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Abstract. Understanding carbon flux dynamics in tropical ecosystems is crucial for evaluating their role in global climate
regulation. This study investigates the temporal variability of the net ecosystem exchange (IVEF) of CO, and its interactions
with key meteorological variables in a tropical forest ecosystem of the Pantanal, Brazil. Using high-resolution hourly data from
a flux tower, we apply Detrended Fluctuation Analysis (DFA) and Detrended Cross-Correlation Analysis (DCCA) to analyze
diurnal to seasonal cycles of N E'E, latent heat (LE), sensible heat (), global radiation (Rg), air and soil temperature (7,
and T,;), relative humidity (rH), and vapor pressure deficit (V' P D). The results reveal a strong diurnal coupling between
solar radiation, temperature, and carbon fluxes, with peak CO, uptake occurring at midday. A key novel finding is a marked shift
to strong anti-persistence in N E'E at the weekly scale during the dry season, a pattern supported by concurrent reductions in
LE and rH and increases in H and V PD. This highlights that water limitation is a critical driver of carbon release and reveals
a previously unidentified regulatory mechanism in the ecosystem’s carbon cycle. These findings underscore the sensitivity of
carbon dynamics to hydrometeorological conditions and underline the necessity of multi-scale analysis. Uncertainties remain

regarding the role of extreme droughts and floods, as well as land-use dynamics, which merit further investigation.

1 Introduction

The Pantanal is one of the largest floodplains in the world, located in the center of South America, covering approximately
160 000 km? across Brazil, Bolivia, and Paraguay (Teodoro et al., 2016). About 40% of this territory lies within Brazil, encom-
passing the states of Mato Grosso and Mato Grosso do Sul (da Silva and de Moura Abdon, 1998). It is a significant sedimentary
basin whose ecological dynamics are deeply influenced by climatic variables such as precipitation, temperature, and humidity,
which shape the seasonal flood regimes that sustain its highly diverse flora and fauna (Louzada et al., 2020).

Although the Pantanal holds global ecological and climatic importance, there is still a lack of systematic studies using high-
resolution quantitative data that allow robust modeling of climate—ecosystem interactions (Teodoro et al., 2016; Pobocikova
et al., 2021). Understanding these interactions is essential, especially in the context of climate change, given the role that
tropical ecosystems play in climate regulation—through CO, uptake via photosynthesis, emission by respiration and decom-
position, as well as processes like evapotranspiration, albedo, and heat flux. These processes directly affect the global carbon

balance and the Earth’s climate system.
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In this study, we aim to characterize the temporal variability and interdependence between the Net Ecosystem Exchange of
carbon (/N E'FE) and meteorological variables in a representative area of the Pantanal in Mato Grosso. The data were obtained
using the Eddy Covariance technique, which enables direct measurement of CO, exchanges between the ecosystem and the
atmosphere at high temporal resolution. This allows for multiscale analysis (hourly, weekly, monthly, and seasonal), which is
essential to detect patterns of persistence, trend, and correlation among variables.

In this research, we applied statistical methods suited to the non-stationary nature of climatic and ecological time series, such
as Detrended Fluctuation Analysis (DFA) (Peng et al., 1994) to investigate long-range autocorrelation in individual series, and
Detrended Cross-Correlation Analysis (DCCA) (Podobnik and Stanley, 2008), whose extension enables the assessment of
the level of the relationship between series pairs using the ppcca coefficient (Zebende, 2011). The results contribute to a
more refined understanding of the Pantanal ecosystem’s response to microclimatic variability, providing scientifically relevant

insights for conservation strategies, monitoring efforts, and mitigation of climate change effects in the region.

2 Materials and Methodology
2.1 Materials

This study aimed to investigate the interdependence between the Net Ecosystem Exchange of carbon (NEE) and relevant
environmental variables, listed in Table 3, including air temperature, solar radiation, relative humidity, sensible heat, latent
heat, and vapor pressure deficit. The data were collected using the Eddy Covariance technique, through a micrometeorological
tower installed in a seasonally flooded cattle pasture at the Nossa Senhora Do Carmo ranch (16°22'24"S; 56°27'44" W),
located 10 km from the city of Poconé in the northern Pantanal wetland of Brazil, depicted on Fig. 1.

The tower, equipped with high-precision sensors, was configured with an open-path infrared gas analyzer (LI-7500A, LI-
COR Biosciences) for continuous measurements of CO, and water vapor, as well as a three-dimensional sonic anemometer
(RM-Young, Model 81,000) to record the wind components. The sensors were mounted at a height of 3 meters above ground,
and data were recorded at a frequency of 20 Hz, with half-hour averages computed from the raw data. The initial processing
of raw data was performed using EddyPro® software (v.6.2.0), with corrections applied for air density fluctuations, spectral
losses, frequency response, and virtual temperature. Quality filters were used to remove noise, instrumental failures, non-
stationary data, and values outside plausible ranges. After these steps, approximately 80.6% of the data were retained, with
gaps filled using the marginal distribution sampling (MDS) method implemented in the REddyProc package, as described by
(Dalmagro et al., 2022).

Figure 2 presents the complete time series of the variables investigated. The combination of the Eddy Covariance technique
with adequate statistical methods enabled the construction of a reliable and high-resolution dataset, suitable for analyzing
climate patterns, seasonal variations, and interactions between energy and mass fluxes in the ecosystem.

To investigate the interdependencies among variables, we applied three complementary approaches: Detrended Fluctuation
Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and the ppcca coefficient. DFA allows the identification of

long-term auto-correlation within a single time series, while DCCA detects the presence of cross-correlations between two
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Figure 1. Geographical Location of Data Collection

time series. The ppcca coefficient quantifies the level of these cross-correlations, providing a normalized metric ranging from
—1 to 1. The joint application of these methods offers a deeper understanding of the dynamics that regulate CO, fluxes and

60 their relationship with microclimatic factors in the Pantanal.
2.2 Methodology

To investigate temporal correlations and interdependencies among the variables, two main statistical methods and a coeffi-
cient were employed: Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and the cross-
correlation coefficient ppcca. These methods are suitable for handling non-stationary time series, allowing the detection of

65 persistence patterns and correlations across different temporal scales.
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Figure 2. Time series of (a) Net Ecosystem Exchange (N E'FE), (b) sensible (H) and latent (L E) heat fluxes, (c) global radiation, (d) relative
air humidity, (e) vapor pressure deficit (V' P D), and (f) air and soil temperature for the Bafa das Pedras site (Northern Pantanal) as a function

of time.

2.2.1 DFA (Detrended Fluctuation Analysis)

Since the pioneering work of Hurst (1951), the analysis of long-range correlations (LRC) in time series has become a fun-
damental tool for characterizing temporal dependence in complex systems. The Hurst exponent, h, quantifies the degree of
persistence or anti-persistence of fluctuations over time and is directly associated with the decay of auto-correlations as the
time lag increases. Originally proposed in hydro-logical studies of the Nile River, the exponent has since been widely used to
detect long-term memory in various classes of natural and socioeconomic systems.

Values of h in the range 0.5 < h < 1.0 indicate persistence—fluctuations in the same direction tend to cluster—while values
h < 0.5 indicate anti-persistence, characterized by frequent reversals in fluctuation direction. The case h = 0.5 corresponds to

white noise, typical of short-memory processes in which auto-correlations decay exponentially. Beyond its relationship with
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statistical memory, the Hurst exponent is also linked to the fractal dimension of the series and is widely used in fields such as
hydrology (Koutsoyiannis, 2003), finance (Couillard and Davison, 2005; Bassler et al., 2006), and nonlinear systems analysis
(Matcharashvili and Prangishvili, 2020).

