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19 Abstract. This paper describes efforts to establish aerosol data assimilation capabilities for NOAA’s National Air

20 Quality Forecasting Capability (NAQFC), a regional online air quality modeling (AQM) system under NOAA’s

21 Unified Forecast System (UFS), by assimilating measurements of fine particulate matter (PM,.s, particles with

22 diameters less than 2.5 um). PM,.5 assimilation is developed within the Joint Effort for Data assimilation Integration
23 (JEDI) framework and tested using its 3D-Var data assimilation (DA) component. The PM,.s observation operator is
24 constructed by combining newly developed PM,.s transformation recipes in the JEDI Variable Derivation

25 Repository (VADER) with a general spatial interpolation operator in the Unified Forward Operator (UFO).

26 Cycled DA and forecast experiments were conducted from 1 to 21 September 2020, during a period of Western U.S.
27 wildfires, to assess the impact of assimilating PM.s observations from the AirNow and PurpleAir networks. The

28 control and analysis variables include individual aerosol species, with background error standard deviations

29 generated by scaling their respective background values. Prognostic variables such as aerosol particle number and
30 total particulate surface area are updated accordingly following each analysis update. All DA experiments use a

31 3-hourly cycling interval, with PM,.s observations assimilated every 3 hours. The control experiment uses the same
32 configuration but without any data assimilation. Results show that assimilating either AirNow or PurpleAir PM,.s

33 data reduces 1-24 h forecast errors in terms of mean absolute error (MAE) and root mean square error (RMSE)
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34 compared to the control run over CONUS. Forecast skill, measured using the Critical Success Index (CSI) for PM;.s
35 thresholds of 5, 12, and 35 pg/m?, also improves. AirNow observations have a greater impact overall, while

36 PurpleAir shows its strongest impact over Nevada, northern Utah, Colorado, and southwestern New

37 Mexico—regions with persistent underpredictions in the control run at forecast hour 1. Overall, the assimilation of

38 PurpleAir observations in addition to AirNow data leads to a slight reduction in 3-24 h MAE.

39 1 Introduction

40 Particulate matter with an aerodynamic diameter of 2.5 micrometers or smaller (PM,.s) is a major contributor to

41 poor air quality in the United States, posing significant risks to public health and the environment, and contributing
42 to substantial loss of life. Over the past few decades, poor air quality in the U.S. has contributed to over 100,000

43 premature deaths annually, far exceeding fatalities from all other weather-related causes combined, which average
44 around 500 per year (Huang et al., 2025). Given its public health significance, PMs.s is one of the primary pollutants
45 used in calculating the Air Quality Index (AQI)—a standardized system designed to communicate daily air pollution
46 levels to the public. Elevated PM;.s concentrations frequently result in "unhealthy" AQI ratings, triggering health

47 advisories and public warnings.

48 PM;.5 in the United States originates from a range of both anthropogenic and natural sources. Anthropogenic

49 sources include agricultural activities and combustion processes, such as emissions from motor vehicles, power

50 plants, industrial facilities, and residential heating systems. Among natural sources, wildfires are a particularly

51 significant contributor, especially in the western United States, where their frequency and intensity have escalated
52 dramatically over the past two decades (Wen and Burke, 2021). According to the U.S. Environmental Protection

53 Agency (EPA), wildfires account for approximately 15% to 30% of total PM,.s emissions nationwide (EPA, 2017).
54 While national seasonal averages of PM,.s have generally declined, summer PM,.s concentrations in the western
55 U.S. have remained persistently high, primarily due to wildfire smoke (O'Dell et al., 2019). In addition to degrading
56 air quality, wildfires have caused widespread property loss. Since 2005, more than 99,500 homes, businesses, and
57 other structures have been destroyed by wildfire-related events

58 (https://headwaterseconomics.org/natural-hazards/structures-destroyed-by-wildfire, last access on June 30, 2025),

59 underscoring the urgent need for more effective strategies in air quality monitoring, forecasting, and wildfire

60 management.

61 The National Oceanic and Atmospheric Administration (NOAA) has developed an advanced regional Air Quality
62 Modeling (AQM) prediction system within the Unified Forecast System (UFS) framework to enhance the accuracy
63 of air quality forecasts across the United States, particularly during wildfire events (Huang et al. 2025). The National
64 Air Quality Forecast Capability (NAQFC), operated by NOAA’s National Weather Service (NWS), has been

65 providing operational air quality forecast guidance for over 20 years, with continuous inclusion of new capabilities.
66 Under NAQFC, the AQM version 7 was implemented and became operational on May 14, 2024. A key innovation
67 in this system is the integration of the Real-time Aerosol and fire behavior Visual Estimator (RAVE) — a high
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68 spatiotemporal resolution, satellite-derived wildfire product — which enables a more accurate representation of

69 wildfire emissions. The system also features online coupling of atmospheric and chemical models, allowing

70 dynamic interactions between meteorology and atmospheric chemistry. This integration improves the representation
71 of emissions and ensures real-time feedback of meteorological fields that influence chemical transformations and the
72 transport of pollutants in the atmosphere. The UFS-AQM online system has consistently shown improved

73 performance in simulating major wildfire events, including the significant wildfires in the northwestern coastal

74 regions of the U.S. in September 2020, and widespread smoke transport from Canadian wildfires in the summer of
75 2023. This system was officially implemented on May 14, 2024 as NOAA’s operational air quality prediction system
76 (AQMvV7), replacing the previous offline-coupled the Global Forecast System using the Finite Volume Cube-Sphere
77 dynamical core (GFS-FV3) version 15 with the Community Multiscale Air Quality modeling system (CMAQV5.0.2)
78 modeling system. (Chen et al. 2021).

