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Abstract

The combination of various nitrogen (N) transformation pathways (mineralization, nitrification, denitrification, DNRA,
anammox) modulates the fixed-N availability in aquatic systems, with important environmental consequences. Several
models have been developed to investigate specific processes and estimate their rates, especially in benthic habitats, known
hotspots for N-transformation reactions. Constraints on the N cycle are often based on the isotopic composition of N species,
which integrates signals from various reactions. However, a comprehensive benthic N-isotope model, encompassing all
canonical pathways in a stepwise manner, and including nitrous oxide, was still lacking. Here, we introduce a new diagenetic
N-isotope model to analyse benthic N processes and their N-isotopic signatures, validated using field data from the
porewaters of the oligotrophic Lake Lucerne (Switzerland). As parameters in such a complex model cannot all uniquely be
identified from sparse data alone, we employed Bayesian inference to integrate prior parameter knowledge with data-derived
information. For parameters where marginal posterior distributions considerably deviated from prior expectations, we
performed sensitivity analyses to assess the robustness of these findings. Alongside developing the model, we established a
methodology for its effective application in scientific analysis. For Lake Lucerne, the model accurately replicated observed
porewater N-isotope and concentration patterns. We identified acrobic mineralization, denitrification, and nitrification as
dominant processes, whereas anammox and DNRA played a less important role in surface sediments. Among the estimated
N isotope effects, the value for nitrate reduction during denitrification was unexpectedly low (2.8+1.1%0). We identified the

spatial overlap of multiple reactions to be influential for this result.
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1 Introduction

Nitrogen (N) is an essential element for all living organisms (Xu et al., 2022) and often limits primary production in aquatic
systems (Kessler et al., 2014). In order to meet the global demand for fixed N (nitrate, NO3, and ammonium, NHg"),
industrial fixation of atmospheric dinitrogen (N2) through the Haber-Bosch process now exceeds biological N2 fixation, with
unforeseeable consequences regarding the ability of the environment to remove the excess fixed N, leaving the global N
cycle imbalanced (Kessler et al., 2014). High fixed-N in aquatic systems has detrimental environmental consequences (Denk
et al., 2017; Yuan et al., 2023), including eutrophication, ecosystem deterioration, and greenhouse gas emissions (e.g.,
nitrous oxide, N2O). Thus, understanding the fate of fixed N in aquatic ecosystems and quantifying N fluxes are crucial for
global budget estimates (Pétsch and Kiihn, 2008).

In aquatic systems, benthic habitats are important hotspots in the transformation of large amounts of fixed N (Dale et al.,
2019; Patsch and Kiihn, 2008; Xu et al., 2022), owing to sharp oxyclines and the co-occurrence of aerobic and anaerobic
processes. The active N cycle in these sediments is driven by the flux of organic matter (OM) from the photic zone along
with elevated concentrations of other electron donors (Ibanhez and Rocha, 2017; Wankel et al., 2015). Aerobic reactions,
such as nitrification (stepwise NH4" oxidation to NO3™ via nitrite, NO2", with N2O as by-product), are usually restricted to the
top few millimetres in OM-rich sediments (e.g., in small lakes) or extend several centimetres deep in OM-poor sediments
(e.g., in large oligotrophic lakes and the ocean) (Pétsch and Kiihn, 2008; Wankel et al., 2015). The fate of NOs", produced via
nitrification either locally in the sediments or in the water column, determines a system’s capacity to function as an efficient
N sink (Wankel et al., 2015). Denitrification, the stepwise reduction of NOs™ to N2 (via NOz™ and N20), has been identified as
a key pathway for anaerobic N removal. Additionally, anammox, the anaerobic oxidation of NH4" to N2 using NO>, can
contribute to N loss (Ibanhez and Rocha, 2017; Kampschreur et al., 2012; Wankel et al., 2015), especially in oligotrophic
lake sediments (Crowe et al., 2017). In anammox, partial oxidation of NOz generates NO3™ as a by-product to provide
reducing equivalents for the fixation of inorganic carbon (C) (Brunner et al., 2013; Strous et al., 1999). Counteracting N
removal by anammox and denitrification, the dissimilatory NOs™ reduction to NH4" (DNRA) contributes to N retention
(Denk et al., 2017; Ibanhez and Rocha, 2017; Rooze and Meile, 2016). The relative balance between these N-transforming
reactions is strongly influenced by environmental conditions, particularly the ratio of organic C to NOs™ and oxygen (O2)
availability. For instance, DNRA may be predominant under high C:NOs™ ratios (Ibanhez and Rocha, 2017; Kraft et al.,
2011; Wang et al., 2020). Oxygen is a central regulator in this context: it controls the coupling of nitrification with
denitrification, anammox and DNRA, and modulates N>O production and consumption, with peak N>O yields typically
occurring at the oxic-anoxic interface (Ni et al., 2011). The spatial overlap of aerobic and anaerobic N cycling processes at
this transition zone in sediments often results in very low concentrations of metabolic intermediates (e.g., N2O) in porewater,
complicating their measurements in natural benthic environments. This is particularly true for the analysis of natural-
abundance DIN isotopologues, which provide critical insights into N-cycling reactions and pathways. However, measuring

these isotopologues, especially low-concentration intermediates in porewater, is technically challenging, if not impossible at
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present. To overcome these limitations, isotope modelling has become an essential tool for quantifying rapid N turnover at
the oxic-anoxic interface, and for evaluating environmental controls on N dynamics and isotope signatures across diverse
settings (Denk et al., 2017; Wankel et al., 2015).

Natural abundance stable isotope measurements provide insights into the N cycle, and the fluxes within its pathways, as
microbial processes impart unique isotopic imprints on the involved N pools (Lehmann et al., 2003; Rooze and Meile, 2016;
Wankel et al., 2015). In most microbial processes, the isotopically lighter molecules are preferentially consumed, yielding
5N-depleted products and '’N-enriched substrates (normal N-isotopic fractionation) (Kessler et al., 2014), with few
exceptions, such as NO>  oxidation, which occurs with an inverse N isotope fractionation (Casciotti, 2009; Martin et al.,
2019). The isotopic composition of a given N pool is expressed in Snotation, 8'°N (%o vs. std) = [(Rsampie/Rsa) — 1] x 1000,
where R is the isotope ratio >N/'“N, and the internationally recognized standard is atmospheric N2 (Denk et al., 2017; Martin
et al., 2019). The extent of the isotopic fractionation for a reaction is quantified using the isotope effect, & defined as & (%o) =
[1 — (Pk/*k)] x 1000, where “k and Lk are the specific reaction rates for the isotopically heavy and light molecules,
respectively (Sigman and Fripiat, 2019). For instance, '°N-NOy™ analysis can help differentiate reductive and oxidative
pathways of NO2" consumption, as they are characterised by a normal and an inverse kinetic isotope effect, respectively
(Dale et al., 2019; Martin et al., 2019; Rooze and Meile, 2016). Despite considerable efforts to estimate isotope effects for
most N-transformation processes (Denk et al., 2017), isotope effects estimated in batch cultures often differ from in situ
measurements (Martin et al., 2019). To date, only limited efforts have been made to develop comprehensive benthic isotope
models that integrate multiple N-transformation processes in a stepwise manner, and assess the expression of their isotope
effects in the porewater of aquatic sediments, validated with observational data (Denk et al., 2017; Rooze and Meile, 2016).
Existing N-isotope models address specific aspects of the N cycle (Denk et al., 2017), such as denitrification (Kessler et al.,
2014; Lehmann et al., 2003; Wankel et al., 2015), NO>" oxidation and reduction (Buchwald et al., 2018) or N>O dynamics
(Ni et al., 2011; Wunderlin et al., 2012). As denitrification is the primary pathway for fixed-N loss in many aquatic systems,
models integrating dual NOs" isotopes (Lehmann et al., 2003; Wankel et al., 2015) have been used for example, to constrain
its partitioning between water-column and benthic denitrification (Lehmann et al., 2005), as well as the contribution of
regenerated NO;s™ supporting denitrification (Lehmann et al., 2004). Rooze and Meile (2016) combined isotope data with a
reaction-transport model to investigate the influence of hydrodynamics on fixed-N removal, highlighting enhanced coupling
of nitrification-N2 production by benthic infauna. Buchwald et al. (2018) used dual NOs™ and NO:™ isotope analyses, and a
reaction-diffusion model to demonstrate the tight coupling of NOs™ reduction and NO>™ oxidation near oxic-anoxic interfaces,
emphasizing the central role of NO2™ in N recycling. In contrast, most N2O modelling efforts (primarily concentration-based
models) to date have focused on engineered systems such as wastewater treatment, where they have been used to assess N2O
production pathways under variable conditions, and to minimize its emissions (Ni et al., 2011; Wunderlin et al., 2012).
Challenges in measuring N2O isotopologues in natural settings, especially in sediment porewaters, have limited the broader
application of N2O isotopic approaches and led to the exclusion of N2O from benthic N-isotope modelling efforts so far.

Nonetheless, given the key role of N2O in the N cycle, and its sensitivity to redox conditions, there is a growing need for
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modelling frameworks that integrate multi-species N-isotope dynamics, even in the absence of direct measurements of N-
cycle intermediate like NO2™ and N20 to more accurately capture the interconnected nature of N transformations in natural
systems.
With this study, we introduce a comprehensive 1-D diffusion-reaction model, encompassing all canonical N-transformation
processes and most DIN isotopologues, to assess the role of distinct environmental factors (e.g., OM reactivity, bioturbation)
in shaping porewater N dynamics and the N isotopic signatures the different N transformations (and combinations thereof)
generate. Furthermore, by considering the stepwise nature of the N-cycling pathways, the model quantifies and isotopically
characterizes key intermediates (i.e., N2O, NOz"), which serve as substrates for subsequent reactions (Martin et al., 2019).
Moreover, the model acts as a valuable research tool for analysing process couplings (e.g., DNRA-anammox interactions)
(Dale et al., 2019; Hines et al., 2012), which are crucial for accurately estimating N removal and recycling, and can influence
the apparent isotope effects of NOs~ and NOz". Incorporating N2O isotopologues as state variables enables the model to
resolve the relative importance of N2O producing mechanisms across small-scale benthic oxic-anoxic interfaces, and to
quantify their contribution to sedimentary N2O emissions.
The application of a comprehensive diagenetic N isotope model to measured porewater profiles of selected inorganic N
compounds often results in parameter identifiability issues. Specifically, similar fits to the observed data might be achieved
with comparable accuracy using different parameter sets, each yielding distinct transformation rates. To reduce the risk of
drawing erroneous conclusions from such identifiability problems, we employed the following modelling strategies:
o Use of prior knowledge
Prior knowledge informed both the development of the model structure and the selection of parameter values. The
model parameterization was adapted as deemed necessary to effectively integrate this prior knowledge. This
approach aims to produce a plausible representation of the mechanisms governing the data.
e  Consideration of uncertainty
Uncertainty in model parameters was explicitly accounted for using epistemic probability distributions. Bayesian
inference (Bernardo and Smith, 1994; Gelman et al., 2013; Robert, 2007) was employed to combine prior
knowledge with information obtained from observational data. The resulting posterior distribution of the parameters
and calculated results provide a comprehensive uncertainty description, which is, however, still conditioned on prior
information about the model structure and parameters.
o Sensitivity analysis
To test the robustness of key results against modelling assumptions, we assessed their sensitivity to the choice of
prior probability distribution of the model parameters and to the inclusion of specific active processes within the
model.
Since the numerical implementation of Bayesian inference requires the computationally intensive Markov Chain Monte
Carlo (MCMC) sampling technique (Andrieu et al., 2003), an efficient model implementation is required. To meet this need,

we implemented the model in Julia (Bezanson et al., 2017) (https://julialang.org), a high-performance programming
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language. This choice also enables the use of automatic differentiation, which supports advanced MCMC techniques like
Hamiltonian Monte Carlo (HMC) (Betancourt, 2017; Neal, 2011). The model was tested using field measurements from
oligotrophic Lake Lucerne. It is important to emphasize that this isotope model is designed as a research tool, rather than a
predictive instrument. Its primary purpose is to test hypotheses and assumptions related to the biogeochemical controls on N
isotope signatures in natural environments, and to assess the identifiability of process rates and N isotope effects from

observational data.

