

1 **A comprehensive porewater isotope model for simulating benthic
2 nitrogen cycling: Description, application to lake sediments, and
3 uncertainty analysis**

4 Alessandra Mazzoli¹, Peter Reichert^{2*}, Claudia Frey¹, Cameron M. Callbeck¹, Tim J. Paulus¹, Jakob
5 Zopfi¹, Moritz F. Lehmann¹

6 ¹Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland

7 ²Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, 8600, Switzerland

8 *Current status: retired from Eawag; email peter.reichert@emeriti.eawag.ch, see <https://peterreichert.github.io> for updated
9 information

10 *Correspondence to:* Alessandra Mazzoli (alessandra.mazzoli@unibas.ch)

11 **Abstract**

12 The combination of various nitrogen (N) transformation pathways (mineralization, nitrification, denitrification, DNRA,
13 anammox) modulates the fixed-N availability in aquatic systems, with important environmental consequences. Several
14 models have been developed to investigate specific processes and estimate their rates, especially in benthic habitats, known
15 hotspots for N-transformation reactions. Constraints on the N cycle are often based on the isotopic composition of N species,
16 which integrates signals from various reactions. However, a comprehensive benthic N-isotope model, encompassing all
17 canonical pathways in a stepwise manner, and including nitrous oxide, was still lacking. Here, we introduce a new diagenetic
18 N-isotope model to analyse benthic N processes and their N-isotopic signatures, validated using field data from the
19 porewaters of the oligotrophic Lake Lucerne (Switzerland). As parameters in such a complex model cannot all uniquely be
20 identified from sparse data alone, we employed Bayesian inference to integrate prior parameter knowledge with data-derived
21 information. For parameters where marginal posterior distributions considerably deviated from prior expectations, we
22 performed sensitivity analyses to assess the robustness of these findings. Alongside developing the model, we established a
23 methodology for its effective application in scientific analysis. For Lake Lucerne, the model accurately replicated observed
24 porewater N-isotope and concentration patterns. We identified aerobic mineralization, denitrification, and nitrification as
25 dominant processes, whereas anammox and DNRA played a less important role in surface sediments. Among the estimated
26 N isotope effects, the value for nitrate reduction during denitrification was unexpectedly low ($2.8 \pm 1.1\text{\textperthousand}$). We identified the
27 spatial overlap of multiple reactions to be influential for this result.

28 **1 Introduction**

29 Nitrogen (N) is an essential element for all living organisms (Xu et al., 2022) and often limits primary production in aquatic
30 systems (Kessler et al., 2014). In order to meet the global demand for fixed N (nitrate, NO_3^- , and ammonium, NH_4^+),
31 industrial fixation of atmospheric dinitrogen (N_2) through the Haber-Bosch process now exceeds biological N_2 fixation, with
32 unforeseeable consequences regarding the ability of the environment to remove the excess fixed N, leaving the global N
33 cycle imbalanced (Kessler et al., 2014). High fixed-N in aquatic systems has detrimental environmental consequences (Denk
34 et al., 2017; Yuan et al., 2023), including eutrophication, ecosystem deterioration, and greenhouse gas emissions (e.g.,
35 nitrous oxide, N_2O). Thus, understanding the fate of fixed N in aquatic ecosystems and quantifying N fluxes are crucial for
36 global budget estimates (Pätsch and Kühn, 2008).

