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‭Abstract.‬‭This paper describes efforts to establish‬‭aerosol data assimilation capabilities for NOAA’s National Air‬

‭Quality Forecasting Capability (NAQFC), a regional online air quality modeling (AQM) system under NOAA’s‬

‭Unified Forecast System (UFS), by assimilating measurements of fine particulate matter (PM₂.₅, particles with‬

‭diameters less than 2.5 µm). PM₂.₅ assimilation is developed within the Joint Effort for Data assimilation Integration‬

‭(JEDI) framework and tested using its 3D-Var data assimilation (DA) component. The PM₂.₅ observation operator is‬

‭constructed by combining newly developed PM₂.₅ transformation recipes in the JEDI Variable Derivation‬

‭Repository (VADER) with a general spatial interpolation operator in the Unified Forward Operator (UFO).‬

‭Cycled DA and forecast experiments were conducted from 1 to 21 September 2020, during a period of Western U.S.‬

‭wildfires, to assess the impact of assimilating PM₂.₅ observations from the AirNow and PurpleAir networks. The‬

‭control and analysis variables include individual aerosol species, with background error standard deviations‬

‭generated by scaling their respective background values. Prognostic variables such as aerosol particle number and‬

‭total particulate surface area are updated accordingly following each analysis update. All DA experiments use a‬

‭3-hourly cycling interval, with PM₂.₅ observations assimilated every 3 hours. The control experiment uses the same‬

‭configuration but without any data assimilation. Results show that assimilating either AirNow or PurpleAir PM₂.₅‬

‭data reduces 1–24 h forecast errors in terms of mean absolute error (MAE) and root mean square error (RMSE)‬
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‭compared to the control run over CONUS. Forecast skill, measured using the Critical Success Index (CSI) for PM₂.₅‬

‭thresholds of 5, 12, and 35 µg/m³, also improves. AirNow observations have a greater impact overall, while‬

‭PurpleAir shows its strongest impact over Nevada, northern Utah, Colorado, and southwestern New‬

‭Mexico—regions with persistent underpredictions in the control run at forecast hour 1. Overall, the assimilation of‬

‭PurpleAir observations in addition to AirNow data leads to a slight reduction in 3–24 h MAE.‬

‭1 Introduction‬

‭Particulate matter with an aerodynamic diameter of 2.5 micrometers or smaller (PM₂.₅) is a major contributor to‬

‭poor air quality in the United States, posing significant risks to public health and the environment, and contributing‬

‭to substantial loss of life. Over the past few decades, poor air quality in the U.S. has contributed to over 100,000‬

‭premature deaths annually, far exceeding fatalities from all other weather-related causes combined, which average‬

‭around 500 per year (Huang et al., 2025). Given its public health significance, PM₂.₅ is one of the primary pollutants‬

‭used in calculating the Air Quality Index (AQI)—a standardized system designed to communicate daily air pollution‬

‭levels to the public. Elevated PM₂.₅ concentrations frequently result in "unhealthy" AQI ratings, triggering health‬

‭advisories and public warnings.‬

‭PM₂.₅ in the United States originates from a range of both anthropogenic and natural sources. Anthropogenic‬

‭sources include agricultural activities and combustion processes, such as emissions from motor vehicles, power‬

‭plants, industrial facilities, and residential heating systems. Among natural sources, wildfires are a particularly‬

‭significant contributor, especially in the western United States, where their frequency and intensity have escalated‬

‭dramatically over the past two decades (Wen and Burke, 2021). According to the U.S. Environmental Protection‬

‭Agency (EPA), wildfires account for approximately 15% to 30% of total PM₂.₅ emissions nationwide (EPA, 2017).‬

‭While national seasonal averages of PM₂.₅ have generally declined, summer PM₂.₅ concentrations in the western‬

‭U.S. have remained persistently high, primarily due to wildfire smoke (O'Dell et al., 2019). In addition to degrading‬

‭air quality, wildfires have caused widespread property loss. Since 2005, more than 99,500 homes, businesses, and‬

‭other structures have been destroyed by wildfire-related events‬

‭(‬‭https://headwaterseconomics.org/natural-hazards/structures-destroyed-by-wildfire‬‭,‬‭last access on June 30, 2025‬‭),‬

‭underscoring the urgent need for more effective strategies in air quality monitoring, forecasting, and wildfire‬

‭management.‬

‭The National Oceanic and Atmospheric Administration (NOAA) has developed an advanced regional Air Quality‬

‭Modeling (AQM) prediction system within the Unified Forecast System (UFS) framework to enhance the accuracy‬

‭of air quality forecasts across the United States, particularly during wildfire events (Huang et al. 2025). The National‬

‭Air Quality Forecast Capability (NAQFC), operated by NOAA’s National Weather Service (NWS), has been‬

‭providing operational air quality forecast guidance for over 20 years, with continuous inclusion of new capabilities.‬

‭Under NAQFC, the AQM version 7 was implemented and became operational on May 14, 2024. A key innovation‬

‭in this system is the integration of the Real-time Aerosol and fire behavior Visual Estimator (RAVE) — a high‬
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‭spatiotemporal resolution, satellite-derived wildfire product — which enables a more accurate representation of‬

‭wildfire emissions. The system also features online coupling of atmospheric and chemical models, allowing‬

‭dynamic interactions between meteorology and atmospheric chemistry. This integration improves the representation‬

‭of emissions and ensures real-time feedback of meteorological fields that influence chemical transformations and the‬

‭transport of pollutants in the atmosphere. The UFS-AQM online system has consistently shown improved‬

‭performance in simulating major wildfire events, including the significant wildfires in the northwestern coastal‬

‭regions of the U.S. in September 2020, and widespread smoke transport from Canadian wildfires in the summer of‬

‭2023. This system was officially implemented on May 14, 2024 as NOAA’s operational air quality prediction system‬

‭(AQMv7), replacing the previous‬‭offline-coupled  the‬‭Global Forecast System using the Finite Volume Cube-Sphere‬

‭dynamical core (GFS-FV3) version 15 with the Community Multiscale Air Quality modeling system (CMAQv5.0.2)‬

‭modeling system‬‭. (Chen et al. 2021).‬

‭PM₂.₅ data assimilation (DA) has proven effective in reducing errors in air quality forecasts (e.g., Pagowski et al.‬

‭2010, 2012; Schwartz et al. 2012; Wu et al. 2015;‬‭Robichaud 2017;‬‭Lee et al. 2021; Chen et al. 2022,‬‭Ha 2022;‬

‭Vogel et al. 2025, among others). Pagowski et al. (2010) demonstrated that fine aerosol forecasts benefit from‬

‭AirNow PM₂.₅ DA, showing improved verification scores for a period of at least 24 hours. Schwartz et al. (2012)‬

‭found that assimilating AirNow PM₂.₅ observations significantly improved surface PM₂.₅ forecasts over the‬

‭CONUS compared to forecasts without DA. Wu et al. (2015) reported that incorporating ground-based PM₂.₅‬

‭observations notably enhanced 24-hour forecasts during a severe pollution episode in Shanghai. Similarly, Chen et‬