To quantify LRC in time series that exhibit trends or non-constant fluctuations — that is, non-stationary series — a widely
recognized approach is Detrended Fluctuation Analysis (DFA), proposed by Peng et al. (1994). This method removes local
trends over various time windows and computes the average residual fluctuation as a function of scale, enabling a reliable
estimation of the Hurst exponent even in the presence of non-stationarity.

The importance and robustness of DFA have been widely acknowledged in the scientific literature, with applications in
physiological, climatic, ecological, and financial data. The method quantifies long-term auto-correlation in a single time series
{1}, for k=1,..., N, providing a robust measure of the persistence level in the series’ variations. The interpretation of the
obtained h values can be found in Table 1, as suggested by (Hu et al., 2001; Kantelhardt et al., 2001).

To precisely quantify this level of persistence, the DFA algorithm systematically processes the time series. The core proce-

dure for calculating the scaling exponent « is detailed as follows:

1. Profile Creation (Integration): Starting from the mean value, (z) = % Zszl T, the series is demeaned and the result
is cumulatively summed, generating a new series X (), called the integrated time series:
X(i)=Y [zr—(2)], fori=1,....,N (1)
k=1
2. Segmentation: The profile X (7) is divided into (N — n) overlapping segments of equal size n (temporal scale). In this

case, each segment k contains (n + 1) values.

3. Detrending: In each segment, a local trend is removed from the data by fitting a polynomial of order m, resulting in the

adjusted ordinate value X (i,k) using the least squares method.

4. Calculation of Local Fluctuation: For each segment k, the variance of the residuals is calculated as:

1 i+n

fhpalnk) = (X (5) — X (j, k)] 2)

n+14~
j=i

5. Calculation of Mean Fluctuation: The fluctuation function for each time scale n is given by:

(N—n)
1
Fora(m) = \| (77 2 fhratnk) 3)
k=1

This process is repeated for other temporal scales, with 4 <n < N/4.

6. Power-Law Analysis: If the time series exhibits long-term correlations, Fppr4 will follow a power-law function of n.

In a log-log plot of F'(n) versus n, this may be represented by a linear relationship, that is:

FDFAocnO‘ (4)
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Table 1. Interpretation of o exponent from DFA method.

Range of @ Interpretation

a=0.5 White Noise: No correlation, random values.
0 < a<0.5 Anti-persistence: High values are followed by low values and vice versa.
0.5 < a <1 Persistence: High values are followed by high values and vice versa.

a1 1/f Noise: Long-range correlations.

1 <a <15 Persistent, non-stationary (fractional Brownian motion).
a~1.5 Brownian noise (random walk; integrated white noise).
a>1.5 Very strong trend / superdiffusive random-walk-like behavior.

Here, « is the autocorrelation exponent and the main result of the DFA method, as described in Table 1, with a good

introduction in (Lgvsletten, 2017).

Following standard DFA literature, we distinguish stationary (0 < v < 1) from non-stationary (« > 1) regimes and explicitly

single out the Brownian case at o ~ 1.5 (random walk) (Peng et al., 1994). This avoids conflating generic non-stationarity with

the special integrated-noise limit.

2.2.2 DCCA Method and Coefficient ppcca

DCCA is a generalization of the DFA method for analyzing cross-correlations between two time series, {zx} and {yx}, of

equal length IV, at different time scales n, with removal of local trends. The method is described in detail in (Podobnik and

Stanley, 2008), and comprises the following algorithm.

1.

Profile Creation (Integration): As in DFA, the two series are integrated separately, that is, based on the mean values,
(z) =+ Zszl zy and (y) = + Zgﬂ Yk, the series are demeaned and then accumulated, resulting in two new time
series, X (¢) and Y (7), called integrated series:

i i

X(i)=> [zx— ()] and Y(i) =) [ys—(y)] fori=1,.. N (5)
k=1 k=1

Segmentation and Detrending: Steps 2 and 3 of DFA are independently applied to both profiles, X (¢) and Y (7).

Fluctuation Covariance Calculation: Instead of variance, DCCA calculates the covariance between the residuals of

the two series in each segment k:

1 i+n

fhoca(n.k) = [X(7) = XU RIY () =Y (3,k)] (6)

n+1 4~
j=i

. Average Covariance: The average covariance for scale n is obtained by averaging over all segments:

1 (N—n)

Fpecaln) = N-n) Z fheca(n,k) @)
k=1
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5. Calculation of the Coefficient ppcca (Zebende, 2011): The DCCA cross-correlation coefficient is calculated using the

equation:

7 FRoca(n)
ppcca(n) = Fpra,(n)Fpra,(n) (8)

Where Fpra,(n) and Fpra, (n) are the DFA fluctuations calculated for the series {1} and {y } respectively.

The interpretation of possible values of ppcca is shown in Table 2, noting that ppcca(n) ranges from -1 to 1. This was first
postulated in Zebende (2011), in face of others conventional metrics. The main advantage of using the coefficient ppcca lies in
its ability to quantify the level of cross-correlation between non-stationary time series, where traditional correlation measures
(e.g., Pearson’s coefficient) fail due to their sensitivity to trends and nonstationarity. Unlike the classical cross-correlation
function, which assumes stationarity, ppcca is scale-dependent and normalized, ranging from —1 to 1, making it suitable
for detecting and quantifying correlations embedded in power-law noise and non-stationary signals. Furthermore, as shown
in Zebende (2011), ppcca establishes a direct relationship between the long-range auto-correlation exponents o, a2 and the
cross-correlation exponent A, allowing a consistent and robust interpretation of long-range interactions that cannot be captured
by conventional metrics.

The DCCA cross-correlation coefficient (ppcca) is a robust tool for quantifying the relationship between two non-stationary
time series, finding vast application in hydrological and climate studies. For instance, it has been used to quantify the cross-
correlation between air temperature and relative humidity in various global locations, showing that their relationship varies
significantly and is influenced by seasonal patterns (Vassoler and Zebende, 2012). In a similar approach, cross-correlation has
been used in case studies related to water security issues (Fernandez et al., 2024). In the Brazilian context, the ppcca coefficient
has also served as the fundamental metric for constructing complex climate networks, allowing for an in-depth analysis of the
interconnections between different locations based on their climate data (Oliveira Filho et al., 2023).

The applicability of ppcca extends globally to investigations of climate patterns across different spatial and temporal scales.
A study on temperature records in China used DCCA to reveal different spatial cross-correlation patterns across multiple time
scales (Yuan and Fu, 2014). Analogously, the technique has been used to uncover the correlation patterns between a large-scale
climate index, such as the North Atlantic Oscillation (NAO), and precipitation, demonstrating its effectiveness in connecting
global phenomena with local meteorological variables (Tatli and Mentes, 2019).