37 In aquatic systems, benthic habitats are important hotspots in the transformation of large amounts of fixed N (Dale et al.,
38 2019; Pätsch and Kühn, 2008; Xu et al., 2022), owing to sharp oxyclines and the co-occurrence of aerobic and anaerobic
39 processes. The active N cycle in these sediments is driven by the flux of organic matter (OM) from the photic zone along
40 with elevated concentrations of other electron donors (Ibánhez and Rocha, 2017; Wankel et al., 2015). Aerobic reactions,
41 such as nitrification (stepwise NH_4^+ oxidation to NO_3^- via nitrite, NO_2^- , with N_2O as by-product), are usually restricted to the
42 top few millimetres in OM-rich sediments (e.g., in small lakes) or extend several centimetres deep in OM-poor sediments
43 (e.g., in large oligotrophic lakes and the ocean) (Pätsch and Kühn, 2008; Wankel et al., 2015). The fate of NO_3^- , produced via
44 nitrification either locally in the sediments or in the water column, determines a system's capacity to function as an efficient
45 N sink (Wankel et al., 2015). Denitrification, the stepwise reduction of NO_3^- to N_2 (via NO_2^- and N_2O), has been identified as
46 a key pathway for anaerobic N removal. Additionally, anammox, the anaerobic oxidation of NH_4^+ to N_2 using NO_2^- , can
47 contribute to N loss (Ibánhez and Rocha, 2017; Kampschreur et al., 2012; Wankel et al., 2015), especially in oligotrophic
48 lake sediments (Crowe et al., 2017). In anammox, partial oxidation of NO_2^- generates NO_3^- as a by-product to provide
49 reducing equivalents for the fixation of inorganic carbon (C) (Brunner et al., 2013; Strous et al., 1999). Counteracting N
50 removal by anammox and denitrification, the dissimilatory NO_3^- reduction to NH_4^+ (DNRA) contributes to N retention
51 (Denk et al., 2017; Ibánhez and Rocha, 2017; Rooze and Meile, 2016). The relative balance between these N-transforming
52 reactions is strongly influenced by environmental conditions, particularly the ratio of organic C to NO_3^- and oxygen (O_2)
53 availability. For instance, DNRA may be predominant under high C: NO_3^- ratios (Ibánhez and Rocha, 2017; Kraft et al.,
54 2011; Wang et al., 2020). Oxygen is a central regulator in this context: it controls the coupling of nitrification with
55 denitrification, anammox and DNRA, and modulates N_2O production and consumption, with peak N_2O yields typically
56 occurring at the oxic-anoxic interface (Ni et al., 2011). The spatial overlap of aerobic and anaerobic N cycling processes at
57 this transition zone in sediments often results in very low concentrations of metabolic intermediates (e.g., N_2O) in porewater,
58 complicating their measurements in natural benthic environments. This is particularly true for the analysis of natural-
59 abundance DIN isotopologues, which provide critical insights into N-cycling reactions and pathways. However, measuring
60 these isotopologues, especially low-concentration intermediates in porewater, is technically challenging, if not impossible at

61 present. To overcome these limitations, isotope modelling has become an essential tool for quantifying rapid N turnover at
62 the oxic-anoxic interface, and for evaluating environmental controls on N dynamics and isotope signatures across diverse
63 settings (Denk et al., 2017; Wankel et al., 2015).

64 Natural abundance stable isotope measurements provide insights into the N cycle, and the fluxes within its pathways, as
65 microbial processes impart unique isotopic imprints on the involved N pools (Lehmann et al., 2003; Rooze and Meile, 2016;
66 Wankel et al., 2015). In most microbial processes, the isotopically lighter molecules are preferentially consumed, yielding
67 ^{15}N -depleted products and ^{15}N -enriched substrates (normal N-isotopic fractionation) (Kessler et al., 2014), with few
68 exceptions, such as NO_2^- oxidation, which occurs with an inverse N isotope fractionation (Casciotti, 2009; Martin et al.,
69 2019). The isotopic composition of a given N pool is expressed in δ -notation, $\delta^{15}\text{N}$ (‰ vs. std) = $[(R_{\text{sample}}/R_{\text{std}}) - 1] \times 1000$,
70 where R is the isotope ratio $^{15}\text{N}/^{14}\text{N}$, and the internationally recognized standard is atmospheric N_2 (Denk et al., 2017; Martin
71 et al., 2019). The extent of the isotopic fractionation for a reaction is quantified using the isotope effect, ε , defined as ε (‰) =
72 $[1 - ({}^Hk/{}^Lk)] \times 1000$, where Hk and Lk are the specific reaction rates for the isotopically heavy and light molecules,
73 respectively (Sigman and Fripiat, 2019). For instance, $\delta^{15}\text{N-NO}_2^-$ analysis can help differentiate reductive and oxidative
74 pathways of NO_2^- consumption, as they are characterised by a normal and an inverse kinetic isotope effect, respectively
75 (Dale et al., 2019; Martin et al., 2019; Rooze and Meile, 2016). Despite considerable efforts to estimate isotope effects for
76 most N-transformation processes (Denk et al., 2017), isotope effects estimated in batch cultures often differ from in situ
77 measurements (Martin et al., 2019). To date, only limited efforts have been made to develop comprehensive benthic isotope
78 models that integrate multiple N-transformation processes in a stepwise manner, and assess the expression of their isotope
79 effects in the porewater of aquatic sediments, validated with observational data (Denk et al., 2017; Rooze and Meile, 2016).

