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 10 

Abstract. Although the United Kingdom (UK) is relatively wet, there is an increasing awareness of the 11 

impacts of droughts, and an expectation that droughts will become worse in the future. This has 12 

motivated studies that have developed projections of future UK drought characteristics. To date, 13 

however, very few have addressed future changes in terms of probability of occurrence, and none 14 

have quantified the evolution of rare nonstationary hydrological drought characteristics under 15 

different warming conditions. This study investigates future changes in the hydrological drought 16 

characteristics under varying global warming levels (1.5°C, 2°C, and 3°C), using nonstationary extreme 17 

value analysis combined with a Bayesian uncertainty framework across 200 river catchments in the 18 

UK. The analysis utilizes the enhanced future Flows and Groundwater (eFLaG) dataset, which is based 19 

on the most recent UKCP18 climate projections, and incorporates outputs from four hydrological 20 

models (G2G, PDM, GR4J, and GR6J). The findings indicate that rising temperatures will significantly 21 

influence future drought duration, severity, and intensity across a majority of catchments, with rare 22 

droughts (return period of 100-500 years) projected to be more severe in all seasons, particularly in 23 

the southern UK. Further, relatively frequent summer droughts (return periods of 10 years) are 24 

expected to become shorter but more severe and intense, particularly at higher warming.  We observe 25 

notable differences between stationary and nonstationary return periods across seasons, with the 26 

change becoming more pronounced at longer return periods, particularly for drought severity. 27 

Although the trends remain consistent across models under stationary and nonstationary conditions, 28 

the results underscore the role of rarity, nonstationarity, and seasonal controls on the future evolution 29 

of hydrological droughts in the region. 30 

 31 

 32 
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1. Introduction 33 

The recent decades have been some of the warmest on record in the United Kingdom (UK), 34 

and the average land temperature has already increased by approximately 1.2°C compared 35 

to pre-industrial levels (Climate Change Committee, 2021). Many notable drought events 36 

have been recorded in the UK during the periods of 1975-76, 1988-89, 1990-92, 1995-97, 37 

2004-06, 2010-12, and 2022 (Barker et al., 2024; Murphy et al., 2020; Turner et al., 2021). 38 

Projections indicate that by 2050, several regions could face frequent water shortages, driven 39 

by extended spells of hot and dry weather, which are expected to significantly affect river 40 

flows and soil moisture levels (Bevan, 2019). In addition to the adverse impacts of climate 41 

change, the increasing demand will pose water management challenges in the future, which 42 

is particularly crucial for the south-eastern part of the UK, which is expected to experience 43 

more significant changes in the long-term climate (Bevan, 2022). However, droughts are not 44 

only expected to become more frequent, but also more spatially coherent, especially during 45 

the summer season, which could further complicate drought management strategies(Tanguy 46 

et al., 2023b). The growing awareness of drought as a major and increasing hazard and its 47 

impacts has prompted a significant acceleration of research on changing drought risk in the 48 

UK, and significant changes in water resource management practices. In particular, the 49 

OFWAT ‘Duty of Resilience’ stipulates that water utilities must plan to ensure security of 50 

supply to very extreme events (OFWAT, 2015) in practice, 1:500-year droughts. 51 

Understanding and preparing against these extreme hydrological events is of most societal 52 

importance for the UK due to their disproportionate impacts on water resources, agriculture, 53 

ecosystems, and public health. For instance, the cost of relying on emergency drought 54 

measures in the UK is projected at £40 billion, whereas proactively building water resilience 55 

would cost £21 billion over the same period (National Infrastructure Commission, 2018). 56 

Furthermore, the annual cost to maintain resilience to severe droughts is estimated at £60–57 

600 million. For extreme droughts, this rises to £80–800 million per year (Climate Change 58 

Committee ,2019).  59 

Given the relative brevity of most hydrological records, the need to ensure resilience to very 60 

rare extremes has prompted the widespread adoption of stochastic simulation methods to 61 

generate long time series from which we can sample such rare events. However, several lim-62 

itations and complexities arise from using such methods when understanding extreme event 63 
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evolution under anthropogenic climate change (Counsell and Durant, 2023; Environment 64 

