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Abstract. Predicting changes in urban pluvial flood hazards under climate warming is crucial for risk mitigation and disas-

ter management. A key challenge in simulating future urban flood hazards is the scarcity of high-resolution rainfall projec-

tions, particularly at the sub-daily and kilometer scales required for hydrodynamic modeling. We present a cascading process-

informed framework that requires minimal observed climatic data, enabling scenario analysis even in data-scarce cities. This

framework consists of a distribution-based spatial quantile mapping (DSQM) method to morph observed rainfall fields condi-5

tioned on temperature changes, a stochastic storm transposition (SST) method to account for the spatial variability of urban

rainfall, and a rain-on-grid hydrodynamic model (AUTOSHED) for efficient simulation of urban pluvial floods at high spatio-

temporal resolution. The framework allows the generation of stochastic rainfall fields under different rainfall return levels and

regional warming levels. It supports the quantification of changes in future urban flood statistics with detailed hazard maps of

inundation depth, duration, and flow velocity. We select the metropolitan area of Beijing (300 km2) as a case study area and10

utilize gridded hourly and 1 km rainfall data to simulate flood evolution at 5 min and 5 m resolution under regional warming

levels of 1◦C, 3◦C, and 5◦C relative to the period 1998-2019. Our results show that with rising temperatures, regional storms

tend to become more intense but smaller in spatial extent, which may in turn drive increased flood depth, accelerated flow

velocity, and deeper inundation, collectively elevating pluvial flood risk. Specifically, mean rainfall intensity increases by 6%,

11%, and 20% (respectively with the warming levels), peak flood depth exhibits a nonlinear increase of 4%, 7%, and 8%, due15

to the complex interactions of reduced storm area, increased storm intensities, and rainfall spatial variability. The proposed

DSQM–SST–AUTOSHED framework offers a data-driven, physically grounded approach to assess urban flood risk under re-

gional warming, and only requires observed rainfall fields and reanalysis temperature datasets, readily accessible from public

sources, making the approach easily extendable to other cities.
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1 Introduction20

Urban pluvial floods are among the most severe climate- and water-related hazards, causing fatalities and severe economic

losses worldwide (Duan et al., 2016; Rözer et al., 2021; Lehmkuhl et al., 2022; Polo-Martín, 2025). Cities can experience

unusual amounts of rainfall, such as daily rainfall approaching or even exceeding their typical annual total. For example, in

the urban flood that occurred in 2024 in Valencia, Spain, daily rainfall accumulated up to its annual average value (500 mm),

resulting in floods that led to 200 fatalities and economic losses of approximately 480 million euros (Polo-Martín, 2025).25

Severe urban flooding has also been documented in China (Fu et al., 2025), Europe (Lehmkuhl et al., 2022), the United States

(Saharia et al., 2017), and elsewhere.

Urban pluvial floods occur when intense rainfall over a short period generates volumes of water that exceed the capacity

of the urban drainage system (Rözer et al., 2021). Under the synergistic effect of climate change and rapid urbanization, the

frequency and intensity of short-duration heavy rainfall events are predicted to increase significantly, amplifying future pluvial30

flood risk (Wasko and Sharma, 2014; Wright et al., 2019; Fowler et al., 2021b; Peleg et al., 2025). This underscores the

urgent need for robust projections of extreme rainfall and corresponding pluvial flood dynamics to inform targeted adaptation

strategies and mitigate associated economic losses and societal impact. However, such projection faces several key challenges,

including (i) the scarce availability of long-term high-resolution (i.e., at sub-daily and km scales) future rainfall fields (Zou

et al., 2025), due to the high computational demands in convection-permitting models for simulating long-term and multiple35

climate scenarios; (ii) the inadequate estimation of rainfall extremes across spatial and temporal scales (Wright et al., 2020),

with nonstationary change under climate warming; and (iii) lack of efficient pluvial flood simulators that can compute flow

depth, velocity, and inundation duration at very high, meter-scale, resolution (Guo et al., 2021; Cache et al., 2024).

Considering the first challenge, global circulation models and regional climate models can provide long-term climate projec-

tions; however, their coarse spatial resolution (101− 102 km) and absence of physically-based convective schemes limit their40

ability to accurately represent sub-daily rainfall extremes (Westra et al., 2014; Prein et al., 2015; Wang et al., 2024). Conversely,

convection-permitting models can adequately simulate rainfall fields at < 101 km spatial resolution and sub-hourly temporal

resolution (Prein et al., 2015), but their high computational cost hampers their global application, particularly for long-term

simulations, large ensemble sizes, and multiple climate–emission scenarios. A computationally efficient alternative is to adjust

gridded rainfall observations derived from remote sensing (such as satellites or, preferably, higher-resolution weather radars)45

to have rainfall characteristics matching future climate conditions. This approach remains largely underexplored; one example

is the distribution-based spatial quantile mapping method (Zou et al., 2025), which projects future changes in spatiotemporal

structure of rainfall fields by morphing their marginal spatial intensity distributions according to rainfall–temperature scaling

relationships.

Regarding the second challenge, extreme value analysis (Katz et al., 2002) is typically used to estimate the probability that50

a given rainfall intensity will be exceeded within a specified return period. The corresponding results are often summarized as

rainfall intensity-duration-frequency (IDF) curves (Koutsoyiannis et al., 1998), which serve as fundamental inputs for urban

drainage design and flood risk management (Martel et al., 2021). However, it is widely recognized that spatial variability in
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rainfall significantly influences the dynamics of urban pluvial floods, particularly for floods under short-duration convective

storms (Fowler et al., 2021b; Peleg et al., 2022). Conventional IDF curves rely on point-scale (station-based) rainfall observa-55

tions (Zou et al., 2021) and, in most cases, inadequately represent the inherent spatial variability (Wright et al., 2014a; Meng

et al., 2025), even when multiple stations are considered (Peleg et al., 2018). One possible solution is utilizing stochastic storm

transposition (SST) methods (Wright et al., 2017, 2020), which enable estimating rainfall extreme frequencies over arbitrary

spatial scales by randomly resampling and geographically translating historical rainfall fields within a defined domain, enlarg-

ing rainfall records by incorporating nearby storms passing the region of interest (Wright et al., 2013). By introducing modified60

rainfall fields, consistent with climate model projections, into the SST approach, it is possible to estimate the non-stationary

changes in future spatial-scale IDF curves (Zou et al., 2025).