79 PM,.s data assimilation (DA) has proven effective in reducing errors in air quality forecasts (e.g., Pagowski et al.
80 2010, 2012; Schwartz et al. 2012; Wu et al. 2015; Robichaud 2017; Lee et al. 2021; Chen et al. 2022, Ha 2022;

81 Vogel et al. 2025, among others). Pagowski et al. (2010) demonstrated that fine aerosol forecasts benefit from

82 AirNow PM;.s DA, showing improved verification scores for a period of at least 24 hours. Schwartz et al. (2012)
83 found that assimilating AirNow PM,.5 observations significantly improved surface PM,.s forecasts over the

84 CONUS compared to forecasts without DA. Wu et al. (2015) reported that incorporating ground-based PM.s

85 observations notably enhanced 24-hour forecasts during a severe pollution episode in Shanghai. Similarly, Chen et
86 al. (2022) showed that assimilating multi-source PM,.s data significantly improved WRF-Chem PM,.s forecasts
87 with benefits lasting up to 48 hours. Lee et al. (2021) highlighted the effectiveness of assimilating ground in-situ

88 surface PM2.5 observations in improving the short-term PM2.5 predictions in Northeast Asia.

89 Many operational regional air quality prediction systems around the world use some form of data assimilation to

90 initialize the forecasts. These approaches vary in complexity, ranging from simple optimal interpolation to full

91 variational or ensemble Kalman filter methods (e.g. Robichaud et al. 2016; Wei et al. 2024; Colette et al. 2024). In
92 NOAA'’s current regional air quality model (AQM) operations, aerosol and chemical initial conditions are

93 "warm-started" using 6-hour forecasts from the previous model cycle. The implementation of an aerosol data

94 assimilation system can further enhance short-term air quality forecasts by providing more accurate spatial analyses

95 of initial aerosol distributions.

96 To establish aerosol data assimilation capabilities for NOAA’s regional operational AQM system, we employ the

97 Joint Effort for Data assimilation Integration (JEDI) (Trémolet and Auligné, 2020). JEDI is a flexible, agnostic, and

98 modern data assimilation system applicable to a wide range of forecasting systems (e.g. Liu et al. 2023; Huang et al.

99 2023; Sluka, 2024). JEDI offers a platform that supports efficient scientific development and facilitates the transition
100 from research to operations. As part of a broader strategic shift, NOAA and partner agencies are transitioning their

101 data assimilation systems to JEDI, opening the door for rapid integration of new scientific advancements, greater
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102 consistency across modeling systems, and enhanced collaboration across research communities and operational

103 centers.

104 This study aims to develop an initial aerosol analysis capability for the AQM system by assimilating PM;.s

105 observations using the JEDI 3D-Var framework. Low-cost PurpleAir data are valuable for real-time air quality
106 monitoring and are displayed in the AirNow Fire and Smoke Map (https://fire.airnow.gov/, last access: July 19
107 2025). However, their impact on numerical air quality prediction has not been thoroughly studied. In addition to

108 AirNow PM,.s measurements, this study also evaluates the impact of assimilating PurpleAir observations.

109 The paper is organized as follows: section 2 provides a description of Methodology including the NOAA’s AQM
110 system, 3D-Var approach, and JEDI PM,.s assimilation. Experimental setup is presented in section 3 including case
111 description, AQM configuration, AirNow and PurpleAir PM,.5 observations and background errors setup. Results

112 are described in section 4. A summary and conclusion are presented in the final section.

113 2 Methodology

114 2.1 AQMv7 overview

115 The NOAA'’s regional operational AQMv7 system was developed through the online coupling of the Finite-Volume
116 version 3 (FV3) dynamical core -based atmospheric model (Black et al 2021) with the EPA’s Community Multiscale
117 Air Quality (CMAQ) model v5.2.0 within the UFS framework (Huang et al., 2025). In this UFS-AQM online

118 system, CMAQ is treated as an atmospheric chemistry column model to simulate atmospheric chemistry reactions
119 that govern concentrations of chemical species including gas- and aerosol-phase species. The transport terms of

120 chemical species are handled by the FV3 dynamical core in the same way as other physics tracers (Huang et al.,

121 2025). Aerosol module version 6 (AERO6) (Zhang et al. 2018) is utilized by CMAQ to simulate aerosol processes.

122 The AQMv7 system is configured over the North American domain with a grid-spacing of 13 km and 65 vertical
123 levels, extending up to 0.2 hPa. In total, AEROG6 simulates 76 aerosol-related variables. Additional information

124 about the UFS-AQM online system can be found in Huang et al. (2025). In this research, the model configuration is
125 the same as the operational AQMv7 setup except for running over the CONUS domain with a 3 hourly cycling

126 interval.

127 2.2 PM,.5 assimilation within JEDI 3D-Var

128 In the JEDI framework, a series of components are provided to create a flexible, comprehensive data assimilation
129 system. The JEDI three-dimensional variational (3D-Var) component is used to assimilate PM2.5 for AQMv7. The
130 3D-Var method is chosen for its operational feasibility, primarily due to its low computational cost and the fact that

131 it does not require an ensemble prediction system.
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132 In practice, a 3D-Var data assimilation system typically uses an incremental approach to minimize a quadratic cost

133 function which is defined in terms of the analysis increment 8x relative to the guess state X

134 J(8%) = = (6x — ng)B’l(ax - ng)T + = (H[8x] — d)R '(H[8x] — d)' (1

135 Where:

136 ] ng =x, — %, is the guess state departure from background state x,, which is usually taken from a
137 previous short-term forecast.

138 e H is the linearized observation operator of nonlinear observation operator H.

139 e B and R are the background and observation error covariance matrices, respectively.

140 ® d is the innovation vector, defined as:

141d =y — H(x) 2

142 with y representing the observation vector.

143 Once the increment 8x is obtained, the analysis state x" is reconstructed as:

144 x" = xg + 6x 3)

145 2.2.1 PM,.5 observation operator

146 In AQMv7, the modal approach taken in the CMAQ model represents aerosol particle size distributions as the
147 superposition of three lognormal modes: Aitken (I), accumulation (J), and coarse (K). It predicts only three integral
148 properties of the size distribution for each mode: the total particle number concentration, the total surface area

149 concentration, and the total mass concentration of the individual chemical components.