2 Model description
2.1 Model formulation

A one-dimensional diffusion-reaction model was developed to simulate the concentrations of inorganic N compounds (NOs",
NO:, NH4%, N2, N20), distinguishing between N and N isotopes (*NOs", 'NOs, “NO2, PNO2, “NH4", SNH4", N,
UNBN, BNz, “N20, “NBNO, ®N20), as well as for O» and sulfate (SO4*) concentrations. Their production and
consumption rates are described by incorporating key processes of the canonical N cycle: aerobic mineralization,
denitrification, nitrification, anammox, DNRA, mineralization by SO4>" reduction, and anaerobic mineralization (other than
SO4>-driven) (Fig. 1). All reactions (Table 1) are described using the general formula:
rate = kmax - limitation - inhibition (1)
where kmax represents the maximum conversion rate under ideal conditions (in uM d!). The terms for limitation by substrate

X and inhibition by substance Y for the process i are defined following Michaelis-Menten kinetics (Martin et al., 2019):

] hibition — K%
limitation = Kx it K] 2 inhibition = Ky +[Y] 3)

where [X] and [Y] are the concentrations (in pM) of substances X and inhibitor Y, respectively, while Kx; and Ky, are their
respective half-saturation and inhibition constants (in uM) for process i, respectively. While the model supports exponential
equations for limitation and inhibition terms, Michaelis-Menten kinetics were chosen for this study, as they are more
commonly employed in N models (Rooze and Meile, 2016). The specific reaction rate equations are implemented taking into
account the concentrations of N, N, NN, NN, and >N®N species separately for the limitation term. For 'SN-
containing species, specific reaction rates are reduced by (1-&/1000) relative to *N-containing species, reflecting the isotope
effect associated with a given reaction (detailed descriptions of the model processes are provided in Appendix A: Model
processes and stoichiometry).

Molecular diffusion is modelled taking into account the reduced solute movement due to tortuosity (Burdige, 2007).
Additionally, bioturbation is included as a transport term enhancing diffusion, with its influence exponentially decreasing
with depth. Boundary conditions are set based on observed concentrations of N compounds, Oz, SO4>" at the upper boundary,

and by zero fluxes at the lower boundary, except for NHs*. The NH4" flux (and its 8'°Nrnma) was jointly estimated with the
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model parameters, as the field data display a clear NH4" concentration gradient at 5 cm. Total N, "N and >N concentrations,
along with their fluxes, are used for model parameterization (see Appendix B: Reaction-diffusion model for details).
The model is formulated as a dynamic model, but simulated to steady-state for comparison with observational data.

Concentrations of '“N- and 'N-containing compounds are converted to total concentrations and 3'°N.

2.2 Description of modelled transformation processes

This section outlines the modelled processes for *N and "“N'*N compounds (Table 1). A comprehensive overview of the
transformation processes for all isotopologues, and stoichiometric relations is provided in Appendix A: Model processes and
stoichiometry.

Mineralization of OM, the sole external N source, is differentiated in the model according to the specific electron acceptor
involved: aerobic mineralization (O2), denitrification and DNRA (NOs’), SO4* reduction, and anaerobic mineralization. The
latter encompasses all remaining redox species (i.e., other than Oz, NOs", and SO4%) below the nitracline (e.g., manganese,
iron oxides, carbon dioxide).

Denitrification is modelled as a three-step process: (1) NOs™ to NO27; (2) NO2 to N2O; and (3) N2O to Na. The first step,
typically regarded as the rate-limiting step (Kampschreur et al., 2012), is the primary control on the overall expression of the
N isotope effect (Kessler et al., 2014; Rooze and Meile, 2016). To prevent unrealistic rates, subsequent steps are constrained
by setting kpen2 = fpen2 X kpeni and kpens = fpens % kpeni, and specifying priors for fpes2 and fpens. The re-parameterization of the
second and third steps using the fpen2pens and fpenspens factors corresponds to exactly the same model without any
approximation or simplification. It serves solely to facilitate the specification of priors, as more knowledge is typically
available about ratios of maximum rates (i.€., fpen2pens = kpen2/kpenr) than about the absolute maximum rates themselves. The
NOs™ N isotope effect during benthic denitrification is known to be suppressed in the overlying water due to diffusion
limitation (Dale et al., 2022; Kessler et al., 2014; Lehmann et al., 2003), though its expression at the porewater level remains
less well constrained (Wankel et al., 2015). Transiently accumulating intermediates, such as N20, that can escape to the
overlying water and alter benthic N fluxes (Rooze and Meile, 2016), are also considered. Lastly, to ensure mass balance, the
model accounts for clumped (doubly substituted; e.g., >N*'NO and '>N'*N) isotopocules, but does not distinguish between
isotopomers (i.e., “N'NO and N'*NO) due to lack of N2O isotope data needed for model validation. For the purpose of
comparison with previous N models, a simplified one-step denitrification pathway (NOs™ to N2 with no release of NOz™ or
N20 into the environment) approach is also implemented in the model code.

Nitrification is modelled as a two-step process: (1la) NH4" to NO2; (1b) NHs" to N20; (2) NO2 to NOs~. As for
denitrification, the second step of nitrification is constrained to prevent unrealistic rates: kniz = fniz ¥ knir, with specifying a

prior for fniz. N2O production yield during the first step is Oz-dependent, and is modelled accordingly:

ba
fvzoninn = 5o “4)

a
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where b and a are empirical parameters derived from (Ji et al., 2018). N2O production also occurs via nitrification-
denitrification, implicitly modelled by allowing reaction coupling via the intermediate NO2. The expression of isotope
effects depends on substrate availability and reaction completion. For instance, incomplete nitrification has been shown to
result in isotopically heavy NH4" efflux from the sediments (Dale et al., 2022; Lehmann et al., 2004; Rooze and Meile,
2016). However, similar phenomena for N2O and NOz" remain poorly understood.

The limited understanding of porewater N isotope dynamics, especially for processes other than denitrification, hinges on the
scarcity of isotope data for crucial N species like NH4" and NO> in natural settings (Martin et al., 2019; Wankel et al., 2015).
In the present model, we investigated the importance of these solutes, and how N-turnover processes like DNRA and
anammox shape the distribution of their N isotopes. DNRA is modelled as a two-step process: (1) NOs™ to NO>; and (2)
NO> to NHq4". This approach separates the impact of NO2™ reduction on NH4*, and allows comparison of NO2" isotopic
signatures induced by denitrification, DNRA, and anammox. Anammox is modelled to include both the comproportionation
of NHs4" and NO2 to N2 (main reaction, “m”), and the NO3™ production via NO2 oxidation (side reaction, “s”) (0.3 mol NOs
produced per 1 mol NH4" and 1.3 mol NOy) (Tables 1 and Al) (Martin et al., 2019), which imparts a strong inverse isotope
fractionation (Brunner et al., 2013; Magyar et al., 2021).

The relative importance of reductive NOs™ pathways is constrained by altering maximum conversion rates, k, as: kpyras =
JDNRALDen1 % kpen1; kDNRA2 = fDNRA2.Den2 X kpen2; kanam = fanam.pen2 * kpen2, where prior information on f factors was obtained from
experimental rate measurements (see below). Altogether these reactions provide a comprehensive overview of N isotope

dynamics in porewater and enable the assessment of influential environmental conditions in shaping them.

2.3 Model assumptions

The model builds on the following considerations and assumptions:

1. The inputs of sinking OM and associated advective transport relative to the sediment surface are not explicitly
modelled, as the dissolved O2 and N-compound profiles tend to reach quasi-steady state on short timescales (days to
weeks). This simplification may not be valid for continental shelf sediments, where advection dominates solute
movement due to high sediment permeability (Rooze and Meile, 2016). Therefore, in our model, porewater profiles
are shaped primarily by molecular diffusion and bioturbation (the latter approximated as enhanced diffusion), along
with reaction processes.

ii. Hinging on assumption i., the rates of OM-degrading processes are assumed to be limited by the availability of
oxidants and not of OM, as in Kessler et al. (2014), an assumption that holds for sediments with sufficient readily
degradable OM, but may break down at great depths. As OM is neither a state variable nor a limiting substrate, its
production and consumption rates are not tracked and are considered uninfluential within the current model.

1il. Microorganisms involved in N-transformation pathways are not explicitly modelled, meaning that maximum

conversion rates, k, represent a combination of bacterial maximum specific growth rates and abundance. These
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parameters likely vary significantly across systems, due to differences in OM loading. Variabilities in cell-specific
rates, and consequently in isotope effects, over depth and substrate availability were not considered.

N assimilation is not included, which is plausible if the turnover rates of the modelled processes are considerably
higher than the N assimilation rates.

Maximum specific conversion rates for all reactions are constant with depth, implying uniform bacterial abundance
and activity across the sediment layer affected by any given process.

Limitation and inhibition kinetics are modelled using Michaelis-Menten functions, as they are commonly employed
in N-cycle models (Rooze and Meile, 2016); exponential equations are provided within the code as an alternative
approach, depending on user preference.

OM composition is approximated by the Redfield ratio (C:N:P = 106:16:1), used to estimate the fraction of NH4*
released during OM mineralization, y.

Anaerobic mineralization includes all processes involving redox species below the nitracline (e.g., manganese, iron,
and carbon dioxide) with the exception of SO4> reduction, with no distinction in reaction rate for different oxidants.
Reduction of SO4* is modelled separately, as it can occur at faster rates than oxidation by iron(Ill), Fe**, and
manganese, Mn*', in some lacustrine systems (Steinsberger et al., 2020), and is the dominant anaerobic
mineralization process in marine settings.

Re-oxidation of reduced species other than NHs" and NO: (e.g., Fe?", Mn*", H2S, CHa4) is neglected in the O
budget for the modelled interval; this is appropriate where their upward fluxes are minor, but may underestimate Oz
demand in settings with substantial reduced-species fluxes. Future users are encouraged to adapt the model to their
research questions and dataset, including adding processes and state variables, provided that they can be
constrained.

OM mineralization occurs with no N isotopic fractionation; that is, the released NH4" has the same N isotopic
composition of OM, which is a model parameter considered for estimation.

Diffusivities of isotopologues are considered identical, as their differences have been reported to be minimal
(Lehmann et al., 2007; Wankel et al., 2015).

Bioturbation enhances diffusion equally for all modelled species. As no solid was included as a state variable of the
model, the impact of bioturbation on solid phase mixing was neglected.

The yield of NO3™ during anammox is fixed at 0.3 mol NO3™ per 1 mol NH4", although reported values range from
0.26 to 0.32 (Brunner et al., 2013).

The NOs™ and NOz" equilibrium during anammox has been previously reported to occur under environmental stress
conditions with a strong isotopic fractionation (up to -60.5%o) (Brunner et al., 2013). Since it leads to the production
of N-enriched NOs", similarly to the kinetic isotopic fractionation during NO>™ oxidation to NOs, variable values

of Eanam,side (-15%o to -45%o0) can encompass both kinetic and equilibrium fractionation.
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XV. NH4" adsorption and desorption rates are assumed to be comparable, and to occur with negligible isotopic

fractionation, resulting in no net effect on the NH4" pool concentration or isotopic composition.

The model incorporates deliberate simplifications to reduce complexity, while remaining adaptable to new data or insights;
however, it is acknowledged that these assumptions may significantly influence model outcomes and should be carefully

considered when interpreting results.

2.4 Prior knowledge about model parameters

Model parameter values were derived from an extensive literature review, and formulated as prior distributions, as detailed
and referenced in Appendix C: Prior values for inference. Positive parameters were parameterized as Lognormal priors,
while priors of positive or negative parameters were parameterized as Normal distributions. Mean values were derived from
the provided references, standard deviations were assigned either as absolute values or as percentages of the mean,
depending on the class of variables. For parameters that are lake-specific (see model assumption iii.) and expected to be well
identifiable from data, such as the maximum conversion rates of various processes (i.e., acrobic mineralization, the first step
of nitrification, the first step of denitrification, mineralization by SO4>" reduction, anaerobic mineralization) and the NH4"
flux from deeper sediment layers, only limited prior knowledge is available, making the use of uniform priors preferable. As
their interpretability can be questionable, uniform priors were applied only to parameters expected to be well-identifiable,
ensuring that prior variations within the marginal posterior range would remain small, even with alternative broad priors.
This approach avoids specifying typical expected values, while maintaining robust identifiability. The maximum conversion
rates for anammox, DNRA, as well as the second step of nitrification and the second and third steps of denitrification
(Anam, DNRA1, DNRAZ2, Nit2, Den2 and Den3) were more challenging to identify from data, as the sensitivity of model
results to these parameters becomes very low when the concentration of the converted substance becomes small.
Additionally, prior specification for these rates was difficult, due to the expected variability among different lakes, similar to
other maximum conversion rate parameters. Therefore, their priors were formulated as ratios relative to the better-
constrained maximum conversion rate of the first nitrification (i.e., kniz) or denitrification step (i.e., kpens). This approach
allowed for the characterization of the relative importance of each process without requiring absolute rate values. The joint

prior for all parameters was assumed to be an independent combination of their respective marginal prior distributions.