The last challenge concerns the ability to perform efficient flood simulations while providing critical flood hazard indicators,

such as inundation depth and flow velocity, at refined scales across the urban area (Rosenzweig et al., 2021). Such simula-

tions can be physically performed using simple elevation-based models, 1D/2D dual drainage models, or full hydrodynamic65

models (Cea et al., 2025). The latter model type, also known as rain-on-grid models, can simulate flood dynamics by solv-

ing two-dimensional shallow water equations with spatially variable source terms that account for rainfall-runoff and sewer

drainage interactions (Perrini et al., 2024a; Ming et al., 2025). These models can feature coupled hydrological and hydrody-

namic processes, integrate high-resolution elevation and meteorological forcings. Yet, they involve significant trade-offs: their

simulations often demand extensive computational time due to the use of highly discretized meshes required for a refined70

representation of heterogeneous urban surfaces. This, in turn, necessitates the development of parallel schemes based on high-

performance computing techniques, such as graphical processing units (GPUs) (Costabile et al., 2023; Li et al., 2023b; Sanders

et al., 2025).

Here, we propose a computationally efficient process-informed framework for projecting warming-induced urban pluvial

floods by integrating recently developed methods that address the three aforementioned challenges. Our framework provides a75

robust, efficient, and replicable method for assessing future changes in regional storm and flood statistics, particularly in cities

where high-resolution data from climate models is lacking. We first present the framework and then apply it to a medium-

sized urban area of 300 km2 in Beijing, China, as a case study. We demonstrate how observed rainfall data can be ”morphed”

according to projected temperature, how this affects IDF curves, and the resulting implications for urban flooding.

2 A process-informed framework for projecting future urban floods80

Instead of relying on future rainfall projections from climate models, we propose a framework to project future rainfall extremes

and urban flooding using only observed rainfall fields and temperature, at a resolution sufficiently high to enable urban flood

simulations, as illustrated in Fig. 1.

The proposed framework is applicable under three conditions: (i) it assumes that changes in extreme short-duration rainfall

are primarily driven by thermodynamic processes, rather than dynamic ones (e.g., alterations in large-scale synoptic condi-85

tions), as appears to be the case in multiple regions (Dallan et al., 2024b; Wang et al., 2024); (ii) the framework is tailored
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for convective rainfall events, which are the predominant cause of urban pluvial flooding in many regions (Huang et al., 2022;

Torelló-Sentelles et al., 2024). While the framework may also be extendable to other types of rainfall, its application to these

has not yet been systematically evaluated; and (iii) the framework reproduces rainfall spatial structures by analyzing observed

properties such as storm area, peak intensity, and spatial distribution. Consequently, it cannot extrapolate to generate or account90

for unobserved features of extreme rainfall fields (i.e., plausible extreme events that are yet unseen). Nevertheless, the stochas-

tic space-time transposition of the storms applied in the framework is known to largely compensate for the under-representation

of such unique events in the record (Wright et al., 2020).

The framework is composed of three sequential components (Fig. 1):

– First, gridded rainfall fields over a sufficiently long period with high spatio-temporal resolution (preferably 1 km and95

hourly or finer) need to be collected. Such data can be derived from weather radar or other remote sensing products and,

if necessary, downscaled to the required resolution. Temperature data, required by rainfall–temperature scaling, may be

used at coarser spatial and temporal resolutions, since only the average regional temperature over the domain at the

hour of rainfall, or up to one day before rainfall initiation, is required. The Distribution-based Spatial Quantile Mapping

(DSQM) is then applied to morph observed rainfall fields according to different future warming levels within the study100

region. Details on the rainfall–temperature scaling and DSQM methods are provided in Section 2.1.

– Second, the observed and morphed rainfall fields are used as input to an SST model (Section 2.2). By creating an archive

of extreme rainfall fields and randomly transposing them elsewhere in the domain, extreme rainfall statistics can be

derived for a grid cell or arbitrary area such as a watershed or neighborhood. This allows for the construction of storm

return levels for both present and future regional warming levels, while accounting for natural climate variability.105

– Finally, extreme storms sampled from SST for a given rainfall return period are used as input into a rain-on-grid flood

model. We use a coupled hydrological-hydrodynamic model, the AUTOSHED model (Section 2.3), to compute flood

hazard maps representing the spatial distribution of inundation depths and flow velocities, which can be compared be-

tween present and future rainfall extremes, under different return periods and regional warming levels.

2.1 Distribution-based spatial quantile mapping (DSQM)110

The DSQM method, which morphs both the intensity and spatial structure of observed rainfall fields driven by temperature

changes, is described in detail by Zou et al. (2025); only a summary of the method is provided here. At its core, DSQM

modifies four key properties of rainfall fields at each time step: the mean rainfall over the entire domain, the rainfall-affected

area (i.e., the rainfall spatial extent), the magnitude of the spatial variation of rainfall within the domain (i.e., the rainfall spatial

coefficient of variation), and the most intense portion of rainfall (e.g., the 99th percentile) in the domain. The following steps115

are taken:
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Figure 1. Schematic illustration of the process-based framework linking temperature-rainfall projections and urban flood modelling.

– The scaling relationship between rainfall and temperature is estimated using the quantile regression method (Wasko and

Sharma, 2014). The scaling is first derived for the domain-averaged rainfall intensity and then extended to other rainfall

properties, conditioned on its magnitude.