150 The total PM,.s concentration is calculated as a weighted sum of the individual aerosol concentration across these
151 three modes:

152 PM,.;=ATOTI-PM25AT+ATOTIJ-PM25AC+ATOTK -PM25CO “)

153 Here, ATOTI, ATOTJ, and ATOTK represent the total aecrosol mass concentrations in the Aitken, accumulation, and
154 coarse modes, respectively. For example, ATOTI is the combined mass of 14 prognostic aerosol variables in the
155 Aitken mode from the AEROG6 aerosol module. Similarly, ATOTJ and ATOTK are the aggregated mass

156 concentrations of 49 and 7 aerosol variables in the accumulation and coarse modes, respectively. PM25AT,

157 PM25AC, and PM25CO are mass scaling factors for the three modes that vary by location and time. The aerosol

158 variables within the same mode share the same mass scaling factor.

159 The PM;.5 observation operator is constructed by combining PM;.s transformation recipes in the JEDI Variable
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160 Derivation Repository (VADER) with a general spatial interpolation operator in the Unified Forward Operator

161 (UFO). VADER is responsible for transforming model variables using user-defined “recipes” to generate new

162 variables in model space. For PM,.s assimilation, VADER computes PM,.s from individual aerosol species using
163 model-specific transformation, specifically using the equation 4 for this application. Since PM,.5 composition varies
164 by model, these transforms are implemented within VADER to match the specific structure of the regional air

165 quality model AQMv7. Once PM;.s is derived in model space, UFO applies a generic spatial interpolation operator
166 to map the model-simulated values to the observation locations, enabling computation of the observed minus

167 forecast values.

168 The input for the PM,.s transformation are mixing ratio of the 70 aerosol variables wrt dry air in unit ug/kg, the
169 three mass scaling factors in the three modes, and dry air density for unit conversion. The output product is the
170 PM,.5 in unit ug/m’. It is noted that a recipe that uses temperature, surface pressure, and delta pressure to derive the

171 dry air density in case the dry air density is not found in the input variable list into VADER.

172 The JEDI/VADER PM,.5 recipe provides nonlinear (NL), tangent linear (TL), and adjoint (AD) transforms of PM;.s
173 that keeps the output products in the same grid space as the input variables. Hence, the generic interpolation operator
174 in UFO is used to connect the model-derived 3D PM,.;5 fields with observed surface PM,.5 measurements. This

175 respects the JEDI paradigm of keeping the UFO part of the JEDI model independent.
176 2.2.2 Background error covariance modeling

177 In a 3D-Var system, the background error covariance (BEC) determines both the spatial spreading of information

178 from observations and the magnitude of the analysis increments along with the observation error variance.

179 The background error covariance matrix B can be decomposed into a standard deviation matrix (X) and a correlation

180 matrix (C), as follows:
181 B=XCX (&)

182 The correlation matrix C is generally non-diagonal.  is a diagonal matrix, with the standard deviations of the

183 background errors for each variable on the diagonal.

184 The error modeling of the correlation matrix and standard deviations usually apply to control variables. In the first
185 implementation of aerosol data assimilation in JEDI for AQMv7, the control variables are defined as individual
186 forecast aerosol variables, resulting in 70 control variables for AQMv7 with the AERO6 aerosol mechanism. The
187 setup of background error standard deviation and correlation modeling will be described in Section 3: Experimental

188 setup.

189 2.2.3 Minimization Algorithm (DRIPCG)
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190 JEDI provides several minimization algorithm options. In this paper, we use the Derber—Rosati Inexact
191 Preconditioned Conjugate Gradient (DRIPCG) algorithm (Derber and Rosati, 1989), as implemented in the JEDI's
192 OOPS (Object-Oriented Prediction System) framework. DRIPCG has been extensively tested and is chosen here for

193 stability and convergence efficiency.

194 3 Experimental setup

195 3.1 The September 2020 fire event

196 The wildfires of September 2020 ranked among the most intense in the U.S. in recent years. These fires produced
197 dense smoke that initially moved westward over the Willamette Valley and eventually blanketed the broader region.
198 As aresult, air quality rapidly deteriorated to hazardous levels, marking one of the worst air quality periods in recent
199 decades (Mass et al., 2021). Wildfire smoke originating from California, Oregon, and Washington was injected into
200 the free troposphere and transported across the country by prevailing winds, leading to hazy conditions in several
201 states. According to Li et al. (2021), from August to October 2020, wildfires in the western U.S. contributed 23% of
202 surface PM,.s across the contiguous United States (CONUS), with higher contributions observed along the Pacific
203 Coast (43%) and in the Mountain Region (42%). This study focuses on the peak fire activity occurring between

204 September 1 and 21.

205 3.2 PM,.5 observations

206 In this study, surface PM;.s observations were obtained from two sources: AirNow and PurpleAir observing

207 networks. These datasets differ in sensor type, spatial coverage, and quality control (QC) requirements. AirNow
208 provides regulatory-grade measurements from federal, state, and local monitoring stations, while PurpleAir is a
209 low-cost, community-based network of air quality sensors. PurpleAir sensors are widely deployed by individuals
210 and communities, providing real-time data on PM,.5 concentrations as well as meteorological variables such as
211 temperature, pressure, and relative humidity. Only the data reported from outdoor PM2.5 sensors are used in this
212 study. The PurpleAir data were available for registered users through the PurpleAir API.

213 (https://community.purpleair.com/t/api-use-guidelines/1589)

214 3.2.1 PurpleAir PM,.s quality control and correction

215 Quality control and correction of PurpleAir data followed the methodology described in Barkjohn et al. (2021).
216 Readers are referred to that paper for further details. A correction is required because the PurpleAir raw data usually
217 overestimate PM2.5 concentrations under typical ambient and smoke-impacted conditions. The following quality

218 control (QC) filters were applied to the raw PurpleAir PM,.5 measurements:

219 o Reported PM,.5 values from two Plantower sensors within the PurpleAir sensor (channels A and B) must

220 be nonnegative.
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221 e The PurpleAir sensor channel A and B consistency:
222 o  Absolute difference <5 pg/m?, or

223 o Relative difference within 61%.