‭al. (2022) showed that assimilating multi-source PM₂.₅ data significantly improved WRF-Chem PM₂.₅ forecasts‬

‭with benefits lasting up to 48 hours. Lee et al. (2021) highlighted the effectiveness of assimilating‬‭ground‬‭in-situ‬

‭surface PM2.5‬‭observations in improving the‬‭short-term‬‭PM2.5 predictions in Northeast Asia.‬

‭Many operational regional air quality prediction systems around the world use some form of data assimilation to‬

‭initialize the forecasts. These approaches vary in complexity, ranging from simple optimal interpolation to full‬

‭variational or ensemble Kalman filter methods  (e.g. Robichaud et al. 2016; Wei et al. 2024;‬‭Colette et‬‭al. 2024‬‭). In‬

‭NOAA’s current regional air quality model (AQM) operations, aerosol and chemical initial conditions are‬

‭"warm-started" using 6-hour forecasts from the previous model cycle. The implementation of an aerosol data‬

‭assimilation system can further enhance short-term air quality forecasts by providing more accurate spatial analyses‬

‭of initial aerosol distributions.‬

‭To establish aerosol data assimilation capabilities for NOAA’s regional operational AQM system, we employ the‬

‭Joint Effort for Data assimilation Integration (JEDI) (Trémolet and Auligné, 2020). JEDI is a flexible, agnostic, and‬

‭modern data assimilation system applicable to a wide range of forecasting systems (e.g. Liu et al. 2023; Huang et al.‬

‭2023; Sluka, 2024). JEDI offers a platform that supports efficient scientific development and facilitates the transition‬

‭from research to operations. As part of a broader strategic shift, NOAA and partner agencies are transitioning their‬

‭data assimilation systems to JEDI, opening the door for rapid integration of new scientific advancements, greater‬
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‭consistency across modeling systems, and enhanced collaboration across research communities and operational‬

‭centers.‬

‭This study aims to develop an initial aerosol analysis capability for the AQM system by assimilating PM₂.₅‬

‭observations using the JEDI 3D-Var framework. Low-cost PurpleAir data are valuable for real-time air quality‬

‭monitoring and are displayed in the‬‭AirNow Fire and‬‭Smoke Map (‬‭https://fire.airnow.gov/‬‭, last access:‬‭July 19‬

‭2025). However, their impact on numerical air quality prediction has not been thoroughly studied.‬‭In addition‬‭to‬

‭AirNow PM₂.₅ measurements, this study also evaluates the impact of assimilating PurpleAir observations.‬

‭The paper is organized as follows: section 2 provides a description of‬‭Methodology including‬‭the NOAA’s‬‭AQM‬

‭system, 3D-Var approach, and JEDI‬‭PM₂.₅ assimilation‬‭.‬‭Experimental setup is presented in section 3 including case‬

‭description, AQM configuration, AirNow and PurpleAir‬‭PM₂.₅ observations and background errors setup‬‭. Results‬

‭are described in section 4. A summary and conclusion are presented in the final section.‬

‭2 Methodology‬

‭2.1 AQMv7 overview‬

‭The NOAA’s regional operational AQMv7 system was developed through the online coupling of the Finite-Volume‬

‭version 3 (FV3) dynamical core -based atmospheric model (‬‭Black et al 2021)‬‭with the EPA’s Community‬‭Multiscale‬

‭Air Quality (CMAQ) model v5.2.0 within the UFS framework (Huang et al., 2025). In this UFS-AQM online‬

‭system, CMAQ is treated as an atmospheric chemistry column model to simulate atmospheric chemistry reactions‬

‭that govern concentrations of chemical species including gas- and aerosol-phase species. The transport terms of‬

‭chemical species are handled by the FV3 dynamical core in the same way as other physics tracers (Huang et al.,‬

‭2025). Aerosol module version 6 (AERO6) (Zhang et al. 2018) is utilized by CMAQ to simulate aerosol processes.‬

‭The AQMv7 system is configured over the North American domain with a grid-spacing of 13 km and 65 vertical‬

‭levels, extending up to 0.2 hPa. In total, AERO6 simulates 76 aerosol-related variables. Additional information‬

‭about the UFS-AQM online system can be found in Huang et al. (2025).  In this research, the model configuration is‬

‭the same as the operational AQMv7 setup except for running over the CONUS domain with a 3 hourly cycling‬

‭interval.‬

‭2.2 PM₂.₅ assimilation within JEDI 3D-Var‬

‭In the JEDI framework, a series of components are provided to create a flexible, comprehensive data assimilation‬

‭system. The JEDI three-dimensional variational (3D-Var) component is used to assimilate PM2.5 for AQMv7.‬‭The‬

‭3D-Var method is chosen for its operational feasibility, primarily due to its low computational cost and the fact that‬

‭it does not require an ensemble prediction system.‬

‭4‬

‭102‬

‭103‬

‭104‬

‭105‬

‭106‬

‭107‬

‭108‬

‭109‬

‭110‬

‭111‬

‭112‬

‭113‬

‭114‬

‭115‬

‭116‬

‭117‬

‭118‬

‭119‬

‭120‬

‭121‬

‭122‬

‭123‬

‭124‬

‭125‬

‭126‬

‭127‬

‭128‬

‭129‬

‭130‬

‭131‬

https://doi.org/10.5194/egusphere-2025-4098
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



‭In practice, a 3D-Var data assimilation system typically uses an incremental approach to minimize a quadratic cost‬

‭function which is defined in terms of the analysis increment‬ ‭relative to the guess state‬ ‭:‬δ‭𝑥‬ ‭𝑥‬
‭𝑔‬

‭(1)‬‭𝐽‬(δ‭𝑥‬) = ‭1‬
‭2‬ (δ‭𝑥‬ − δ‭𝑥‬

‭𝑔‬
)‭𝐵‬−‭1‬(δ‭𝑥‬ − δ‭𝑥‬

‭𝑔‬
)‭𝑇‬ + ‭1‬

‭2‬ (‭𝐇‬[δ‭𝑥‬] − ‭𝑑‬))‭𝑅‬−‭1‬(‭𝐇‬[δ‭𝑥‬] − ‭𝑑‬)‭𝑇‬

‭Where:‬

‭●‬ ‭is the guess state departure‬‭from background state‬ ‭,‬ ‭which is usually‬‭taken from a‬δ‭𝑥‬
‭𝑔‬

=‭𝑥‬
‭𝑏‬
‭ ‬ − ‭𝑥‬

‭𝑔‬
‭𝑥‬

‭𝑏‬

‭previous short-term forecast.‬

‭●‬ ‭H‬‭is the linearized observation operator of nonlinear‬‭observation operator‬‭H‬‭.‬

‭●‬ ‭B‬‭and‬‭R‬‭are the background and observation error covariance‬‭matrices, respectively.‬

‭●‬ ‭is the innovation vector, defined as:‬‭𝑑‬

‭(2)‬‭𝑑‬ = ‭𝑦‬ − ‭𝐻‬(‭𝑥‬
‭𝑔‬
)