The DCCA cross-correlation coefficient has been widely employed to investigate contagion and interdependence in eco-
nomic systems. Applications range from the Brazilian stock market, where correlations between the Ibovespa index and blue-
chip stocks strengthened after the 2008 crisis (da Silva et al., 2015), to international studies introducing Appcca as a measure
of crisis-driven contagion across G7 countries (da Silva et al., 2016). Beyond financial markets, the method has revealed a
scale-dependent negative relationship between oil prices and the US dollar exchange rate (Reboredo et al., 2014). Recent re-
finements, such as the sliding-window approach, further allow mapping the temporal evolution of correlations, enhancing the

capacity of DCCA to capture dynamic interactions in macroeconomic contexts (Guedes and Zebende, 2019).
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Table 2. Interpretation of ppcca Coefficient Values

Value of ppcca Interpretation

-1.000 perfect anti cross-correlation
(-1.000; -0.666]  strong anti cross-correlation
(-0.666; -0.333]  moderate anti cross-correlation
(-0.333; 0.000)  weak anti cross-correlation

0.000 no cross-correlation
(0.000; 0.333]  weak cross-correlation
(0.333; 0.666]  moderate cross-correlation
(0.666; 1.000)  strong cross-correlation

1.000 perfect cross-correlation

3 Results
3.1 Preliminary Results

The following variables were analyzed in this study—NFEF, H, LE, Rg, rH, T, Tsoi1, and V P D—which are described in
Table 3. Before applying advanced statistical methods (DFA and ppcca), a classical descriptive analysis of the variables was
conducted. This step is fundamental for characterizing data behavior, validating its quality, and establishing the premises for

subsequent analyses.
3.1.1 Descriptive Statistics of the Time Series

Based on observations collected by the micrometeorological station, time series were constructed for the eight analyzed vari-
ables, as illustrated in Fig. 2. Among them, we highlight the Net Ecosystem Exchange (NEE) as the dependent variable. This
variable exhibits a marked diurnal pattern: during the day, it tends to negative values, indicating CO, uptake by vegetation
through photosynthesis; at night, values become positive, reflecting CO, release by respiration. Fig. 2(a) also reveals seasonal
fluctuation, with NEE values ranging approximately from —40 to +40 umolm — 2s — 1, consistent with the annual vegetation
growth cycles.

Figures 2(b) and 2(c) show the sensible heat flux (H), latent heat flux (L E), and global radiation (Rg), measured in Wm — 2.
These variables display well-defined diurnal cycles, with peaks during the day and values close to zero at night. Rg exhibits
pronounced seasonality, with peaks during summer (December to February) and minimum values in winter (June to August),
a pattern also observed for H and LE, though with greater variability in the hotter months.

Relative humidity (rH'), shown in Fig. 2(d), is higher during the night and early morning, approaching 100%, and declines
throughout the day as temperature rises. The vapor pressure deficit (V PD), shown in Fig. 2(e), displays the opposite pattern,
reaching its highest values during the day, reflecting increased evaporative demand of the air. Fig. 2(f) illustrates the diurnal
cycles of air and soil temperature: the air warms and cools more quickly, whereas the soil, due to its higher thermal inertia,

shows lower amplitude and thermal lag, sometimes surpassing air temperature.



Table 3. Variables under study

Abbreviation Meaning Description

NEE Net Ecosystem Exchange Represents the difference be-
tween CO4 uptake by photosyn-
thesis and CO, release by ecosys-
tem respiration. Negative values
indicate CO4 absorption (carbon
sink), positive values indicate
CO4 release (carbon source).

H Sensible Heat Flux Energy transferred between the
surface and the atmosphere due
to temperature difference.

LE Latent Heat Flux Energy involved in evaporation
or transpiration (evapotranspi-
ration).

Rg Global Radiation Total solar radiation reaching

the Earth’s surface, including di-
rect and diffuse radiation.

rH Relative Humidity Ratio of water vapor present in
the air to the maximum amount
the air could hold at the same

temperature.
Toir Air Temperature Air temperature measured at a
specific height above the surface.
Tsoil Soil Temperature Temperature measured in the
soil, usually at a specific depth.
VPD Vapor Pressure Deficit Difference between saturated

water vapor pressure and cur-
rent water vapor pressure in the
air. Indicates evaporation and
transpiration potential.

Table 4 summarizes the main indicators of descriptive statistics for the investigated variables. For NEE, a slightly positive
mean (0.54) is observed, while the median (1.44) and mode (-10.10) suggest an asymmetric distribution. The other variables
follow patterns consistent with regional climatology, exhibiting high values for LE and Rg, broad thermal variation, and
moderate asymmetries.

180 Descriptive statistics applied to the atmospheric dataset allow for an objective synthesis of variability and predominant
patterns throughout the sampling period. Metrics such as mean, median, mode, standard deviation, skewness, and kurtosis
enable the characterization of central tendencies, fluctuation amplitude, and distribution shape, contributing to the identification
of anomalies and validation of data quality. This initial characterization provides a solid foundation for subsequent analyses,
guiding the selection and interpretation of advanced analytical methods applied in this study to investigate interdependencies

185 and correlations among variables.
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The initial descriptive analysis presented in Table 4 characterized the individual distributions of the eight analyzed atmo-
spheric variables based on metrics such as mean, median, mode, standard deviation, skewness, and kurtosis. This step provided
a preliminary understanding of central trends and data variability, identifying relevant patterns and possible distributional
asymmetries.

To further characterize these patterns and investigate their variation over the 24-hour cycle, Fig. 3 was developed, showing
the hourly means of these variables. This graphical representation is fundamental for identifying characteristic diurnal cycles,
such as air heating and cooling processes, relative humidity oscillations, energy flux fluctuations, and vegetation responses to
environmental conditions. The hourly visualization enables a better understanding of how each variable behaves at different
times of the day, providing valuable insights for modeling atmospheric and ecological processes as well as for subsequent

analyses of interdependence among these variables.

Table 4. Descriptive statistics of the eight time series, with N = 75386 observations.

NEFE H LE Rg rH Toir Tsosw VPD

(umolm™2s~')  (Wm™?) (Wm™?) (Wm ?) (%) °C °C  (hPa)

Mean 0.54 36.0 78.5 224 73.8 26.4 290.8 12.6
Median 1.44 0.9 31.6 7.3 79.2 26.0 30.1 7.7
Mode -10.10 101.0 108.0 0.00 93.7 24.1 29.7 0.00
sd 6.79 66.8 105.0 308 20.0 5.43 3.00 13.9
Minimum -35.00 -188.0 -244.0 0.00 11.8 1.3 18.2 0.00
Maximum 35.00 602.0 699.0 1270 99.8 42.6 39.6 83.5
Skewness -0.17 1.7 1.8 1.09 -0.80 -0.14 -0.46 1.48
Kurtosis 3.50 2.5 2.8 -0.235 -0.293 0.190 0.296 1.99

3.1.2 Descriptive Statistics Considering Daily Seasonal Patterns

In this study, we consider the Net Ecosystem Exchange (INVEF) as the central variable, as it directly reflects the dynamics
of CO, exchange at the soil-atmosphere interface. Fig. 3 makes it possible to visualize the characteristic diurnal pattern of
each variable and, crucially, to analyze the interactions and temporal lags among them, such as the lag of the temperature peak
relative to maximum solar radiation and the ecosystem’s photosynthetic response (N E E) to light availability. Taken together,
these observed patterns and interactions form a biogeophysical signature that characterizes the intrinsic functioning and the
dynamics of energy and mass exchange at the study site.
Fig. 3(a) shows that the highest N E'E values occur at night, between 7 p.m. and 11 p.m., reaching approximately 4 ypmolm™2s".

This behavior is expected, since the absence of solar radiation inhibits photosynthesis, causing plants to stop carbon assim-

! until

ilation and release CO, through respiration. After this period, the mean N EE values stabilize around 3.7 pmolm?s”
sunrise, when solar radiation (Rg) begins to strike the surface (around 5 a.m.), reactivating photosynthesis. From that point

on, there is a progressive decline in mean N EE values, reaching a minimum around 1 p.m., with an average of approxi-

10
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Figure 3. Mean values for each hour of the day (local time) of all eight variables.

mately —5.7 pmolm™2s™!, coinciding with the Rg peak shown in Fig. 3(b). This pattern clearly highlights N E'E as a sensitive

indicator of the daily balance between CO, absorption and emission, strongly regulated by the alternation between daytime
210 photosynthesis and nighttime respiration.