224 ® PM,;.5 values must not exceed PM10 values.

225 ® PM,.5 values must be less than 3000 pg/m? (upper threshold).
226 e  Gross check of relative humidity with range 0-100%.

227 Only PurpleAir PM,.s measurements that passed all the above QC criteria were retained for subsequent correction.

228 3.2.2 PurpleAir PM,.5 correction

229 Correction of PurpleAir PM,.s measurements was performed using a multiple linear regression model based on
230 sensor-reported PM,.5 (PA) and relative humidity (RH), following the correction formula proposed by Barkjohn et
231 al. (2021):

232 PM,.5=0.524xPA—0.0862xRH+5.75 (©6)

233 We adopt the above equation because it was United States-wide valid by fitting data from September 2017 until
234 January 2020. Though the above correction equation is originally for 24h averaged PM,.s, a similar regression

235 equation was derived from the September 2020 1h averaged PM,.s dataset:

236 PM,.5=0.508%xPA—0.0449xRH+4.89 (7)

237 The close similarity between the two equations supports the consistency and robustness of the correction method

238 across datasets and time periods.

239 To reduce random sensor noise and improve comparability with the model resolution (~13 km), the corrected
240 PurpleAir PM,.s data were spatially averaged onto a 0.1° x 0.1° latitude—longitude grid. PurpleAir shows a good
241 coverage of Washington, Oregon, California and Colorado, and more observations of Arizona, Utah, New Mexico,

242 Texas.

243 3.2.3 Observation error assignment

244 Observation error standard deviations were assigned to each network:

245 o AirNow PM,.5: 5% of observed value
246 e PurpleAir PM;.5: 10% of observed value

247 The values above are based on the EPA’s definition of acceptable measurement uncertainty, which specifies a 10%
248 coefficient of variation for total precision. The AirNow PM,.s observation errors were set to 5% of the observed

249 values. Park et al. (2022) also used a 5% error specification for assimilating PM,.s observations, though their study



https://doi.org/10.5194/egusphere-2025-4098
Preprint. Discussion started: 29 September 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

250 focused on observation networks over China and Korea. For PurpleAir PM,.5 data, the observation errors were set
251 to 10%, reflecting the higher likelihood of greater uncertainties associated with lower-cost sensors. For comparison,
252 the default PM,.5 observation error configuration in Gridpoint Statistical Interpolation (GSI) (Pagowski et al., 2012;
253 Wang et al., 2021) includes a measurement error modeled as 1.5+ 0.75% x PM,.s, along with a representativeness
254 error component. At the current model resolution of 13 km, the error specification used in this study reduces the

255 influence of large PM;.s observations, particularly those exceeding approximately 55 pg/m? for AirNow monitors

256 and 25 pg/m? for PurpleAir sensors.

257 Figure 1a—b shows the spatial distribution of AirNow and PurpleAir PM,.s monitoring stations at 1200 UTC on

258 September 16, 2020. Figures 1c—d display the time series of domain averaged PM,.s values and station counts from
259 the AirNow and PurpleAir networks, including matched stations between the two. PurpleAir sensors are especially
260 concentrated in densely populated areas, leading to notable spatial variability in observation coverage during the

261 September 2020 wildfire events. Coverage is particularly dense in urban regions of the western United States (e.g.
262 California, Oregon, Washington, Utah, Arizona and Colorado), while rural and remote areas have significantly fewer
263 sensors, for example, Nevada and North Dakota. The number of AirNow stations ranges from approximately 800 to
264 900, while PurpleAir stations number between 1,160 and 1,300. Dropouts in the AirNow network lead to sudden
265 decreases in station count and corresponding drops in the PM,.5 time series. In contrast, the PurpleAir network

266 shows a general upward trend in station count, with no major data dropouts observed.

267 (a)

PM2.5: AirNow @ 2020091612

PM2.5 (pg/m?)

268

269
270
271
272
273
274
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281 Figure 1. (a-b). Spatial distribution of AirNow(AN) and PurpleAir(PA) PM,.s monitoring stations on 1200 UTC 16

282 September 2020. (c¢). Time series of domain averaged PM,.s values and numbers from AirNow and PurpleAir

283 observing networks. (d) Time series of domain averaged PM,.s values and numbers for matched AirNow and

284 PurpleAir stations.

10



https://doi.org/10.5194/egusphere-2025-4098
Preprint. Discussion started: 29 September 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

285 3.3 Background error covariance

286 In this study, the background error standard deviation (X) for each control variable is constructed based on the
287 background forecast; specifically, the error standard deviations of an aerosol variable are prescribed as proportional

288 to its background values.

289 The proportional scaling factor s is approximately estimated by building a linear relationship between the PM;.s

bk, .
290 standard error (X) and the background forecast PM ) Sy PM;.5 concentrations:

291 T=s.PM, " 8)

292 The scaling factor s is subsequently applied to all PM,.s components, i.e., the 70 prognostic aerosol variables, to

293 construct their error standard deviations.

294 This proportionality-based approach has also been adopted in the MOCAGE operational system (Colette et al.,
295 2024), where background error standard deviations are similarly prescribed relative to background concentrations as

296 a first-order approximation.

297 Tang et al. (2023) tested a similar method, in which the background PM,.s error variance (£?) is first estimated using

298 the Hollingsworth—Lonnberg method (Hollingsworth and Lonnberg, 1986). A linear relationship is then established

299 between the estimated PM;.s standard error (X) and the background forecast PM stg.

300 Here we take the same idea but using an alternative approach to roughly estimate the background PM,.5 forecast

301 error variance (2?). The background PM,.s error variance (X2) is estimated using PM;.s innovation information dz

302 and observation error information €’ defined in the subsection 2.2, specifically,

303 E(€'") = E(dd) ) — E(E"E™) )

304 Equation 9 is valid under the assumption that observation and background errors are uncorrelated. This assumption
305 is reasonable when the innovation vector dz is calculated using forecasts from a free-running model without any

306 acrosol data assimilation.