‭with‬ ‭representing the observation vector.‬‭𝑦‬

‭Once the increment‬ ‭is obtained, the analysis‬‭state‬ ‭is reconstructed as:‬δ‭𝑥‬ ‭𝑥‬‭𝑎‬

‭(3)‬‭𝑥‬‭𝑎‬ = ‭𝑥‬
‭𝑔‬

+ δ‭𝑥‬ ‭ ‬

‭2.2.1 PM₂.₅ observation operator‬

‭In AQMv7, the modal approach taken in the CMAQ model represents aerosol particle size distributions as the‬

‭superposition of‬‭three lognormal modes: Aitken (I),‬‭accumulation (J), and coarse (K).‬‭It predicts only‬‭three integral‬

‭properties of the size distribution for each mode: the total particle number concentration, the total surface area‬

‭concentration, and the total mass concentration of the individual chemical components.‬

‭The total PM₂.₅ concentration is calculated as a weighted sum of the individual aerosol concentration across these‬

‭three modes:‬

‭PM₂.₅​=ATOTI⋅PM25AT+ATOTJ⋅PM25AC+ATOTK⋅PM25CO                                                (4)‬

‭Here, ATOTI, ATOTJ, and ATOTK represent the total aerosol mass concentrations in the Aitken, accumulation, and‬

‭coarse modes, respectively. For example, ATOTI is the combined mass of 14 prognostic aerosol variables in the‬

‭Aitken mode from the AERO6 aerosol module. Similarly, ATOTJ and ATOTK are the aggregated mass‬

‭concentrations of 49 and 7 aerosol variables in the accumulation and coarse modes, respectively. PM25AT,‬

‭PM25AC, and PM25CO are mass scaling factors for the three modes that vary by location and time. The aerosol‬

‭variables within the same mode share the same mass scaling factor.‬

‭The PM₂.₅ observation operator is constructed by combining PM₂.₅ transformation recipes in the JEDI Variable‬
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‭Derivation Repository (VADER) with a general spatial interpolation operator in the Unified Forward Operator‬

‭(UFO). VADER is responsible for transforming model variables using user-defined “recipes” to generate new‬

‭variables in model space. For PM₂.₅ assimilation, VADER computes PM₂.₅ from individual aerosol species using‬

‭model-specific transformation, specifically‬‭using‬‭the equation 4 for this application. Since PM₂.₅ composition varies‬

‭by model, these transforms are implemented within VADER to match the specific structure of the regional air‬

‭quality model AQMv7. Once PM₂.₅ is derived in model space, UFO applies a generic spatial interpolation operator‬

‭to map the model-simulated values to the observation locations, enabling computation of the observed minus‬

‭forecast values.‬

‭The input for the PM₂.₅ transformation are mixing ratio of the 70 aerosol variables wrt dry air in unit ug/kg, the‬

‭three mass scaling factors in the three modes, and dry air density for unit conversion. The output product is the‬

‭PM₂.₅ in unit ug/m‬‭3‬‭. It is noted that a recipe that‬‭uses temperature, surface pressure, and delta pressure to derive the‬

‭dry air density in case the dry air density is not found in the input variable list into VADER.‬

‭The JEDI/VADER PM₂.₅ recipe provides nonlinear (NL), tangent linear (TL), and adjoint (AD) transforms of PM₂.₅‬

‭that keeps the output products in the same grid space as the input variables. Hence, the generic interpolation operator‬

‭in UFO is used to connect the model-derived 3D PM₂.₅ fields with observed surface PM₂.₅ measurements. This‬

‭respects the JEDI paradigm of keeping the UFO part of the JEDI model independent.‬

‭2.2.2 Background error covariance modeling‬

‭In a 3D-Var system, the background error covariance (BEC) determines both the spatial spreading of information‬

‭from observations and the magnitude of the analysis increments along with the observation error variance.‬

‭The background error covariance matrix B can be decomposed into a standard deviation matrix (Σ) and a correlation‬

‭matrix (C), as follows:‬

‭B=ΣCΣ                                                                                                                                             (5)‬

‭The correlation matrix C is generally non-diagonal. Σ is a diagonal matrix, with the standard deviations of the‬

‭background errors for each variable on the diagonal.‬

‭The error modeling of the correlation matrix and standard deviations usually apply to control variables. In the first‬

‭implementation of aerosol data assimilation in JEDI for AQMv7, the control variables are defined as individual‬

‭forecast aerosol variables, resulting in 70 control variables for AQMv7 with the AERO6 aerosol mechanism. The‬

‭setup of background error standard deviation and correlation modeling will be described in Section 3: Experimental‬

‭setup.‬

‭2.2.3 Minimization Algorithm (DRIPCG)‬
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‭JEDI provides several minimization algorithm options. In this paper, we use the Derber–Rosati Inexact‬

‭Preconditioned Conjugate Gradient (DRIPCG) algorithm (Derber and Rosati, 1989),‬‭as implemented in the‬‭JEDI's‬

‭OOPS (Object-Oriented Prediction System) framework. DRIPCG has been extensively tested and is chosen here for‬

‭stability and convergence efficiency.‬

‭3 Experimental setup‬

‭3.1 The September 2020 fire event‬

‭The wildfires of September 2020 ranked among the most intense in the U.S. in recent years. These fires produced‬

‭dense smoke that initially moved westward over the Willamette Valley and eventually blanketed the broader region.‬

‭As a result, air quality rapidly deteriorated to hazardous levels, marking one of the worst air quality periods in recent‬

‭decades (Mass et al., 2021). Wildfire smoke originating from California, Oregon, and Washington was injected into‬

‭the free troposphere and transported across the country by prevailing winds, leading to hazy conditions in several‬

‭states. According to Li et al. (2021), from August to October 2020, wildfires in the western U.S. contributed 23% of‬

‭surface PM₂.₅ across the contiguous United States (CONUS), with higher contributions observed along the Pacific‬

‭Coast (43%) and in the Mountain Region (42%). This study focuses on the peak fire activity occurring between‬

‭September 1 and 21.‬

‭3.2 PM₂.₅ observations‬

‭In this study, surface PM₂.₅ observations were obtained from two sources: AirNow and PurpleAir observing‬

‭networks. These datasets differ in sensor type, spatial coverage, and quality control (QC) requirements. AirNow‬

‭provides regulatory-grade measurements from federal, state, and local monitoring stations, while PurpleAir is a‬

‭low-cost, community-based network of air quality sensors. PurpleAir sensors are widely deployed by individuals‬

‭and communities, providing real-time data on PM₂.₅ concentrations as well as meteorological variables such as‬

‭temperature, pressure, and relative humidity. Only the data reported from outdoor PM2.5 sensors are used in this‬

‭study. The PurpleAir data were available for registered users through the  PurpleAir API.‬

‭(https://community.purpleair.com/t/api-use-guidelines/1589)‬

‭3.2.1 PurpleAir PM₂.₅ quality control and correction‬

‭Quality control and correction of PurpleAir data followed the methodology described in Barkjohn et al. (2021).‬