Fig. 3(b) presents the average hourly profiles of global radiation (Rg), sensible heat flux (H), and latent heat flux (LFE),
according to the definitions in Table 3. All three variables exhibit a near-normal distribution, with daytime peaks around 1

p.m., coinciding with peak solar incidence. The Rg curve is symmetric and shows high kurtosis, reflecting a sharp solar
radiation peak concentrated between 12 p.m. and 1 p.m. The LE profile, on the other hand, shows slight right-skewness,

215 indicating that values remain high for longer during the afternoon, even after Rg starts to decline. This persistence in latent
heat flux can be explained by several factors, such as continued plant transpiration after peak radiation, soil water availability,
and the thermal inertia of biomass, which accumulates heat throughout the day and releases it gradually. Additionally, potential

nonlinearities in the relationship between LE and vapor pressure deficit (VP D) may contribute to this behavior. Together,

11
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these energy fluxes provide important insights into the energy exchange processes between the surface and the atmosphere,
with direct implications for the mechanisms regulating the daily CO, cycle.

Fig. 3(c) presents the average hourly profiles of air temperature (7};,) and soil temperature (7,;;). Air temperature exhibits
greater daily thermal amplitude compared to soil temperature, indicating a faster response of the atmosphere to variations in
solar radiation throughout the day. This difference is attributed to the higher heat capacity and density of soil, which requires
more energy to undergo noticeable temperature changes. As a result, the soil warms and cools more slowly, accumulating
heat during the day and gradually releasing it at night. This thermal inertia plays an important role in modulating the surface
microclimate, contributing to ecosystem thermal stability and influencing other atmospheric and biogeochemical processes,
such as evapotranspiration and surface energy balance.

Fig. 3(d) shows the average hourly profiles of relative humidity () and vapor pressure deficit (V' P D), revealing an inverse
dynamic between these variables throughout the daily cycle. During the early morning hours, » H reaches its highest values,
close to 90%, due to lower temperatures and the reduced capacity of air to retain water vapor. As temperature rises throughout
the day, especially between 2 p.m. and 4 p.m., this capacity increases, resulting in a sharp drop in r H, reaching minimum values
around 53%. Conversely, V' P.D remains low overnight (about 3 hPa) and increases rapidly after sunrise, peaking around noon
to early afternoon (about 29 hPa), when the atmosphere is hottest and driest. This mirrored relationship between rH and V PD
is essential to understanding the control mechanisms of evapotranspiration, as V PD is one of the main drivers of atmospheric
evaporative demand on vegetation.

The daily-scale analysis reveals how the solar radiation cycle modulates the thermal and hydrological patterns of the ecosys-
tem, directly influencing the behavior of net carbon flux (INEE). Increased global radiation (Rg) during the day raises air
(Tyir) and soil (T,;;) temperatures, reduces relative humidity (rH ), and intensifies vapor pressure deficit (V PD), creating
conditions that favor photosynthesis and, consequently, CO, absorption. At night, with the decline of Rg, air and soil masses
cool down, humidity increases, and V P D decreases, favoring plant respiration and CO, release. However, understanding the
mean daily behavior of these variables is not sufficient to capture broader variability patterns, such as those associated with
meteorological events, seasonality, or persistent changes in climate conditions. Therefore, it is necessary to expand the analysis
to a weekly scale, as presented in Fig. 4, in order to identify short-term trends and potential deviations from the typical diurnal

pattern that may significantly influence energy, water vapor, and carbon fluxes in the ecosystem.
3.1.3 Descriptive Statistics Considering Weekly Seasonal Patterns

Fig. 4(a) presents the weekly mean of Net Ecosystem Exchange (/N EE), revealing a clear seasonal pattern throughout the
year. The negative values observed at the beginning of the year indicate a net absorption of CO, by vegetation, typical of
the rainy season and the active growth phase. Between weeks 5 and 10, NV EE reaches its most negative values, reflecting
peak photosynthetic activity driven by high water availability and intense solar radiation. From that point on, values become
progressively less negative, eventually turning positive between weeks 20 and 30—coinciding with the peak of the dry season.
This behavior suggests a decline in photosynthesis, possibly due to water stress, and the predominance of plant respiration,

resulting in net CO, emissions. Toward the end of the year, with the return of rainfall, NEE again shows negative values,
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Figure 4. Weekly mean values for all eight variables under study.

indicating a resumption of carbon assimilation by vegetation. This pattern highlights the role of NEE as a sensitive indicator
of the interaction between climatic variables and ecosystem processes throughout the annual cycle.

The LFE curve shows its lowest values during the central part of the year (approximately between weeks 25 and 40). Since LE
is directly linked to water availability for evapotranspiration, these low values indicate a period of water stress or a dry season.
During this phase, soil water is scarce, and plants close their stomata to avoid dehydration, drastically reducing transpiration.
Consequently, little energy is used in this process. This interpretation is strongly supported by the sharp drop in Relative
Humidity (rH) in panel (d) and the dramatic peak in Vapor Pressure Deficit (V' PD) in panel (e) during the same period. A
high V PD indicates very dry air, which hampers plant transpiration.

In contrast, sensible heat flux (H) shows the opposite behavior of LE it peaks between weeks 25 and 40, when LE is at its
minimum. This happens because the incident solar energy (Rg) that cannot be dissipated via evapotranspiration is converted

into heat, increasing surface temperature and enhancing heat transfer to the atmosphere. The H peak coincides with the highest
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air temperatures, as shown in Fig. 4(c). This redistribution of available energy highlights the role of soil moisture in modulating
the surface energy balance.

Global radiation (Rg), also shown in Fig. 4(b), follows a typical seasonal pattern of the annual solar cycle in the Southern
Hemisphere: higher values at the beginning and end of the year (austral summer) and lower values during winter, reflecting the
regional insolation regime.

Weekly average air temperature (7;,-) and soil temperature (7,;;), illustrated in Fig. 4(c), follow similar patterns, both with
clear seasonality. Air temperature starts the year with higher values, reaches a minimum around weeks 25 to 30 (22 °C), and
rises again to about 32 °C by year-end. Soil temperature follows the same general pattern, with slightly higher mean values than
air temperature and smaller variation amplitude due to its greater thermal inertia. This thermal behavior is relevant because
it reveals a transition from anti-correlation to persistence between T,;,. and T,;; at the weekly scale, suggesting different
dominating processes during distinct phases of the annual cycle.

Fig. 4(d) shows that relative humidity (rH) is high at the beginning and end of the year (above 80%) and reaches minimum
values (53%) between weeks 25 and 30. Conversely, V PD, in Fig. 4(e), exhibits behavior opposite to »H: it is lower during
humid periods (8 hPa) and peaks at the height of the dry season (25 hPa).

In summary, the weekly averages analysis reveals the existence of two well-defined climatic regimes in the study region: a
rainy season, concentrated in the early and late months of the year, characterized by higher CO, absorption (negative N EE),
high relative humidity, low V P D values, and intense evapotranspiration activity (high LE); and a dry season, in the middle of
the year, marked by net CO, release, decreased relative humidity, high V PD, reduced LF, and increased H. These patterns

reflect the strong climatic control over energy and carbon fluxes in the Pantanal ecosystem.
3.1.4 Descriptive Statistics Considering Monthly Seasonal Patterns

To consolidate the understanding of the observed seasonal cycle, following the analysis of hourly and weekly scales, we now
turn to the evaluation of the average monthly behavior of the variables. The monthly mean is an important tool as it smooths
out short-term fluctuations highlighted in the weekly averages, allowing larger-scale climatic patterns — such as the onset,
peak, and end of the wet and dry seasons — to become more evident. This data aggregation helps reduce statistical noise and
enhance the dominant seasonal signal in a more robust manner. Thus, monthly analysis provides a macroscopic and integrative
perspective, essential for accurately characterizing the climatic periods that govern ecosystem dynamics throughout the year.