2.5 Model-based analysis process

To partially reduce structural uncertainty of the model and to account for parameter non-identifiability, Bayesian inference
was applied, considering all uncertain parameters listed in Appendix C: Prior values for inference. Some parameters were
excluded from this analysis, including molecular diffusion coefficients, compound concentrations at the sediment surface,

zero fluxes from deeper sediment layers (except for the NH4" flux, which was inferred jointly with other parameters) and
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bioturbation. These values are considerably less uncertain than the other model parameters, except for bioturbation, which
was addressed separately through a scenario analysis, following Bayesian inference under the Base scenario.
The posterior distribution (probability density) of the model parameters, fyos;, is expressed as

_ 11(C19) £i(8)
Joos®) = 7 €10 fp() a0 ®)

where fri is the prior distribution (probability density) of the model parameters, f7(C|6) is the likelihood function of the
model, C represents the observed compound concentrations, or 3'°N values, and @ denotes the model parameters. The
likelihood function f2(C| ) is defined as a multivariate, uncorrelated Normal distribution with constant variances (standard
deviation, os) for 8'°N values, and variances increasing linearly with concentration, leading to a standard deviation o, =
m for Oz, SO4*, and N compound concentrations. This formulation incorporates the combined uncertainties in
model structure, sampling, and concentration measurements. To account for the unknown magnitude of these uncertainties,
the coefficients of these relationships, oca, ocs, and os, were inferred alongside the model parameters.

The marginal posteriors of individual parameters were compared with their priors to evaluate whether observational data
provided information about these parameters, and whether this information was in conflict with the priors. In addition, two-
dimensional marginals were examined to identify potential identifiability issues. Finally, uncertainty in the model results was
calculated by propagating parameter uncertainty to the model results under consideration of their uncertainty for given
parameter values as formulated in the likelihood function:

foost(©) = [ £L(C10) fos:(6) dO (6)

For the parameters with marginal posteriors in conflict with prior information, we conducted additional scenario analyses,
fixing parameters, and narrowing or widening prior distributions. These analyses evaluated the model’s compatibility with
observational data if parameters better aligned with prior information and assessed changes in posterior distribution with

weaker priors. These scenario analyses complemented the assessment of bioturbation uncertainty mentioned above.

2.6 Discretization and numerical algorithms

The partial differential equations outlined in Appendix B: Reaction-diffusion model were solved using the Method of Lines.
For spatial discretization, a grid was employed with cell thickness increasing progressively from the sediment surface toward
deeper layers. This adaptive grid design reduced the total number of cells required, while still maintaining high resolution
near the sediment-water interface, where steep concentration gradients typically occur (Appendix D: Model discretization).
The resulting system of ordinary differential equations (ODE) was solved by a standard ODE solver. Parameter inference
was conducted using two advanced Bayesian inference algorithms: Metropolis (Andrieu et al., 2003; Vihola, 2012) and

Hamiltonian Monte Carlo (Betancourt, 2017; Neal, 2011) algorithms.
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2.7 Model implementation

The model was implemented in Julia (Bezanson et al., 2017) (https://julialang.org) to achieve high-performance and

facilitate automatic differentiation. The DifferentialEquations.jl package (Rackauckas and Nie, 2017) was used to solve the
system of ODEs; performance testing of several ODE solvers identified the FBDF solver (adaptive order and adaptive time-
step backward-differencing solver) as the most suitable for handling the stiffness of the ODE system. The ForwardDiff.jl
package (Revels et al., 2016) was used for automatic differentiation; Bayesian inference was conducted using the adaptive
Metropolis sampler from the AdaptiveMCMC package (Vihola, 2020), and the Hamiltonian Monte Carlo algorithm
implemented in the AdvancedHMC jl package (Xu et al., 2020). Further implementation details are provided in Appendix E:

Model implementation. Simulations were performed at sciCORE (https://scicore.unibas.ch), the scientific computing centre

at the University of Basel.

3. Sample collection and analyses
3.1 DIN concentrations and isotopes

Sediment cores were retrieved at the deepest location of the Kreuztrichter basin in Lake Lucerne, a large oligotrophic lake in
Switzerland (Baumann et al., 2024), in April 2021 using a gravity corer with PVC liners. The sediment cores were stored at
4 °C and processed using two porewater-sampling methods: whole-core squeezing (WCS; (Bender et al., 1987)) for NO3
samples, and Rhizon samplers (Rhizosphere research products, Wageningen, NL) for NHs" samples. The WCS technique
provides a high depth resolution near the sediment-water interface (0-5 cm, resolution: ~ 0.7-1 mm), where NO;" is present
in porewaters, while the Rhizon sampling method allows collecting samples at greater sediment depths (> 5 cm, resolution: >
0.5 cm). NOs™ and NH4" concentrations were measured using ion chromatography (940 Professional IC Vario, Metrohm).
8'5N-NOs and 8'"'N-NH4" were determined using the denitrifier method (Casciotti et al., 2002; Sigman et al., 2001), and the
hypobromite-azide method (Zhang et al., 2007), respectively. In both methods, sample N from NOs™ or NH4" is converted
into N20, which is then purified and analysed by isotope ratio mass spectrometry (Delta V Plus, Thermo Fisher Scientific).

The typical analytical precision is ~ 0.25%o (Mcllvin and Casciotti, 2010).

3.2 Process rate measurements

For model parameterization, reaction rates for denitrification, DNRA, and anammox were determined using established
protocols for ’N-tracer incubations (Holtappels et al., 2011). After recovery and sectioning of the core into 1-cm intervals, 1
g of sediment was placed into 12 mL gas-tight glass vials (Exetainers®, Labo, UK). These Exetainers were then filled with
anoxic, sterilized bottom water, amended with the following tracers: (Exp1) "NOs", (Exp2) "'NH4" + *NO;". Exetainers were
incubated at 6 °C in the dark, and terminated at designated time points (0, 6, 12, 24, and 36 hours) by adding ZnCl>. Gas

headspace samples were analysed for the production of “N'N and 'N!*N using gas-chromatography isotope ratio mass
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spectrometry (GC-IRMS; Isoprime, Manchester, UK). Linear regression of *N'*N and '>NN production over time was
used to calculate N2 production rates, with standard errors derived from deviations in the regression slopes across the five-
time points. For the determination of '>NH4" production from '>NQO; additions, '’NH4" was chemically converted to N2 gas
using the alkaline-hypobromite method (Jensen et al., 2011). The resulting *N'>N was quantified by GC-IRMS. Linear
regression of "“N'>N production over time was used to calculate potential rates of 2Nz (i.e., "NH4") production. Rates of
denitrification, DNRA, and anammox were calculated according to Holtappels et al. (2011) and Risgaard-Petersen et al.
(2003). Only data from the upper 1 cm were used to parameterize the model, as the investigated sediments displayed a

shallow nitracline and the highest anammox contribution at 0-0.5 cm depth.

4. Results and Discussion

The developed diagenetic N isotope model addresses existing knowledge gaps in understanding porewater N dynamics, and
aims to clarify the roles of distinct N-transformation processes in shaping the distribution of N isotopes to be potentially used
to constrain benthic N (isotope) fluxes across different environments. Here, we present (1) the results of Bayesian inference
applied to a large number (~ 60) of model parameters (see prior definition in Appendix C: Prior values for inference), with a
focus on assessing their uncertainty, (2) a detailed scenario analysis, focusing on parameters that exhibit significant shifts in
their marginal posterior distributions relative to their prior, as well as on the effect of variable contributions from different
NO;™ and NOz™ reduction pathways, and the impact of enhanced bioturbation on model outcomes, (3) a sensitivity analysis,
evaluating the importance of individual model processes in shaping benthic N isotope dynamics, (4) the importance of
process coupling in benthic N cycling, with a particular focus on the role of intermediate NO2™ in influencing '°N-NOs-
dynamics. All results are based on porewater concentration, isotope, and rate measurement data from a sampling campaign
conducted in Lake Lucerne in April 2021. Additionally, we performed (5) a sensitivity analysis examining model output
responses to modifications of selected parameters using artificially simulated settings (e.g., variable contributions of
denitrification/anammox/DNRA); this analysis demonstrates the model’s capability for addressing diverse research

questions.

4.1 Bayesian inference

The model implementation was highly efficient, achieving simulation times of about 12 s on an 13th Gen Intel® Core™ i9-
13,900K processor with 3.00 GHz and 64 GB of memory (of which only a small fraction was needed) for a 100-day
simulation starting from constant concentration profiles. This efficiency enabled the execution of Markov chains of 20,000

iterations within a few days on the scientific computing centre at the University of Basel (https://scicore.unibas.ch). By

combining these chains, samples of 100,000 iterations were generated. The Hamiltonian Monte Carlo algorithm
outperformed the adaptive Metropolis algorithm during burn-in to the core of the posterior distribution. However, for final

posterior sampling with about 60 parameters, adaptive Metropolis sampling proved more efficient in terms of effective
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sample size per unit of simulation time. Despite these efforts in getting computational efficiency, and the use of advanced
MCMC algorithms, reaching convergence of the Markov chains remained challenging. We got five consistent Markov
chains without discernible trends for each scenario; however, some widening of the chains and the resulting effective sample
size on the order of 500 indicate that we are not able to get a good coverage of the tails of the posterior distribution. This
outcome demonstrates that incorporating so many uncertain model parameters pushes the limits of Bayesian inference in
terms of numerical tractability. However, the resulting uncertainty estimates are certainly more realistic than those obtained
by fixing many poorly constrained parameters to unique values to reduce the dimension of the parameter space.

The simulation results of solute concentration and 8'°N profiles in the most plausible Base scenario (Fig. 2) integrate prior
knowledge (Appendix C: Prior values for inference) with observational data through Bayesian inference. The profiles
closely reproduce the available, albeit limited, data, and conform to expected depth-related trends: oxidants (i.e., O2, NOs3
and SO4?) are readily consumed via aerobic mineralization and nitrification (O2), denitrification (NOs3"), and SO4> reduction.
While mineralization is assumed to involve negligible N isotopic fractionation, the first step of nitrification causes
significant enrichment in >N of the residual NH4" pool, yielding §'°N-NH4" values up to 11.2%o at 0.15 cm, due to strong N
isotope fractionation, estimated at ez = 12.0%0 (to NO2") and 36.4%0 (to N20). Unfortunately, extremely low NHs"
concentrations measured in the top 2 cm hindered the determination and verification of the modelled 8'>N-NH4" in this zone
with field data. Both NO2™ and N2O accumulate in the upper 0.5 cm, reaching up to 0.4 pM and 2 pM, respectively. Below
0.3 cm, denitrification leads to the progressive '°N enrichment of NO3", NO2™ and N20, while Na-producing mechanisms (i.e.,
denitrification and anammox) cause only minimal changes to the modelled §'°N-N profile, due to the dominance of a large
pre-existing N2 pool. For concentrations, the 95% credibility intervals of parametric uncertainty are rather narrow, whereas
the much broader total uncertainty is dominated by the lumped uncertainty term in the likelihood function, which primarily
reflects the model’s structural uncertainty. The error, beyond the parameter error, is parameterized using the two sigma
values (oc.q and ocp; see Sect. 2.5), and exceeds what would arise from measurement and sampling alone. This suggests that
the larger error is attributable to the model’s structural limitations. Conversely, 8'°N profiles exhibit small total uncertainty,
as model results for 8'°N closely match observational data, with minimal random and systematic deviations (parameterized
using the sigma value os, see Sect. 2.5).