– The rainfall-affected area is modified. If the scaling of the rainfall area with temperature is positive, ’dry’ grid cells near120

the ’wet’ grid cells will be converted into ’wet’ grids, until the desired wet area is met. If the scaling is negative, the grids

with the lowest rainfall intensities will be classified as ’dry’ until the quantity of the desired wet area is satisfied.

– The rainfall intensities of the new rainfall fields are transformed into quantile fields using a selected marginal distribution,

such as Gamma, Weibull, or Lognormal, depending on the rainfall type and climate region.

– Finally, the quantile fields are back-transformed into new rainfall fields, basing them on the projected values of the other125

rainfall properties under the imposed temperature level.

An example of the method is presented in Fig.2, where an hourly rainfall field recorded over Beijing is morphed to represent

a 2◦C regional warming level, assuming a hypothetical 7% ◦C −1 increase in mean areal rainfall intensity and a 8% ◦C
−1 decrease in the rainfall-affected area, demonstrating that the regional storm becomes more intense and localized with

temperature warming.130
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Figure 2. (a) An example of an observed rainfall field (1 h and 1 km resolution). (b) Future projected rainfall field for a 7% ◦C −1 increase

in mean areal rainfall intensity and 8% ◦C −1 decrease in rainfall-affected area under 2◦C regional warming.

2.2 Stochastic Storm Transposition (SST)

SST is a rainfall frequency analysis method that estimates spatially distributed rainfall extremes by resampling and transposing

observed rainfall fields within a defined domain (Foufoula-Georgiou, 1989; Wilson and Foufoula-Georgiou, 1990). It enables

computation of IDF curves for a given location or region while explicitly considering the rainfall spatial structure, without

manipulating or interpolating observed data obtained from point sources (e.g., from multiple rain gauges; Wright et al., 2013).135

Furthermore, SST can produce robust rainfall frequency analysis even with relatively limited rainfall data (i.e., less than the

recommended 30 years, Wright et al., 2013, 2014b), making it suitable for applications where only a few years of high-

resolution gridded rainfall data from weather radar are available. The resampling and transposition of storms within the domain

effectively mimic the natural spatial variability of heavy rainfall, ensuring its adequate representation in the resulting IDF curves

(Wright et al., 2013). An overview of the development and applications of the SST method is provided by Wright et al. (2020).140

In our framework, we have implemented the SST method through the RainyDay model (Wright et al., 2017), which follows

a four-step procedure:

– First, define the area of interest (e.g., city) where rainfall IDF are to be estimated. In addition, define a transposition

domain, which is a larger geographic region surrounding the area of interest and is characterized by climatology and

topography similar to the area of interest, such that extreme rainfall properties are approximately homogeneous.145

– Next, create a regional storm catalog from gridded rainfall observations for a given duration of interest t, by including

the m storms with the largest t-duration accumulation rainfall within the area of interest.
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city

Outline of transposition domain

Figure 3. SST transposition domain (grey dashed box) around an interested city area (red polygon). Observed storm trajectory for a single

historical storm (blue arrows), sampled here at three-hourly intervals for clarity, and DSQM-based projected future trajectory of the same

storm after randomized transposition via SST (purple arrows). The transposed future storm exhibits higher mean areal rainfall intensity and

spatial heterogeneity.

– Storms from the catalog are then resampled and transposed to produce multiple trajectories of extreme storms. This

involves generating a random number of annual storm arrivals using the Poisson distribution or other count distribution.

The transposition can be either uniform or non-uniform moving distance along east-west and north-south direction. The150

maximum rainfall over the area of interest is extracted from each simulated year and recorded.

– In the last step, the model assigns recurrence intervals non-parametrically by ranking the simulated annual maxima. The

natural variability is derived by repeating the previous step multiple times.

The observed and DSQM-morphed storms are both used as input to the SST model. Figure 3 illustrates how the SST defines

different trajectories, i.e., setting random starting positions and non-uniform movement while keeping velocity unchanged, for155

an observed storm from the archive corresponding to a specific rainfall return level, and for the same storm after morphing it

with the DSQM (now heavier, with enhanced spatial heterogeneity).

2.3 The AUTOSHED urban pluvial flood model

Our framework employs the coupled hydrological-hydrodynamic AUTOSHED model for simulating pluvial floods (Li et al.,

2023b). AUTOSHED implements the rain-on-grid approach (Hall, 2015; Perrini et al., 2024b) where surface runoff generation160

and routing processes are sequentially simulated on triangular-shaped meshes under spatially distributed rainfall forcings. To

achieve a detailed representation of surface micro-topography, road and river boundaries are incorporated as break-lines during

mesh generation (Pizzileo et al., 2024), enabling mesh edges to align adaptively with these features and accurately capture
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their elevation profiles. At each time step, AUTOSHED first performs distributed rainfall-runoff simulations on each triangular

unit. Each unit is divided into impervious and pervious parts according to the empirical impervious ratio, and AUTOSHED165

calculates the total surface runoff as the area-weighted sum of each component. The rainfall-runoff simulation inlcudes typical

urban hydrological processes such as building interception, vegetation interception, and soil infiltration, where related param-

eterization details can be found in Ni et al. (2008) and Järvi et al. (2011) and in Section S1 in the Supplementary Material.

After obtaining surface runoff, AUTOSHED solves the full two-dimensional shallow water equations to simulate the flood

routing process, where all boundaries are specified as open boundaries (Li et al., 2021; Luan et al., 2024). The equations are170

solved by the Godunov-type finite volume method (further details are discussed by Song et al., 2011). The time integration is

solved by the explicit first-order scheme and an appropriate time step is dynamically adjusted by a Courant–Friedrichs–Lewy

(CFL) value of 0.5 (Courant et al., 1928) to maintain numerical stability. For computational efficiency, AUTOSHED uses a

multi-core parallel architecture of GPUs (Lacasta et al., 2014).