Fig. 5 shows the monthly means of the atmospheric and ecosystem variables analyzed. Net Ecosystem Exchange (N EE)
displays negative values in the first months of the year, indicating net CO, uptake by vegetation. From March onward, there
is a gradual increase in these values, which become positive in June and peak in September. Then, the curve decreases again,
returning to negative values in December. This pattern reflects the ecosystem’s annual productivity cycle: net CO, absorption
mainly occurs during the rainy season, when vegetation is most active, while net emissions (positive N E'F values) between
May and September indicate a period of reduced photosynthetic activity, characteristic of the dry season.

Global radiation (Rg) peaks during the summer (December to February) and reaches its minimum in winter (May to July),

with monthly mean values around 175 W m~2 between June and July. Sensible heat flux (H) generally follows the same
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Figure 5. Monthly mean values for all variables under study.

pattern as Rg, with high values during the warm/wet season and a significant drop during the dry season. Latent heat flux (LE)
also follows a similar trend, but with nuances related to water availability: in some months of the dry season (July, August,
and September), LE is lower than H, reflecting the limitation of water for evapotranspiration. During the rainy season, LE
increases, showing that energy partitioning between H and LE is sensitive to the water balance: higher L ¥ during wet periods
and higher H during dry periods, when energy is predominantly used for warming the environment.

Air temperature (Ty;,.) starts the year with average values above 26 °C (January to March), decreasing to its annual minimum
in June—July (below 24 °C), and rising again in the second half of the year, with a new peak in September. Soil temperature
(Ts041) follows a similar pattern to 77;,., but with slightly higher values and lower thermal amplitude, reflecting the thermal

inertia of the soil. These temperature patterns confirm the alternation between warm and cool seasons in the Pantanal, with the

cooler period coinciding with the dry season.
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Relative humidity (r H) shows high values from January to April (above 80%), gradually decreasing during the dry season,
reaching minimum values between August and September (55-60%). Humidity begins to rise again with the onset of the
rainy season in October. Conversely, vapor pressure deficit (V' P D) exhibits behavior opposite to 7H : it begins the year with
values between 8 and 10 hPa, increases significantly during the dry season, peaking at around 24 hPa in September, and
then decreases with the return of the rains. The high V' PD during the dry season indicates extremely dry air, increasing the
evaporative demand on vegetation and promoting water stress.

Fig. 5 clearly summarizes the annual climatic and hydrological cycle of the Pantanal, highlighting two well-defined seasons:
- **Rainy season (October to April)**: marked by negative N F E' (net CO, uptake), high temperatures, high global radiation,
high LE, high relative humidity, and low V' PD. - **Dry season (June to September)**: characterized by positive NEE (net
CO, emission), lower temperatures, reduced global radiation, dominance of H over L F, low relative humidity, and high V PD.

With the monthly analysis confirming a well-defined seasonal pattern, the next step is to group the data into a quarterly scale.
This approach synthesizes the ecosystem’s average states during the peak of each season, reducing intra-seasonal variability and
facilitating comparisons between climatic macroperiods — such as the peak of the rainy season and the core of the dry season.
Therefore, quarterly aggregation will be essential for deepening the functional characterization of the Pantanal ecosystem’s
annual cycle.

Having the analysis of monthly averages consolidated the existence of a well-defined seasonal pattern, the next step consists
of grouping these data on a quarterly scale. This approach allows one to go beyond month-to-month variability and focus on
characterizing the year’s major climatic periods. Quarterly aggregation functions as a synthesis tool that quantifies the average
state of the ecosystem during the peak of each season, enabling a direct and robust comparison between the fundamentally

distinct periods that comprise the annual cycle, such as the height of the rainy season and the core of the dry season.
Descriptive Statistics Considering Seasonal Quarterly Patterns

Quarterly averages represent an integrated synthesis of microclimatic conditions and the fluxes of energy and matter throughout
the main seasonal phases of the year. Unlike the sequential analysis provided by monthly means, the quarterly approach
offers representative "snapshots" of the ecosystem’s average behavior during the peak of the rainy season, the dry season, and
transitional periods. This aggregation scale allows not only for the identification but also the quantification of the intensity and
magnitude of the dominant processes in each season. For example, it becomes possible to highlight the predominance of latent
heat flux (L E) during the wet season, in contrast with the dominance of sensible heat flux (H) during the dry season—allowing
the amplitude of local seasonality to be defined based on concrete average values.

From a climatic perspective, the quarters analyzed do not constitute arbitrary calendar divisions but rather representative peri-
ods of the distinct phases of the hydrological cycle in the studied region. The first quarter (January—February—March) generally
corresponds to the peak of the rainy season, characterized by high water availability, elevated relative humidity, and intense
evapotranspirative activity. The second quarter (April-May—June) represents the transition from the rainy to the dry season,
with a gradual decline in precipitation and shifts in energy and moisture patterns. The third quarter (July—August—September)

represents the core of the dry season, with minimal precipitation, low relative humidity, high vapor pressure deficit (V' PD) val-
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Figure 6. Quarterly average values for all variables under study.

ues, and significant water stress on vegetation. Finally, the fourth quarter (October—November—December) marks the gradual

return of the rainy season, with increasing precipitation and a relief of dry conditions.

Fig. 6 presents the quarterly means of the analyzed variables. It can be observed that the average behavior remains consistent
with the patterns identified in the monthly averages, reinforcing the reliability of seasonal cycles. However, the quarterly anal-
ysis more clearly highlights the periods of maximum and minimum activity in climatic and ecosystem processes, functioning

as an effective tool for characterizing the seasonal regimes that shape the environmental dynamics of the Pantanal.

3.2 Results from the DFA Method

We now proceed with the autocorrelation analysis of the time series using the Detrended Fluctuation Analysis (DFA) method,

as described in Section 2.2.1. This method is a robust tool for investigating long-range correlations in non-stationary time
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Table 5. DFA Exponent

Index Daily Weekly Monthly Quarterly

NEE 0.96 0.24 0.85 1.07
H 1.31 0.19 0.67 1.23
Ry 1.40 0.17 0.52 0.81
LE 1.33 0.25 0.80 1.39
rH 1.48 0.46 0.85 1.43
Toir 151 0.32]0.79  0.71 1.23
Teu 155 042105  1.02 1.45
VPD 143 0.40 0.78 1.36

series, allowing us to quantify the intrinsic “memory” of microclimatic processes — something that traditional autocorrelation
methods do not adequately capture.

Fig. 7 presents the fluctuations calculated by the DFA method for each of the eight variables analyzed. The interpretation
of these results is based on the values of the o exponents, listed in Table 5. This table provides the estimated autocorrelation
coefficients at different temporal scales, based on the original series measured every 30 minutes (average of records captured at
10 Hz). Considering the seasonality discussed in the previous sections, we adopted four ranges of temporal scale for estimating

a:
1. Daily scale: 4 < n < 48 (corresponding to the first section of Fig. 7, delimited by vertical dashed lines);

2. Weekly scale: 48 < n < 336 (for some variables, such as temperatures, two distinct behaviors are observed within this

range);
3. Monthly scale: 336 < n < 1440;
4. Quarterly scale: n > 1440.