307 In this study, short-term (e.g., 3-hour) PM,.s forecasts from a free run conducted during 1-21 September 2020 were
308 used to compute the innovation vector d defined in Equation 2. This free run, referred to as the control run, is

309 described in detail in the following section. Based on the innovations and observation errors defined in subsection
310 3.2.3, which serve as inputs to Equation 9 for estimating background standard deviation error of PM,.s, then a

311 scaling factor s was estimated using Equation 8, with the background PM,.s standard deviation error and

312 background values as inputs. This scaling factor was subsequently applied in all assimilation experiments presented

11
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313 in this study.

314 This proportionality-based approach implicitly assumes that displacement errors in background don’t dominate,

315 focusing the assimilation process on correcting amplitude. It offers several benefits:

316
317
318
319
320
321
322
323
324
325
326

It helps constrain analysis increments to physically meaningful regions. For example, it prevents the
generation of sea salt aerosol increments over inland areas where no sea salt is present in the background.
This is a problem that can occur when using GSI’s height-dependent or latitude—height-dependent
background error variance formulations, particularly when individual aerosol species are used as control
variables.

It introduces location- and time-dependent background error variance information, improving the realism of
background error specification. Moreover, the aerosol variables that dominate background errors vary by
location and assimilation cycle, rather than being consistently dominated by the same species when using
constant static background error statistics. For example, organic and black carbon typically exhibit the
largest errors in wildfire regions and downwind areas affected by smoke, whereas other regions may be

dominated by non-organic aerosols.

327 An example of background error standard deviation in PM;.s space from a data assimilation run that assimilated

328 both AirNow and PurpleAir PM;.s is shown in Figure 2. This figure is intended to illustrate the main difference to

329 static constant background errors, though the actual errors used in the data assimilation experiments are the errors of

330 the individual aerosol control variables. It is obvious that this approach produces dynamically location- and

331 time-dependent varying error estimates that yields particularly large error variances during the peak fire events from

332 10 to 20 September 2020.

333
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334 Figure 2. Domain averaged PM2.5 standard deviations for the data assimilation run that assimilated both AirNow

335 and PurpleAir PM2.5.
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336 The background error correlation matrix C is modeled using a generic diffusion correlation operator designed for
337 short length scales, as implemented in the System-Agnostic Background Error Representation (SABER) repository
338 (Sluka, 2024). A horizontal cutoff scale of 100 km is applied, consistent with estimates derived from NMC statistics
339 in previous GSI applications (Wang et al., 2021). For vertical correlations, this study uses a cutoff scale of 12 model
340 levels, which helps confine the influence of surface PM,.s observations within the average daytime planetary

341 boundary layer (PBL) height (~1450 m) and has demonstrated improved surface PM;.s prediction as will be

342 discussed in Section 4.
343 3.4 Update of total particle number and surface area concentrations

344 After the aerosol mass concentration has been analyzed, total particle number concentration, total surface area

345 concentration can be updated accordingly. For simplicity, it is assumed that the ratio of the particle number

346 concentration to total particulate volume within each mode (I, J, K) remains the same as in the background. Total
347 particulate volume is used instead of mass mixing ratio because it is proportional to the particle number

348 concentration (see Eq. 3 in Binkowski and Roselle, 2003). A similar assumption was adopted by Li (2013) to update

349 number concentrations for the WRF-Chem model.

350 The number of particles is updated using the following relation:
351N =N,V xV (10)
352 Where:

353 e N « and N , are the number of particles in the analysis and background, respectively, within each mode.

354 ° Va and Vb are the total particulate volumes in the analysis and background, respectively, within the same

355 mode.

356 The total particulate volume (Va or Vb ) within each mode is calculated by dividing the mass concentration of each

357 aerosol variable by its corresponding density in that mode, and then summing the results. This updating approach
358 implicitly assumes that changes in volume across the three modes are driven solely by variations in particle number,

359 rather than shifts in the aerosol size distribution. The total particulate surface area within each mode is then updated

360 using the same volume ratio, i.e., Va /Vb (Eq.10) multiplied by the background surface area.

361 In preparatory work for this study, six-hourly cycling experiments (Wang et al., 2025) have shown that updating
362 these variables is crucial for improving AQMv7 performance. In contrast, previous work using GSI with earlier
363 developmental versions of AQM did not update these variables, primarily because those model versions were less

364 advanced than the current operational AQMv7. As a result, there was still significant room for improving prediction
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365 skills.

366 3.5 Experiments

367 Table 1 provides a description of the experiments. Four experiments were conducted to evaluate the performance of
368 JEDI/AQM PM,.5 DA. The first experiment is a control run (CTR), in which meteorological initial and boundary
369 conditions are updated every 3 hours, while chemical and aerosol fields are carried over from the 3-hour forecast of
370 the previous cycle. The other three experiments incorporate data assimilation: DA AN, DA _PA, and DA ANPA,
371 which assimilate AirNow PM;.s only, PurpleAir PM;.s only, and both AirNow and PurpleAir PM;.5 observations,
372 respectively.

373 Like the CTR experiment, all DA experiments are conducted as 3-hourly cycling runs, with PM;.5 observations
374 assimilated every 3 hours. 24-hour forecasts are initialized four times daily at 0000 UTC, 0600 UTC, 1200 UTC,
375 and 1800 UTC. The experimental period spans from 1200 UTC on September 1 to 1800 UTC on September 21,
376 2020.