Agency, 2025). There is therefore merit in directly analysing climate change projections to 65 

assess the changing return levels of events of a given rarity, including those very extreme 66 

events of the most importance for water resources planning. In this study, return levels have 67 

been defined as the values of a variable (here duration, severity, and intensity) expected to 68 

be exceeded on average once every 𝑇 years, where 𝑇 is the return period.  However, the 69 

complicated nature of the drought hazard and its relatively infrequent occurrence,  and the 70 

diverse and uncertain spatiotemporal patterns of hydrological droughts make severity and 71 

rarity assessments complicated (Brunner et al., 2021). Further, understanding future changes 72 

in hydrological drought, in particular, remains limited for the UK, as the majority of studies 73 

have primarily focused on analysing changes in drought magnitude between current and fu-74 

ture periods, using threshold-based metrics rather than exploring the evolving nonstationary 75 

dynamics of various drought characteristics in the future (Barker et al., 2019; Chan et al., 76 

2022; Kay et al., 2021). More recently, Parry et al., (2024) utilised a newly developed nation-77 

ally consistent, multi-model ensemble of hydrological projections enhanced future Flows and 78 

Groundwater (eFLaG) dataset (Hannaford et al., 2022a) to quantify future UK hydrological 79 

droughts. The study conducts the analysis for baseline, and future periods as well as transient 80 

changes in low-flows characteristics, but did not consider droughts in a probabilistic sense 81 

and could not therefore shed light on changing likelihood of very rare/extreme events. Also, 82 

there has been a lack of research focusing on understanding the evolution of hydrological 83 

droughts in the UK under different warming conditions (1.5°C, 2°C, 3°C, and so on), which is 84 

very important from a risk planning point of view(Tanguy et al., 2023a). Global warming level 85 

assessments can be used to support timely adaptation of drought management strategies, 86 

inform policy decisions aligned with global targets, and ensure resilience under plausible fu-87 

ture warming scenarios. 88 

The analysis in most of the previously mentioned research for the UK is based on the analyses 89 

of extreme events relying on the assumption of stationarity, which assumes that the 90 

probability distribution parameters of a drought characteristic remain constant over time (Wu 91 

et al., 2024). However, it is well-accepted that rising temperatures introduce nonstationarity 92 

into hydrological systems, challenging the conventional approaches to drought analysis (Wu 93 

et al., 2024). This nonstationarity might lead to inaccuracies in estimating the return levels of 94 
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extreme events for any design return period under evolving climatic conditions. Coles, (2001) 95 

highlighted that assuming stationarity can lead to an underestimation of extreme event 96 

probabilities. Therefore, incorporating nonstationarity, particularly due to rising 97 

temperatures, is crucial for accurately modelling future drought characteristics (Salas and 98 

Obeysekera, 2014). One of the important aspects of probabilistic modelling of extreme 99 

hydroclimatic events is the uncertainty in estimated parameters (Leng et al., 2024). 100 

Traditional methods, such as L-moments (Parvizi et al., 2022), method of moments (Lück and 101 

Wolf, 2016), and maximum likelihood estimation (Jha et al., 2022), typically rely on point 102 

estimates of parameters, without adequately addressing this issue. However, Bayesian 103 

methods have found their utility for addressing these challenges in parameter estimation 104 

processes (Baykal et al., 2024; Liu et al., 2024). This approach allows for obtaining the 105 

posterior distribution of parameters by integrating over the existing parameter space. 106 

Additionally, the introduction of Markov Chain Monte Carlo (MCMC) methodology facilitates 107 

the approximation of integrals by using a Markov chain with the posterior distribution 108 

(Chandra et al., 2015). This paper uses a nonstationary extreme value analysis (EVA) 109 

framework with Bayesian uncertainty assessment to analyse the evolution of future 110 

hydrological drought characteristics in the UK with specifically including rare droughts (return 111 

period >=100 years). Leveraging the benefits of the eFLaG river flow datasets, which comprise 112 

four hydrological models’ (GR4J, GR6J, PDM, and G2G) outputs, this study analyses transient, 113 

century-long projections at a daily resolution over 200 catchments in the UK.  It examines the 114 

evolution of future hydrological drought characteristics under three different Global Warming 115 