80 Existing N-isotope models address specific aspects of the N cycle (Denk et al., 2017), such as denitrification (Kessler et al.,
81 2014; Lehmann et al., 2003; Wankel et al., 2015), NO_2^- oxidation and reduction (Buchwald et al., 2018) or N_2O dynamics
82 (Ni et al., 2011; Wunderlin et al., 2012). As denitrification is the primary pathway for fixed-N loss in many aquatic systems,
83 models integrating dual NO_3^- isotopes (Lehmann et al., 2003; Wankel et al., 2015) have been used for example, to constrain
84 its partitioning between water-column and benthic denitrification (Lehmann et al., 2005), as well as the contribution of
85 regenerated NO_3^- supporting denitrification (Lehmann et al., 2004). Rooze and Meile (2016) combined isotope data with a
86 reaction-transport model to investigate the influence of hydrodynamics on fixed-N removal, highlighting enhanced coupling
87 of nitrification- N_2 production by benthic infauna. Buchwald et al. (2018) used dual NO_3^- and NO_2^- isotope analyses, and a
88 reaction-diffusion model to demonstrate the tight coupling of NO_3^- reduction and NO_2^- oxidation near oxic-anoxic interfaces,
89 emphasizing the central role of NO_2^- in N recycling. In contrast, most N_2O modelling efforts (primarily concentration-based
90 models) to date have focused on engineered systems such as wastewater treatment, where they have been used to assess N_2O
91 production pathways under variable conditions, and to minimize its emissions (Ni et al., 2011; Wunderlin et al., 2012).
92 Challenges in measuring N_2O isotopologues in natural settings, especially in sediment porewaters, have limited the broader
93 application of N_2O isotopic approaches and led to the exclusion of N_2O from benthic N-isotope modelling efforts so far.
94 Nonetheless, given the key role of N_2O in the N cycle, and its sensitivity to redox conditions, there is a growing need for

95 modelling frameworks that integrate multi-species N-isotope dynamics, even in the absence of direct measurements of N-
96 cycle intermediate like NO_2^- and N_2O to more accurately capture the interconnected nature of N transformations in natural
97 systems.

98 With this study, we introduce a comprehensive 1-D diffusion-reaction model, encompassing all canonical N-transformation
99 processes and most DIN isotopologues, to assess the role of distinct environmental factors (e.g., OM reactivity, bioturbation)
100 in shaping porewater N dynamics and the N isotopic signatures the different N transformations (and combinations thereof)
101 generate. Furthermore, by considering the stepwise nature of the N-cycling pathways, the model quantifies and isotopically
102 characterizes key intermediates (i.e., N_2O , NO_2^-), which serve as substrates for subsequent reactions (Martin et al., 2019).
103 Moreover, the model acts as a valuable research tool for analysing process couplings (e.g., DNRA-anammox interactions)
104 (Dale et al., 2019; Hines et al., 2012), which are crucial for accurately estimating N removal and recycling, and can influence
105 the apparent isotope effects of NO_3^- and NO_2^- . Incorporating N_2O isotopologues as state variables enables the model to
106 resolve the relative importance of N_2O producing mechanisms across small-scale benthic oxic-anoxic interfaces, and to
107 quantify their contribution to sedimentary N_2O emissions.

108 The application of a comprehensive diagenetic N isotope model to measured porewater profiles of selected inorganic N
109 compounds often results in parameter identifiability issues. Specifically, similar fits to the observed data might be achieved
110 with comparable accuracy using different parameter sets, each yielding distinct transformation rates. To reduce the risk of
111 drawing erroneous conclusions from such identifiability problems, we employed the following modelling strategies:

- *Use of prior knowledge*

112 Prior knowledge informed both the development of the model structure and the selection of parameter values. The
113 model parameterization was adapted as deemed necessary to effectively integrate this prior knowledge. This
114 approach aims to produce a plausible representation of the mechanisms governing the data.

- *Consideration of uncertainty*

115 Uncertainty in model parameters was explicitly accounted for using epistemic probability distributions. Bayesian
116 inference (Bernardo and Smith, 1994; Gelman et al., 2013; Robert, 2007) was employed to combine prior
117 knowledge with information obtained from observational data. The resulting posterior distribution of the parameters
118 and calculated results provide a comprehensive uncertainty description, which is, however, still conditioned on prior
119 information about the model structure and parameters.

- *Sensitivity analysis*

120 To test the robustness of key results against modelling assumptions, we assessed their sensitivity to the choice of
121 prior probability distribution of the model parameters and to the inclusion of specific active processes within the
122 model.