‭Readers are referred to that paper for further details.‬‭A correction is required because the PurpleAir raw‬‭data usually‬

‭overestimate PM2.5 concentrations under typical ambient and smoke-impacted conditions.‬‭The following quality‬

‭control (QC) filters were applied to the raw PurpleAir PM₂.₅ measurements:‬

‭●‬ ‭Reported PM₂.₅ values from‬ ‭two Plantower sensors‬‭within the PurpleAir sensor (channels A and B)‬‭must‬

‭be nonnegative.‬
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‭●‬ ‭The PurpleAir sensor‬‭channel A and B consistency:‬

‭○‬ ‭Absolute difference < 5 μg/m³,‬‭or‬

‭○‬ ‭Relative difference within 61%.‬

‭●‬ ‭PM₂.₅ values must not exceed PM10 values.‬

‭●‬ ‭PM₂.₅ values must be less than 3000 μg/m³ (upper threshold).‬

‭●‬ ‭Gross check of relative humidity with range 0-100%.‬

‭Only PurpleAir PM₂.₅ measurements that passed all the above QC criteria were retained for subsequent correction.‬

‭3.2.2 PurpleAir PM₂.₅ correction‬

‭Correction of PurpleAir PM₂.₅ measurements was performed using a multiple linear regression model based on‬

‭sensor-reported PM₂.₅ (PA) and relative humidity (RH), following the correction formula proposed by Barkjohn et‬

‭al. (2021):‬

‭PM₂.₅​=0.524×PA−0.0862×RH+5.75                                                                                             (6)‬

‭We adopt the above equation because it was United States-wide valid by fitting‬‭data from September 2017‬‭until‬

‭January 2020. Though the above correction equation is originally for 24h averaged PM₂.₅,‬‭a similar regression‬

‭equation was derived from the September 2020 1h averaged‬‭PM₂.₅‬‭dataset:‬

‭PM₂.₅​=0.508×PA−0.0449×RH+4.89                                                                                             (7)‬

‭The close similarity between the two equations supports the consistency and robustness of the correction method‬

‭across datasets and time periods.‬

‭To reduce random sensor noise and improve comparability with the model resolution (~13 km), the corrected‬

‭PurpleAir PM₂.₅ data were spatially averaged onto a 0.1° × 0.1° latitude–longitude grid. PurpleAir shows a good‬

‭coverage of Washington, Oregon, California and Colorado, and more observations of Arizona, Utah, New Mexico,‬

‭Texas.‬

‭3.2.3 Observation error assignment‬

‭Observation error standard deviations were assigned to each network:‬

‭●‬ ‭AirNow PM₂.₅: 5% of observed value‬

‭●‬ ‭PurpleAir PM₂.₅: 10% of observed value‬

‭The values above are based on the EPA’s definition of acceptable measurement uncertainty, which specifies a 10%‬

‭coefficient of variation for total precision. The AirNow PM₂.₅ observation errors were set to 5% of the observed‬

‭values. Park et al. (2022) also used a 5% error specification for assimilating PM₂.₅ observations, though their study‬
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‭focused on observation networks over China and Korea.‬‭For PurpleAir PM₂.₅ data, the observation errors were set‬

‭to 10%, reflecting the higher likelihood of greater uncertainties associated with lower-cost sensors. For comparison,‬

‭the default PM₂.₅ observation error configuration in Gridpoint Statistical Interpolation (GSI) (Pagowski et al., 2012;‬

‭Wang et al., 2021) includes a measurement error modeled as 1.5 + 0.75% × PM₂.₅, along with a representativeness‬

‭error component. At the current model resolution of 13 km, the error specification used in this study reduces the‬

‭influence of large PM₂.₅ observations, particularly those exceeding approximately 55 μg/m³ for AirNow monitors‬

‭and 25 μg/m³ for PurpleAir sensors.‬

‭Figure 1a–b shows the spatial distribution of AirNow and PurpleAir PM₂.₅ monitoring stations at 1200 UTC on‬

‭September 16, 2020. Figures 1c–d display the time series of domain averaged PM₂.₅ values and station counts from‬

‭the AirNow and PurpleAir networks, including matched stations between the two. PurpleAir sensors are especially‬

‭concentrated in densely populated areas, leading to notable spatial variability in observation coverage during the‬

‭September 2020 wildfire events. Coverage is particularly dense in urban regions of the western United States (e.g.‬

‭California, Oregon, Washington, Utah, Arizona and Colorado), while rural and remote areas have significantly fewer‬

‭sensors, for example, Nevada and North Dakota. The number of AirNow stations ranges from approximately 800 to‬

‭900, while PurpleAir stations number between 1,160 and 1,300. Dropouts in the AirNow network lead to sudden‬

‭decreases in station count and corresponding drops in the PM₂.₅ time series. In contrast, the PurpleAir network‬

‭shows a general upward trend in station count, with no major data dropouts observed.‬
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‭(b)‬

‭(c)‬

‭(d)‬

‭Figure 1.‬‭(a-b). Spatial distribution of AirNow(AN)‬‭and PurpleAir(PA) PM₂.₅ monitoring stations on 1200 UTC 16‬

‭September 2020. (c). Time series of domain averaged PM₂.₅ values and numbers from AirNow and PurpleAir‬

‭observing networks. (d)  Time series of domain averaged PM₂.₅ values and numbers for matched AirNow and‬

‭PurpleAir stations.‬
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‭3.3 Background error covariance‬

‭In this study, the background error standard deviation (Σ) for each control variable is constructed based on the‬

‭background forecast; specifically, the error standard deviations of an aerosol variable are prescribed as proportional‬

‭to its background values.‬

‭The proportional scaling factor‬‭s‬‭is approximately‬‭estimated by building a linear relationship between the PM₂.₅‬

‭standard error (Σ) and the background forecast‬ ‭PM₂.₅ concentrations:‬‭𝑃𝑀‬
‭2‬.‭5‬
‭𝑏𝑘𝑔‬

‭Σ=s.‬ ‭(8)‬‭𝑃𝑀‬
‭2‬.‭5‬
‭𝑏𝑘𝑔‬

‭The scaling factor‬‭s‬‭is subsequently applied to all‬ ‭PM₂.₅ components, i.e.,‬‭the 70 prognostic aerosol‬‭variables,‬‭to‬

‭construct their error standard deviations.‬

‭This proportionality-based approach has also been adopted in the MOCAGE operational system (Colette et al.,‬

‭2024), where background error standard deviations are similarly prescribed relative to background concentrations as‬

‭a first-order approximation.‬

‭Tang et al. (2023) tested a similar method, in which the background PM₂.₅ error variance (Σ²) is first estimated using‬

‭the Hollingsworth–Lönnberg method (Hollingsworth and Lönnberg, 1986). A linear relationship is then established‬

‭between the estimated PM₂.₅ standard error (Σ) and the background forecast‬ ‭.‬‭𝑃𝑀‬
‭2‬.‭5‬
‭𝑏𝑘𝑔‬

‭Here we take the same idea but using an alternative approach to roughly estimate the background PM₂.₅ forecast‬