The model provides insights into the underlying process rates (Fig. 3) that shape the simulated profiles (Fig. 2). Vertical
profiles of transformation rates for NH4*, NOs", NO2" and N2O clearly illustrate the sequential dominance of different N-
transformation processes with increasing sediment depth and decreasing O: availability. Aerobic processes, namely aerobic
mineralization and nitrification, primarily control NH4" transformation rates, peaking at 450 and 350 uM d!, respectively
(Fig. 3a). Nitrification sustains denitrification by producing both NO2™ (up to 350 uM d!) and NOs™ (up to 275 uM d!) in the
upper 0.4 cm (Fig. 3b-c). A strong spatial overlap of nitrification and denitrification emerges in the depth distribution of

processes affecting the NO2™ pool, suggesting a potential interplay between these pathways (Fig. 3c).

14



407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A key strength of this model is the incorporation of N20O as a state variable. Our model results reveal that, although N>O
production via nitrification is minimal (not visible in Fig. 3d), the strong isotopic fractionation associated with this reaction
(awirnz0 = 36.4%0) generates N2O with 85N values of -1.2%o to —2.2%o in the top 0.2 cm (Fig. 2¢). At a depth of
approximately 0.35 cm, up to 2.1 uM of N20 accumulate, coinciding with the highest rates of N2O production through
denitrification. Conversely, N2O consumption by the last denitrification step peaks at 0.5 cm, leading to a progressive
increase in 8'°N-N2O with depth. This zonation likely reflects the O: sensitivity of the distinct N>O-producing and -
consuming processes. Specifically, N2O reductases are known to be strongly inhibited by Oz, and therefore exhibit greater
activity below the oxycline (Wenk et al., 2016). Although the model does not explicitly include the enzymes responsible for
N-transformation pathways, the chosen and estimated kinetic parameters reflect substrate affinity and inhibition strength.
Consequently, inhibition constants like Kozpenz and Kozpens provide indirect insights into the O2 dependency of these
enzyme-mediated reactions, effectively shaping the modelled redox zonation.
The model adequately captures the concentration and isotopic composition of the state variables, in agreement with field
measurement and the expected patterns of underlying N-transformation processes and reaction coupling (Fig. 2 and 3). One
key strength of the step-wise model is its ability to quantify reaction coupling, which is challenging to infer directly from
state variable pools (i.e., reactive intermediates), if they are rapidly turned over.
To address the variable ranges for the model parameters found in the literature, and to reduce structural uncertainty imposed
by fixed parameter values, we estimated a large set of parameters using Bayesian inference. The obtained joint posterior
distribution of model parameters enabled us to assess the knowledge acquired from data. Marginal posterior distributions of
individual parameters, and two-dimensional marginal distributions of parameter pairs, were particularly useful in this context
(Fig. 4 shows examples for the four categories defined below; Fig. S1 provides an overview of all marginal prior and
posterior parameter distributions). By comparing marginal posterior distributions with their corresponding priors, parameters
were classified as well identifiable or poorly identifiable. While this classification involves some subjectivity in determining
how much narrower a posterior distribution should be compared to its prior distribution to classify such parameter as well
identifiable, some clear patterns emerged:
1. Well identifiable parameters: The marginal posterior distribution is clearly narrower than the prior, indicating that
data provide meaningful information about the parameter’s value. Two cases were observed:
a. The marginal posterior distribution is within the prior range, suggesting that the information from the data is in
agreement with prior knowledge (Fig. 4a). Examples include: f factors for anammox (finam pen2 = 0.2) and both
DNRA steps (fpnrar.pent = 0.005, fonraz.penz = 0.005), estimated using '*N-tracer incubation experiments for the
investigated system, and parameters such as Knos.pen: and Kozminox, constrained from clearly defined oxidant
declines. Maximum conversion rates for aerobic mineralization, denitrification, SO4* reduction, and anaerobic
mineralization, as well as the NH4" flux from deeper sediment layers, also belong to this category, although we

approximated very wide priors by uniform priors (see Sect. 2.4), making it less visible in the plot.
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b. The marginal posterior distribution significantly deviated from the prior range (Fig. 4b), suggesting that the
information from the data is in conflict with prior knowledge. The most striking example is &pens, estimated at
2.8+1.1%o for the Lake Lucerne dataset, far lower than the typical 15-25%o reported in the literature for NOs
reduction (Lehmann et al., 2003; Rooze and Meile, 2016), suggesting a reduced N-isotopic fractionation (or at
least, of its expression) at the porewater level. This finding contrasts with model-derived values for the cellular
isotope effect of NO;s™ reduction observed in the porewater of marine sediments (&pen > 10%0) (Lehmann et al.,
2007). While a detailed investigation of the biological mechanisms behind such reduced expression across
benthic environments is beyond the scope of this study and will be addressed separately by the authors, the
potential role of reaction couplings in modulating benthic N isotope dynamics is discussed in Section 4.4.

2. Poorly identifiable parameters: The marginal posterior distribution resembles the prior distribution, suggesting poor
identifiability. This can occur for two possible reasons:

a. The parameter exerts negligible influence on the model output that corresponds to observational data (Fig. 4c).
For example, parameters like the N>O yield during nitrification, anzo, viir and bnzo, nir1, could not be constrained
without specific data on N20 production. The current model encompasses several processes and state variables,
which, at times, were hard to corroborate with the limited dataset in hand (a situation that may apply regularly
to environmental studies, particularly in benthic environments). Therefore, their values were taken from
previous studies (Ji et al., 2018). For other parameters, such as ywuspnvra: and ywws,pnr42, little knowledge was
acquired from the data in hand, due to the relatively low maximum rates of DNRA compared to other
processes. In such cases, the posterior distribution may remain close to the prior, not because the prior range
was incorrect, but because the available data could not further constrain it.

b. Although data are available and the model output is sensitive to the parameter, other parameters influence the
output similarly. This leads to parameter correlation in the posterior distribution and reduces identifiability, as
observed for ywms minsuirea and Fnug (Fig. 4d), which exhibit correlation, making their estimates interdependent
(Guillaume et al., 2019). Here, the estimate of the NH4" flux from the lower boundary of the model depends on

the estimate of the amount of NH4" released via OM mineralization coupled to SO4> reduction.

The comparison of marginal priors and posteriors of the parameters (Fig. S1) demonstrates that excellent agreement between
model outputs and observational data (Fig. 2) can be achieved for 54 of the 58 estimated parameters compatible with their
priors. Exceptions include: the higher-than-expected rate for the second denitrification step relative to the first (expressed by
the factor fpenzpeni), the large half-saturation constant for SO4> reduction (Ksosuinsuired), and smaller-than-expected N
isotope effects for the first steps of denitrification and nitrification (gpens and eniizvo2, respectively). The largest deviation is

observed for &pens, which is further examined in the next subsection.

Notably, the seven parameters, for which a uniform prior was chosen to approximate a very wide prior (kminox kpen,

kMinSuifRed, Kkitinanae, knit, Fnra, 0N, Fnmy), were identifiable, indicating that highly system-specific prior knowledge is not
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crucial for these estimates. Most of the other model parameters showed limited narrowing of the marginal posterior relative
to the prior, reflecting the rather limited information gain that can be obtained from data. The three model error parameters
(oca, och, os) were well identifiable and will be used in the following sections to compare the fit quality across different

modelling scenarios.

4.2 Scenario analysis

Building on the findings discussed in the previous subsection, we explored the apparent prior-data conflict regarding &pens in
greater detail. Additionally, we assessed whether the estimated process rates overlooked potential reaction coupling, which
might go undetected through '*N-tracer incubation experiments, by exploring the variability in contributions of anammox
and DNRA (i.e., fianam, fonrai and fpwr4z). Lastly, given the uncertainty regarding solute-diffusion enhancement by
bioturbation, we investigated a scenario with increased bioturbation. These considerations led to four key scenarios:

A. Narrow priors for e This scenario investigated the effects of restricting ¢ variability to a narrower range (prior
standard deviation of 1%o instead of 5%o). The aim was to test whether the marked reduction in the marginal
posterior of &pens persisted under stricter prior assumptions, and whether this decreased flexibility significantly
impacted the quality of the model fit.

B. Fixed ¢ Here, the model output was assessed under the assumption that the literature data regarding N isotope
effects are correct (i.e., £ values not estimated). This scenario complemented Scenario A by testing whether a good
fit to the data could still be achieved by fixing the gpens value (and all other isotope effects) at its prior mean.

C. Wider priors for f. In this scenario, greater variability in DNRA and anammox contributions (prior standard
deviation of 100% instead of 25%) was allowed to test the impact of relaxed prior assumptions on the relative
contributions of these processes in the model output.

D. Enhanced bioturbation. This scenario simulated a faster solute-diffusive transport due to higher infaunal activity by
doubling the bioturbation coefficient (Dsio = 2 cm? d! instead of 1 cm? d!), to investigate the sensitivity of the
results to this uncertain parameter, which was not included in the Bayesian analysis. In the model, the bioturbation
strength at the sediment surface is defined by the parameter Dyio, and it decreases exponentially with depth, with the
typical bioturbation depth parameter, depthsio. As the diffusion enhancement by bioturbation is highly uncertain,

this scenario aims to assess solely the sensitivity of the model output to changing bioturbation magnitude.

The results demonstrate a strong dependence of the estimated parameters on the chosen prior assumptions (Fig. 5). Across all
scenarios, marginal posterior distributions for the selected parameters are generally narrower than the prior distributions,
though results vary substantially. In Scenario A (Narrow priors for &), restricting the prior range significantly constrained
&pent, limiting its deviation from the prior (Fig. Sm; note that the prior for Scenario A is five times narrower than the one
shown, which represents the prior for all other scenarios). These results closely resemble those from Scenario B (Fixed ¢),

where no deviation was possible (Fig. 5, Fig. S2). Both scenarios exhibit lower denitrification rates than the Base scenario
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(Fig. 5b), but comparable fit quality for total (**N + !*N) concentration, quantified by oc. (i.e., the dominant term of standard
deviation of the model error for concentrations, see Sect. 2.5) (Fig. 5x). On the other hand, Scenarios A and B display poorer
fit quality for 8'°N profiles, indicated by a large value of s (Fig. 5z), suggesting that the model structure cannot adequately
reproduce the 3'>N-NO;" profiles without adapting the &pens value. While biological isotope effects of 15-30%o are typical for
NOs™ reduction (Lehmann et al., 2007), lower values under almost-complete NO3™ consumption have been reported (Thunell
et al.,, 2004; Wenk et al., 2014). This finding is further confirmed by comparable marginal posteriors for &pe.; across all
scenarios considered in this study, besides scenarios A and B. To test the robustness of our model, we ran a base scenario
simulation for marine sediments in the Bering Sea (station MC16) (Lehmann et al., 2007) (data not shown). Moreover, a
manuscript currently in preparation presents an extensive comparison of model application across different sites and
demonstrates a much wider range of *epen1 values, exceeding 20%o.

In Scenario C (Wider f), allowing greater variability in anammox and DNRA contributions results in the lowest finam Den2
values, although such deviation is not substantial compared to the Base scenario output (Fig. 5i). The estimated fbyr4z,peni
and fpnraz2.pen2 values in Scenario C mostly align with those of the Base scenario, corroborating the marginal role of DNRA
in Lake Lucerne. Such findings confirm the accuracy of the rate measurements performed with °N tracer incubations.
Scenario D (Enhanced bioturbation) stands out with the highest conversion rates (i.e., kminox, kminsuired, and knirr) (Fig. 5a,e,g)
to ensure sufficient oxidant consumption at higher supply/flux rates (reproducing the observed gradient despite higher
diffusivity). Despite these changes, bioturbation had negligible effects on porewater N isotope dynamics, with estimated
isotope effects and fit quality for !N profiles (os) comparable to those of the Base scenario.

The obtained concentration depth profiles for the four scenarios are generally comparable, as newly estimated parameters
ensured good fitting of the data (Fig. S2). However, in Scenarios A and B, stricter constraints on prior knowledge for
parameter estimation result in little to no suppression of all isotope effects (i.e., relatively strong N isotopic fractionation),
leading to great variability in the 8'°N profiles. Poor fits to the §'°N data are observed under these conditions, as evidenced
by the greater '*N enrichment of the NO3™ pool compared to the measured-data profiles (Fig. S2). Similarly, the §'N-N2O
profiles exhibit sharp declines to approximately -15%o in the upper 0.5 cm under Scenarios A and B, driven by the strong
expression of gvirz,n20 (40.1%0 and 40.0%o., respectively). In contrast, Scenarios C and D closely resemble the Base scenario,

with only minor §'*°N-NzO variations.