Levels (GWLs): 1.5°C, 2°C, and 3°C, with a particular focus on extreme droughts. By focusing 116 

on a range of warming scenarios, we aim to capture the full spectrum of possible future 117 

hydrological drought conditions under different climatic conditions. In doing so, this study 118 

provides critical insights for policymakers and water resource managers to better understand 119 

and prepare for future hydrological drought risks and their uncertainties under the influence 120 

of climate change. 121 

2. Data and methods  122 

2.1. eFLaG data set: hydrological models and future river flow projections 123 

This paper utilizes the eFLaG dataset which are nationally consistent and spatially coherent 124 

hydrological river flow projections for the UK based on UKCP18 - the latest climate projections 125 

from the UK Climate Projections programme (Hannaford et al., 2022a; Lowe et al., 2018; 126 
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Murphy et al., 2018). The eFLaG dataset encompasses hydrological model simulations of river 127 

flow (‘simobs’ and ‘simrcm’) for over 200 catchments in the UK. In this context, 'simobs' refers 128 

to observation-driven simulations (1989-2018), while 'simrcm' denotes outputs generated 129 

from hydrological modelling using 12km UKCP18 RCM (Regional Climate Models) projections 130 

(up to 2080). The 'simrcm' projections comprise a 12-member ensemble generated through 131 

perturbed-parameter runs of Hadley Centre climate models (GCM, HadGEM3-GC3.05) and 132 

RCM (HadREM3-GA705) (Murphy et al., 2018). It should be noted that all 12 ensemble 133 

members originate from the same model framework and are based on the high emissions 134 

scenario (RCP8.5).  135 

GR4J and GR6J, members of the 'airGR' family, are lumped catchment rainfall-runoff models 136 

known for their simplicity and efficient calibration function (Kuana et al., 2024). The 137 

Probability Distributed Model (PDM) offers configurable options for catchment rainfall-runoff 138 

modelling, allowing for various permutations to be tested across catchments (Moore, 2007). 139 

Grid-to-Grid (G2G) is a distributed hydrological model utilized for simulating natural river 140 

flows across Great Britain at a 1km resolution, providing consistent national-scale flow 141 

estimates (Bell et al., 2018). These models have been successfully applied in diverse 142 

hydrological studies, and several publications detail their versatility and wide-ranging 143 

applicability (Kuana et al., 2024; Ndiaye et al., 2024; Tanguy et al., 2023b). Detailed metadata 144 

and site listings are stored and accessible through the Environmental Informatics Data Centre, 145 

which can be referred for more information(Hannaford et al., 2022b). In this study, we have 146 

utilised all 200 catchments for our analysis. For the nonstationary modelling of drought 147 

characteristics for each catchment, we utilised the recently developed CHESS-SCAPE 148 

temperature datasets, which are bias-corrected 1km resolution gridded data also derived 149 

from UKCP18 projections (Robinson et al., 2022a) as a covariate.  150 

2.2. Nonstationary analysis of future drought characteristics  151 

The impact of adverse climate change effects has prompted scrutiny of the stationary 152 

assumption regarding hydroclimatic variables, leading to heightened interest in the concept 153 

of nonstationarity within the research community. The concept is also pertinent to planners 154 

using projections of hydrological information and data in their decision-making. In this study, 155 

the drought characteristics were fitted with the generalized extreme value (GEV) distribution 156 

with a cumulative distribution function given by Eq. (1) (Coles, 2001):  157 
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𝐺(𝑥; 𝜇, 𝜎, 𝜉) =
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               (1) 158 

Here, 𝜇, 𝜎 and 𝜉 are the location, scale, and shape parameters of the distribution. Daily 159 

temperature anomaly (∆𝑇) from the CHESS-SCAPE data (Robinson et al., 2022a) was selected 160 

as the covariate to quantify the temperature-dependent signals for future river flow.  161 

The incorporation of linear dependency in the location parameter is a common practice in 162 

nonstationary modelling, and similar applications to the scale parameter have been 163 

advocated by Yilmaz and Perera, (2014). However, Gilleland and Katz, (2016) argue against 164 

introducing covariates solely to the scale parameter without corresponding variations in the 165 

location parameter. Further, the estimation of the shape parameter under a time-varying 166 

framework is challenging due to the uncertain tail behaviour of the distribution, especially in 167 

limited data settings, and is therefore often kept constant (Ragulina and Reitan, 2017). In our 168 

study, only the location parameter for historical and future streamflow extremes was 169 

assumed to be a linear function of temperature. Hence, the parameter set takes the form of 170 

𝜇(𝑡) = 𝜇0 + 𝜇1𝑐(∆𝑇), 𝜎 (𝑡) = 𝜎 and 𝜉(𝑡) = 𝜉. Parameter estimation was conducted utilizing 171 

the maximum likelihood function, chosen for its capability to incorporate nonstationarity into 172 

the distribution parameter (Strupczewski et al., 2001) as given by Eq. (2):  173 

𝐿(𝜃) = −𝑛𝑙𝑜𝑔𝜎 − (1 +
1

𝜉
)∑log [1 + 𝜉 (

𝑥𝑖−𝜇

𝜎
)] −∑[1 + 𝜉 (

𝑥𝑖−𝜇

𝜎
)]