The values of the o exponents for each variable and scale are presented in Table 5. We begin the analysis with the behavior of
NEE. At the daily scale (4 < n < 48), a = 0.96 was obtained, indicating strong short-term correlation — that is, the CO, flux
on one day is strongly influenced by the conditions of the previous day, such as solar radiation, temperature, and vegetation
physiological activity. At the weekly scale (48 < n < 336), a = 0.24 reveals significant anti-correlation, possibly related to
rhythmic fluctuations (such as weekly human activity cycles) or ecosystem saturation mechanisms (e.g., after a peak of CO,
uptake, compensation occurs in the following days). At the monthly scale (336 < n < 1440), o = 0.85 indicates persistence,
consistent with the influence of gradual seasonal trends. At the quarterly scale (n > 1440), o = 1.07 indicates long-range
persistence, reflecting broad seasonal patterns and possible ecosystem responses to larger-scale climatic variations.

Considering that NEE is already summarized above and in Table 5, we now focus on the remaining variables. In general,

DFA reveals the following scale-dependent patterns across variables:
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— Daily scale: « > 1.0 for most variables, consistent with trend-dominated diurnal cycles.

— Weekly scale: o < 0.5, indicating anti-persistence (alternating increases and decreases across weeks).
— Monthly scale: 0.5 < o < 1.0, indicating persistence compatible with gradual seasonal modulation.
— Quarterly scale: o > 1.0, reflecting long-range persistence driven by broader hydroclimatic forcing.

At the daily window, T,;, and T, yield a = 1.51 and v = 1.55, respectively, i.e., at or slightly above the Brownian limit.
This is consistent with daily-scale integrated-noise behavior driven by strong diurnal trends and the soil’s thermal inertia. Im-
portantly, DFA handles local trends by construction; the o > 1 values therefore reflect genuine non-stationary persistence at
this scale rather than fitting artifacts. From a theoretical standpoint, the fluctuation function used in DFA reproduces the scaling
of fractional Gaussian noise (fGn) and fractional Brownian motion (fBm), and a =~ 1.5 is the canonical value for Brownian
(fBm) behavior; moreover, the same framework clarifies why detrending is central—and nontrivial—when performed on seg-
ments, as local polynomial trends are projected out to yield an (asymptotically) unbiased scaling estimator without recreating
a single global trend. These results are formally linked to second-order statistics (autocorrelation, power spectrum, variogram),
reinforcing the interpretation that the near-Brownian exponents obtained for T, and T5,;; reflect integrated, trend-dominated
variability at the diurnal scale rather than methodological bias (H6ll et al., 2019).

Among the variables analyzed, global radiation (Rg) and NEE stand out for not presenting . exponents greater than
1.00 across all scales, unlike the others. NEE shows particularly complex behavior, with daily persistence, weekly anti-
correlation, and long-term persistence. Meanwhile, Rg exhibits behavior close to white noise on the monthly scale, reflecting
high meteorological variability and the more stochastic nature of incoming radiation.

The application of DFA allowed us to clearly characterize the persistence and the presence of long-range correlations in
each time series, revealing dynamic patterns not readily detectable by conventional methods. However, since it is a univariate
approach, DFA is not capable of capturing interdependencies between distinct variables. To advance in understanding the
relationships between ecosystem carbon flux (NVEE) and the microclimatic factors that influence it, we apply an extension
of DFA: the Detrended Cross-Correlation Analysis (DCCA), presented in the next section. DCCA allows us to estimate the

strength and direction of correlations between pairs of non-stationary time series, using the ppcca coefficient.

1. Daily time scale, where 4 < n < 48 (these windows correspond to the first section of Fig. 7, see vertical dashed lines in

the figure);

2. Weekly time scale, where 48 < n < 336 (note that for temperatures, there are two values for the weekly scale, reflecting

a change in behavior within this scale);
3. Monthly time scale, where 336 < n < 1440;

4. Quarterly time scale, n > 1440.
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Figure 7. Plot of Fipr 4 as a function of the temporal scale n for the eight variables. In this analysis, n represents the number of observation
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(n = 1440), and quarterly (n = 4320).

3.3 Results for the ppcca Coefficient

In this section, we specifically investigate the correlations between the net ecosystem carbon flux (/N EE) and the other mi-
crometeorological variables. Fig. 8 shows the ppcca values obtained for each pair involving N EE. This analysis allows us to
explore how different environmental factors influence the patterns of CO, exchange across multiple temporal scales, revealing

the dynamics that govern the relationship between the ecosystem and the atmosphere.
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Figure 8. DCCA cross-correlation coefficient (ppcca) as a function of the time scale n. Each panel displays the cross-correlation between
the carbon flux (/N EE) and one of the following micro-meteorological variables: (a) sensible (/) and latent (L E) heat fluxes; (b) global

radiation (Rg); (c) relative air humidity (r H); (d) air temperature (7'air); (e) soil temperature (1'soil); and (f) vapor pressure deficit (V' P D).

Fig. 8(a) shows the cross-correlations between N E'E and the sensible heat flux (H, yellow squares), and between NEE
and the latent heat flux (LE, orange triangles). For NEFE x H, a weak anti-correlation is observed at small temporal scales,
with ppoca = —0.15. The curve decreases to a minimum of approximately ppcca ~ —0.6 at the daily scale, indicating a
moderate anti-correlation. From this scale onward, the correlation gradually becomes less negative, approaching zero at the
monthly scale and reaching ppcca =~ 0.25 at the quarterly scale, characterizing a weak correlation. In the case of NEE X LE,
there is also a weak anti-correlation at small scales, with ppcc 4 =~ —0.15, which intensifies to a minimum of approximately
—0.8 at the daily scale, indicating strong anti-correlation. At the weekly scale, the correlation is moderate (ppcca ~ —0.4),
and tends toward zero at the monthly scale. The curve exhibits an inflection at the weekly scale, with upward concavity up

to the daily scale and downward concavity up to the quarterly scale, where ppcca =~ —0.3. The presence of strong daily
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anti-correlation between N EE, H, and LF suggests a complex behavior. Although photosynthesis and evapotranspiration are
coupled in the diurnal cycle, at larger scales the correlation weakens, reflecting energy partitioning and the action of other
limiting factors.

Fig. 8(b) shows the cross-correlation between N E'E and global radiation (Rg). A pattern similar to LE is observed, with
ppcca ~ —0.2 at small scales, decreasing to approximately —0.7 at the daily scale (strong anti-correlation). The correlation
becomes less negative at larger scales, passing through —0.4 at the weekly scale (moderate anti-correlation) and approaching
zero at the monthly scale. At the quarterly scale, values return to about —0.2, indicating weak anti-correlation. The strong daily
anti-correlation with Rg reflects the complex balance between radiation and ecosystem carbon dynamics: although radiation
drives photosynthesis, high Rg often coincides with elevated V PD and respiration, which can lead to opposite persistence
patterns in N E'F, particularly under conditions of water stress or other environmental constraints.

Fig. 8(c) shows the correlation between N E'E' and relative humidity (), which is the only variable that shows a positive
correlation with N EE. At small scales, the correlation is weak (ppcca = 0.2), increasing to a maximum of ppcca =~ 0.55
at the daily scale, indicating moderate correlation. At the weekly scale, the correlation returns to weak values and becomes
null at the monthly scale. At the quarterly scale, there is a slight anti-correlation (ppcca =~ —0.25). The moderate positive
daily correlation between N EE and r H is ecophysiologically consistent, since higher relative humidity reduces water stress,
favoring photosynthesis and increasing CO, uptake.

Fig. 8(d) presents the results of ppcca between N EE and air temperature (7,;,-). At small scales, a weak anti-correlation
is observed (ppcca =~ —0.2), with a minimum of —0.45 at the daily scale (moderate anti-correlation). At the weekly scale,
the correlation becomes nearly null, and at larger scales the values slightly increase, remaining weak and close to zero. The
transition from moderate anti-correlation to weak or null correlation at larger scales may reflect the action of an optimal
temperature range for photosynthesis, where extreme temperatures hinder CO, sequestration.