123 Since the numerical implementation of Bayesian inference requires the computationally intensive Markov Chain Monte
124 Carlo (MCMC) sampling technique (Andrieu et al., 2003), an efficient model implementation is required. To meet this need,
125 we implemented the model in Julia (Bezanson et al., 2017) (<https://julialang.org>), a high-performance programming

language. This choice also enables the use of automatic differentiation, which supports advanced MCMC techniques like Hamiltonian Monte Carlo (HMC) (Betancourt, 2017; Neal, 2011). The model was tested using field measurements from oligotrophic Lake Lucerne. It is important to emphasize that this isotope model is designed as a research tool, rather than a predictive instrument. Its primary purpose is to test hypotheses and assumptions related to the biogeochemical controls on N isotope signatures in natural environments, and to assess the identifiability of process rates and N isotope effects from observational data.

135 2 Model description

136 2.1 Model formulation

137 A one-dimensional diffusion-reaction model was developed to simulate the concentrations of inorganic N compounds (NO_3^- ,
138 NO_2^- , NH_4^+ , N_2 , N_2O), distinguishing between ^{14}N and ^{15}N isotopes ($^{14}\text{NO}_3^-$, $^{15}\text{NO}_3^-$, $^{14}\text{NO}_2^-$, $^{15}\text{NO}_2^-$, $^{14}\text{NH}_4^+$, $^{15}\text{NH}_4^+$, $^{14}\text{N}_2$,
139 $^{14}\text{N}^{15}\text{N}$, $^{15}\text{N}_2$, $^{14}\text{N}_2\text{O}$, $^{14}\text{N}^{15}\text{NO}$, $^{15}\text{N}_2\text{O}$), as well as for O_2 and sulfate (SO_4^{2-}) concentrations. Their production and
140 consumption rates are described by incorporating key processes of the canonical N cycle: aerobic mineralization,
141 denitrification, nitrification, anammox, DNRA, mineralization by SO_4^{2-} reduction, and anaerobic mineralization (other than
142 SO_4^{2-} -driven) (Fig. 1). All reactions (Table 1) are described using the general formula:

$$143 \quad \text{rate} = k_{max} \cdot \text{limitation} \cdot \text{inhibition} \quad (1)$$

144 where k_{max} represents the maximum conversion rate under ideal conditions (in $\mu\text{M d}^{-1}$). The terms for limitation by substrate
145 X and inhibition by substance Y for the process i are defined following Michaelis-Menten kinetics (Martin et al., 2019):

$$146 \quad \text{limitation} = \frac{[X]}{K_{X,i} + [X]} \quad (2) \quad \text{inhibition} = \frac{K_{Y,i}}{K_{Y,i} + [Y]} \quad (3)$$

147 where $[X]$ and $[Y]$ are the concentrations (in μM) of substances X and inhibitor Y, respectively, while $K_{X,i}$ and $K_{Y,i}$ are their
148 respective half-saturation and inhibition constants (in μM) for process i, respectively. While the model supports exponential
149 equations for limitation and inhibition terms, Michaelis-Menten kinetics were chosen for this study, as they are more
150 commonly employed in N models (Rooze and Meile, 2016). The specific reaction rate equations are implemented taking into
151 account the concentrations of ^{14}N , ^{15}N , $^{14}\text{N}^{14}\text{N}$, $^{14}\text{N}^{15}\text{N}$, and $^{15}\text{N}^{15}\text{N}$ species separately for the limitation term. For ^{15}N -
152 containing species, specific reaction rates are reduced by $(1-\varepsilon/1000)$ relative to ^{14}N -containing species, reflecting the isotope
153 effect associated with a given reaction (detailed descriptions of the model processes are provided in Appendix A: *Model*
154 *processes and stoichiometry*).

155 Molecular diffusion is modelled taking into account the reduced solute movement due to tortuosity (Burdige, 2007).
156 Additionally, bioturbation is included as a transport term enhancing diffusion, with its influence exponentially decreasing
157 with depth. Boundary conditions are set based on observed concentrations of N compounds, O_2 , SO_4^{2-} at the upper boundary,
158 and by zero fluxes at the lower boundary, except for NH_4^+ . The NH_4^+ flux (and its $\delta^{15}\text{N}_{\text{FNH}_4}$) was jointly estimated with the

159 model parameters, as the field data display a clear NH_4^+ concentration gradient at 5 cm. Total N, ^{14}N and ^{15}N concentrations, 160 along with their fluxes, are used for model parameterization (see Appendix B: *Reaction-diffusion model* for details). 161 The model is formulated as a dynamic model, but simulated to steady-state for comparison with observational data. 162 Concentrations of ^{14}N - and ^{15}N -containing compounds are converted to total concentrations and $\delta^{15}\text{N}$.