‭error variance  (Σ²). The background PM₂.₅ error variance (‬‭Σ²‬‭) is estimated using PM₂.₅ innovation information‬‭𝑑‬
‭𝑏‬
‭𝑜‬

‭and observation error information‬ ‭defined‬‭in the subsection 2.2, specifically,‬‭Ɛ‬‭𝑜‬

‭(9)‬‭𝐸‬(‭Ɛ‬‭𝑏‬‭Ɛ‬‭𝑏𝑇‬) = ‭𝐸‬(‭𝑑‬
‭𝑏‬
‭𝑜‬‭𝑑‬

‭𝑏‬
‭𝑜𝑇‬) − ‭𝐸‬(‭Ɛ‬‭𝑜‬‭Ɛ‬‭𝑜𝑇‬)

‭Equation 9 is valid under the assumption that observation and background errors are uncorrelated. This assumption‬

‭is reasonable when the innovation vector‬ ‭is calculated using forecasts from a free-running model without any‬‭𝑑‬
‭𝑏‬
‭𝑜‬

‭aerosol data assimilation.‬

‭In this study, short-term (e.g., 3-hour) PM₂.₅ forecasts from a free run conducted during 1–21 September 2020 were‬

‭used to compute the innovation vector‬‭d‬‭defined in‬‭Equation 2. This free run, referred to as the‬‭control‬‭run‬‭, is‬

‭described in detail in the following section. Based on the innovations and observation errors defined in subsection‬

‭3.2.3, which serve as inputs to Equation 9 for estimating background standard deviation error of PM₂.₅, then a‬

‭scaling factor‬‭s‬‭was estimated using Equation 8, with‬‭the background PM₂.₅ standard deviation error and‬

‭background values as inputs. This scaling factor was subsequently applied in all assimilation experiments presented‬
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‭in this study.‬

‭This proportionality-based approach implicitly assumes that displacement errors in background don’t dominate,‬

‭focusing the assimilation process on correcting amplitude. It offers several benefits:‬

‭●‬ ‭It helps constrain analysis increments to physically meaningful regions. For example, it prevents the‬

‭generation of sea salt aerosol increments over inland areas where no sea salt is present in the background.‬

‭This is a problem that can occur when using GSI’s height-dependent or latitude–height-dependent‬

‭background error variance formulations, particularly when individual aerosol species are used as control‬

‭variables.‬

‭●‬ ‭It introduces location- and time-dependent background error variance information, improving the realism of‬

‭background error specification. Moreover, the aerosol variables that dominate background errors vary by‬

‭location and assimilation cycle, rather than being consistently dominated by the same species when using‬

‭constant static background error statistics. For example, organic and black carbon typically exhibit the‬

‭largest errors in wildfire regions and downwind areas affected by smoke, whereas other regions may be‬

‭dominated by non-organic aerosols.‬

‭An example of background error standard deviation in PM₂.₅ space from a data assimilation run that assimilated‬

‭both AirNow and PurpleAir PM₂.₅ is shown in Figure 2. This figure is intended to illustrate the main difference to‬

‭static constant background errors, though the actual errors used in the data assimilation experiments are the errors of‬

‭the individual aerosol control variables. It is obvious that this approach produces dynamically location- and‬

‭time-dependent varying error estimates that yields particularly large error variances during the peak fire events from‬

‭10 to 20 September 2020.‬

‭Figure 2.‬‭Domain averaged PM2.5 standard deviations‬‭for the data assimilation run that assimilated both AirNow‬

‭and PurpleAir PM2.5.‬
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‭The background error correlation matrix C is modeled using a generic diffusion correlation operator designed for‬

‭short length scales, as implemented in the System-Agnostic Background Error Representation (SABER) repository‬

‭(Sluka, 2024). A horizontal cutoff scale of 100 km is applied, consistent with estimates derived from NMC statistics‬

‭in previous GSI applications (Wang et al., 2021). For vertical correlations, this study uses a cutoff scale of 12 model‬

‭levels, which helps confine the influence of surface PM₂.₅ observations within the average daytime planetary‬

‭boundary layer (PBL) height (~1450 m) and has demonstrated improved surface PM₂.₅ prediction as will be‬

‭discussed in Section 4.‬

‭3.4 Update of total particle number and surface area concentrations‬

‭After the aerosol mass concentration has been analyzed,‬‭total particle number concentration, total surface‬‭area‬

‭concentration‬‭can be updated accordingly. For simplicity,‬‭it is assumed that the ratio of the particle number‬

‭concentration to total particulate volume within each mode (I, J, K) remains the same as in the background. Total‬

‭particulate volume is used instead of mass mixing ratio because it is proportional to the particle number‬

‭concentration (see Eq. 3 in Binkowski and Roselle, 2003). A similar assumption was adopted by Li (2013) to update‬

‭number concentrations for the WRF-Chem model.‬

‭The number of particles is updated using the following relation:‬

‭=‬ ‭/‬ ‭×‬ ‭(10)‬‭𝑁‬
‭𝑎‬

‭𝑁‬
‭𝑏‬

‭𝑉‬
‭𝑏‬

‭𝑉‬
‭𝑎‬

‭Where:‬

‭●‬ ‭and‬ ‭are the number of particles‬‭in the analysis and background, respectively, within each mode.‬‭𝑁‬
‭𝑎‬

‭𝑁‬
‭𝑏‬

‭●‬ ‭and‬ ‭are the total particulate volumes‬‭in the analysis and background, respectively, within the same‬‭𝑉‬
‭𝑎‬

‭𝑉‬
‭𝑏‬

‭mode.‬

‭The total particulate volume (‬ ‭or‬ ‭) within each mode is calculated by dividing the mass concentration of each‬‭𝑉‬
‭𝑎‬

‭𝑉‬
‭𝑏‬

‭aerosol variable by its corresponding density in that mode, and then summing the results. This updating approach‬

‭implicitly assumes that changes in volume across the three modes are driven solely by variations in particle number,‬

‭rather than shifts in the aerosol size distribution. The total particulate surface area within each mode is then updated‬

‭using the same volume ratio, i.e.,‬ ‭/‬ ‭(Eq.10) multiplied by the background surface area.‬‭𝑉‬
‭𝑎‬

‭𝑉‬
‭𝑏‬

‭In preparatory work for this study,‬‭six-hourly cycling‬‭experiments (Wang et al., 2025) have shown that updating‬

‭these variables is crucial for improving AQMv7 performance. In contrast, previous work using GSI with earlier‬

‭developmental versions of AQM did not update these variables, primarily because those model versions were less‬

‭advanced than the current operational AQMv7. As a result, there was still significant room for improving prediction‬
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‭skills.‬

‭3.5 Experiments‬

‭Table 1 provides a description of the experiments. Four experiments were conducted to evaluate the performance of‬

‭JEDI/AQM PM₂.₅ DA. The first experiment is a control run (CTR), in which meteorological initial and boundary‬

‭conditions are updated every 3 hours, while chemical and aerosol fields are carried over from the 3-hour forecast of‬

‭the previous cycle. The other three experiments incorporate data assimilation: DA_AN, DA_PA, and DA_ANPA,‬