4.3 Importance of modelled processes and their impact on porewater N isotope signatures

The importance of modelled processes and their impact on N isotope signatures were investigated by selectively deactivating
individual processes and comparing the model outputs to the Base scenario. Aerobic mineralization, denitrification, and
SO4?> reduction were considered essential to preserve redox zonation (e.g., sequential decline of Oz, NOs", and SO4*) and N
dynamics. The following processes were individually turned off: (a) nitrification (“NitOff”); (b) anammox (“AnamOff”);

and (c) DNRA (“DNRAOff”). Initially, each process was simply inactivated to assess its impact on model outputs (Fig. 6).
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Subsequently, inference was conducted after deactivating each process, to investigate their importance for model
performance, parameter and flux estimation, and for the identifiability of rate parameters by evaluating the quality of the fit
to the data, especially on the !N profiles (Fig. 7, Fig. S3, Fig. S4).

Switching off nitrification significantly alters the model output compared to the Base scenario (Fig. 6a-b,e-f), indicating its
central role in the benthic N dynamics. Key effects include NH4" accumulation throughout the investigated depths, with a
flattening of the 8'"’N-NH4" profile (i.e., less curvature towards higher 8'°N values) in the upper 0.5 cm, as the only other
source of ’N-enriched NH4" besides nitrification would be anammox, which is inhibited under oxic conditions. Furthermore,
nitrification-denitrification coupling via NO>” weakens in this scenario, resulting in lower overall N2 production (as indicated
by the lower maximum N2 concentration of 734 pM compared to 745 pM in the Base scenario). These results suggest that
partially reducing, or fully eliminating, nitrification lowers the system’s capacity to act as an efficient N sink. In other words,
the findings confirm that nitrification is a critical process that, when closely coupled to denitrification, helps to enhance the
ecosystem’s potential to remove fixed N. All other N-isotopic state variables also show a flatter §!°N profile, with only a
progressive enrichment in >N below 0.5 c¢m, primarily driven by denitrification (NO3,, NOz, and N20). The impact of
disabling nitrification is clearly reflected in the 8'°N-N2O profile across the upper 0.3 ¢cm, where the typical nitrification-
induced dip is absent, and 8'>N-N20O values remain relatively constant (~7-8%o). In contrast, the effects of turning off
anammox or DNRA are more subtle, owing to their generally lower reaction rates in Lake Lucerne (Fig. 6¢-d,g-h). Notably,
in the absence of anammox, N2O exhibits lower §'°N values in the upper 0.3 cm compared to the Base scenario, likely due to
higher N2O yields via nitrification, as reduced competition for NH4" with anammox provides more substrate for nitrification.
Upon running inference for each case, concentration and N isotope profiles for the NitOff, AnamOff, and DNRAOff
scenarios are generally similar to those of the Base scenario (Fig. S3), with notable exceptions in the NitOff case. In the
absence of nitrification, NH4" accumulates and the 8'*N-NH4" profile remains largely flat, since anammox, the only other
NH4"-consuming process, is minimal under oxic conditions. No 8'>N-NH4" measurements are available for the top 1 cm, so
the model output could not be verified with field data. The N2O pool systematics also diverge between the NitOff and Base
scenarios. Specifically, in the NitOff case, no nitrification-derived N2O accumulates in the upper 0.4 cm, and consequently,
the 8'°N-N20O profiles lacks the typical nitrification-associated decline in this layer. Instead, N2O becomes progressively
enriched in '°N below 0.4 cm. While most estimated parameters and fluxes are consistent across the four scenarios, the
NitOff scenario stands out again, exhibiting strong effects on the anammox rates and associated isotope effects (e.g.,
SfinamDen2, EnamNi4) (Fig. S4), as well as on benthic fluxes of NH4*, NO27, NOs; and N2O (Fig. 7). Nonetheless, the NH4"
concentration profile is well-captured, as indicated by a low oc., reflecting a good match between model and concentration
data even in the absence of nitrification. This finding implies that the model cannot resolve the relative contributions of
nitrification versus anammox to NH4" consumption based on the concentration and isotope data, highlighting the importance

of prior knowledge regarding finam,Den2.
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The comparison of process rates across these four scenarios provides insights, unveiling the extent of process coupling and
competition (Fig. S5) (Hines et al., 2012). For instance, anammox and nitrification compete for both NHs+" and NO> as
substrates, causing the rate of one process to be enhanced, when the other is switched off. For instance, NHs" oxidation and
NOz production rates via nitrification (Nit1) are higher (~ 0.2 cm depth) in the AnamOff scenario than in the Base scenario.
Even more obviously, enhanced rates of NH4" oxidation, NO2™ consumption, and NOs™ production via anammox are observed
in the NitOff scenario than in the Base scenario. Process coupling, specifically nitrification-denitrification, is further
confirmed by lower rates for NO2™ reduction via denitrification (Den2) in the absence of nitrification. In general, the
influence of DNRA on production and consumption rates of the considered state variable appears minimal, owing to the
limited environmental relevance of DNRA in Lake Lucerne. Overall, the similarly good fits obtained across these three
scenarios and the Base scenario reflect the poor identifiability of the switched off processes; this suggests that the data can be
well-fitted even without these three processes, emphasizing the importance of prior knowledge about their environmental

relevance.

4.4 The role of process coupling via NO>"

Previous models of benthic N isotope dynamics have focused on individual reactions or overlooked the role of intermediate
species, such as NO2™ (Kessler et al., 2014; Lehmann et al., 2007). Our study confirms that NO2™ plays a critical role in
coupling multiple N-transformation processes and shaping benthic N isotope dynamics, including that of 8'N-NOs". While
such process coupling has been examined in the water column (Frey et al., 2014), it remains, to our knowledge, largely
unexplored in sedimentary environments.

To assess the significance of this coupling, we implemented a one-step denitrification approach that bypasses NO2™ as an
intermediate, replacing the three-step pathway used throughout this paper (Fig. 8). In this simplified model, NO2
concentrations and isotopic signatures are shaped solely by nitrification (and to a marginal extent, DNRA and anammox), as
denitrification no longer contributes to NO2™ production. This modification leads to significantly reduced NO2™ accumulation,
restricted to the upper 0.3 cm, and lower anammox activity, due to a lack of NO2™ substrate below the oxycline. The absence
of denitrification-derived NOz has profound effects on the N isotope dynamics. First, a consistent ~15%o offset between
3'°N-NOs™ and 8'°N-NO;  is evident across all modelled depths (Fig. 8c). This offset is ascribed to the isotope effect of the
second nitrification step (&viz = -13.7%o), and the lack of >N enrichment in the NO2" pool from denitrification. Second, the
estimated isotope effect for NOs™ reduction (&per) increases to 5.5+£0.9%o, nearly double than in the Base scenario, indicating
that elevated 8'N-NOs™ values in the field data may, to some extent, reflect NOz™ isotope dynamics, rather than solely the
effect of NOs™ reduction (Fig. 1).

These findings emphasise the importance of both NO2-producing and -consuming processes in modulating 8'°N-NOs", and
consequently, estimates of &pens. Although nitrification is typically aerobic and denitrification anaerobic, evidence exists that

indicates spatial overlap of these two processes at the bottom of oxyclines in natural aquatic environments (Frey et al., 2014;

20



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

616

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632

Granger and Wankel, 2016). In this transition zone, NOz produced by either pathway can be oxidised to NOs™ or reduced to
N20, NH4" or N2 (Fig. 3), significantly affecting its !N signature (depending on the N-branching). For instance, NO"
reduction to N2O enriches the residual NOy pool in N. If this "N-enriched NO> is subsequently oxidized to NO3™ (a
reaction that exhibits an inverse kinetic isotope effect), the resulting NOs~ will be markedly enriched in '*N (Fig. 1). Such
interactions have been shown to influence apparent isotope effects for NOs™ in the water column (Frey et al., 2014), and
likely exert similar effects in sediments, where sharp redox gradients create overlapping zones of nitrification and
denitrification. This coupling may explain the discrepancy in estimated &pens values between the Base scenario (2.8+1.1%o)
and the one-step denitrification model approach (5.520.9%o).

Anammox further complicates these dynamics, as it depends on NOz" excreted into the environment. Without denitrification,
which releases NO>™ (Sun et al., 2024), anammox is substrate limited (Fig. 8). Thus, while previous benthic studies estimated
denitrification isotope effects using one-step denitrification approaches (Lehmann et al., 2007), our findings call for the
adoption of a stepwise modelling approach (Sun et al., 2024) that better captures the interdependence of N-transformation
pathways, and their integrated effects on NOs™ isotope dynamics. A more detailed examination of these interactions is
essential for refining our understanding and quantification of isotope effects associated with NOs™ reduction in sedimentary

systems.

4.5 Model applicability in distinct scenarios

Beyond applying and testing the developed diagenetic N isotope model at our site of interest (Lake Lucerne), we believe its
strength hinges on its versatility to address distinct research questions and objectives. We explored two scenarios as
examples of how the model can be adapted to provide insights into the N cycle in benthic environments and the N isotopic
fingerprints that the combined N-cycling processes leave behind (Fig. 9). Understanding these fingerprints and how they
might be modulated in natural environments (e.g., through the variable balance between individual processes constrained by
environmental conditions) is important for correctly interpreting the distribution of 'SN/“N ratios in N species as
biogeochemical tracer, helping to pinpoint and disentangle individual N-turnover processes where they co-occur.

For comparison purposes, we used the estimated parameters from the Base scenario and modified the relative importance of
NOs™ or NOz reduction via (i) denitrification vs. DNRA, and (ii) denitrification vs. anammox. This was done by
progressively increasing the factors that define the contributions of DNRA (fpnraspens and fpwrazpenz) and anammox
(fanam,pen2) from 0 (i.e., no DNRA/anammox) to 2 (corresponding to DNRA and anammox accounting for 2/3 of the total
NO;™ and NO»" reduction, respectively). Simultaneously, the rates of the first two steps of denitrification (kpens and fpen2,.pent)
were adjusted to maintain consistent overall NOs™ and NOz™ reduction rates across scenarios. These model results were not
validated against observational data and should therefore be considered as illustrative examples of the model’s sensitivity to
selected parameters, rather than as predictions with direct environmental relevance.

1. N removal versus N retention
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The model results confirm the spatial co-occurrence of DNRA and denitrification, with peak NOs™ (data not shown)
and NO> (Fig. 9a) reduction activities localized between 0.4-0.6 cm depth. In contrast, NH4" and N> production
exhibit subtle differences in depth distribution: NH4" production via DNRA extends across a broader sediment layer
than N2 production via denitrification (Fig. 9b). This pattern likely reflects the inhibitory effect of O2 on N2O
reduction, the final denitrification step, pushing N2 production to deeper, anoxic layers below the oxycline.
Reduction of NOs™ exhibits distinct isotope effects depending on the pathway: denitrification (gpens = 2.8+1.1%o0)
and DNRA (epnrar = 20.0£2.9%0), according to our model estimates (Fig. 5Sm,v). This large difference reflects the
difficulty of constraining DNRA isotope effects through Bayesian inference, due to its low environmental relevance
in the top 1 cm of Lake Lucerne sediments. Although not proven so far, this isotope offset implies that NOs
reducers impart distinct isotopic fractionation depending on the pathway, which is rather implausible. However, if
true, increasing DNRA activity would lead to a stronger >N enrichment in the residual NOs™ pool (Fig. S6d), with
downstream impacts on the product pools (N2 and NH4") (Fig. 9c-d).