𝑛

𝑖=1

(−
1
𝜉
)

, 1 + 𝜉 (
𝑥𝑖 − 𝜇

𝜎
) > 0                          (2)

𝑛

𝑖=1

 174 

 175 

Here, 𝐿(𝜃) is the likelihood function of the parameter vector 𝜃 and 𝑛 is the sample size. By 176 

minimizing the above function, the distributions of parameters for both stationary and 177 

nonstationary cases were formulated. The comparative statistical significance of stationary 178 

and nonstationary models was assessed by using the likelihood ratio test (L.R. test) (Posada 179 

and Buckley, 2004) which is derived using Eq. (3): 180 

2[𝑛𝑙𝑙ℎ𝑠 − 𝑛𝑙𝑙ℎ(𝑁𝑆)] > 𝑐𝛼                                                                    (3) 181 

Here, 𝑛𝑙𝑙ℎ𝑠 𝑎𝑛𝑑 𝑛𝑙𝑙ℎ(𝑁𝑆) are the negative log-likelihood values of stationary and 182 

nonstationary models. Further, 𝑐𝛼 represents the (1 − 𝛼) quantile of the Chi-square 183 

distribution. The difference between the stationary and nonstationary models is expected to 184 

conform to an approximate chi-squared distribution at a specific significance level α (5% in 185 

this case). The null hypothesis of stationarity is rejected when the p-value exceeds 0.05.  186 
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 187 

2.3. Bayesian framework for parameter uncertainty  188 

As discussed above, parameters for both stationary and nonstationary methods are derived 189 

using the maximum likelihood approach, which only provides point estimates without 190 

accounting for uncertainty. Bayesian analysis aims at updating parameter uncertainty 191 

through a prior distribution using Bayes' theorem (Sarhadi et al., 2016). This approach 192 

combines the prior distribution and the data's likelihood function to form the posterior 193 

distribution, incorporating additional information to enhance predictive modelling. The 194 

posterior distribution is obtained by multiplying the likelihood function by the prior 195 

distribution of the parameter (Eq. 4): 196 

𝑝(Ɵ |𝑥)  ∝  𝑝(𝑥|Ɵ) 𝑝(Ɵ)                                                                           (4) 197 

Here, 𝑝(Ɵ |𝑦) denotes the posterior distribution of the parameter vector Ɵ = (𝜇, 𝜎, 𝜉), 𝑝(Ɵ) 198 

represents the prior distribution, and 𝑝(𝑦|Ɵ) denotes the likelihood function corresponding 199 

to the GEV distribution evaluated at 𝑥𝑖…𝑛 where 𝑛 is the number of observations. We utilised 200 

a non-informative prior distribution for location parameter modelling. Given the complexity 201 

of solving Eq. (4) analytically, numerical methods like MCMC sampling are utilized to produce 202 

numerous realizations from the posterior distribution (Reis and Stedinger, 2005). Further, we 203 

can estimate desired return levels for a given probability of occurrence (𝑝)  by employing Eq. 204 

(5): 205 

𝑍𝑝(𝜇̂, 𝜎̂, 𝜉) = 𝜇̂ −
𝜎̂

𝜉
{1 − [− log(1 − 𝑝)]−𝜉̂}              𝑓𝑜𝑟 𝜉 ≠ 0                                          (5) 206 

𝑍𝑝(𝜇̂, 𝜎̂) = 𝜇̂ − 𝜎̂ log[log(1 − 𝑝)]            𝑓𝑜𝑟 𝜉 = 0                                                                       207 

The Metropolis-Hastings algorithm is used to sample the parameter vector using the specified 208 

prior and likelihood function. It is crucial to monitor the convergence of the MCMC chain to 209 

ensure it accurately represents the posterior distribution. In this study, Heidelberger and 210 

Welch's convergence diagnostic is used to determine the necessary length of each simulation 211 