3 Case study175

3.1 Case city: Beijing Municipal Administrative Center

Beijing Municipal Administrative Center (BMC, Fig. 4b) is located within the large metropolitan area of Beijing (Fig. 4a). It

serves as the eastern gateway to China’s national capital, where numerous local government departments have been relocated

since 2015 to reduce excessive congestion in the central city. BMC’s area is approximately 300 km2 and is relatively flat

with an average slope of 1.5%. It exhibits a humid continental climate, with an average annual rainfall of 536 mm and an180

average annual temperature of 13◦C. As one of the world’s largest megacities, Beijing is particularly susceptible to pluvial

floods caused by extreme storms. Rainfall exceeding 70 mm h−1 occurred more than 82 times in the last two decades, with an

increasing trend due to climate warming (Wang et al., 2020; Zou et al., 2021). Furthermore, storms are projected to become

smaller and more concentrated with higher intensity in the future (Fu et al., 2018; Zou et al., 2025), increasing the probability

of the occurrence of severe flood disasters. Two notable unprecedented storms were recorded in the last decade: the first one185

on July 21st, 2012 (areal rainfall of 215 mm in 20 h), and the second one hitting Beijing on July 31st, 2023 (331 mm in 83

hours), resulted in heavy floods and 79 and 33 deaths, with economic losses of 1.4 billion and 60 million euros, respectively

(Liu et al., 2019; Li et al., 2024). These events underscore the urgent need to evaluate the future evolution of rainfall fields with

the corresponding response of flood hazards to better inform disaster risk management.

Considering data, we used gridded hourly rainfall fields at 1x1 km resolution, downscaled from the 8x8 km CMORPH190

product for the period from 1998 to 2019 (Zou et al., 2024). Hourly and 25x25 km near-surface air temperature data for the

same period were obtained from the ERA5 climate reanalysis (Hersbach et al., 2020). These datasets were used to derive the

rainfall-temperature scalings and prepare the present and future rainfall archives for the SST. In addition, we collected multi-

source geographical data to set up the urban pluvial flood model, including: a 0.5 m digital elevation model (Fig. 4c) that was

generated from an airborne Light Detection and Ranging (LiDAR) with a sampling density of 100 points per m2 and a mean195

absolute height error of 0.05 m (Fig. 4d); a 10 m land use map from the WorldCover 2021 product (Zanaga et al., 2022) (Fig.
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Study area tree grassland cropland

built-up water bareland

Elevation [m]
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(a) Beijing city and SST domain (b) Beijing Municipal Administrative Center (BMC) (c) LiDAR DEM (0.5 m)

(d) Point cloud at one local underpass

flood-prone point

Figure 4. (a) Location map, showing Beijing Municipality area (black polygons), Beijing Municipal Administrative Center (BMC, red

polygon), and the SST transposition domain (purple box). (b) Land use and historical flood-prone points within BMC. (c) Zoom in to a 0.5 m

digital elevation model (DEM) in the BMC center. (d) Zoom in on a LiDAR point cloud data at a local underpass used for DEM generation.

4b), a 250 m soil hydraulic properties from the HiHydroSoil v2.0 database (Simons et al., 2020), a 250 m leaf area index

data from the MODIS MOD15A2H product (Nishihama et al., 1997), and building footprint and road network layers from the

Baidu map service.

Furthermore, we collected observational data related to a recent torrential rainfall event that occurred in August 2024 to200

evaluate the model’s performance. Radar-based quantitative precipitation estimations (QPE), covering the period between 9

pm, 8th August, and 9 am, 10th August (local time), were acquired from a local agency with a spatiotemporal resolution of

500 m and 5 min (see Figure S1 in the Supplementary Material). In addition, the maximum inundation depth records at six

underpasses as a result of the storm were obtained from the local agency as well.

3.2 Setting up the models205

3.2.1 DSQM

To compute the rainfall-temperature scaling, we divided the hourly rainfall fields into 20 bins based on their average magnitude

over the domain (to distinguish between light and heavy rain) and calculated the hourly regional average temperature across

the domain for each rainfall field. We found that the scaling of the rainfall-temperature magnitude increases with the average
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intensity of the rainfall fields, reaching a scaling of 3.6% ◦C−1 as rainfall becomes heavier (see Supplementary Material Table210

S2 and Zou et al., 2025).

We then scaled the other rainfall properties (e.g., area and coefficient of variation) with temperature. Since these properties

are conditioned on the mean rainfall over the domain, their scaling relationships were analyzed separately for each bin. We

found that changes in the area of the storm as a function of temperature have an opposite signal to the storm magnitude,

meaning that storms become smaller in extent (down to -2.4% ◦C−1) as the rainfall magnitude increases. The spatial coefficient215

of variation was also found to increase with both temperature and rainfall magnitude (see Table S2 in the Supplementary

Material), indicating that future extreme rainfall events will likely feature higher regional and local intensities concentrated

over smaller areas.

We then applied the rainfall-temperature scaling relationships to morph the observed rainfall fields to regional warming

levels of 1, 3, and 5 ◦C, which were subsequently used as inputs to the RainyDay model.220

3.2.2 RainyDay

The transposition domain around the BMC is outlined by the purple box in Fig. 4a. It is defined based on a qualitative as-

sessment of terrain similarity and the spatial distribution of extreme rainfall, as presented by Zou et al. (2025), to approximate

homogeneous storm-occurrence across the domain.

The storm catalog for the RainyDay model was created by selecting m = 300 storms with a duration t of 72 hours that225

passed through the BMC region. We opted to use the Poisson resampling distribution and non-uniform transposition to shift

storms within the domain stochastically; the Poisson distribution had a rate parameter of ≈13.6 storms y−1, stemming from

300 storms selected from a 22-year rainfall record. Using synthetic rainfall generated by RainyDay, it first trims storms into

24-hour durations and then estimates their return levels over BMC based on 500 years of annual rainfall maxima. We ran 100

realizations (i.e., each realization contains 500 annual maxima) to provide the stochastic uncertainty corresponding to the 10-230

to 500-year storm return levels. The RainyDay return levels have been validated against 45 observed stations in the Beijing

area, with bias less than 6% for 2- to 100-yr rainfall return levels (Supplementary Material Table S3).