163 **2.2 Description of modelled transformation processes**

164 This section outlines the modelled processes for ^{14}N and $^{14}\text{N}^{14}\text{N}$ compounds (Table 1). A comprehensive overview of the 165 transformation processes for all isotopologues, and stoichiometric relations is provided in Appendix A: *Model processes and* 166 *stoichiometry*.

167 Mineralization of OM, the sole external N source, is differentiated in the model according to the specific electron acceptor 168 involved: aerobic mineralization (O_2), denitrification and DNRA (NO_3^-), SO_4^{2-} reduction, and anaerobic mineralization. The 169 latter encompasses all remaining redox species (i.e., other than O_2 , NO_3^- , and SO_4^{2-}) below the nitracline (e.g., manganese, 170 iron oxides, carbon dioxide).

171 Denitrification is modelled as a three-step process: (1) NO_3^- to NO_2^- ; (2) NO_2^- to N_2O ; and (3) N_2O to N_2 . The first step, 172 typically regarded as the rate-limiting step (Kampschreur et al., 2012), is the primary control on the overall expression of the 173 N isotope effect (Kessler et al., 2014; Rooze and Meile, 2016). To prevent unrealistic rates, subsequent steps are constrained 174 by setting $k_{\text{Den}2} = f_{\text{Den}2} \times k_{\text{Den}1}$ and $k_{\text{Den}3} = f_{\text{Den}3} \times k_{\text{Den}1}$, and specifying priors for $f_{\text{Den}2}$ and $f_{\text{Den}3}$. The re-parameterization of the 175 second and third steps using the $f_{\text{Den}2\text{Den}1}$ and $f_{\text{Den}3\text{Den}1}$ factors corresponds to exactly the same model without any 176 approximation or simplification. It serves solely to facilitate the specification of priors, as more knowledge is typically 177 available about ratios of maximum rates (i.e., $f_{\text{Den}2\text{Den}1} = k_{\text{Den}2}/k_{\text{Den}1}$) than about the absolute maximum rates themselves. The 178 NO_3^- N isotope effect during benthic denitrification is known to be suppressed in the overlying water due to diffusion 179 limitation (Dale et al., 2022; Kessler et al., 2014; Lehmann et al., 2003), though its expression at the porewater level remains 180 less well constrained (Wankel et al., 2015). Transiently accumulating intermediates, such as N_2O , that can escape to the 181 overlying water and alter benthic N fluxes (Rooze and Meile, 2016), are also considered. Lastly, to ensure mass balance, the 182 model accounts for clumped (doubly substituted; e.g., $^{15}\text{N}^{15}\text{NO}$ and $^{15}\text{N}^{15}\text{N}$) isotopocules, but does not distinguish between 183 isotopomers (i.e., $^{14}\text{N}^{15}\text{NO}$ and $^{15}\text{N}^{14}\text{NO}$) due to lack of N_2O isotope data needed for model validation. For the purpose of 184 comparison with previous N models, a simplified one-step denitrification pathway (NO_3^- to N_2 with no release of NO_2^- or 185 N_2O into the environment) approach is also implemented in the model code.

186 Nitrification is modelled as a two-step process: (1a) NH_4^+ to NO_2^- ; (1b) NH_4^+ to N_2O ; (2) NO_2^- to NO_3^- . As for 187 denitrification, the second step of nitrification is constrained to prevent unrealistic rates: $k_{\text{Nit}2} = f_{\text{Nit}2} \times k_{\text{Nit}1}$, with specifying a 188 prior for $f_{\text{Nit}2}$. N_2O production yield during the first step is O_2 -dependent, and is modelled accordingly:

$$189 \quad f_{\text{N}_2\text{O}_\text{Nit}1} = \frac{b}{[\text{O}_2] + a} \quad (4)$$

190 where b and a are empirical parameters derived from (Ji et al., 2018). N_2O production also occurs via nitrification-
191 denitrification, implicitly modelled by allowing reaction coupling via the intermediate NO_2^- . The expression of isotope
192 effects depends on substrate availability and reaction completion. For instance, incomplete nitrification has been shown to
193 result in isotopically heavy NH_4^+ efflux from the sediments (Dale et al., 2022; Lehmann et al., 2004; Rooze and Meile,
194 2016). However, similar phenomena for N_2O and NO_2^- remain poorly understood.