In Fig. 8(e), the correlation between N E'E' and soil temperature (7,;;) is presented. A correlation close to zero is observed
for most scales, with discrete variations: a slight dip at the daily scale and a small increase at the weekly scale. In both cases,
the correlation remains weak, with no apparent significance. These results indicate that soil temperature exerts little direct
influence on the long-range fluctuations of N F'E, playing a secondary role compared to other variables.

Finally, Fig. 8(f) shows the cross-correlation between N E E and vapor pressure deficit (V' P D). At small scales, a weak anti-
correlation is observed (ppcca = —0.15), which intensifies to ppcca = —0.55 at the daily scale (moderate anti-correlation).
At the weekly scale, the correlation weakens (ppcc 4 =~ —0.15), becoming null at the monthly scale. At the quarterly scale,
a weak positive correlation appears (ppcca =~ 0.25). The moderate anti-correlation observed at the daily scale aligns with
ecophysiological expectations, as high V' PD values indicate greater evaporative demand, increasing water stress and reducing

photosynthetic activity, consequently lowering CO, uptake.
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4 Conclusion

This study demonstrates that the relationship between carbon flux and climate in the Pantanal is multifaceted and strongly
scale-dependent. By applying DFA and DCCA methodologies, we quantified the temporal memory and strength of correlations,
revealing a hierarchy of control mechanisms acting at daily, weekly, and seasonal scales. The Pantanal’s function as a carbon
sink or source is therefore not static, but emerges from these scale-dependent interactions.

A key finding of our analysis is the detection of weekly anti-persistence in the Net Ecosystem Exchange (N EE) signal,
where high values are likely to be followed by low values and vice versa. This sub-monthly regulation is rarely considered in
ecosystem models, yet it may arise from soil moisture depletion, delayed physiological responses, or respiratory rebounds after
wetting. Incorporating these short-term processes could refine predictive capacity by acknowledging that recovery rhythms are
an intrinsic part of ecosystem regulation, rather than noise around daily or seasonal drivers.

At the daily scale, fluxes respond predictably to solar radiation and evaporative demand, while seasonal dynamics follow the
hydrological pulse that shifts the system from a sink in the wet season to a source in the dry season. Similar multi-scale behavior
has been reported elsewhere, although the underlying mechanisms vary. In tropical seasonal forests, weekly respiration pulses
often follow rewetting events (Zhang et al., 2010); in tropical peat swamp forests, disturbance and drainage rapidly convert
systems from sinks to sources (Hirano et al., 2012); and in temperate ecosystems, long-term eddy covariance records document
memory effects across scales (Desai et al., 2022). Even at continental scales, as during the 2015-2016 El Nifio, drought-induced
lags in carbon flux recovery were driven by the combined effects of atmospheric aridity and water storage deficits (Liu et al.,
2024). Together, these examples place the Pantanal within a broader picture where ecosystem resilience arises from short-lived
rebounds embedded in longer-term climatic constraints.

Comparisons with other biomes further support this interpretation. In a tropical seasonal forest, woody tissue respiration
was estimated at about 10% of gross primary productivity (GPP), with strong dependence on leaf area index (LAI) (Meir and
Grace, 2002). Low carbon use efficiency (CUE) observed in Amazonian forests, only about 30%, indicates that much of the
assimilated carbon is rapidly released through respiration (Chambers et al., 2004). These structural and metabolic constraints
help explain the capacity for rapid ecosystem-scale fluctuations we observe in the Pantanal. The weekly anti-persistence we
report is also consistent with current views of drought resilience, which emphasize not only resistance but also recovery and
regulation across multiple temporal scales (Lu et al., 2025).

We also recognize that carbon balance measurements in tropical ecosystems remain challenging. In an Amazonian forest in
Par4, for example, annual estimates of carbon balance were shown to be highly sensitive to the treatment of nighttime eddy
covariance data, highlighting the importance of independent biometric checks (Miller et al., 2004). In tropical peat swamps,
water table fluctuations alter the balance between peat decomposition and methane emissions, underscoring the need for long-
term monitoring to capture both carbon loss and greenhouse gas trade-offs (Darusman et al., 2022). Against this backdrop
of ecological complexity and methodological uncertainty, the detection of weekly anti-persistence in the Pantanal provides a

concrete and quantifiable marker of ecosystem resilience.
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In summary, identifying weekly anti-persistence in N FE reveals new aspects of how tropical floodplains regulate carbon
exchange. This finding has practical implications: models of regional climate should incorporate sub-monthly regulation tied to
hydrological pulses and short-lag physiology, while conservation strategies must prioritize the preservation of natural flooding
regimes and the mitigation of meteorological extremes. Safeguarding these processes is essential for maintaining the Pantanal’s

intricate and globally relevant role in the carbon cycle.
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Figure A1. Geographical Location of Data Collection
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Figure A2. Time series of (a) Net Ecosystem Exchange (N EFE), (b) sensible (H) and latent (L F) heat fluxes, (c) global radiation, (d)

relative air humidity, (e) vapor pressure deficit (V P D), and (f) air and soil temperature for the Bafa das Pedras site (Northern Pantanal) as a

function of time.

26



o

24

<Humidity> (%)
& 3 & 8 @

-]
o

0
0 2 4 6 8 10 12 14 16 18 20 22 0

local time

Figure A3. Mean values for each hour of the day (local time) of all eight variables.

27

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 22

—0— NEE
— 0 H
—A—LFE
—® Rg
—»>— Air
—a— Soil
—*—rH
—v— VPD



30 -
2
&
'y 2254 & Jate . RARARN T
3 A
g
é 0 v 150
=
v
-1
e
-2
88 24 (\€) |
80 244
~
N 3
72 =21 90X
=
= A
§ N 164
:\51 644 v
12 e (L Y ¥
56
48

Figure A4. Weekly mean values for all eight variables under study.
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Figure A6. Quarterly average values for all variables under study.
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Figure A7. Plot of Fipr 4 as a function of the temporal scale n for the eight variables. In this analysis, n represents the number of observation
windows, each with a 30-minute duration. The vertical lines indicate the time scales of interest: daily (n = 48), weekly (n = 336), monthly

(n = 1440), and quarterly (n = 4320).
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Figure A8. DCCA cross-correlation coefficient (ppcca) as a function of the time scale n. Each panel displays the cross-correlation between
the carbon flux (N EE) and one of the following micro-meteorological variables: (a) sensible (H) and latent (L E) heat fluxes; (b) global
radiation (Rg); (c) relative air humidity (r H); (d) air temperature (T"air); (e) soil temperature (1'soil); and (f) vapor pressure deficit (V P D).
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Figure A9. Detrended cross-correlation coefficient, ppcca, as a function of time scale n for the variable pairs in the study except NEE.
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Appendix B: Tables

Table A1. Interpretation of the DFA Exponent «.

Range of «

Interpretation

a=0.>5
0<a<0.5
0bh<ax<xl
a~1
l<a<1b
a~1.5
a>1.5

White Noise: No correlation, random values.

Anti-persistence: High values are followed by low values and vice versa.
Persistence: High values are followed by high values and vice versa.

1/f Noise: Long-range correlations.

Persistent, non-stationary (fractional Brownian motion).

Brownian noise (random walk; integrated white noise).