For pluvial flood projection of a certain return level, we select the 50 most extreme 24-hour storm events from each return

level to drive AUTOSHED for pluvial flood simulation.

3.2.3 AUTOSHED235

In AUTOSHED, the BMC simulation domain is discretized into 4,055,787 triangular meshes, with a median area of 72 m2.

After mesh discretization, parameters related to rainfall-runoff generation, friction effect, and drainage capacity (Ming et al.,

2025) were estimated. For rainfall-runoff simulation, we specify the empirical impervious ratio (Section 2.3) according to the

land-use-based empirical values (suggested by local guidelines, BMCPNR, 2022) and assign the remaining parameters, such

as soil hydraulic properties, based on geographical datasets (Section 3.1). Friction-related parameters, such as the Manning240

coefficients, were set to follow the aforementioned land-use-based empirical values (see Section S1 in the Supplementary

Material). In the absence of a detailed sewer network in the BMC region, we parameterize drainage capacity using the road-
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1: Songtonglu Underpass

2: Xushuanglu Underpass

3: Yangzhuang Underpass

4: Yuqiuxilu Underpass

5: Yuqiaozhonglu Underpass

6: Luyuanbeijie Underpass

4 5

6

Figure 5. (a) Simulated maximum inundation depth for the August 2024 storm. (b)-(g) Simulated inundation depth compared with observed

maximum inundation depth. ∆Hmax is defined as the simulated maximum depth minus the observed one. Basemaps are derived from ESRI

World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community).

drainage method (Li et al., 2023a), subtracting a uniform drainage rate of 36 mm h−1 from the net rainfall rate in the roadway

zone only, as suggested by the Beijing Municipal Institute of City Planning and Design (Liu et al., 2022).

Based on the estimated parameters, we validate AUTOSHED using the 500 m and 5 min QPE product (Figure S1 in the Sup-245

plementary Material) and extract the simulated inundation hydrograph at six underpasses available with maximum inundation

depth records (Fig.5). AUTOSHED achieves simulated absolute depth differences smaller than 5 cm at most sites, except for

one underpass, for which an underestimation of 41.4 cm is observed. But this can probably be attributed to the overestimated

sewer drainage in the corresponding road zones.

After the model validation, we configured AUTOSHED to run the 24-hour storms generated by the SST, using a server with250

an Nvidia Tesla V100 GPU (32GB) and Intel(R) Xeon(R) Gold 6226R CPU @ 2.90 GHz, for which the results are reported

below. AUTOSHED can finish one 24-hour storm simulation within one hour and thus offer a very fast and efficient solution

for urban pluvial flooding driven by distributed rainfall fields.
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Figure 6. (a) Return levels of averaged rainfall over the BMC for 24-hour storm event and their natural variability computed from 100

realizations of storm events, (b) examples of three 24-hour storm realizations, illustrating their spatial (left column) and temporal (right

column) distributions.

3.3 Future changes in regional rainfall extremes

In the following, we analyzed changes in rainfall extremes as a result of regional 1◦C, 3◦C, and 5◦C warming in comparison255

with the 1998-2019 period. Projected changes in return levels of averaged rainfall over the BMC, based on 24-hour storm

events, are shown in Fig. 6a. The average increase in extreme rainfall intensity for different return levels is 3%, 11%, and 18%

under the 1◦C, 3◦C, and 5◦C regional warming levels, respectively. To highlight the mean shifts in average extreme rainfall

over BMC, we further computed the natural climate variability in the present climate obtained from 100 storm realizations and

represent it with the green shaded area in Fig. 6a. While the mean return levels for the 1◦C and 3◦C warming still fall within the260

natural variability of the present return levels, 5◦C warming is falling beyond the variability. To exemplify the high variability

of the extreme rainfall both in space and time, we further illustrated three 24-hour storm events randomly selected from the

simulated pool (Fig. 6b).

3.4 Future changes in urban floods

The projected changes in urban pluvial floods can be estimated from the ensemble of AUTOSHED simulations that are driven265

by multiple storm realizations, corresponding to different return levels and regional warming levels. Following the 100-year

return level as an example, results of the current-climate simulations demonstrate that the median inundation depth, calculated
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as the pixel-wise medians from the maximum inundation depth maps under 50 storms, is reaching up to 2 m depths within the

BMC (Fig. 7a), with pronounced flooding beneath underpasses and within riparian parks in the city center (Fig. 7b). Under

warming levels of 1◦C, 3◦C, and 5◦C, median maximum flood depth increases by 4%, 7%, and 8%, respectively, while the270

maximum increase reaches 28% under +5◦C (Fig. 7c). Fig. 7d-f illustrate the spatial distribution of median differences in

inundation depths, revealing that inundation depths increase by 5-25% in both major roads and residential areas, with the most

extensive impacts under +5◦C extending across almost the entire urban area.

The flood inundation duration of the current climate, defined as the time during which water depth exceeds 0.4 m for the

100-year rainfall return period, is shown in Fig. 8a. The close-up to the center area (Fig. 8b) highlights the persistent water275

accumulation up to 12 h along major roads and in low-lying residential areas. In contrast to the distribution of the inundation

depth, the distribution of the current inundation duration exhibits a more pronounced long-tail behavior, with the increase

rate in maximum duration reaching 125% (Fig. 8c) for 1 ◦C warming. This indicates that some regions currently flooded

for a short duration will face prolonged inundation under increasing temperatures. As presented in the maps in Fig. 8d-f,

substantial relative changes in inundation duration can be observed at the fringes of the inundated regions. When evaluating280

the overall tendency, the median inundation duration increases by approximately 9%, 11%, and 8% under warming levels of

1◦C, 3◦C, and 5◦C, respectively, indicating that further warming beyond 3◦C will not necessarily result in further increases of

overall inundation duration. This can be attributed to the spatiotemporal changes in extreme rainfall structures: while higher

temperature raises the mean areal rainfall, it also leads to a reduction in storm area. Such localized rainfall intensification with

fast movement can contribute to higher instantaneous inundation depth; however, its influence on inundation duration may be285

minimal or even negative due to counteracting effects between accelerated surface flow accumulation (as presented next).