195 The limited understanding of porewater N isotope dynamics, especially for processes other than denitrification, hinges on the
196 scarcity of isotope data for crucial N species like NH_4^+ and NO_2^- in natural settings (Martin et al., 2019; Winkel et al., 2015).
197 In the present model, we investigated the importance of these solutes, and how N-turnover processes like DNRA and
198 anammox shape the distribution of their N isotopes. DNRA is modelled as a two-step process: (1) NO_3^- to NO_2^- ; and (2)
199 NO_2^- to NH_4^+ . This approach separates the impact of NO_2^- reduction on NH_4^+ , and allows comparison of NO_2^- isotopic
200 signatures induced by denitrification, DNRA, and anammox. Anammox is modelled to include both the comproportionation
201 of NH_4^+ and NO_2^- to N_2 (main reaction, “m”), and the NO_3^- production via NO_2^- oxidation (side reaction, “s”) (0.3 mol NO_3^-
202 produced per 1 mol NH_4^+ and 1.3 mol NO_2^-) (Tables 1 and A1) (Martin et al., 2019), which imparts a strong inverse isotope
203 fractionation (Brunner et al., 2013; Magyar et al., 2021).

204 The relative importance of reductive NO_3^- pathways is constrained by altering maximum conversion rates, k , as: $k_{DNRA1} =$
205 $f_{DNRA1,Den1} \times k_{Den1}$; $k_{DNRA2} = f_{DNRA2,Den2} \times k_{Den2}$; $k_{Anam} = f_{Anam,Den2} \times k_{Den2}$, where prior information on f factors was obtained from
206 experimental rate measurements (see below). Altogether these reactions provide a comprehensive overview of N isotope
207 dynamics in porewater and enable the assessment of influential environmental conditions in shaping them.

208 2.3 Model assumptions

209 The model builds on the following considerations and assumptions:

- 210 i. The inputs of sinking OM and associated advective transport relative to the sediment surface are not explicitly
211 modelled, as the dissolved O_2 and N-compound profiles tend to reach quasi-steady state on short timescales (days to
212 weeks). This simplification may not be valid for continental shelf sediments, where advection dominates solute
213 movement due to high sediment permeability (Rooze and Meile, 2016). Therefore, in our model, porewater profiles
214 are shaped primarily by molecular diffusion and bioturbation (the latter approximated as enhanced diffusion), along
215 with reaction processes.
- 216 ii. Hinging on assumption i., the rates of OM-degrading processes are assumed to be limited by the availability of
217 oxidants and not of OM, as in Kessler et al. (2014), an assumption that holds for sediments with sufficient readily
218 degradable OM, but may break down at great depths. As OM is neither a state variable nor a limiting substrate, its
219 production and consumption rates are not tracked and are considered uninfluential within the current model.
- 220 iii. Microorganisms involved in N-transformation pathways are not explicitly modelled, meaning that maximum
221 conversion rates, k , represent a combination of bacterial maximum specific growth rates and abundance. These

parameters likely vary significantly across systems, due to differences in OM loading. Variabilities in cell-specific rates, and consequently in isotope effects, over depth and substrate availability were not considered.

iv. N assimilation is not included, which is plausible if the turnover rates of the modelled processes are considerably higher than the N assimilation rates.

v. Maximum specific conversion rates for all reactions are constant with depth, implying uniform bacterial abundance and activity across the sediment layer affected by any given process.

vi. Limitation and inhibition kinetics are modelled using Michaelis-Menten functions, as they are commonly employed in N-cycle models (Rooze and Meile, 2016); exponential equations are provided within the code as an alternative approach, depending on user preference.

vii. OM composition is approximated by the Redfield ratio (C:N:P = 106:16:1), used to estimate the fraction of NH_4^+ released during OM mineralization, γ .

viii. Anaerobic mineralization includes all processes involving redox species below the nitracline (e.g., manganese, iron, and carbon dioxide) with the exception of SO_4^{2-} reduction, with no distinction in reaction rate for different oxidants. Reduction of SO_4^{2-} is modelled separately, as it can occur at faster rates than oxidation by iron(III), Fe^{3+} , and manganese, Mn^{4+} , in some lacustrine systems (Steinsberger et al., 2020), and is the dominant anaerobic mineralization process in marine settings.

ix. Re-oxidation of reduced species other than NH_4^+ and NO_2^- (e.g., Fe^{2+} , Mn^{2+} , H_2S , CH_4) is neglected in the O_2 budget for the modelled interval; this is appropriate where their upward fluxes are minor, but may underestimate O_2 demand in settings with substantial reduced-species fluxes. Future users are encouraged to adapt the model to their research questions and dataset, including adding processes and state variables, provided that they can be constrained.

x. OM mineralization occurs with no N isotopic fractionation; that is, the released NH_4^+ has the same N isotopic composition of OM, which is a model parameter considered for estimation.