‭which assimilate AirNow PM₂.₅ only, PurpleAir PM₂.₅ only, and both AirNow and PurpleAir PM₂.₅ observations,‬

‭respectively.‬

‭Like the CTR experiment, all DA experiments are conducted as 3-hourly cycling runs, with PM₂.₅ observations‬

‭assimilated every 3 hours. 24-hour forecasts are initialized four times daily at 0000 UTC, 0600 UTC, 1200 UTC,‬

‭and 1800 UTC. The experimental period spans from 1200 UTC on September 1 to 1800 UTC on September 21,‬

‭2020.‬

‭Table 1. Descriptions of the experiments.‬

‭Experiment‬ ‭Data‬
‭Assimilation‬

‭PM₂.₅ Observations‬
‭Assimilated‬ ‭Aerosol Fields‬

‭CTR‬ ‭No‬ ‭None‬ ‭Carried over from previous‬
‭cycle's 3-hour forecast‬

‭DA_AN‬ ‭Yes‬ ‭AirNow PM₂.₅ only‬ ‭Updated by Assimilation‬

‭DA_PA‬ ‭Yes‬ ‭PurpleAir PM₂.₅ only‬ ‭Updated by Assimilation‬

‭DA_ANPA‬ ‭Yes‬ ‭AirNow + PurpleAir PM₂.₅‬ ‭Updated by Assimilation‬

‭4 Results‬

‭4.1. Results from all cycles‬

‭This section provides an overview of the impact of DA on PM₂.₅ forecasts. A total of 80 forecasts—initialized four‬
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‭times daily from 0000 UTC on September 2 to 1800 UTC on September 21, 2020—are used to evaluate model‬

‭performance.‬‭AirNow PM2.5 observations are used to‬‭verify the forecast performance.‬‭Forecast errors‬‭are assessed‬

‭using bias, mean absolute error (MAE), and root mean square error (RMSE). Forecast performance is evaluated‬

‭using box plots and performance diagrams. The box-and-whisker plots illustrate the distribution, spread, and central‬

‭tendency of forecast errors, while the performance diagrams highlight forecast skill (e.g., Critical Success Index,‬

‭CSI). Time series of PM₂.₅ at various forecast hours are presented to examine the temporal evolution of forecast‬

‭performance. Additionally, spatial distributions of PM₂.₅ including observations, forecasts, forecast errors, and‬

‭forecast differences are analyzed to evaluate the spatial impact of data assimilation on PM₂.₅ predictions. AirNow‬

‭PM₂.₅ observations are used as reference to evaluate forecast skills.‬

‭Figure 3 presents the bias, mean absolute error (MAE), and root mean square error (RMSE) for the 1–24 h forecast‬

‭of domain-averaged PM₂.₅. Domain averages are computed over EPA Regions 1–10, which include all states in the‬

‭mainland United States. The detailed description of EPA regions can be found on EPA webpage:‬

‭https://www.epa.gov/aboutepa/regional-and-geographic-offices#regional‬‭,‬‭last access on 11 July 2025. Overall, all‬

‭data assimilation experiments show improved forecast skill compared to the control run. The added value of‬

‭assimilating PurpleAir PM₂.₅ data alongside AirNow observations is evident in the consistent MAE reduction (Fig.‬

‭3b). Its impact on RMSE is also positive, though relatively small.‬

‭Figure 3.‬‭PM₂.₅ forecast errors for 1–24 h lead times‬‭based on 80 forecasts initialized four times daily during‬

‭September 2–21, 2020. Domain-averaged over EPA Regions 1–10.‬

‭(a) Bias, (b) Mean Absolute Error (MAE), (c) Root Mean Square Error (RMSE).‬

‭Figure 4 shows box-and-whisker plots of PM₂.₅ forecast bias. Across all forecast hours, the interquartile range‬

‭(IQR)—represented by the height of the boxes—is consistently smaller for the DA experiments compared to the‬

‭control run. This indicates reduced forecast error spread between the 25th and 75th percentiles and suggests more‬

‭consistent forecasts in the DA experiments. Although the median forecast bias in the control run is sometimes closer‬

‭to zero, the DA_ANPA experiment performs comparably in terms of central tendency while showing clear‬
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‭improvements in reducing the mean forecast bias, as also reflected in Figure 3a. Among the DA experiments,‬

‭DA_AN and DA_ANPA show the most consistent improvement at 24-hour lead times, with DA_ANPA slightly‬

‭outperforming others during the early forecast hours (e.g., hour 1 to 12). This suggests that assimilating PurpleAir‬

‭observations in addition to AirNow helps reduce bias and brings the forecasts closer to observed PM₂.₅ values in the‬

‭short term.‬

‭Figure 4.‬‭Box-and-whisker plot of PM₂.₅ forecast bias.‬‭Bottom edge = Q1 (25th percentile); Top edge = Q3 (75th‬

‭percentile);Height = Interquartile Range (IQR = Q3 − Q1); Horizontal line inside box: The median (50th percentile);‬

‭Whiskers: Extend to the min and max values within 1.5 × IQR from Q1 and Q3.‬

‭Figure 5 displays performance diagrams of PM₂.₅ forecast at forecast hours 1, 12, and 24 with PM₂.₅ threshold of‬

‭12 µg/m³ and 35µg/m³. Performance diagrams show consistent improvements in CSI scores across all forecast hours‬

‭for all DA experiments, with DA_AN and DA_ANPA outperforming the DA_PA experiment. The performance with‬

‭PM₂.₅ threshold of 5 µg/m³ (figure not shown) is similar to that of 12 µg/m³.‬

‭Figure 6 presents shows time series of PM₂.₅ averaged over EPA Regions 1–10 at forecast hours 1, 12, and 24,‬

‭respectively. Consistent with the evaluations in Figures 3 and 4, all DA experiments generally improve PM₂.₅‬

‭forecasts. Notably, all DA experiments help correct underpredictions during September 2–9 and 14–17. In addition,‬

‭the substantial overprediction during‬‭September 10-13‬‭observed in the control run, largely due to inaccurate fire‬

‭emissions, is partially mitigated by the DA experiments. Among the DA configurations, DA_AN and DA_ANPA‬

‭show comparable performance and both outperform DA_PA.‬
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‭(a)‬ ‭(b)‬

‭Figure 5.‬‭(a). Performance diagram for forecast hours‬‭1, 12, and 24 with a PM₂.₅ threshold of 12 µg/m³. (b) Same as‬

‭(a), but using a threshold of 35 µg/m³.‬
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‭(c)‬

‭Figure 6.‬‭Time series of PM₂.₅ averaged over EPA Regions‬‭1–10 for (a) forecast hour 1, (b) forecast hour 12, and‬

‭(c) forecast hour 24. The y-axis is shown on a logarithmic scale.‬

‭While we have investigated the impact of DA on PM₂.₅ forecasts in terms of temporal evolution, it is also important‬

‭to examine the spatial distribution of forecast fields, associated errors, and how DA influences these spatial patterns.‬