We further investigated how surface flow velocities change with increasing warming. In the current climate, peak flow

velocity for a 100-year return period storm generally remains below 0.5 m s−1 and increases up to 1 m s−1 along major roads

and underpasses (Fig. 9a,b). Under 1◦C, 3◦C, and 5◦C warming, the distributions of the peak flow velocities are positively

skewed with medians increasing by 3% (the upper tail reaches 17%), 6% (22%), and 8% (28%), respectively (Fig. 9c). Detailed290

views of the center area (Fig. 9d-f) reveal considerable velocity increases (>10%) that are initially located along major roads

and gradually expand into low-lying residential areas through narrow streets. Such increased velocity indicates strengthened

momentum transfer and further leads to possibly faster recession and shorter inundation duration.

In summary, for major areas in the BMC, climate warming tends to intensify both inundation depth and surface flow velocity,

whereas its influence on inundation duration remains limited due to counterbalancing hydrodynamic mechanisms between295

higher runoff volumes that are accumulating faster and subsequently leading to faster recession time.

3.5 Future changes in flood hazards

We last evaluated the impact of the changes in 100-year storms on pluvial flood hazards. Flood hazards are categorized by

maximum inundation depths (following local government standards, BWA, 2025): low hazard (0.15-0.27 m), moderate hazard

(0.27-0.4 m), moderate-high hazard (0.4-0.6 m), and high-hazard (>0.6 m) (Fig. 10a,b). Under current climatic conditions,300
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(a) Maximum depth (current, 100yr)

(c) Future changes in Δ Maximum depth

(d) Δ Maximum depth with +1°C (e) Δ Maximum depth with +3°C (f) Δ Maximum depth with +5°C

(b) Close-up of the center area

riparian park

underpass

[m]

𝐷𝑚𝑎𝑥

Δ𝐷𝑚𝑎𝑥

Figure 7. (a) The maximum flood depth of 100-year return level under the current climate within BMC, (b) zoom-in part in the BMC centre,

(c) future changes of maximum flood depth under warming scenarios, and its spatial distribution of those changes within BMC region under

1◦C (d), 3◦C (e), 5◦C (f) warming scenarios. Basemaps are derived from ESRI World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA,

USGS, © OpenStreetMap contributors, and the GIS User Community).
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(c) Future changes in Δ Inundation time 

(a) Maximum inundation time (current, 100yr)

(d) Δ Max inundation time with +1°C (e) Δ Max inundation time with +3°C (f) Δ Max inundation time with +5°C

(b) Close-up of the center area

low-lying residential area

major road

𝐼𝑚𝑎𝑥
[h]

Δ𝐼𝑚𝑎𝑥

Figure 8. (a) The inundation duration for 100-year return level under the current climate within BMC, (b) zoom-in part in the BMC centre,

(c) future changes of inundation duration under warming scenarios, and its spatial distribution of those changes within BMC region under

1◦C (d), 3◦C (e), 5◦C (f) warming scenarios. Basemaps are derived from ESRI World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA,

USGS, © OpenStreetMap contributors, and the GIS User Community).
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(a) Maximum velocity (current, 100yr)

(d) Δ Maximum velocity with +1°C (e) Δ Maximum velocity with +3°C (f) Δ Maximum velocity with +5°C

(b) Close-up of the center area

(c) Future changes in Δ Maximum velocity

low-lying residential area

major road

low-lying residential area
major road

low-lying residential area
major road

low-lying residential area
major road

𝑉𝑚𝑎𝑥

Δ𝑉𝑚𝑎𝑥

[m/s]

Figure 9. (a) The maximum velocity of 100-year return level for the current climate within BMC, (b) zoom-in to the BMC center, (c) future

changes of maximum velocity under regional future warming levels, and its spatial distribution of those changes within BMC region under

1◦C (d), 3◦C (e), 5◦C (f) warming level. Basemaps are derived from ESRI World Imagery (Credit: Esri, TomTom, Garmin, FAO, NOAA,

USGS, © OpenStreetMap contributors, and the GIS User Community).
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(a) Rated maximum depth (current, 100yr)

(c) Future changes in flood hazard levels

(b) Close-up of the center area

Moderate hazard

Low hazard

High hazard

Moderate-
high hazard

Figure 10. (a) Flood hazard for 100-yr rainfall return level under the current climate, (b) close-up of the BMC centre, and (c) changes in

flood hazards assessments within BMC under different regional warming levels. Basemaps are derived from ESRI World Imagery (Credit:

Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community).

moderate-high and high hazard areas are predominantly confined to riparian parks and major roads, especially at low-lying

underpasses with insufficient drainage capacities (Fig. 10b).

Analysis of the associated inundation duration (Figure S2 in the Supplementary Material) reveals that these areas can also

experience long-lasting inundation for more than 12 hours, severely disrupting local transportation networks and leading to

substantial economic losses and potential fatalities due to the prolonged blocking of evacuation routes (Pregnolato et al.,305

2017). Furthermore, it should be highlighted that moderate-high and high hazard zones increase by 15-20% compared to

current conditions, while low and moderate hazard areas expand by up to 5%-10% (Fig. 10c). These results demonstrate the

higher sensitivity of high hazard zones to climate change, with already severely inundated areas, projected to experience more

significant increases, emphasizing the urgent need for targeted adaptation measures in flood-prone locations.
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Figure 11. Future changes in mean areal rainfall (MAR, balck line), maximum mean areal rainfall (MaxMAR, blu line), 99th percentile

of extreme rainfall at the grid-scale (MaxR99, red line), and area of the storm (WAR,green dash) for the 100-y storms in BMC.