(Sharma and Mujumdar, 2022).  212 

 213 

2.4. Analysis of future drought return levels 214 

The whole analysis is set up to calculate the percentage changes in the return level of the 215 

hydrological drought characteristics in the warming level period as compared to the reference 216 

period. The 30-year reference period was 1989-2018, i.e., the available historical period in 217 
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the eFLaG dataset. Relative to this reference period, three warming level periods (also 30-218 

year) were calculated based on the recently developed CHESS-SCAPE temperature data 219 

projections for the UK (Robinson et al., 2022a). In alignment with the objectives and directives 220 

of the Paris Agreement about limiting global warming, a +1.5°C and +2°C rise in temperature 221 

was considered (Jha et al., 2023). Moreover, a warming level of +3°C was also considered, 222 

corresponding to the projected warming expected to be attained by the year 2100 under 223 

existing nationally determined mitigation goals (Seneviratne and Hauser, 2020). The starting 224 

year of each warming level period is defined as the initial year of the 30-year interval wherein 225 

the mean warming exceeds the respective warming level. We considered the last 30-year time 226 

period, in case, the +3°C warming period exceeded the end of the century. For example, in 227 

cases where the warming period is identified as 2080-2110, we instead use the 2070-2100 228 

window to remain within the 21st-century bounds.   229 

To identify hydrological drought events, we used a variable threshold-based approach that 230 

has been widely applied for drought identification (Sarailidis et al., 2019). First, we calculated 231 

the daily mean flows for the reference period eFLaG series. This was done for each of the 12 232 

ensemble members of each of the four hydrological models. The 30-day moving window 233 

centred around each day of the year was calculated for each of the 12 members (for all four 234 

models) and pooled to calculate the daily 90th percentile exceedance flow (Q90). Hence, 365 235 

Q90 thresholds (one for each day of the year, assuming 365 days) were derived for the 236 

baseline period. A catchment was considered to be in drought on any given day when the 237 

flow dropped below the baseline Q90 threshold for that day. A pooling procedure across 238 

drought events was also applied, where two distinct events separated by a single day were 239 

combined into a single drought event, provided the magnitude above the threshold did not 240 

exceed the accumulated deficit before this single day. To avoid uncertainty arising due to non-241 

significant drought events, we excluded those with a standard duration of less than 30 days. 242 

Figure 1 schematically represents the derivation of drought characteristics using the variable 243 

threshold method and a flow chart of the methodology used. Having identified individual 244 

events, three event characteristics were computed for each season (i.e. winter: December-245 

February, spring: March-May, summer: June-August and autumn: September-November) 246 

which are duration - the number of days over which a drought occurs, severity - the 247 

accumulated flow deficit across all days, and intensity - the ratio of drought severity and 248 

duration of a drought event. 249 
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          250 

 251 

3. Results and discussion 252 

3.1. Nonstationary properties and Bayesian parameter estimates  253 

Once the drought characteristics for all four models across all four seasons were calculated, 254 

the nonstationarity was assessed using the likelihood ratio test. Figure 2 represents the 255 

percentage of nonstationary catchments for each drought characteristic across three 256 

warming levels and seasons. It shows that the nonstationary properties of catchments 257 

depend on the combination of the drought event characteristics, warming levels, and 258 

seasons. Future hydrological drought duration is found to be nonstationary in most 259 

catchments across warming levels and seasons. This is most noticeable at 3°C warming, where 260 

almost all catchments across seasons are depicting nonstationarity in future hydrological 261 

drought duration. Interestingly, future drought intensity at lower warming levels appears to 262 

be stationary. Only during the winter season does drought intensity exhibit a trend of rising 263 

nonstationarity as the warming increases. Further, at least half of the catchments display 264 

nonstationary hydrological drought severity characteristics across warming levels, except 265 

 

Figure 1.  a) Variable threshold methodology used to identify and characterise drought events,  

b) Methodological framework utilized in the analysis. 
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during the summer season at lower warming levels. The trend across models remains overall 266 

similar, and no noticeable difference in the ability to capture nonstationarity was observed. 267 

However, the changes in nonstationary properties, their dependence on warming conditions, 268 

characteristics, and seasons need consideration while modelling the evolution of future 269 

hydrological droughts. 270 

 271 

Once the nonstationarity was assessed, we derived the parameter distribution for calculating 272 

the return levels of future and historical drought duration, intensity, and severity. Figure 3 273 

demonstrates the mean and standard deviation of the posterior distribution of parameters 274 

obtained using the Bayesian framework for the GR4J model during the summer season at 275 

+3°C. The spatial distribution of parameter means and standard deviation, particularly for 276 

duration, suggests that there is relatively higher uncertainty in the location parameter in the 277 

south-eastern catchments. The south-east not only experiences a higher magnitude of mean 278 

location parameter but also higher uncertainty which is in agreement with previous studies 279 

depicting more significant changes in future drought conditions in this region (Kay et al., 280 