‭Figure 7 presents the spatial distribution of temporally averaged PM₂.₅ forecasts at forecast hour 1, based on 80‬

‭forecasts initialized four times daily (0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC) from September 2 to 21.‬

‭Figure 7a shows the PM₂.₅ field from the control run (shaded), overlaid with AirNow observations. The effects of‬

‭wildfire events are clearly seen across California, Oregon, and Washington—where the fires occurred—as well as in‬

‭downstream regions impacted by smoke advection and transport.‬

‭Forecast errors in the control run are evident in Figure 6a but are more clearly highlighted in Figure 7b, which shows‬

‭the difference between the control run and AirNow observations. Significant overpredictions appear along the‬

‭California coast, as well as in parts of the Midwest and Northeast U.S., including Tennessee, Kentucky, West‬

‭Virginia, and Virginia, which are approximately represented by EPA regions 1, 2, 3, 5 and 7. Conversely, notable‬

‭underpredictions are found over Colorado, New Mexico, much of Texas and Oklahoma, and several Gulf Coast‬

‭states which are in EPA regions 4 and 6.‬

‭Compared to the control run, both DA_AN (Fig. 7c-d) and DA_PA (Fig. 7e-f) show similar spatial correction‬

‭patterns across California, Oregon, and Washington, particularly in reducing overpredictions along the California‬

‭coast. They also produce comparable large-scale adjustments across the Northeast, Midwest, and Southern U.S.,‬

‭with error patterns (Fig. 7d and 7f) largely opposite in sign to those in the CTR–AirNow difference (Fig. 7b). This‬

‭suggests that both DA experiments effectively mitigate the control run’s over- and underpredictions.‬

‭However, the magnitude of correction is generally smaller in DA_PA than in DA_AN. Notably, DA_PA shows its‬

‭strongest impact over Nevada, northern Utah, Colorado, and southwestern New Mexico, helping to alleviate the‬

‭underpredictions in these regions—similar to improvements seen in DA_ANPA.‬
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‭(a) CTR                                                                               (b) CTR-AirNow‬

‭(c) DA_AN                                                                          (d) DA_AN-CTR‬

‭(e) DA_PA                                                                          (f) DA_PA-CTR‬

‭(g) DA_ANPA                                                                   (h) DA_ANPA-CTR‬

‭Figure 7.‬‭Spatial distribution of average PM₂.₅ at‬‭forecast hour 1, based on 80 forecasts initialized four times daily‬

‭(0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC) during 2–21 September.‬

‭(a) PM₂.₅ in experiment CTR (shaded) overlaid with AirNow PM₂.₅ observations (filled dots).‬
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‭(b) PM₂.₅ bias in experiment CTR.‬

‭(c) PM₂.₅ in experiment DA_AN (shaded) overlaid with AirNow PM₂.₅ observations.‬

‭(d) PM₂.₅ difference between experiments DA_AN and CTR.‬

‭(e) PM₂.₅ in experiment DA_PA (shaded) overlaid with AirNow PM₂.₅ observations.‬

‭(f) PM₂.₅ difference between experiments DA_PA and CTR.‬

‭(g) PM₂.₅ in experiment DA_ANPA (shaded) overlaid with AirNow PM₂.₅ observations.‬

‭(h) PM₂.₅ difference between experiments DA_ANPA and CTR.‬

‭Figure 8 shows the percentage change in MAE (%) between the DA experiments and the control (CTR) experiment‬

‭at forecast hours 1 and 24. Negative values indicate a reduction in MAE. All DA experiments show improvements:‬

‭at forecast hour 1, MAE is reduced by approximately 60% in DA_AN and DA_ANPA, and by around 18% in‬

‭DA_PA. At forecast hour 24, reductions are smaller but still present—about 6–7% in DA_ANPA and around 2% in‬

‭DA_PA. MAE is reduced at nearly all stations at forecast hour 1, and at most stations by forecast hour 24.‬

‭In summary, DA also improves the spatial distribution of PM₂.₅ forecasts. Figure 7 shows that the control run‬

‭exhibits significant regional biases, with overpredictions along the California coast and in parts of the Midwest and‬

‭Northeast (EPA regions 1, 2, 3, 4, and 7), and underpredictions in the Southwest and Gulf Coast (EPA regions 4 and‬

‭6). All three DA experiments reduce these errors, particularly correcting coastal overpredictions and improving‬

‭forecasts in regions affected by wildfires. While DA_PA provides slightly weaker corrections than DA_AN, it‬

‭contributes meaningful improvements in the Mountain West and Southwest.‬
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‭DA_AN vs. CTR‬

‭DA_PA vs. CTR‬

‭DA_ANPA vs. CTR‬

‭Figure 8.‬‭Percentage change in MAE (%) between DA‬‭experiments and the control (CTR) experiment. The‬

‭percentage is calculated as  (MAE(DA)-MAE(CTR))/MAE(CTR)*100.‬

‭Left panels show the 1-hour forecast; the right panels show the 24-hour forecast.‬

‭Top row: DA_AN vs. CTR; Middle row: DA_PA vs. CTR; Bottom row: DA_ANPA vs. CTR.‬

‭4.2. Results from Forecasts Initialized at 1200 UTC‬

‭In this section, we examine the forecasts initialized at 1200 UTC, which is the time when the operational AQM‬

‭launched a 72-hour forecast. Time series of 1–24-hour PM₂.₅ concentrations are analyzed by grouping the EPA‬

‭regions into three areas:‬
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‭●‬ ‭Area A includes EPA Regions 8, 9, and 10, which are the areas where fires occurred and/or were most‬

‭influenced by smoke.‬

‭●‬ ‭Area B includes EPA Regions 1, 2, 3, 5, and 7, where the control run generally shows an overall‬

‭overprediction (see Fig. 6b).‬

‭●‬ ‭Area C includes EPA Regions 4 and 6, which show an overall underprediction in the control run (also‬

‭shown in Fig. 6b).‬

‭Time series of 1–24 h PM₂.₅ forecasts for the above three areas are shown in figure 9. There is a large‬

‭overprediction (spikes) in Area A from September 9 to 11 in the control run, followed by a transition to‬

‭underpredictions from September 12 to 17. The overprediction is due to inaccurate fire emissions, as similar spikes‬

‭are not observed in Area B and C. However, this overprediction contributes to spurious “good” performance in the‬

‭control run during the transition period from September 11 to 12. As shown during this period, the later (~3–24 h)‬

‭forecasts from the DA_AN and DA_ANPA experiments do not outperform the control run, although their first-hour‬

‭forecasts are closer to AirNow observations. Overall, the DA experiments clearly improve both the overprediction‬

‭from September 9 to 11 and the underprediction from September 14 to 17.‬

‭Regarding the forecasts over Areas B and C, the overprediction in Area B and the underprediction in Area C are‬

‭generally improved.‬

‭Figure 10 shows PM₂.₅ forecast error statistics (Bias, MAE, and RMSE) for forecast hours 1–24. At the first‬

‭forecast hour, the DA experiments in Areas A, B, and C outperform the control run across all three metrics. In terms‬