4 Discussion310

4.1 Changes in rainfall properties and future urban floods

One of the key strengths of the proposed framework over most existing approaches lies in its capacity to assess changes in

both spatial variability and areal intensity of rainfall fields with increasing temperatures, and to evaluate their implications on

urban pluvial flooding. In the BMC, for example, we examine the spatio-temporal characteristics of 50 simulated 24 h storms

representing the 100-y return level under three regional warming levels. We find that while the mean rainfall over the domain315

is projected to increase by 0.73 mm h−1 ◦C−1 (black lines in Fig. 11), the maximum rainfall over the domain from each 24-h

storm (blue line) and the heaviest part of each storm events (i.e., the 99th percentile when analyzing the grid scale, red line)

increase sharply with rates of 1.89 mm h−1 ◦C−1 and 2.48 mm h−1 ◦C−1, respectively. In contrast, the rainfall area exhibits a

slight decline of -1% ◦C−1 under regional warming levels (green dashed line in Fig. 11). The combination of higher intensities

and reduced spatial coverage suggests that future storms will become more spatially concentrated, which is likely to exacerbate320

urban pluvial flood risks (Peleg et al., 2022; Padulano et al., 2021; Ghanghas et al., 2023). While in the BMC, the change in

storm size under climate warming is relatively minor, larger negative trends have been documented elsewhere, such as the

tropics (Ghanghas et al., 2023) and parts of the United States (Chang et al., 2016), which could, in some cases, reduce flood

impacts as smaller storms may have a lower probability of city-wide inundation due to constrained trajectories (Chang et al.,

2016). To conclude, the proposed framework provides an ideal tool to investigate flood responses to such changes in rainfall325

characteristics.

While rainfall was simulated at a 1 km spatial resolution, a substantially finer resolution of 5 m is adopted for the pluvial

flood simulations. This raises the question of whether such refinement is warranted, given the additional computational time
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and resources required, as well as the effort involved in obtaining a finer DEM. Hence, we further explored how sensitive the

surface inundation response is to the spatial resolution of the model. We did so by selecting 22 locations that are frequently330

affected by flooding (see Figure S3 in the Supplementary Material) and re-running the model using the fine resolution of 5 m,

and a coarser resolution of 30 and 90 m that can be obtained from multiple freely available sources (e.g., the SRTM product

Werner, 2001). Across those locations, warming-driven increases in flood depth, inundation time, and velocity are markedly

larger at finer grid resolutions: at 5 m resolution, increase of 1◦C yields roughly 1.4 cm higher depth, 0.22 h longer inundation,

and a 0.017 m s−1 rise in peak velocity, whereas at 30 m (90 m) these sensitivities fall to 0.4 cm (0.3 cm), 0.12 h (0.17 h), and335

0.005 m s−1 (0.003 m s−1). The reduced sensitivity at coarser spatial resolutions underscores the importance of high-resolution

hydrodynamic simulations for robust assessments of urban pluvial flood risks under climate change (Xing et al., 2022; Ming

et al., 2025).

Although rainfall is applied at 1 km and hourly resolutions in our case study (reflecting data availability constraints), using

finer resolutions, on the order of 100 m and 5 min, is recommended for pluvial flood applications (Cristiano et al., 2017). This340

recommendation is due to the high spatial variability of extreme rainfall in urban environments (Maier et al., 2020; Torelló-

Sentelles et al., 2024, 2025) and the rapid hydrological response characteristic of urban catchments (Cristiano et al., 2019).

Such high-resolution datasets, unfortunately, remain scarce. However, the proposed framework is flexible with the resolution

of rainfall fields and thus can be readily extended to finer spatial and temporal scales if relevant rainfall products are available.

4.2 Framework parameterization345

Additional potential parameterizations of the framework, beyond those presented in the case study, warrant discussion. First,

there is an ongoing debate regarding the appropriate approach to estimate rainfall–temperature scaling, specifically whether to

use near-surface air temperature or dewpoint temperature, as the latter explicitly accounts for humidity (Lenderink et al., 2017;

Ali et al., 2022). Additionally, there is discussion on whether hourly or daily temperatures better represent the atmospheric

processes leading to rainfall events (Zou et al., 2024; Peleg et al., 2018b; Marra et al., 2024). While hourly near-surface air350

temperature is used in our case study, the framework is flexible and can be implemented with either temperature variable and

at different temporal resolutions to assess the scaling.

Defining an appropriate transposition domain for the SST is critical as it influences the composition of the storm catalog

and sampling of rainfall extremes. Here, we define the homogeneous transposition domain based on the similarity of the

topography and rainfall extremes with the BMC area, yet different criteria, such as using the mean rainfall depth, cloud-to-355

ground lightning, and storm counts (Wright et al., 2013) can be applied. Further work on systematic delineation of transposition

domains is underway (Benjamin et al., 2025). More importantly, instead of using a ’uniform’ transposition process (Wright

et al., 2014b), we have used a ’non-uniform’ one in our case study, which is based on historical frequency and location of

regional storms. This can be particularly relevant in urban and mountainous areas, where storm trajectories may have preferred

routes (Lin et al., 2021; Medina and Houze, 2003).360
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4.3 Advantages and limitations of the framework