2021). The variation of the location parameter across catchments for drought intensity and 281 

severity exhibits more or less similar behaviour. It can also be observed that catchments with 282 

 
Figure 2. Percentage of nonstationary catchments for each event characteristics, hydrological 

models and warming levels. 
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a higher magnitude of the location parameter exhibit a higher standard deviation. This is 283 

crucial and calls for more caution as it denotes, for e.g., a catchment with a higher duration 284 

of drought might show higher uncertainty in the estimates. We also demonstrate the 285 

robustness of the employed method by comparing the curves of posterior distributions of 286 

location parameters for a sample catchment (Dee in Scotland, NRFA ID: 67018) for the 287 

reference period and +3°C warming (Figure S1). The location parameter for future drought 288 

duration shows a lower value, whereas intensity and severity are generally higher. This 289 

pattern is consistent with the findings from the return level analysis, which are presented in 290 

the next sections. Figure S1 also shows that the possible spread of location parameters for 291 

future drought characteristics is well constrained. This is critical as it ensures that the model 292 

provides robust estimates of parameters, especially for understanding future changes in 293 

drought characteristics under projected warming.  294 

 295 

 296 

 

Figure 3. Mean and standard deviation of parameter samples for GR4J model during summer 
season at 3°C warming level. 
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3.2. Return levels of different drought characteristics   297 

Next, we calculated the return levels of drought duration, severity and intensity at different 298 

return periods (10, 100, and 500 years) using parameter samples from the posterior 299 

distribution obtained through Bayesian analysis. The return levels were calculated for both 300 

the reference period and the warming level periods, considering the stationary case as well 301 

as nonstationary case. The results presented in the main text of this paper focus exclusively 302 

on the mean return levels; however, different return levels corresponding to median, 75th, 303 

and 25th quantiles of the posterior parameter distribution were also calculated and can be 304 

referred to in the supplementary information (Figure S2a-c) for more insights about 305 

uncertainty in the estimates. 306 

Figure 4a, b shows the model average percentage change in mean nonstationary return levels 307 

for 10-year (frequent droughts) and 500-year (rare droughts) return levels, respectively.  The 308 

return level is dependent on the rarity of the drought, as changes in return levels are more 309 

pronounced for a 500-year drought compared to a 10-year drought, with the former 310 

exhibiting more distinct spatial characterisation. The spatial distribution of percentage 311 

changes in the mean 100-year return level is shown in the supplementary information (Figure 312 

S2, S3, S4). For drought duration, the overall return levels are expected to be higher for 500-313 

year droughts during the autumn and winter seasons, whereas they are expected to be lower 314 

for 10-year droughts in the same seasons. This increase in the risk of prolonged extreme 315 

droughts in autumn and winter is concerning, given that the winter half-year is the critical 316 

time for replenishment of aquifers (in the south-east) and reservoirs(Barker et al., 2019; 317 

Environment Agency, 2011). The shorter duration of 10-year droughts may slightly ease water 318 

stress during more frequent droughts in these seasons however, any potential benefits could 319 

be offset by increased drought intensity, making the overall water management plan in the 320 

country still challenging. In Fig. 4b, which shows longer drought durations, regions in the north 321 

and west, which rely almost entirely on surface water and lack the buffering capacity of 322 

groundwater, might be significantly affected, whereas areas in the south-east dominated by 323 

groundwater-fed systems might experience delayed drought impacts, offering a degree of 324 

resilience during prolonged dry periods. Previous studies have also shown significant 325 

variability in hydrometeorological drought characteristics, both in the current period and in 326 

future projections, specifically in the southern part of the country (Barker et al., 2019; Di 327 

Nunno and Granata, 2024; Reyniers et al., 2022). Compared to intensity, duration return 328 
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levels have more distinct regional attributes for rare droughts - particularly in the spring and 329 

summer season where some of the catchments show abrupt negative changes in return 330 

levels. Studies suggest that the UK is likely to experience warmer and wetter winters alongside 331 

hotter and drier summers in the future(Lowe et al., 2018).  332 

 333 

 