Denitrification-derived N2 mixes with a large ambient N2 pool (717 pM; 8N ~ 0 %o), resulting in slightly elevated
8'5N-N2 values in the top 1 cm. While this increase is subtle (AS'°N < 0.1%o), it becomes more pronounced as a
larger fraction of NO3™ (and subsequently NO2) is reduced to N2 (denitrification) rather than to NH4* (DNRA) (Fig.
9¢) due to the distinct isotope effects associated with NOs™ reduction via denitrification and DNRA. Under full
expression of the denitrification isotope effect (i.e., &pens & 20%0), 8'*°N-N2 much lower than 0%o would be expected,;
in contrast, &pens = 2.8%o likely suppresses such isotopic dynamics, resulting in only subtle 8'N-N2 changes. As
more NO;" is reduced via DNRA (&pwras = 20.0%o) than via denitrification (&penr = 2.8%o), a stronger N depletion
is expected in the NOz™ pool; if this NOz is then reduced to N2 will lead to lower 6'°N-N: than in a purely-
denitrifying case. Such interaction can explain the shift toward lower 8'>N-N: values as NOs™ is increasingly
reduced via DNRA with a strong isotope effect recorded in our model. Thus, the slightly elevated §'°N-N2 values
observed in our model confirms that denitrification dominates over DNRA, and operates with a reduced isotope
effect (2.8%o), likely due to diffusive limitation.

In contrast, enhanced DNRA activity leads to NHs" accumulation and a progressive decrease in 8'>N-NH4" in the
upper 0.5 cm, consistent with strong isotopic fractionation during DNRA (Fig. 9d). This NH4" pool appears to
promote nitrification, as indicated by higher NH4" and NO2" oxidation rates (Fig. S6a-b), resulting in the production
of ®N-depleted NO> (Fig. S6c¢). Notably, if this isotopically light NO> is subsequently reduced via denitrification,
it can lead to the formation of N2 with unusually low 3'°N values, even if denitrification itself operates with a
modest isotope effect. This secondary effect underscores how DNRA not only alters substrate availability but also
indirectly influences the isotopic composition of denitrification end products. The strong spatial overlap of DNRA,
denitrification and nitrification highlights the central role of DNRA in fuelling internal N recycling (Wang et al.,

2020) with implications that extend to the 5'°N of both intermediate and terminal N pools.
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Thus, if NOs™ reduction via DNRA and denitrification occurs with distinct isotope effects, our model has the
potential to disentangle their respective contributions based on 8N profiles of NO3~ and NH4*, and to a lesser
extent of N2 and NOz". Importantly, our results underscore a potentially critical, yet underappreciated, coupling
between DNRA and nitrification in benthic environments. If verified, this interaction, largely invisible in
concentration profiles alone, can significantly influence isotopic signatures and must be considered when
interpreting sediment N dynamics through an isotope lens.

N removal via denitrification versus anammox

The results for this case scenario reveal, somewhat unexpectedly, some similarities between denitrification and
anammox with respect to NO2™ reduction to N> and associated N isotope signatures. The isotope effects associated
with denitrification are low (2.8%0 for NOs™ reduction and 7.9%o for NO>™ reduction), whereas anammox imparts
stronger isotopic fractionation (14.4%o for NO2™ reduction to N2 and -30.0%o for its oxidation to NOs"). These values
reflect parameter estimations specific to Lake Lucerne’s surface sediments (upper 1 cm), where anammox activity
is low.

Both NOz reduction and N2 production peak around 0.5 cm depth, with minor differences in the thickness of the
active layer due to variations in substrate affinity between modelled processes (Fig. 9e-f). The total rate of NO2"
reduction to N2, via either anammox or denitrification, remains consistent across all case scenarios. Nonetheless,
slight differences can be observed in some N pools as anammox becomes the dominant fixed-N loss path. Increased
anammox activity leads to elevated N2 and NO2™ concentrations (Fig. 9g-h), likely due to the use of NH4" as a
substrate, which mitigates substrate limitation under low NO>™ availability (i.e., 1.3 mol NOz needed to produce 1
mol N2 via anammox versus 2 mol NOy via denitrification). When anammox prevails, 3'°N-NO:" values increase
due to the stronger isotope effect associated with NO2™ reduction via anammox relative to denitrification. This
enrichment is partially counterbalanced by the inverse kinetic isotope effect during NO2™ oxidation to NOs™ (Brunner
et al., 2013), leading to "N-enriched NO3™ below 0.8 cm; notably, this isotopic shift occurs without significant
changes in total NOs™ concentrations (Fig. S6g-h). Lastly, substantial differences emerge in the NH4" pool: higher
anammox activity correlates with lower NH4" concentrations and elevated §'°N-NH4" values throughout most of the
sampled depths (Fig. S6e-f). This isotopic enrichment likely overlaps with the effect of nitrification on the NH4*
pool in the upper 0.3 cm.

While some differentiation between denitrification and anammox is evident in the isotope signatures of NOs™ and
NH4", the expected contrasts in the NO2 and N2 pools are surprisingly muted. This near-indistinguishability in
isotopic outcomes suggests a degree of functional and isotopic redundancy between the two pathways under the
modelled conditions. These results highlight the need for further investigation, particularly through refined isotope-
based methods (e.g., inclusion of NOx O-isotopes or clumped nitrate isotopes) and more mechanistic modelling, to

distinguish the respective contributions of denitrification and anammox to N removal in sedimentary systems.
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5. Conclusions

We developed a comprehensive diagenetic N isotope model that integrates multiple N transformations in benthic
environments. The model’s complexity requires the use of prior knowledge in addition to the observed data, in order to
achieve the most plausible descriptions of the ongoing processes. To address uncertainty in prior knowledge, and to reduce
structural errors associated with fixed parameter values, we applied Bayesian inference for a large parameter set (~60) for
data analysis. The computational demands of this approach were met by implementing the model in Julia, with compatibility
for automatic differentiation to allow for advanced Markov chain Monte Carlo algorithms needed for Bayesian inference.
Despite these optimization efforts to enhance efficiency, inference runs still took 2-3 weeks of computation time (in addition
to preceding simulations to reduce burn-in) to achieve sufficiently good convergence of the Markov chains of the posterior
parameter distribution. Alongside concentrations and 8'°N values for different N species, the model provides depth profiles
of process rates and all fluxes, including their uncertainties. These outputs enable a detailed assessment of the processes

shaping N cycling (i.e., concentration profiles) and isotope patterns in sediments.

Application of the developed model to a test dataset from Lake Lucerne successfully reproduced measured profiles of Oz,
SO4%, NH4", NO2, NOs~, §"°N-NH4", and 3'>N-NOs". The model also produced realistic vertical distributions of conversion
rates, revealing clear depth-dependent zonation. Most marginal posterior distributions of estimated parameters were in good
agreement with their priors. Yet, strong deviations were observed for the N isotope effect associated with the first step of
denitrification, &pens, which was estimated at ~2.8+1.1%eo, significantly lower than the expected ~20%o. These findings were
confirmed by additional simulations performed using narrower priors and a fixed &pens value of 20%o, both of which resulted
in a substantial deterioration in the model’s ability to reproduce 8'>N-NQO;z" profiles. This, in turn, can be taken as indication
for a suppressed denitrification NOs" isotope effect at the porewater level in Lake Lucerne, potentially due to process
coupling via NOz". The model’s ability to quantify such interactions, which can be difficult to discern in situ or from field
data alone, is a key strength of this stepwise model framework. A manuscript assessing such dynamics across distinct sites is
currently being prepared to further corroborate these findings.

Further sensitivity tests highlighted that the model could still achieve good fits to the observational data even when certain
individual processes were excluded, demonstrating the critical role of prior knowledge regarding estimated parameters and
their associated uncertainties.

Overall, this study presents one of the first comprehensive diagenetic N isotope models that explicitly incorporate multiple N
transformation pathways in a stepwise manner and are validated against field measurements. Rather than serving as a purely
predictive tool, this model is intended to stimulate scientific discussion on the quantification of N transformations and
isotope dynamics in sediments based on observed data. Future developments could focus on improving identifiability
through additional, targeted observations, expanding model validation across distinct benthic environments, and the
incorporating additional isotope tracers, such as 8'80 of NOs™ and NOy, to further strengthen the model structure and

improve its reliability.
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Table 1: Chemical equations and reaction rate formulations for '“N and "“N'“N compounds across all modelled processes. The
rates for 1SN, NN, and 'N'SN are formulated analogously by replacing the concentration of the isotopologue of interest as
needed. The turnover rates for '>N-containing species are scaled by a factor of (1-£/1000), as outlined in the text. The complete set
of equations including all isotopic compositions, and the process stoichiometry is provided in Appendix A: Model processes and
stoichiometry. Anaerobic mineralization encompasses OM degradation coupled to iron and manganese reduction, as well as
through methanogenesis.

coupled to
Mineralization

Nitrification

Denitrification

Reaction Equation Reaction rate
Aerobic Ci06H2630110N16P + 1060, — 106HCO5 + 16NH4™ + HPO427 + 92H"
mineralization
P (o) B
MinOx MinOx KOZ,MinOx + [02]
Anaerobic Cio6H2630110N16P + 212MnO; + 120H,0 — 106HCO5™ + 16NH4* + HPO42' +212Mn?" + 3320H"
Mineralization

Sulfate Reduction

[1a]

[

C1o6H2630110N16P + 424FeOOH + 120H,0 — 106HCO3™ + 16NH4* + HPO42' + 424Fe* + 3320H"
Cio6H2630110N 1P — 53CH4* + 53HCO3™ + 16NH4" + HPO42_ + 53H,0 + 14H"

KN03,MinAnae KOZ,MinAnae
KNOS,MinAnae + [14N03_] + [15N03_] KOZ.MinAnae + [02]

T™MinAnae = kMinAnae

C106H2630110N16P + 53SO42' + 15H" — 106HCO3™ + 16NH4" + HPO42' + 53H,S

Knosminsuifred Koo Minsuifred [S0Z7]
Knosminsuifrea + [*“NO; ] + [**NO5| Kozminsuirrea + [02] Ksouminsuirrea + [S0Z7]

TMinsulfRed = KMinsuifred

NH;" + 1.50, — NO> + 2H" + H,O

[“*NH;] [02]
Kynanitr + [14NHI] + [15NHI] Koznitr + [02]

™Nitla = kNitl(l - fNZO,Nitl)

NH;" + O, — 0.5N,O + H + 1.5H,0

[“nHz] [Nz [0,]
(Knmanin + [“*NHS] + [ISNHI])Z Koz nitr + [02]

Tnieth = Knitr fazovitr

NO; + 0.50; — NO5s~

[*Nnoz] [02]
Knoz itz + [14N02_] + [15N02_] Koznitz + [02]

Tnitz = Knitz

5C106H2630110N16P + 424N0O3" — 212HCO5™ + 32NH4 " + 2HPO427 +424N05 + 184H" + 3C19sH2630110N 6P

[**NOs5 ] Ko2,pen1
Knospens + [“*NOT| + [**NO3| Kozpen1 + [02]

Tpen1 = kDenl

3C106H2630110N16P + 424N0O;" + 240H" — 212HCO5™ + 32NH4 + 2HPO427 +212N,0 + 212H,0 +
Cio6H2630110N16P
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[14N02_]2 KOZ,DenZ
(KNOZ,DenZ + [14N02_] + [15N02—])2 Koz,penz + [02]

Tpenz = Kpenz

[§] Ci06H2630110N16P + 212N,0 — 106HCO5™ + 16NH4 ™+ HPO427 + 212N, + 92H*

[1*1*N,0] Koz,pens
Kn20,penz + [14141\/20] + [14151\]20] + [15151\/20] Koz,pens + [02]

Tpen3 = Kpen3

DNRA [l] C1o6H2630110N16P + 212NO;" — 106HCO3™ + 16NH,* + HPO427 +212NO,~ + 92H"

[**Nos ] Koz,pnrat
Knospnra1 + [14N03_] + [15N03_] Kozpvrar + [02]

Tpnra1 = Kpnrat

[2] 3C106H2630110N16P + 212NOy + 212H,0 + 148H"— 318HCO5™ + 260NH,4 " + 3HPO427

[**NO; | Koz,pnraz
Knoz2,pnraz + [14N02_] + [15N02—] Kozpnraz + [02]