Very strong trend / superdiffusive random-walk-like behavior.
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Table A2. Interpretation of ppcca Coefficient Values

Value of PDCCA

Interpretation

-1.000
(-1.000; -0.666]
(-0.666; -0.333]
(-0.333; 0.000)
0.000
(0.000; 0.333]
(0.333; 0.666]
(0.666; 1.000)
1.000

perfect anti cross-correlation
strong anti cross-correlation
moderate anti cross-correlation
weak anti cross-correlation

no cross-correlation

weak cross-correlation
moderate cross-correlation
strong cross-correlation

perfect cross-correlation
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Abbreviation

Meaning

Description

NEFE

LE

rH

Tair
Tsoil

VPD

Net Ecosystem Exchange

Sensible Heat Flux

Latent Heat Flux

Global Radiation

Relative Humidity

Air Temperature

Soil Temperature

Vapor Pressure Deficit

Represents the difference be-
tween CO, uptake by photosyn-
thesis and CO,, release by ecosys-
tem respiration. Negative values
indicate CO4 absorption (carbon
sink), positive values indicate
CO, release (carbon source).
Energy transferred between the
surface and the atmosphere due
to temperature difference.
Energy involved in evaporation
or transpiration (evapotranspi-
ration).

Total solar radiation reaching
the Earth’s surface, including di-
rect and diffuse radiation.

Ratio of water vapor present in
the air to the maximum amount
the air could hold at the same
temperature.

Air temperature measured at a
specific height above the surface.
Temperature measured in the
soil, usually at a specific depth.
Difference between saturated
water vapor pressure and cur-
rent water vapor pressure in the
air. Indicates evaporation and
transpiration potential.
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Table A3. Descriptive statistics of the eight time series, with N = 75386 observations.

NEFE H LE Rg rH Toir Tsouw VPD

(umolm™2s~')  (Wm™?) (Wm™?) (Wm ?) (%) °C °C  (hPa)

Mean 0.54 36.0 78.5 224 73.8 26.4 290.8 12.6
Median 1.44 0.9 31.6 7.3 79.2 26.0 30.1 7.7
Mode -10.10 101.0 108.0 0.00 93.7 24.1 29.7 0.00
sd 6.79 66.8 105.0 308 20.0 5.43 3.00 13.9
Minimum -35.00 -188.0 -244.0 0.00 11.8 1.3 18.2 0.00
Maximum 35.00 602.0 699.0 1270 99.8 42.6 39.6 83.5
Skewness -0.17 1.7 1.8 1.09 -0.80 -0.14 -0.46 1.48
Kurtosis 3.50 2.5 2.8 -0.235 -0.293 0.190 0.296 1.99
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Table A4. DFA Exponent

Index Daily Weekly Monthly  Quarterly

NEE  0.96 0.24 0.85 1.07
H 1.31 0.19 0.67 1.23
Rg 1.40 0.17 0.52 0.81
LE 1.33 0.25 0.80 1.39
rH 1.48 0.46 0.85 1.43
Toir 1.51  0.32| 0.79 0.71 1.23
104l 1.55 0.42| 1.05 1.02 1.45

VPD 143 0.40 0.78 1.36
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Appendix B: Results of ppcca for the other pairs of variables.

Figure B1 presents the results of the detrended cross-correlation coefficients ppcca calculated for all pairs of variables, except
for NEE. This analysis was conducted with the goal of providing an overview of the degree of interdependence among
the microclimatic variables. The decision to initially exclude N E'E allows for a comparative view of the internal correlations

within the physical system, reserving the analysis of correlations between these variables and the ecosystem carbon flux (N EE)

for a later and more detailed stage.
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Figure B1. Detrended cross-correlation coefficient, ppcca, as a function of time scale n for all variable pairs in the study, except NEE.

In Fig. B1(a), the ppcca values are shown for the correlations between sensible heat flux (H) and the other variables. At
small scales, a moderate correlation is observed between H and most variables, with particular emphasis on Rg, which exhibits
strong correlation from the smallest scales up to the weekly scale. Beyond this point, the correlation with Rg progressively
decreases, becoming moderate at the monthly scale and weak at the quarterly scale, eventually reaching values close to zero
or even weak anti-correlation at larger scales. The correlation between H and relative humidity (r H) is consistently negative

across all scales, with strong anti-correlation at the daily scale, suggesting that high »H values are associated with lower
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energy availability for heating the air and soil, favoring instead evapotranspiration processes (LE). At the weekly, monthly,
and quarterly scales, the anti-correlation between H and r H remains moderate. Soil temperature (7%,;;) shows very weak or
nonexistent correlation with A at small, daily, and weekly scales. At the quarterly scale, a weak correlation emerges, which
disappears again at larger scales. At broader time scales, strong correlation is observed between H and V PD, as well as strong
anti-correlation with LE and rH, while the other variables show no significant correlation with H.

In Fig. B1(b), the correlations between global radiation (Rg) and the other variables are shown. At small scales, Rg presents
moderate correlation with LE, T,;,., and V P D, which intensifies to strong correlation at the daily scale. As the scale increases,
the ppcca values for these variables decrease: L F maintains strong correlation at the daily scale and moderate at the monthly
and quarterly scales; Ty, exhibits a similar pattern, with a drop at the monthly scale and a return to strong correlation at larger
scales; V PD, in turn, shows decreasing correlation until reaching weak anti-correlation at longer scales. Soil temperature
(Ts041) initially displays very weak correlation with Rg at small scales, but shows continuous growth: weak correlation at
daily and monthly scales, moderate at the quarterly scale, and strong at larger scales. The correlation between Rg and rH is
negative at small scales, indicating moderate anti-correlation. This anti-correlation intensifies at the daily scale, decreases to
moderate between the weekly and monthly scales, and then gradually reverses sign, transitioning from weak anti-correlation at
the quarterly scale to weak (positive) correlation at larger scales.

In Fig. Bl(c), correlations are presented between relative humidity (rH) and the variables LE, Ty, Tsoi, and V PD.
At small scales, all correlations are negative. LE and T,;; show moderate anti-correlation, while 7y;,. and V PD exhibit
strong anti-correlation. The anti-correlation between »H and Ty, is particularly notable at the daily scale, with ppcca values
near -1. As the scale increases, this relationship weakens: moderate anti-correlation at the weekly and monthly scales, weak
anti-correlation at the quarterly scale, and no correlation at larger scales. The behavior of T,;; is similar: it shows moderate
anti-correlation up to the monthly scale, weak anti-correlation at the quarterly scale, and no correlation at broader scales. The
correlation between rH and V PD is negative across the entire series, reflecting the expected inverse relationship between
relative humidity and vapor pressure deficit — reaching values close to -1 at larger scales. Meanwhile, the correlation between
rH and LF starts as moderate anti-correlation at small scales, becoming strong at the daily scale and weak at the weekly scale.
From the monthly scale onward, the correlation increases sharply and becomes positive: moderate at the quarterly scale and
strong at larger scales, reflecting the role of humidity in sustaining evapotranspiration during prolonged periods.

In Fig. B1(d), the correlations between the remaining variable pairs are shown. The two cyan lines represent the correlations
between V PD and T,;,, and between V' PD and T,;;. The blue curves represent the correlations between 7,;; and LE, and
between Ts,;; and T,;,-. The magenta curve refers to the correlation between LFE and Ty;,.. In general, all these variables show
positive correlations from small scales to the monthly scale. From the monthly scale onward, the correlation between LE and
T4 rapidly decreases, reaching strong anti-correlation at larger scales. The following points are noteworthy:

- At the daily scale, the correlation between Ty, and V PD is very strong, indicating that high temperatures are strongly
associated with increased water stress;
- The correlation between LE and T, is weak at small scales and also at the quarterly scale, showing moderate correlation

only at larger scales;
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535 - The correlation between T;, and T,;; displays an approximately linear pattern, moving from moderate correlation at small

scales to very strong correlation at the largest scales.
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