377 Table 1. Descriptions of the experiments.

Data PM,.5 Observations

Experiment Assimilation Assimilated Aerosol Fields
No Corit e o e
DA AN Yes AirNow PM;.5 only Updated by Assimilation
DA PA Yes PurpleAir PM;.s only Updated by Assimilation
DA _ANPA Yes AirNow + PurpleAir PM;.s Updated by Assimilation

378

379 4 Results

380 4.1. Results from all cycles

381 This section provides an overview of the impact of DA on PM,.s forecasts. A total of 80 forecasts—initialized four
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382 times daily from 0000 UTC on September 2 to 1800 UTC on September 21, 2020—are used to evaluate model

383 performance. AirNow PM2.5 observations are used to verify the forecast performance. Forecast errors are assessed
384 using bias, mean absolute error (MAE), and root mean square error (RMSE). Forecast performance is evaluated
385 using box plots and performance diagrams. The box-and-whisker plots illustrate the distribution, spread, and central
386 tendency of forecast errors, while the performance diagrams highlight forecast skill (e.g., Critical Success Index,
387 CSI). Time series of PM,.s at various forecast hours are presented to examine the temporal evolution of forecast
388 performance. Additionally, spatial distributions of PM,.s including observations, forecasts, forecast errors, and

389 forecast differences are analyzed to evaluate the spatial impact of data assimilation on PM,.s predictions. AirNow
390 PM,.5 observations are used as reference to evaluate forecast skills.

391 Figure 3 presents the bias, mean absolute error (MAE), and root mean square error (RMSE) for the 1-24 h forecast
392 of domain-averaged PM,.5s. Domain averages are computed over EPA Regions 1-10, which include all states in the
393 mainland United States. The detailed description of EPA regions can be found on EPA webpage:

394 https://www.epa.gov/aboutepa/regional-and-geographic-offices#regional, last access on 11 July 2025. Overall, all

395 data assimilation experiments show improved forecast skill compared to the control run. The added value of
396 assimilating PurpleAir PM,.s data alongside AirNow observations is evident in the consistent MAE reduction (Fig.

397 3b). Its impact on RMSE is also positive, though relatively small.

398
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400 Figure 3. PM;.s forecast errors for 1-24 h lead times based on 80 forecasts initialized four times daily during

401 September 2-21, 2020. Domain-averaged over EPA Regions 1-10.

402 (a) Bias, (b) Mean Absolute Error (MAE), (c) Root Mean Square Error (RMSE).

403

404 Figure 4 shows box-and-whisker plots of PM,.s forecast bias. Across all forecast hours, the interquartile range

405 (IQR)—represented by the height of the boxes—is consistently smaller for the DA experiments compared to the

406 control run. This indicates reduced forecast error spread between the 25th and 75th percentiles and suggests more
407 consistent forecasts in the DA experiments. Although the median forecast bias in the control run is sometimes closer

408 to zero, the DA ANPA experiment performs comparably in terms of central tendency while showing clear
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409 improvements in reducing the mean forecast bias, as also reflected in Figure 3a. Among the DA experiments,

410 DA AN and DA_ANPA show the most consistent improvement at 24-hour lead times, with DA ANPA slightly

411 outperforming others during the early forecast hours (e.g., hour 1 to 12). This suggests that assimilating PurpleAir
412 observations in addition to AirNow helps reduce bias and brings the forecasts closer to observed PM,.5 values in the

413 short term.
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f001 f003 f006 f009 fo12 f015 f018 f021 f024
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415 Figure 4. Box-and-whisker plot of PM,.s forecast bias. Bottom edge = Q1 (25th percentile); Top edge = Q3 (75th
416 percentile);Height = Interquartile Range (IQR = Q3 — Q1); Horizontal line inside box: The median (50th percentile);
417 Whiskers: Extend to the min and max values within 1.5 X IQR from Q1 and Q3.

418 Figure 5 displays performance diagrams of PM,.5 forecast at forecast hours 1, 12, and 24 with PM,.s threshold of
419 12 pg/m? and 35ug/m?3. Performance diagrams show consistent improvements in CSI scores across all forecast hours
420 for all DA experiments, with DA_AN and DA_ANPA outperforming the DA_PA experiment. The performance with
421 PM,.5 threshold of 5 pg/m? (figure not shown) is similar to that of 12 pg/m?.

422 Figure 6 presents shows time series of PM,.5 averaged over EPA Regions 1-10 at forecast hours 1, 12, and 24,

423 respectively. Consistent with the evaluations in Figures 3 and 4, all DA experiments generally improve PM,.5

424 forecasts. Notably, all DA experiments help correct underpredictions during September 2-9 and 14—17. In addition,
425 the substantial overprediction during September 10-13 observed in the control run, largely due to inaccurate fire
426 emissions, is partially mitigated by the DA experiments. Among the DA configurations, DA AN and DA ANPA

427 show comparable performance and both outperform DA_PA.
428

429
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432 Figure 5. (a). Performance diagram for forecast hours 1, 12, and 24 with a PM;.s threshold of 12 pg/m?®. (b) Same as

433 (a), but using a threshold of 35 pg/m?.
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440 Figure 6. Time series of PM;.5 averaged over EPA Regions 1-10 for (a) forecast hour 1, (b) forecast hour 12, and

441 (c) forecast hour 24. The y-axis is shown on a logarithmic scale.

442 While we have investigated the impact of DA on PM,.s forecasts in terms of temporal evolution, it is also important

443 to examine the spatial distribution of forecast fields, associated errors, and how DA influences these spatial patterns.

444 Figure 7 presents the spatial distribution of temporally averaged PM,.5 forecasts at forecast hour 1, based on 80

445 forecasts initialized four times daily (0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC) from September 2 to 21.
446 Figure 7a shows the PM,.5 field from the control run (shaded), overlaid with AirNow observations. The effects of
447 wildfire events are clearly seen across California, Oregon, and Washington—where the fires occurred—as well as in

448 downstream regions impacted by smoke advection and transport.

449 Forecast errors in the control run are evident in Figure 6a but are more clearly highlighted in Figure 7b, which shows
450 the difference between the control run and AirNow observations. Significant overpredictions appear along the

451 California coast, as well as in parts of the Midwest and Northeast U.S., including Tennessee, Kentucky, West

452 Virginia, and Virginia, which are approximately represented by EPA regions 1, 2, 3, 5 and 7. Conversely, notable
453 underpredictions are found over Colorado, New Mexico, much of Texas and Oklahoma, and several Gulf Coast

454 states which are in EPA regions 4 and 6.

