 
Figure 14, 17: the caption does not explain what’s in (d). 
Table 2. It’s not clear from the title or row labels why there are 9 rows, or what the order 
signifies, if anything. 
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The authors appreciate your time and willingness to review the proposed article. 
Following your comments and instructions, we have made the indicated and highlighted 
modifications in a new version of the document. 
 
We also appreciate your comments and suggestions, which we value as they motivate us 
to continue exploring diverse application scenarios for CRO²A, as well as its possible 
future updates. 
 
As you mention, most approaches focus on inverse modeling, and as is well known, its 
computational cost can be very high. Furthermore, it relies on information processed 
through Bayesian probabilistic assumptions. What we propose with CRO²A is the 
exploration of a different perspective from this traditional one, using a metric other than 
uncertainty reduction. The exploration is done automatically based on characteristics 
inherent to pattern recognition. The formulation of a different objective function allows 



both the exploration and exploitation of the solution space, in turn increasing 
convergence toward a global optimum. 
 
We fully agree with you on the importance of the atmospheric transport model used and 
its appropriate parameter settings. The quality of CRO²A's results depends directly on the 
quality of the simulated data in the corresponding atmospheric transport model. 
Therefore, based on CRO²A's performance using data from other transport models 
(different from WRF and CAMS), we hope to enable their use in future versions to leverage 
the advantages of each. 
 
Although we indirectly influence uncertainty, CRO²A focuses more on the trend of 
concentration behavior over time and space, taking advantage of automated analysis 
that, in turn, uses descriptive statistics to characterize them. The constraints applied to 
the data during processing are systematic, allowing the algorithm to learn from them 
without relying on assumptions that could bias the results. 
We would like to highlight two of your comments, which precisely reveal some 
weaknesses in the inverse modeling design and definitely create an opportunity to test 
alternative solution strategies with CRO²A: 
 
Firstly, regarding those locations heavily influenced by regions where prior information is 
deficient or highly uncertain, we believe that through a set of simulations using different 
flux fields as input, could be tested in a later version of CRO²A. Except that the transport 
model realizations could have a significant  computational cost.  
 
Secondly, regarding the penalty imposed on regions by approaches based on uncertainty 
reduction, we suggest a way to avoid this penalty by filling the "gaps" with the information 
provided by CRO²A, after using a set of realizations of the transport model (same flow 
field), so that transport errors are taken into account. The main limitation is the cost of 
running ensemble simulations (for both transport and emissions errors). 
 
We also find your perspective on the inclusion of biogenic fields very interesting. We are 
well aware of this aspect and consider it undeniably necessary. Therefore, these fields 
have been under observation since the beginning of development, but the results are still 
being evaluated. The main difficulty lies in the "smoothness" or "flatness" of the biogenic 
fields. Our key to continuing research in this direction is the use of a complementary 
technique, which, at first glance, may be linked to a segmentation process based on the 
sets of species to be analyzed. 
 
Finally, we would like to inform you that we already have comparative results with the 
Australian network presented in: 
 



ZIEHN, T., et al. Greenhouse gas network design using backward Lagrangian 
particle dispersion modelling− Part 1: Methodology and Australian test case. 
Atmospheric Chemistry and Physics, 2014, vol. 14, no. 17, pp. 9363-9378. 

 
These results have already been appended to this article (Lines 636-691). We are also 
conducting tests on the African network presented in: 
 

NICKLESS, Alecia, et al. Greenhouse gas network design using backward 
Lagrangian particle dispersion modelling–Part 2: Sensitivity analyses and South 
African test case. Atmospheric Chemistry and Physics, 2015, vol. 15, no. 4, pp. 
2051-2069. 

 
However, these latter results will be published later. 
 
About “specific comments”: 
Figure 11, 13, 16: It's not clear what is the y-axis of the lower figure. Line 324-333 
To clarify, we have added the following paragraph on the indicated lines: 
 
Line 333-338 
The logistic function representing the fitted model and its first two derivatives are used to 
calculate the optimal threshold (see the first and second sub-Fig. 11, respectively) 
according to the procedure proposed by McDowall and Dampney (2006), which makes 
use of intersections between certain straight lines (including the slope line at the 
midpoint of the logistic  curve, obtained by means of the derivative in the second sub-Fig. 
11) to calculate the baroreflex threshold and saturation points. 
It should be noted that the performance represented is normalized; therefore, the vertical 
axes of this figure and its first two derivatives, shown in Fig. 11, are dimensionless. 
 
Figure 14, 17: the caption does not explain what’s in (d). 
The figure captions have been corrected as shown below: 
 
Figure 14. Resulting optimal centroids (black triangles) and their corresponding clusters 
for all images in the dataset for both the foreground (a) and background (b) networks 
(urban level), location of the optimal centroids relative to the emission field (c), and 
according to the scoring matrix (d). 
 
Figure 17. Resulting optimal centroids (black triangles) and their corresponding clusters 
for all images in the dataset for both the foreground (a) and background (b) networks 
(regional level), location of the optimal centroids relative to the emission field (c), and 
according to the scoring matrix (d). 
 



Table 2. It’s not clear from the title or row labels why there are 9 rows, or what the 
order signifies, if anything. 
The numbering in Table 1. and Table 2. has been removed as it had no relevant meaning 
other than to list the monitoring stations obtained. 
Furthermore, the caption of both tables has been modified as follows: 
 
“Table 1. Optimal results coordinates for urban-scale analysis according to Fig. 14. Two 
columns are presented: the first (Foreground) for the main monitoring network and the 
second for the background network. Both networks contain three ground monitoring 
stations, since they are designed as one-to-one networks and because 3 is the minimum 
value (threshold in Fig. 13) obtained from the analysis.”, 
 
“Table 2. Optimal results coordinates for regional-scale analysis according to Fig. 17. Two 
columns are presented: the first (Foreground) for the main monitoring network and the 
second for the background network. Both networks contain nine ground monitoring 
stations, since they are designed as one-to-one networks and because 9 is the minimum 
value (threshold in Fig. 16) obtained from the analysis.”, 
 
respectively. 
 
Thank you in advance for your attention and collaboration. 
 
Sincerely, 
 
David Matajira-Rueda 
Charbel Abdallah 
Thomas Lauvaux 
 
Additional : 
Following your observations, the authors have included some words or comments to 
improve the understanding of the document; therefore, below we list the lines in which 
such inclusions are found: 
Line 16 
Lines 113-114 
Line 184 
Line 189 
Line 326 
Lines 344-347 
Lines 435-436 
 