xi. Diffusivities of isotopologues are considered identical, as their differences have been reported to be minimal (Lehmann et al., 2007; Wankel et al., 2015).

xii. Bioturbation enhances diffusion equally for all modelled species. As no solid was included as a state variable of the model, the impact of bioturbation on solid phase mixing was neglected.

xiii. The yield of NO_3^- during anammox is fixed at 0.3 mol NO_3^- per 1 mol NH_4^+ , although reported values range from 0.26 to 0.32 (Brunner et al., 2013).

xiv. The NO_3^- and NO_2^- equilibrium during anammox has been previously reported to occur under environmental stress conditions with a strong isotopic fractionation (up to -60.5‰) (Brunner et al., 2013). Since it leads to the production of ^{15}N -enriched NO_3^- , similarly to the kinetic isotopic fractionation during NO_2^- oxidation to NO_3^- , variable values of $\varepsilon_{\text{Anam},\text{side}}$ (-15‰ to -45‰) can encompass both kinetic and equilibrium fractionation.

255 xv. NH_4^+ adsorption and desorption rates are assumed to be comparable, and to occur with negligible isotopic
256 fractionation, resulting in no net effect on the NH_4^+ pool concentration or isotopic composition.

257 The model incorporates deliberate simplifications to reduce complexity, while remaining adaptable to new data or insights;
258 however, it is acknowledged that these assumptions may significantly influence model outcomes and should be carefully
259 considered when interpreting results.

260 **2.4 Prior knowledge about model parameters**

261 Model parameter values were derived from an extensive literature review, and formulated as prior distributions, as detailed
262 and referenced in Appendix C: *Prior values for inference*. Positive parameters were parameterized as Lognormal priors,
263 while priors of positive or negative parameters were parameterized as Normal distributions. Mean values were derived from
264 the provided references, standard deviations were assigned either as absolute values or as percentages of the mean,
265 depending on the class of variables. For parameters that are lake-specific (see model assumption iii.) and expected to be well
266 identifiable from data, such as the maximum conversion rates of various processes (i.e., aerobic mineralization, the first step
267 of nitrification, the first step of denitrification, mineralization by SO_4^{2-} reduction, anaerobic mineralization) and the NH_4^+
268 flux from deeper sediment layers, only limited prior knowledge is available, making the use of uniform priors preferable. As
269 their interpretability can be questionable, uniform priors were applied only to parameters expected to be well-identifiable,
270 ensuring that prior variations within the marginal posterior range would remain small, even with alternative broad priors.
271 This approach avoids specifying typical expected values, while maintaining robust identifiability. The maximum conversion
272 rates for anammox, DNRA, as well as the second step of nitrification and the second and third steps of denitrification
273 (Anam, DNRA1, DNRA2, Nit2, Den2 and Den3) were more challenging to identify from data, as the sensitivity of model
274 results to these parameters becomes very low when the concentration of the converted substance becomes small.
275 Additionally, prior specification for these rates was difficult, due to the expected variability among different lakes, similar to
276 other maximum conversion rate parameters. Therefore, their priors were formulated as ratios relative to the better-
277 constrained maximum conversion rate of the first nitrification (i.e., k_{Nit1}) or denitrification step (i.e., k_{Den1}). This approach
278 allowed for the characterization of the relative importance of each process without requiring absolute rate values. The joint
279 prior for all parameters was assumed to be an independent combination of their respective marginal prior distributions.

280 **2.5 Model-based analysis process**

281 To partially reduce structural uncertainty of the model and to account for parameter non-identifiability, Bayesian inference
282 was applied, considering all uncertain parameters listed in Appendix C: *Prior values for inference*. Some parameters were
283 excluded from this analysis, including molecular diffusion coefficients, compound concentrations at the sediment surface,
284 zero fluxes from deeper sediment layers (except for the NH_4^+ flux, which was inferred jointly with other parameters) and

285 bioturbation. These values are considerably less uncertain than the other model parameters, except for bioturbation, which
286 was addressed separately through a scenario analysis, following Bayesian inference under the Base scenario.