There are several advantages associated with the proposed framework, beyond the clear benefit of enabling application in

cities lacking high-resolution rainfall data from climate models: (i) changes in rainfall properties are derived directly from the

well-established thermodynamic relationship between rainfall and temperature (Trenberth et al., 2003), particularly relevant for

short-duration extreme (convective) events (Lenderink et al., 2017); (ii) the framework modifies not only rainfall intensity but365

also the spatial coverage of storms, which can play a more significant role in urban flooding dynamics (Peleg et al., 2022); (iii)

future changes are projected according to prescribed levels of regional warming (e.g., Corre et al., 2025), rather than through

specific emission scenarios. This approach reduces some of the uncertainties associated with IDF projections stemming from

both climate model and emission scenario discrepancies (Yu et al., 2020; Yan et al., 2021); (iv) the space-time stochasticity of

extreme rainfall (also referred to as natural variability or chaotic storm evolution), which constitutes the dominant source of370

uncertainty in rainfall intensity–frequency relationships (Wright et al., 2020), is explicitly represented within the framework;

and (v) the AUTOSHED rain-on-grid model uses GPU-accelerated ensemble hydrodynamic simulations to efficiently convert

high-resolution rainfall fields into detailed flood hazard maps, including inundation and flow velocities needed for targeted

disaster management (Najafi et al., 2024).

Notably, the framework primarily considers thermodynamic effects on extreme rainfall (Marra et al., 2024), but dynamic375

factors such as atmospheric circulation and urban areas that can affect storm frequency and intensity (Yan et al., 2021; Zhuang

et al., 2024) are not explicitly taken into account. Conducting the analysis for specific rainfall types and explicitly considering

their potential future frequency changes, or applying the framework to different large-scale atmospheric modes (e.g., El Niño,

La Niña) and embedding their projected shifts based on information from climate models, can partially account for changes

in the dynamic component. However, fully implementing the dynamic factor affecting rainfall into the framework remains a380

subject for future development.

We would like to note that although the proposed framework is primarily developed to address convective rainfall extremes

and urban pluvial flooding, it has the potential to be used also to assess changes in urban fluvial flood hazards. A key limita-

tion of the framework is its reliance on sampling individual extreme rainfall events rather than simulating continuous, long-

term rainfall space–time series, which are often necessary for fluvial flood assessments to properly set the event’s antecedent385

conditions (such as soil moisture content) in the hydrodynamic model. Consequently, applications to fluvial or compound

pluvial–fluvial floods would require careful specification of these initial conditions.

Our proposed framework, based on open-source code and leveraging GPU-based high-performance computation techniques,

offers an efficient and accessible approach for assessing future urban flood hazards. It introduces an efficient method for pro-

jecting short-duration rainfall under climate change, which is simple to implement and relies exclusively on observed rainfall390

and reanalysis temperature data, thus removing the dependency on high-resolution simulation results on future climatic scenar-

ios. Applied here to the BMC region, the framework demonstrates its potential to address flood risks associated with summer

convective rainfall extremes. It can be readily implemented in other urban areas where similar rainfall types contribute to plu-
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vial flooding and should be further evaluated for its applicability to other types of extreme rainfall, although no fundamental

limitations are expected.395

5 Conclusions

We propose a process-informed framework to assess changes in future urban pluvial floods by using observed gridded rainfall

and temperature data, without the need for climate model projections. The framework consists of three steps: (i) morphing

observed rainfall fields using the DSQM method, based on observed rainfall-temperature scaling and chosen marginal dis-

tribution, to project rainfall spatiotemporal properties changes considering different regional warming levels; (ii) using the400

RainyDay SST approach, to obtain future changes in storms’ trajectories and return levels with temperature warming; and (iii)

running the AUTOSHED rain-on-grid hydrodynamic model to assess the future changes in urban pluvial flood characteristics.

As a case study, we use the framework to assess changes in pluvial floods in the Beijing Municipal Administration Center

(BMC), projecting changes in urban flood depth, inundation duration, and flow velocity for different regional warming levels.

We find that with rising temperatures, regional storms tend to become more intense but smaller in spatial extent. This manifests405

as an expansion of the inundated area, accelerated flow velocity, and increased flood depths, collectively contributing to a

heightened risk of pluvial flooding. Specifically, within the BMC area, mean extreme rainfall rises by 6%, 11%, and 20%

under warming levels of 1◦C, 3◦C, and 5◦C, respectively, inducing corresponding increases of 4%, 7%, and 8% in peak flood

depth.

The cascading process-based DSQM-SST-AUTOSHED framework provides a flexible, physically grounded, and replicable410

tool for assessing changes in urban pluvial floods considering temperature increase, with potential implications for urban

planning and flood-risk adaptation. The codes for the DSQM, the RainyDay, and the AUTOSHED models are openly available

and are easy to implement in other cities and climates.

Code and data availability. The code of the distributed-based spatial quantile mapping (DSQM) method, along with the 1 km x 1 km

hourly rainfall data used in the Beijing case study, is openly accessible on Zenodo at https://doi.org/10.5281/zenodo.13646191. The 25415

km x 25 km hourly 2-m near-surface temperatures used for the rainfall-temperature scaling were from the ERA5 climate reanalysis data

and downloaded from (Hersbach et al., 2023) (last access: June 2024). The RainyDay model (Wright et al., 2017), which was used to

estimate rainfall extremes via the stochastic storm transposition (SST) method, is openly available and can be downloaded via https://github.

com/HydroclimateExtremesGroup/RainyDay. The AUTOSHED model prepared for one sample simulation of pluvial flood in BMC can be

downloaded via https://doi.org/10.5281/zenodo.15869025 (last access: 9 August 2025). The WorldCover 2021 product for land use can be420

accessed from here: https://worldcover2021.esa.int/download (last access: 9 August 2025). The HiHydroSoil v2.0 product for soil hydraulic

properties can be obtained from: https://www.futurewater.eu/projects/hihydrosoil/ (last access: 9 August 2025). The MODIS MOD15A2H

product for leaf area index can be found in the following link: https://doi.org/10.5067/MODIS/MOD15A2H.006 (last access: 9 August

2025). Building footprint and road network data can be downloaded from:www.map.baidu.com (last access: 9 August 2025). The BMC’s

high-resolution LiDAR-based DEM is not publicly available.425
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