Tpnraz = Kpnraz

Anammox NH;" + 1.3NOy + 0.15CO, — N3 + 0.3NOs™ + 0.15CH,0 + 1.85H,0

[14NHI] [14N02_] KOZ,Anam
Kyhaanam + [14NH4+] + [ISNHI] Knoz,anam + [14N02_] + [15N02_] Koz, anam + [02]
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Figure 1: Simplified scheme of the N-transformation reactions considered for the diagenetic isotope model described in this paper.
Continuous lines identify aerobic processes, while dashed lines indicate anaerobic processes. The state variables explicitly modelled
as substrates for the considered reactions are highlighted with outlined boxes; O, is modelled as a state variable and as a regulator
of aerobic and anaerobic processes; organic matter (OM) is not a state variable per se within the framework of this model, but acts
as a source of N for the remaining processes. The isotopic fractionation of each process is shown using + and — signs to represent
the N-enriching and '*N-depleting effects of the respective reactions.
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Figure 6. Vertical concentration (a-d) and isotopic composition (e-h) profiles for state variables. Model output obtained with all
processes included (a, ) are compared with model simulations where individual processes are switched off: nitrification (b, f),
anammox (¢, g), and DNRA (d, h), without running inference again. Continuous lines represent the model output, while symbols

represent measured data from Lake Lucerne. For NH4", open diamonds represent the high-resolution dataset, adjusted to align
with absolute concentrations measured in the low-resolution dataset (filled diamonds).
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Figure 7. Posterior marginal probability distributions of modelled sediment-water interface fluxes (in nmol cm d) for all state
variables, generated from inference runs, across the four scenarios considered for model validation against experimental data

from Lake Lucerne.
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denitrification. Dashed lines enclose 95% credibility intervals resulting from parametric uncertainty.
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Figure 9. Depth profiles of process rates, solute concentrations and 8'°N values for the two idealized case scenarios investigated: (i)

NOs™ reduction via DNRA and denitrification (a-d), (ii) N2 production via anammox and denitrification (e-h). Shadings represent

different model scenarios within each case, as defined in the legend. For case (i), colour shading lightens with increasing
contribution of DNRA (relative to denitrification) to total NO, reduction. DNRA accounts for 0% (fonra = 0), 33%0 (fonra = 0.5),
50% (fonra = 1) and 66% (fonra = 2) of total NO;™ reduction (panel a). The resulting effects on the production rates of NH;" and N,
(b), as well as on their concentrations and N isotopic composition (c-d), are shown. For case (ii), colour shading lightens with
increasing contribution of anammox (relative to denitrification) to total NO,  consumption and associated N, production.
Anammox contributes 0%o (fanam = 0), 33%o0 (fanam = 0.5), 50% (fanam = 1) and 66% (fanam = 2) of total NO,  consumption (e-f). The

resulting impacts on N, and NO, concentrations and 8'5N values are shown in panels g-h.
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789 Appendix A: Model processes and stoichiometry
790 Table Al. Overview of all modelled N-transformation pathways, including their stoichiometry and governing equations. R denotes the 'SN/(**N+!5N) ratio derived from OM. The y
791 parameter defines the fraction of NH4* released during OM mineralization for each reaction. Anammox encompasses both the comproportionation of NHs" and NO; to N3, defined as
792 the main (“m”) reaction, and the production of NO5™ from NO>", defined as the side (“s”) reaction.
Process Step NH,* NOy- NOy N;O N2 0, | SO |Rate
N 15\ UN N | MN BN | MNMN O MNISN O SNISN | NN UNSN O SNISN
Oxic min. inox (1-R) Iinox R -1 'MinOx
Denitrification [1] |  7pen (1-R) Yoent R | 1 P bent [“NO5T]
¥pent (1-R) Vpent R 1 -1 7’ pent [PNO3 ] (1-&pens)
[2] 2y pen2 (1-R) 29en2 R -2 1 7’ pen2 [*NO27] [*NO27]
2y pen2 (1-R) 29pen2 R -1 -1 1 2 7 pen2 ["“NO2] [PNO2] (1-&pen2)
2¥pen2 (1-R) 29pen2 R -2 1 7’ pen2 [PNO2] [PNO27] (1-£pen2)?
[3] ¥Den3 (1-R) Vpen3 R -1 1 7’ pens [1*N20]
¥pen3 (1-R) Vpen3 R -1 1 7’ pens [*1°N20] (1-&pen3)
¥Den3 (1-R) Vpen3 R -1 1 7’ pens [PPN20] (1-&pen3)
Sulfate reduction ¥ MinSulfRed (1-R) IinSulfRed R -1 |PMinSulfRed
Anaerobic min. 1-R R "'MinAnae
Nitrification  [1] 1 | 15 Pxita [“NH,"]
-1 1 -1.5 P nitta [PNH4™ (1-gnir,nv02)
2 1 2 iy [“NH4*] [4NH,
-1 -1 1 -2 2 Pxins [“NH4"T [PNH4™] (1-évirz,v20)
-2 1 -2 7*Nitty [PNH4" [SNH4 ] (1-gniz.n20)?
2] -1 | 0.5 Pxie [“NOsT]
-1 1 0.5 Prie [NOY] (1-8vi)
Anammox  [m] -1 -1 1 7 anam [“NH,*] [“NO>]
-1 -1 1 7 Anam [“*NH4"] ["NO27] (1-&tnamno2)
-1 -1 1 7 Anam [PNH4"] ["“NO2T (1-Ednam i)
-1 -1 1 7 Anam [PNH4"] [PNO2T (1-&tnamno2) (1-Enam niis)
[s] -1 1 \fside 7 Anam [“*NH4"] [“NOy]
-1 1 faide 7 Anam [“*NH4"] ["NO2 (1-Eanamno2) (1-Enam,side)
-1 1 \faide 7 Anam [PNH4™] [""NO2T (1-Ednam 1)
-1 1 faide 7 Anam ["NH4"T [PNO2T (1-Etnamno2) (1-Eanamnia) (1-Etnamside)
DNRA [1] 7onrai (1-R) yonra1 R 1 -1 # oxgar [¥NOs ]
yonrai (1-R) Yonral R 1 -1 7’pnral [PNOs] (1-&pnrar)
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[2] 1+]/DNRA2 (1-R) YDNRA2 R -1 ¥’ DNRA2 [14N02_]

¥onraz (1-R) 1+ypNraz R -1 ’paraz [PNOT (1-6pnraz)
[02] KNO3,MinAnae K02 MinAnae

793 TMinox = Kmi T = knr: MinAna : ,

MinOx MinOx KozMinox+[02] MinAnae MinAnae KN03 MinAnae +[-*NO31+[1°NO3] K02 MinAnae +[02]

2_

704 1 —k [SO;™] KNo3 MinsulfRed Ko2 MinsulfRed

MinSulfRed — "MinSulfRed 2 —

KsoaMinsulfRed T [S04 ™1 KnozMinsulfRed T [NO3'] Koz Minsuitred + [02]
1 1 KOZAnam

795 r' =k - - -

Anam Anam KN4 Anam +[NHF 1+[°NHF ] Knoz anam+[2*NO31+[1°NO3] Koz Anam+[02]

1 [07] ’ 1

796 ' Nitta = kniep (1 — ; s = ks )

Nitla Nltl( fNZO’Nltl) KnuanierH[*NHF1+[°NHF] Koz nie1+[02] Nit1b Nitl fNZO’Nltl (KNH4,Nit1+[14NHI]+[15NHI])2 Koz Nit1 +[02]

1 [02]

797 'vier = kni - -

Nit2 Nit2 Knoz iz +H[MNO3]+[1°NO3] Koz iz +[02]

1 K02,Den1 ' 1 K02,Den2
798 7'pent = Kpen1 - - ' T'pen2 = Kpen2 '
en "% Kno3pen1+[M*NO3]+[*NO3] Koz,pen1+[02] en 1% (Kyozpenz +[1NO3]+[15N03])” KozDen2+[02]
1 K02,Den3

799 r’ =k 2

ben3 Den3 KN20,pen3+[41*N20]+[115N,0]+[ 115N, 0] Kog,pen3+[02]
800 r =k 1 Ko02,DNRAL v -k 1 Ko2,DNRA2

DNRA1 DNRAL Kno3,pnrat +[NO31+[°NO3] Koz,pnra1+[02] DNRA2 DNRA2 Kno2,pNrazH[1INO3]+[1°NO3] Koz, pNRaz+[02]
801 fazonin = Dnaonitn ——22NU—

It NI an 20 Nit +102]

802  Kpenz = fpen2,pen1Kpent kpen3s = fpen3 pen1Kpent knitz = fiez Nie1 Kniet
803 Kanam = fanam,Den2KDen2 kpnra1 = fonra1,Den1Kpent kpnraz = foNrA2,Den2KDen2
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Appendix B: Reaction-diffusion model

Nomenclature
t time [d]
z depth coordinate within sediment (0 at the sediment surface, d at the lower boundary of the modelled sediment

layer) [cm]

d depth of the modelled sediment layer [cm]

C(z,t)  substance concentration (mass per volume of water) as a function of depth and time

p(z) porosity of the sediment (water volume divided by sediment volume) as a function of sediment depth

D(z) diffusivity of the substance in the water as a function of depth (usually constant and equal to the molecular
diffusion coefficient; however, bioturbation could be modelled as an increase in diffusivity close to the sediment
surface)

r(C) transformation rate of the substance (mass per volume of water per unit of time)

Co substance concentration at the sediment surface

Fua substance flux from deep sediment into the modelled sediment layer at the lower boundary of the modelled
sediment layer (mass per unit of total sediment surface and per unit of time)

Partial Differential Equation for Sediment Layer

Mass balance within the sediment layer:
ac a ac
var= 5 (0P 5) =P
Differential equation for concentration:
oc_19 () oc
ot  poz (Dp Oz)+r
Diffusion (molecular diffusion corrected for tortuosity, and bioturbation):

D __Z
mol Toio

=—ml i p.e
1— bio
Qortp ™~ Mot

Boundary conditions:

ac
€(0,6) =Cy, D(d,Dp(d, D)= (d,1) = Fy

For N compounds with a single N atom, the boundary conditions are calculated from total concentrations, Cror, and &°N as

follows:

5N 1 T
r = 1000+1 Rstd C14N =1—+rcmt ClSN:1_+TCt0t

For N compounds with two N atoms, the boundary conditions are calculated from total concentrations, Ci, and &°N as

follows (Drury et al., 1987):

85N 1 2r T2
r=——+1 Rstd Cl4N14N = mcmt C15N14N = mcmt C15N15N = mat
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Appendix C: Prior values for inference

Table C1. Model parameters estimated using Bayesian inference, alongside their prior values and associated uncertainties. The posterior values (estimated mean with their standard deviation)
for the base scenario (Section 4.1) are also reported. Parameters are grouped into three categories: (A) reaction rates parameters (i.e., defining process Kinetics), (B) isotope parameters (i.e.,
isotope effects for the modelled processes and the N isotopic composition of OM), and (C) parameters used in the one-step denitrification approach (NOs~ 2> N; instead of NO3;” 2> NO; > N,O >

N;). Where a wide range of values was reported in the literature, the most relevant value for benthic environments was selected, and the corresponding reference is reported.