455 Compared to the control run, both DA_AN (Fig. 7c-d) and DA_PA (Fig. 7e-f) show similar spatial correction

456 patterns across California, Oregon, and Washington, particularly in reducing overpredictions along the California
457 coast. They also produce comparable large-scale adjustments across the Northeast, Midwest, and Southern U.S.,
458 with error patterns (Fig. 7d and 7f) largely opposite in sign to those in the CTR—AirNow difference (Fig. 7b). This

459 suggests that both DA experiments effectively mitigate the control run’s over- and underpredictions.

460 However, the magnitude of correction is generally smaller in DA_PA than in DA_AN. Notably, DA_PA shows its
461 strongest impact over Nevada, northern Utah, Colorado, and southwestern New Mexico, helping to alleviate the

462 underpredictions in these regions—similar to improvements seen in DA_ANPA.
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463 (a) CTR (b) CTR-AirNow
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464

466
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469 (g) DA_ANPA (h) DA_ANPA-CTR
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470

471 Figure 7. Spatial distribution of average PM,.s at forecast hour 1, based on 80 forecasts initialized four times daily
472 (0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC) during 2-21 September.
473 (a) PM,.s in experiment CTR (shaded) overlaid with AirNow PM,.5 observations (filled dots).
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474 (b) PM;.5 bias in experiment CTR.

475 (c) PM3.s in experiment DA_AN (shaded) overlaid with AirNow PM,.s observations.

476 (d) PM,.s difference between experiments DA AN and CTR.

477 (e) PM,.5 in experiment DA_PA (shaded) overlaid with AirNow PM,.s observations.

478 (f) PM,.s difference between experiments DA_PA and CTR.

479 (g) PM;.5 in experiment DA ANPA (shaded) overlaid with AirNow PM,.s observations.

480 (h) PM,.s difference between experiments DA ANPA and CTR.

481

482 Figure 8 shows the percentage change in MAE (%) between the DA experiments and the control (CTR) experiment
483 at forecast hours 1 and 24. Negative values indicate a reduction in MAE. All DA experiments show improvements:
484 at forecast hour 1, MAE is reduced by approximately 60% in DA AN and DA ANPA, and by around 18% in

485 DA_PA. At forecast hour 24, reductions are smaller but still present—about 6-7% in DA_ANPA and around 2% in

486 DA PA. MAE is reduced at nearly all stations at forecast hour 1, and at most stations by forecast hour 24.

487 In summary, DA also improves the spatial distribution of PM,.s forecasts. Figure 7 shows that the control run

488 exhibits significant regional biases, with overpredictions along the California coast and in parts of the Midwest and
489 Northeast (EPA regions 1, 2, 3, 4, and 7), and underpredictions in the Southwest and Gulf Coast (EPA regions 4 and
490 6). All three DA experiments reduce these errors, particularly correcting coastal overpredictions and improving

491 forecasts in regions affected by wildfires. While DA_PA provides slightly weaker corrections than DA_AN, it

492 contributes meaningful improvements in the Mountain West and Southwest.
493
494
495
496
497
498
499
500
501

502
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503 DA_AN vs. CTR

MAE (DA_AN-CTR)/CTR*100: -66.97% MAE (DA_AN-CTR)/CTR*100: -6.60%

504
505 DA_PA vs. CTR

MAE (DA_PA-CTR)/CTR*100: -18.62%

506

507 DA_ANPA vs. CTR

MAE (DA_ANPA-CTR)/CTR*100: -62.22%

508

509 Figure 8. Percentage change in MAE (%) between DA experiments and the control (CTR) experiment. The
510 percentage is calculated as (MAE(DA)-MAE(CTR))/MAE(CTR)*100.

511 Left panels show the 1-hour forecast; the right panels show the 24-hour forecast.

512 Top row: DA_AN vs. CTR; Middle row: DA_PA vs. CTR; Bottom row: DA_ANPA vs. CTR.

513 4.2. Results from Forecasts Initialized at 1200 UTC
514 In this section, we examine the forecasts initialized at 1200 UTC, which is the time when the operational AQM

515 launched a 72-hour forecast. Time series of 1-24-hour PM,.s concentrations are analyzed by grouping the EPA

516 regions into three areas:
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517 e Area A includes EPA Regions 8, 9, and 10, which are the areas where fires occurred and/or were most
518 influenced by smoke.

519 o Arca B includes EPA Regions 1, 2, 3, 5, and 7, where the control run generally shows an overall

520 overprediction (see Fig. 6b).

521 o Area C includes EPA Regions 4 and 6, which show an overall underprediction in the control run (also
522 shown in Fig. 6b).

523 Time series of 1-24 h PM,.s forecasts for the above three areas are shown in figure 9. There is a large

524 overprediction (spikes) in Area A from September 9 to 11 in the control run, followed by a transition to

525 underpredictions from September 12 to 17. The overprediction is due to inaccurate fire emissions, as similar spikes
526 are not observed in Area B and C. However, this overprediction contributes to spurious “good” performance in the
527 control run during the transition period from September 11 to 12. As shown during this period, the later (~3—24 h)
528 forecasts from the DA AN and DA ANPA experiments do not outperform the control run, although their first-hour
529 forecasts are closer to AirNow observations. Overall, the DA experiments clearly improve both the overprediction

530 from September 9 to 11 and the underprediction from September 14 to 17.

531 Regarding the forecasts over Areas B and C, the overprediction in Area B and the underprediction in Area C are

532 generally improved.

533 Figure 10 shows PM,.s forecast error statistics (Bias, MAE, and RMSE) for forecast hours 1-24. At the first

534 forecast hour, the DA experiments in Areas A, B, and C outperform the control run across all three metrics. In terms
535 of MAE and RMSE, DA AN and DA ANPA perform better than both DA_PA and the control run in Areas A and
536 B. For the 1-24 h PM,.s forecasts in Area C, all DA experiments outperform the control run in terms of Bias and

537 MAE. However, RMSE improvements are only seen up to forecast hours 7-9.

538 The impact of additional assimilation of PurpleAir data shows area-dependent behavior. For example, it slightly
539 reduces MAE and RMSE in Area A and noticeably reduces Bias, MAE, and RMSE in Area B. In Area C, no clear
540 positive impact is observed, although assimilating PurpleAir data alone still results in better performance than the

541 control run.