Figure 4 a, b. Percentage change in mean nonstationary a) 10-year and b) 500-year return levels 
for different drought characteristics across all warming levels and seasons. 
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Additionally, most projections indicate an overall increase in potential evapotranspiration, 334 

with seasonal variations in the rate of change, but a consistent upward trend on an annual 335 

basis (Robinson et al., 2022b). This could be one of the possible drivers of longer future 336 

drought durations for frequent droughts or higher severity of rarer droughts, particularly in 337 

the summer season (Kay et al., 2020; Murphy et al., 2018). Future severity is observed to be 338 

increasing for both frequent and rare droughts in most catchments, except during the winter 339 

season for frequent droughts at lower warming levels. Season-wise, the increasing changes 340 

in the severity of rare droughts in the spring are highest, followed by summer, winter, and 341 

autumn. This increase is more substantial at higher warming levels, which indicates that both 342 

rare and frequent droughts are, in general, expected to be more severe in the future under 343 

the influence of rising temperature (Parry et al., 2024). Further, the intensity of droughts with 344 

a 10-year recurrence interval is projected to increase during the autumn and summer 345 

seasons. Conversely, the intensity of droughts with a 500-year return period is found to be 346 

decreasing in most seasons across all warming levels. It should be noted that we have 347 

considered the mean intensity, which is a function of both duration and severity, and highly 348 

intense frequent droughts in the future, particularly in autumn and summer seasons, could 349 

be due to highly severe droughts over a smaller duration (Figure 4a).  350 

 351 

3.3. Difference between stationary and nonstationary return levels 352 

To understand the role of temperature in governing changes in future drought characteristics, 353 

we compared the stationary return levels with the nonstationary return levels. Figure 5a,b 354 

shows the distribution of model-average percentage change in nonstationary and the 355 

stationary return levels for seasons and warming levels. The difference in percentage change 356 

in hydrological drought intensity return levels for the stationary and nonstationary cases is 357 

negative, particularly for higher return periods and warming levels across seasons. This might 358 

be because most catchments for drought intensity exhibit stationary characteristics (Figure 2) 359 

and show similar spatial patterns for stationary return levels as well (Figure S3a-c). For 360 

drought severity, the changes in return levels tend to show a decreasing trend with increased 361 

rarity. However, this is exclusive to the autumn season as drought severity in other seasons 362 

exhibits higher return levels with higher return periods of droughts. Similar results were 363 

observed for the stationary return levels; however, while the overall trend remains 364 

consistent, there is a significant difference in the magnitude of the stationary and 365 
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nonstationary return levels. Figure S3a-c in the supplementary information shows the spatial 366 

patterns of stationary return levels.  367 

 368 

The incorporation of 100-year return levels also confirms the trends in the results, showing 369 

that as droughts become less frequent, the changes in return levels become more 370 

 

Figure 5 a, b.  Percentage change in mean c) nonstationary and d) stationary return levels (10,100 

and 500 years) for different drought characteristics across all warming levels and seasons. 
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pronounced. It can also be concluded that rarer droughts are not only accompanied by larger-371 

scale changes in return levels but also by larger variability. This heightened variability 372 

underscores the need for robust modelling approaches to better understand the impacts of 373 

rare hydrological droughts in the UK under climate change. Most previous studies in the UK 374 

have considered different climate model outputs or hydrological models but did not take into 375 

account the variability induced due to warming on different drought events on the seasonal 376 

scale (Parry et al., 2024; Rudd et al., 2019). Therefore, the results of this analysis provide more 377 

comprehensive insights into the varying uncertainty of future return levels.  378 

3.4. Inter-model differences in return levels  379 

Further, Figure 6 shows the magnitude of the difference between the percentage changes in 380 

nonstationary and stationary return levels for 3°C warming level.  Results are shown for each 381 

model to demonstrate the variability among models. The difference between the 382 

nonstationary and stationary return levels is smaller for drought intensity compared to 383 

drought duration and severity. This outcome was expected due to the relatively lower level 384 

of nonstationarity detected in the drought intensity projections (Figure 2) and a higher 385 

severity and lower duration compared to the reference period (Figure 4a,b). This suggests 386 

that the mean flow deficit relative to the historical drought threshold on any given day in the 387 

future is less likely to be related to temperature change than for duration and severity. 388 