Description Symbol Distribution Mean St.deviation Reference(s) Posterior mean (+ SD)
(A) Reaction rate parameters
Aerobic Maximum conversion rate kntinox Uniform - - - 3330 (+220) uM d!
mineralization 0, limitation constant Koswinor  Lognormal 8 uM 20% (Rooze and Meile, 2016) 6.9 (£0.9) uM
Fraction of NH4" produced INHAMinOx Lognormal 0.1509 10% Stoichiometry 0.15 (£ 0.01)
Anaerobic Maximum conversion rate Kntinanae Uniform - - - 0.13 (£ 0.03) pM d!
mineralization O, limitation constant Kosstninee  Lognormal 5 uM 20% (Paraska et al., 2011) 5.1(£0.7) uM
NOs" limitation constant Kno3 Minanae Lognormal 5uM 20% (Paraska et al., 2011) 49(£0.7) uM
Sulfate reduction Maximum conversion rate KntinsulfRed Uniform - - - 41 (£ 1) pM d!
% tion O, limitation constant Koo, Minsuirea Lognormal 5uM 20% Assumed to be comparable to Koz vindnae 51 (0.7 uM
NOs" limitation constant Kno3,Minsuiirea Lognormal 5uM 20% Assumed to be comparable to Kyos mindnae 54((0.7) uM
SO4* limitation constant Kso4Minsuifrea  Lognormal 20 pM 20% (Richards and Pallud, 2016) 44 (= 1) uM
Fraction of NH4" produced INH4,MinSulfRed  LOgnOTMal 0.3019 10% Stoichiometry 0.26 (£ 0.02)
Nitrification [1] Maximum conversion rate Fewvie Uniform - - - 680 (£ 79) uM d!
O, limitation constant Koo it Lognormal 3.5uM 20% (Martin et al., 2019) 3.1 (£04) uM
NH,4" limitation constant KNt Nit1 Lognormal 2.0 uM 20% (Wyftels et al., 2004) 2.2(£0.3) uM
N>O production a Lognormal 0.2 uM 10% (Jietal., 2018) 0.20 (£ 0.02) uM
Maximum N,O production b Lognormal 0.08 10% (Jietal., 2018) 0.080 (% 0.006)
[2] Reaction rate factor iz Lognormal 1 50% 1.2 (£0.2)
O, limitation constant Koo iz Lognormal 0.8 uM 20% (Martin et al., 2019) 0.8 (x£0.1) uM
NO;" limitation constant Knoz.nie2 Lognormal 0.8 uM 20% (Wyftels et al., 2004) 0.7 (£0.1) uM
Denitrification [1] Maximum conversion rate kpent Uniform - - - 462 (£ 57) uM d!
O, inhibition constant Koz peni Lognormal 3uM 20% (Wenk et al. 2014) 2.9 (£0.4) uM
NOs" limitation constant Kno3.peni Lognormal 2.46 pM 20% (Su et al., 2023) 2.3(x0.3) uM
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Fraction of NH4" produced INH4.Denl Lognormal 0.0755 10% Stoichiometry 0.073 (£ 0.006)
[2] Reaction rate factor fpen2 Lognormal 3 50% 3.4(£0.6)
O, inhibition constant Koz penz Lognormal 3uM 20% Assumed to be comparable to Koz pent 2.9 (x0.4) uyM
NO>" limitation constant Kno2,pen2 Lognormal 0.41 pM 20% (Su et al., 2023) 0.37 (£ 0.05) uM
Fraction of NH4" produced INH4.Den2 Lognormal 0.0755 10% Stoichiometry 0.073 (£ 0.006)
[3] Reaction rate factor fpens Lognormal 3 50% 23(£0.4)
O; inhibition constant Ko2,pen3 Lognormal 0.1 uM 20% (Suenaga et al., 2018) 0.10 (£ 0.01) pM
N2O limitation constant Kn20,Den3 Lognormal 3.7 uM 20% (Suenaga et al., 2018) 3.6(x0.5 M
Fraction of NH4" produced INH4.Den3 Lognormal 0.0755 10% Stoichiometry 0.074 (£ 0.006)
DNRA [1] Reaction rate factor fDNRALDent Lognormal 0.005 25% ISN-tracer incubations (this study) 0.0049 (£ 0.0008)
O, inhibition constant Ko pnrai Lognormal 3uM 20% Assumed to be comparable to Koz pent 2.9 (x0.4) uyM
NOs" limitation constant Kno3,DNRAT Lognormal 2.46 pM 20% Assumed to be comparable to Ko pens 2.5(x0.3) uyM
Fraction of NH4" produced JNHA.DNRAI Lognormal 0.0755 10% Stoichiometry 0.076 (£ 0.006)
[2] Reaction rate factor JDNRA2Den2 Lognormal  0.005 25% ISN-tracer incubations (this study) 0.0047 (£ 0.0008)
O, inhibition constant Koz pnraz Lognormal 3uM 20% Assumed to be comparable to Koz pen2 31 (x04) M
NO>" limitation constant Kno2,DNRA2 Lognormal 0.41 pM 20% Assumed to be comparable to Koz pen2 0.43 (£ 0.06) uM
Fraction of NH4" produced INH4.DNRA2 Lognormal 0.226 10% Stoichiometry 0.22 (£ 0.02)
Anammox Reaction rate factor foanam, Den2 Lognormal 0.2 25% SN-tracer incubations (this study) 0.20 (£ 0.03)
O; inhibition constant Koz ana Lognormal 2.5 uM 20% (Kalvelage et al., 2011) 2.5(x0.3) uyM
NH," limitation constant KNt ana Lognormal 1 uM 20% (Wenk et al. 2014) 1.0 (£0.1) uM
NO>" limitation constant Knoz.ana Lognormal 5uM 20% Reported for NOs™ (Wenk et al. 2014) 5.0(x£0.7) uM
NOs™ production factor Sitnam, side Lognormal 0.3 10% (Brunner et al., 2013) 0.30 (£ 0.04)
(B) Isotope effects, boundary conditions and §°N
Nitrification [la] NH4" = NOy ENitI.NO2 Normal 30%o 5%o (Dale et al., 2022; Denk et al., 2017) 11.9 (+ 2.2) %o
[1b] NHs" > N,O ENitIN20 Normal 40%o 5%o (Denk et al., 2017) 36.3 (£ 2.2) %o
[2] NO; = NOy ENir2 Normal -13%o 5%o (Denk et al., 2017) -6.0 (£3.1) %o
Denitrification [1] NOs; = NO2- EDent Normal 20%o 5%o gROcl)(g);e and Meile 2016; A. W. Dale et al. | 2.8 (£ 1.1) %o
[2] NO;y 2> N,O EDen2 Normal 15%o 5%o (Dale et al., 2019; Denk et al., 2017) 7.9 (£2.9) %o
[3] N2.02> Ny EDen3 Normal 9%o 5%o (Wenk et al. 2016) 8.3 (£3.3) %o
DNRA [11 NOs > NOy EDNRAI Normal 20%o 5%o (Rooze and Meile 2016; A. W. Dale et al. | 20.0 (+2.9) %o
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2019)

[2] NO; > NH4* EDNRA2 Normal 15%o 5%o Assumed to be comparable to &pen2 15.6 (= 3.0) %o
Anammox NH4" > N, Ednam.NH4 Normal 23%o 5%o (Brunner et al., 2013) 17.2 (£ 3.5) %o
NO;y 2 N Ednam,NO2 Normal 16%o 5%o (Brunner et al., 2013) 14.4 (£ 3.0) %o
NO; 2 NO5 Ednam_side Normal -31%o 5%o (Brunner et al., 2013) -30.0 (£ 2.7) %o
Lower boundary conditions Fns Uniform - - - - 8.4 (+ 0.5) mmol cm?
d-l
& Newis Uniform - - - 2.0 (£0.5) %o
Organic Matter isotopic composition SN-OM Normal 3%o 0.5%0 (Baumann et al., 2024) 2.1 (£ 0.4) %o
(C) One-step denitrification
Denitrification Maximum conversion rate kpen Uniform - - - 765 (£ 114) uM d!
O, inhibition constant Ko2,pen Lognormal 3uM 20% (Wenk et al. 2014) 2.9 (£0.4) uM
NOs" limitation constant Kno3,pen Lognormal 2.46 pM 20% (Su et al., 2023) 2.2(x0.3) uM
Fraction of NH4" produced INHA4Den Lognormal 0.189 10% Stoichiometry 0.17 (£ 0.01)
Isotope effect EDen Normal 20%o 5%o (Rooze and Meile 2016; A. W. Dale et al. | 5.5 (% 0.9) %o
2019)
DNRA [1] Reaction rate factor fDNRALDen Lognormal  0.005 25% ISN-tracer incubations (this study) 0.005 (£ 0.001)
[2] Reaction rate factor fDNRA2, Den Lognormal  0.005 25% ISN-tracer incubations (this study) 0.005 (£ 0.001)
Anammox Reaction rate factor foAnam, Den Lognormal 0.6 25% SN-tracer incubations (this study) 0.6 (x£0.1)
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Appendix D: Model discretization

We discretize the partial differential equations outlined in Appendix B using the Method of Lines. This approach involves
explicit discretization in space, followed by the application of an ODE solver to the resulting system of ODEs.

Spatial discretization

Numerical discretization of sediment layer (» cells, cell expansion factor f):

Visualization:

Cell boundaries (i = 1,...,n+ 1):

i—1
d forf <11 (i=1,..,n+1)
Zf’= i-1
fn—-1 :
ﬁd fOI‘fle (121,...,n+1)

Cell midpoints (i = 1, ...,n):
m _ 1 b b
=5 (20 +2%1)

Explanation for the cell expansion factor:

The cell size is approximately (the larger n the closer) proportional to

i-1
azf’_f) frn—11 log(f)

g ai\ f—-1 f—-1

i-1
n

1
n

Comparing these cell sizes at the lower and upper boundaries leads to

dz?
oy, +1
I=n —
0z? !
oi |
=1

This expression clarifies the meaning of the cell expansion factor (approximately equal to the ratio of cell size of lowest to
uppermost cell).

Discretized Ordinary Differential Equations

Mass balance within sediment layer cells (i = 2, ...,n — 1):

ac
P =2 ) (2 —2))
c(z™—-c(z™,) c(zh)—Cc(zM
: m = +p(zlb+1)D(Zlb+1) Hr-; m l

= —p(zP b
= —p(2’)D(2}) zZM —zM Ziy1 — 4

b b
+p(EMr (") (21 -27)
Differential equation for concentrations at cell midpoints of inner cells (i = 2, ...,n — 1):

C(z™ —C(z™ C(zM™,) — C(z™
oc P R 1 p(ah, )p(ah) SR = D

)= D) o) D

Jat
Boundary conditions:
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t) C(Zn+1) C(Zgl)

C(z7) = Co, D(zn41,t)P(2Zn41s —m = Fa
n+1 n
Z‘}')l+1 —Zy

- C(Z,E+1) C(zM) + Fy

D( Zn+1r t)P(Z}lH' t)

Differential equations for concentrations at cell midpoints of top and bottom cell (i = 1,i = n):

—p(z0)D(z b)C(Zl—C(Zl)_}_ (22)D(22) C(Zz — C(z")

ac m Z{n m
E(zl ) - (Zl )(ZZ _Zl) + T(Zl )
m Cc c
ac —p(Zb)D( b) C(Zn — g(zn 1) + (Zn+1)D(Zn+1) (Z;l+1) —n (Z )
3¢ @) = L+ r(z)

p(zz' )(ZRH_ZPL)

—p(z3)D(2L) C(Zgln)l — gg(lzfl‘l) +F + o
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Appendix E: Model implementation

The model was implemented in Julia (Bezanson et al., 2017) (https://julialang.org). The implementation is available with

open access at https://gitlab.com/p.reichert/Nsediment. The version used for this study corresponds to commit

7afecdf1af871e8£8030360d658ec1ct54d20716.

The partial differential equations described in Appendix B were spatially discretized according to the approach outlined in
Appendix D. The resulting ordinary differential equations were then numerically solved by the Method of Lines using the
package DifferentialEquations.jl (Rackauckas and Nie, 2017). Discretizing the modelled sediment layer into 50 cells, and
considering 14 state variables, resulted in a system of 700 ordinary differential equations. The performance of several ODE
solvers was compared, resulting in the use of the adaptive order and adaptive time step backward-differencing solver FBDF
to account for the stiffness of the ODE system.

Maintaining compatibility with automatic differentiation while allowing flexible parameter selection for inference was a key
implementation challenge. This was addressed by using separate arrays for parameter values and names, and by prepending
the parameters to be estimated, ensuring a contiguous array of the parameters. To avoid inefficiencies related to the search of
parameter names, the association of parameter names to array indices was resolved within the differential equation solver
function. This solver, which includes the function to calculate the right-hand side of the differential equation as an internal
function, ensures that the index resolution has to be done only once and remains available for all calls of the integrator by the
solver. This approach enabled compatibility of our implementation with the automatic differentiation package ForwardDiff.jl
(Revels et al., 2016).

Bayesian inference was implemented with both an adaptive Metropolis sampler from the AdaptiveMCMC package (Vihola,
2020) and the Hamiltonian Monte Carlo algorithm from the AdvancedHMC jl package (Xu et al., 2020).

All model outputs were written to text files and post-processed using R (https://www.r-project.org).
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Code and data availability

The code for the isotope model presented in this manuscript is available at https:/gitlab.com/p.reichert/Nsediment (commit

7afecdf1af871e8£8030360d658ec1cf54d20716).

Field data, model outputs and  re-processing scripts are available  through  zenodo at

https://doi.org/10.5281/zenodo.14913873.
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