542 Performance diagrams (Fig. 11) show consistent improvements in Critical Success Index (CSI) scores across all
543 forecast hours for all DA experiments compared to the control run. Among the DA configurations, DA AN and

544 DA_ANPA show comparable performance and both outperform DA_PA at 1h and 12h forecasts.
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551 Figure 9. Time series of 1-24 h PM,.s forecasts: (a) averaged over EPA Regions 8-10; (b) averaged over EPA

552 Regions 1, 2, 3, 5, and 7; and (c) averaged over EPA Regions 4 and 6.
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557 Figure 10. PM,.s forecast statistics at forecast hours 1-24. Top row: averaged over EPA Regions 8-10.; Middle

558 row: over EPA Regions 1,2,3,5,7, and Bottom row: over EPA Regions 4,6.
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561 Figure 11. Performance diagram for forecast hours 1, 12, and 24 with a PM,.s threshold of (a) 12 pg/m?, (b)
562 35 pg/me.
563

564 5 Summary and discussion

565 The latest version of NOAA's regional AQM system was implemented and became operational on May 14, 2024.
566 This system has been developed through the online coupling of the Finite Volume Cubed Sphere (FV3) atmospheric
567 model with the Environmental Protection Agency (EPA)'s Community Multiscale Air Quality (CMAQ) model

568 within the Unified Forecast System (UFS) framework. In order to provide improved initial conditions for AQM

569 supporting enhanced prediction of wildfire impacts on air quality prediction, the capability to assimilate PM2.5

570 observations into AQMv7 was developed within JEDI and tested using its 3D-Var assimilation component. Note that
571 the developed assimilation scheme can also be used to generate analysis (reanalysis) dataset for other applications,

572 for example, providing data for training artificial intelligent models used in air quality prediction.

573 Data assimilation experiments were conducted for the September 2020 Western U.S. wildfire episode, using

574 3-hourly cycling with observations from the AirNow and PurpleAir networks. Results showed that assimilating

575 AirNow PM;.5 observations significantly improved 1-24 hour forecast skill. Mean absolute error (MAE) was

576 reduced by approximately 60% at forecast hour 1 and 7% at hour 24, relative to forecasts without data assimilation.
577 Assimilating PurpleAir data alone yielded more modest improvements—approximately 18% at hour 1 and 2% at
578 hour 24—but when combined with AirNow, PurpleAir data provided additional benefit by further reducing MAE
579 slightly either compared with AirNow observations (Fig. 3) or PurpleAir observations (Figure not shown). The

580 positive impact of the PurpleAir data assimilation during the September 2025 wildfires was also demonstrated in an
581 experimental Rapid Refresh Forecast System coupled with Smoke and Dust Model (Wang et al., 2023), where it
582 significantly reduced the model’s 24-h underprediction of surface PM,.s. Considering the PurpleAir data coverage
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583 has improved since September 2025, the results of this study further highlight its potential to complement AirNow
584 observations by filling spatial gaps and improving PM,.s forecast skills.

585 In this first implementation of aerosol data assimilation in JEDI for AQMv7, the control variables are defined as
586 individual forecast aerosol variables. In previous work on aerosol data assimilation for an earlier version of AQM
587 using the GSI system (Wang et al., 2021), one option for the control variables was to define them as the total aerosol
588 mass in each of the three modes, resulting in just three control variables. A control variable transform (CVT) was
589 then applied to partition the analysis increments across these modes to individual aerosol species, based on the ratio
590 of each species’ mass to the total mass within the corresponding mode. The use of total aecrosol mass in the three
591 modes as control variables—thereby reducing the number of control variables from 70 to 3—is planned for a future
592 phase of development. The use of total masses as control variables also reduces the cost of the background error
593 statistics calculation and iterative minimization. (Kumar et al. 2019). It is noted that the ensemble based data

594 assimilation approach is superior to capture flow-dependent background error covariances and aerosol assimilation

595 along with emission updates can be developed when an ensemble prediction system for AQM is there.

596 This study focused on surface-level PM;.s and did not incorporate vertical profile constraints with satellite-based
597 aerosol optical depth (AOD) retrievals, which could further enhance forecast skill. A key challenge is the need for a
598 robust forward operator in the CRTM AOD module—specifically, the creation and validation of lookup tables

599 (LUTs) for AOD calculations with AQM. As an intermediate solution, existing LUTs in CRTM, such as the GEOS-5
600 LUTs, have been tested by grouping and mapping AQM aerosol species to those used in GEOS-5 (Wang et al.

601 2025). However, this approach presents several issues. For instance, AQM does not distinguish between hydrophilic
602 and hydrophobic aerosol types of organic carbon and black carbon, whereas GEOS-5 does. Additionally, AQM

603 (through CMAQ) uses a modal aerosol representation, while GEOS-5 adopts a bin-based approach, making the

604 mapping between the two systems non-trivial. AOD assimilation also depends on an accurate vertical distribution of
605 aerosols in the background field so that the CRTM AOD operator can provide meaningful gradient information at
606 the correct vertical levels to constrain the analysis update. However, AQM models have shown deficiencies for the
607 September 2020 fire events in representing smoke concentrations at and above plume rise levels, largely due to how

608 fire emissions are injected into the model. This will be improved in the next update of the operational AQM.

609 Code and data availability
610 The AQMV7 model, JEDI software and PM,.5 and fire emission data we used in this research are publicly available
611 on on Zenodo (https://doi.org/10.5281/zenodo.17049857; Wang et al., 2025b).

612 Users are referred to the guidance on compiling and running the model:
613 https://ufs-srweather-app.readthedocs.io/en/develop/UsersGuide/index.html (Last accessed on August 26, 2025).

614 Global Forecast System analysis data were downloaded from the NCAR Research Data Archive:
615 https://doi.org/10.5065/D65D8PWK (last access: Aug 26 2025)
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