However, the number of days over which drought might occur and the total accumulated flow 389 

deficit across all days of a drought are more likely to be affected by these factors at higher 390 

warming levels. Moreover, the duration of more frequent droughts being less affected by 391 

rising temperatures is also confirmed by minimal difference between stationary and 392 

nonstationary return levels across seasons, which changes significantly when higher return 393 

levels are considered (Figure 6).  394 

Overall, the results indicate that failing to incorporate temperature effects in modelling 395 

duration for longer return period droughts can lead to significant uncertainty regarding their 396 

future return levels. This underestimation and variability are most amplified for future 397 

drought severity, where it is evident that temperature influences across models, seasons, and 398 

warming levels might lead to more severe droughts.  To further confirm this, we analysed the 399 

distribution of the 25th, 75th quantiles, and the median return levels for different warming 400 

levels (Figure S4a-f), which shows a similar trend. Further, assessing model performance for 401 

future periods compared to a baseline period is challenging because different hydrological 402 
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models capture processes and uncertainties based on their individual structure and 403 

operational specifications. Therefore, it is important to incorporate multiple models for more 404 

confident estimates of future changes in drought characteristics (Hannaford et al., 2023; Lane 405 

et al., 2022). In this setting, with four hydrological model outputs assessed, for each drought 406 

characteristic, the return levels across the UK are primarily driven by the rarity of the event 407 

in different seasons rather than the model itself. 408 

 409 

Although the results from this analysis are consistent across the hydrological models, a more 410 

detailed uncertainty partition analysis could be conducted in the future to gain a deeper 411 

understanding of the inter-model differences in the projected characteristics of future 412 

droughts. Further studies could also incorporate catchment hydrometeorological 413 

characteristics in the nonstationary modelling set-up to understand the role of changing 414 

 

Figure 6. Difference in percentage change in return levels for mean nonstationary and stationary 
return levels for different drought characteristics across all seasons and 3°C warming levels.  
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catchment conditions in governing the drought characteristics. In this study, we have looked 415 

at the drought characteristics independently, however, the dependence of drought 416 

characteristics over time, as well as their evolution in a compound setting could give more 417 

useful insights about their interrelation in the future.  Despite this, the findings from this 418 

analysis give crucial insights about the changing future hydrological drought characteristics in 419 

the UK under climate change.  The results not only point out changing magnitudes of drought 420 

duration, severity, and intensity but also provide robust estimates of uncertainty on different 421 

spatial and temporal scales, which can be considered while designing more targeted and 422 

localized strategies against drought-related challenges in the future.  423 

4. Conclusions 424 

This study attempts to understand the evolution of future hydrological droughts in the UK 425 

under different warming conditions, utilising nonstationary extreme value analysis with a 426 

Bayesian framework for parameter uncertainty. We used the recently developed eFLaG 427 

projections to investigate changes in drought characteristics in terms of return levels. The 428 

findings indicate that future temperature changes contribute significantly and uniquely to 429 

hydrological droughts' characteristics - duration, severity, and intensity.  Results demonstrate 430 

that the future changes in these characteristics are highly dependent on the season and the 431 

rarity of droughts. Drought severity in most cases, irrespective of rarity and season, appears 432 

to be increasing in the future at higher warming levels. However, future drought duration and 433 

intensity are showing both increasing and decreasing trends depending on the season and 434 

return period of droughts. This also underscores the varying degrees of nonstationarity 435 

exhibited by different drought characteristics, which should be carefully considered while 436 

planning measures against future drought risks in the UK. The projected return levels, 437 

particularly for rare and high-impact events, also show a higher level of uncertainty in their 438 

magnitude as compared to more frequent events, which can be critical for risk management 439 

and adaptation strategies. Overall, this research underlines the importance of considering the 440 

influence of temperature-induced nonstationarity in modelling future changes in hydrological 441 

drought characteristics. Results from both stationary and nonstationary cases across different 442 

seasons, rarities, and warming levels provide comprehensive insights that can be utilised by 443 

policymakers and water managers to develop effective strategies against future risks.  444 

 445 

 446 
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Code and data availability  447 

The eFLaG river flow projections analysed in this study are stored at the UKCEH's 448 

Environmental Information Data Centre and can be freely accessed as DOI datasets. Please 449 

ensure these data are cited in full when used in any application: 450 

https://catalogue.ceh.ac.uk/documents/1bb90673-ad37-4679-90b9-0126109639a9. The 451 

CHESS-SCAPE dataset can be downloaded from the NERC Environmental Data Service (EDS) 452 

Centre for Environmental Data Analysis (CEDA) via the following link:  453 

https://doi.org/10.5285/8194b416cbee482b89e0dfbe17c5786c. The R scripts used for 454 

analysis were developed using publicly available packages, such as ‘extRemes’, ‘evir’, ‘coda’, 455 

‘foreach’, and ‘doparallel’, which support extreme value analysis, Markov Chain Monte Carlo 456 

diagnostics in a parallel environment. 457 
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