‭of MAE and RMSE, DA_AN and DA_ANPA perform better than both DA_PA and the control run in Areas A and‬

‭B. For the 1–24 h PM₂.₅ forecasts in Area C, all DA experiments outperform the control run in terms of Bias and‬

‭MAE. However, RMSE improvements are only seen up to forecast hours 7–9.‬

‭The impact of additional assimilation of PurpleAir data shows area-dependent behavior. For example, it slightly‬

‭reduces MAE and RMSE in Area A and noticeably reduces Bias, MAE, and RMSE in Area B. In Area C, no clear‬

‭positive impact is observed, although assimilating PurpleAir data alone still results in better performance than the‬

‭control run.‬

‭Performance diagrams (Fig. 11) show consistent improvements in Critical Success Index (CSI) scores across all‬

‭forecast hours for all DA experiments compared to the control run. Among the DA configurations, DA_AN and‬

‭DA_ANPA show comparable performance and both outperform DA_PA at 1h and 12h forecasts.‬
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‭(a)‬

‭(b)‬

‭(c)‬

‭Figure 9.‬‭Time series of 1–24 h PM₂.₅ forecasts: (a)‬‭averaged over EPA Regions 8–10; (b) averaged over EPA‬

‭Regions 1, 2, 3, 5, and 7; and (c) averaged over EPA Regions 4 and 6.‬
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‭Figure 10.‬‭PM₂.₅ forecast statistics at forecast hours‬‭1–24. Top row: averaged over EPA Regions 8–10.; Middle‬

‭row: over EPA Regions 1,2,3,5,7, and Bottom row: over EPA Regions 4,6.‬
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‭Figure 11.‬‭Performance diagram for forecast hours‬‭1, 12, and 24 with a PM₂.₅ threshold of (a) 12 µg/m³, (b)‬

‭35 µg/m³.‬

‭5 Summary and discussion‬

‭The latest version of NOAA's regional AQM system was implemented and became operational on May 14, 2024.‬

‭This system has been developed through the online coupling of the Finite Volume Cubed Sphere (FV3) atmospheric‬

‭model with the Environmental Protection Agency (EPA)'s Community Multiscale Air Quality (CMAQ) model‬

‭within the Unified Forecast System (UFS) framework. In order to provide improved initial conditions for AQM‬

‭supporting enhanced prediction of wildfire impacts on air quality prediction, the capability to assimilate PM2.5‬

‭observations into AQMv7 was developed within JEDI and tested using its 3D-Var assimilation component. Note that‬

‭the developed assimilation scheme can also be used to generate analysis (reanalysis) dataset for other applications,‬

‭for example, providing data for training artificial intelligent models used in air quality prediction.‬

‭Data assimilation experiments were conducted for the September 2020 Western U.S. wildfire episode, using‬

‭3-hourly cycling with observations from the AirNow and PurpleAir networks. Results showed that assimilating‬

‭AirNow PM₂.₅ observations significantly improved 1–24 hour forecast skill. Mean absolute error (MAE) was‬

‭reduced by approximately 60% at forecast hour 1 and 7% at hour 24, relative to forecasts without data assimilation.‬

‭Assimilating PurpleAir data alone yielded more modest improvements—approximately 18% at hour 1 and 2% at‬

‭hour 24—but when combined with AirNow, PurpleAir data provided additional benefit by further reducing MAE‬

‭slightly either compared with AirNow observations (Fig. 3) or PurpleAir observations (Figure not shown). The‬

‭positive impact of the PurpleAir data assimilation during the September 2025 wildfires was also demonstrated in an‬

‭experimental Rapid Refresh Forecast System coupled with Smoke and Dust Model‬‭(Wang et al., 2023), where‬‭it‬

‭significantly reduced the model’s 24-h underprediction of surface PM₂.₅. Considering the PurpleAir data coverage‬
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‭has improved since September 2025, the  results of this study further highlight its potential to complement AirNow‬

‭observations by filling spatial gaps and improving PM₂.₅ forecast skills.‬

‭In this first implementation of aerosol data assimilation in JEDI for AQMv7, the control variables are defined as‬

‭individual forecast aerosol variables. In previous work on aerosol data assimilation for an earlier version of AQM‬

‭using the GSI system (Wang et al., 2021), one option for the control variables was to define them as the total aerosol‬

‭mass in each of the three modes, resulting in just three control variables. A control variable transform (CVT) was‬

‭then applied to partition the analysis increments across these modes to individual aerosol species, based on the ratio‬

‭of each species’ mass to the total mass within the corresponding mode. The use of total aerosol mass in the three‬

‭modes as control variables—thereby reducing the number of control variables from 70 to 3—is planned for a future‬

‭phase of development. The use of total masses as control variables also reduces the cost‬‭of the background‬‭error‬

‭statistics calculation and iterative minimization.‬‭(Kumar et al. 2019). It is noted that the ensemble‬‭based data‬

‭assimilation approach is superior to capture flow-dependent background error covariances and aerosol assimilation‬

‭along with emission updates can be developed when an ensemble prediction system for AQM is there.‬

‭This study focused on surface-level PM₂.₅ and did not incorporate vertical profile constraints with satellite-based‬

‭aerosol optical depth (AOD) retrievals, which could further enhance forecast skill. A key challenge is the need for a‬

‭robust forward operator in the CRTM AOD module—specifically, the creation and validation of lookup tables‬

‭(LUTs) for AOD calculations with AQM. As an intermediate solution, existing LUTs in CRTM, such as the GEOS-5‬

‭LUTs, have been tested by grouping and mapping AQM aerosol species to those used in GEOS-5 (Wang et al.‬

‭2025). However, this approach presents several issues. For instance, AQM does not distinguish between hydrophilic‬

‭and hydrophobic aerosol types of organic carbon and black carbon, whereas GEOS-5 does. Additionally, AQM‬

‭(through CMAQ) uses a modal aerosol representation, while GEOS-5 adopts a bin-based approach, making the‬

‭mapping between the two systems non-trivial. AOD assimilation also depends on an accurate vertical distribution of‬

‭aerosols in the background field so that the CRTM AOD operator can provide meaningful gradient information at‬

‭the correct vertical levels to constrain the analysis update. However, AQM models have shown deficiencies for the‬

‭September 2020 fire events in representing smoke concentrations at and above plume rise levels, largely due to how‬

‭fire emissions are injected into the model. This will be improved in the next update of the operational AQM.‬

‭Code and data availability‬

‭The AQMV7 model, JEDI software and PM₂.₅ and fire emission data we used in this research are publicly available‬
‭on‬‭on Zenodo (‬‭https://doi.org/10.5281/zenodo.17049857‬‭; Wang et al., 2025b).‬

‭Users are referred to the guidance on compiling and running the model:‬
‭https://ufs-srweather-app.readthedocs.io/en/develop/UsersGuide/index.html (Last accessed on August 26, 2025).‬

‭Global Forecast System analysis data were downloaded from the NCAR Research Data Archive:‬
‭https://doi.org/10.5065/D65D8PWK‬‭(last access: Aug 26 2025)‬
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