287 The posterior distribution (probability density) of the model parameters, f_{post} , is expressed as

288

$$f_{\text{post}}(\theta) = \frac{f_L(C|\theta) f_{\text{pri}}(\theta)}{\int f_L(C|\theta') f_{\text{pri}}(\theta') d\theta'} \quad (5)$$

289 where f_{pri} is the prior distribution (probability density) of the model parameters, $f_L(C|\theta)$ is the likelihood function of the
290 model, C represents the observed compound concentrations, or $\delta^{15}\text{N}$ values, and θ denotes the model parameters. The
291 likelihood function $f_L(C|\theta)$ is defined as a multivariate, uncorrelated Normal distribution with constant variances (standard
292 deviation, σ_δ) for $\delta^{15}\text{N}$ values, and variances increasing linearly with concentration, leading to a standard deviation $\sigma_C =$
293 $\sqrt{\sigma_{C,a} C + \sigma_{C,b}^2}$ for O_2 , SO_4^{2-} , and N compound concentrations. This formulation incorporates the combined uncertainties in
294 model structure, sampling, and concentration measurements. To account for the unknown magnitude of these uncertainties,
295 the coefficients of these relationships, $\sigma_{C,a}$, $\sigma_{C,b}$, and σ_δ , were inferred alongside the model parameters.

296 The marginal posteriors of individual parameters were compared with their priors to evaluate whether observational data
297 provided information about these parameters, and whether this information was in conflict with the priors. In addition, two-
298 dimensional marginals were examined to identify potential identifiability issues. Finally, uncertainty in the model results was
299 calculated by propagating parameter uncertainty to the model results under consideration of their uncertainty for given
300 parameter values as formulated in the likelihood function:

301

$$f_{\text{post}}(C) = \int f_L(C|\theta) f_{\text{post}}(\theta) d\theta \quad (6)$$

302 For the parameters with marginal posteriors in conflict with prior information, we conducted additional scenario analyses,
303 fixing parameters, and narrowing or widening prior distributions. These analyses evaluated the model's compatibility with
304 observational data if parameters better aligned with prior information and assessed changes in posterior distribution with
305 weaker priors. These scenario analyses complemented the assessment of bioturbation uncertainty mentioned above.

306 2.6 Discretization and numerical algorithms

307 The partial differential equations outlined in Appendix B: *Reaction-diffusion model* were solved using the Method of Lines.
308 For spatial discretization, a grid was employed with cell thickness increasing progressively from the sediment surface toward
309 deeper layers. This adaptive grid design reduced the total number of cells required, while still maintaining high resolution
310 near the sediment-water interface, where steep concentration gradients typically occur (Appendix D: *Model discretization*).
311 The resulting system of ordinary differential equations (ODE) was solved by a standard ODE solver. Parameter inference
312 was conducted using two advanced Bayesian inference algorithms: Metropolis (Andrieu et al., 2003; Vihola, 2012) and
313 Hamiltonian Monte Carlo (Betancourt, 2017; Neal, 2011) algorithms.

314 **2.7 Model implementation**

315 The model was implemented in Julia (Bezanson et al., 2017) (<https://julialang.org>) to achieve high-performance and
316 facilitate automatic differentiation. The DifferentialEquations.jl package (Rackauckas and Nie, 2017) was used to solve the
317 system of ODEs; performance testing of several ODE solvers identified the FBDF solver (adaptive order and adaptive time-
318 step backward-differencing solver) as the most suitable for handling the stiffness of the ODE system. The ForwardDiff.jl
319 package (Revels et al., 2016) was used for automatic differentiation; Bayesian inference was conducted using the adaptive
320 Metropolis sampler from the AdaptiveMCMC package (Vihola, 2020), and the Hamiltonian Monte Carlo algorithm
321 implemented in the AdvancedHMC.jl package (Xu et al., 2020). Further implementation details are provided in Appendix E:
322 *Model implementation*. Simulations were performed at sciCORE (<https://scicore.unibas.ch>), the scientific computing centre
323 at the University of Basel.

324 **3. Sample collection and analyses**

325 **3.1 DIN concentrations and isotopes**

326 Sediment cores were retrieved at the deepest location of the Kreuztrichter basin in Lake Lucerne, a large oligotrophic lake in
327 Switzerland (Baumann et al., 2024), in April 2021 using a gravity corer with PVC liners. The sediment cores were stored at
328 4 °C and processed using two porewater-sampling methods: whole-core squeezing (WCS; (Bender et al., 1987)) for NO_3^-
329 samples, and Rhizon samplers (Rhizosphere research products, Wageningen, NL) for NH_4^+ samples. The WCS technique
330 provides a high depth resolution near the sediment-water interface (0-5 cm, resolution: ~ 0.7-1 mm), where NO_3^- is present
331 in porewaters, while the Rhizon sampling method allows collecting samples at greater sediment depths (> 5 cm, resolution: \geq
332 0.5 cm). NO_3^- and NH_4^+ concentrations were measured using ion chromatography (940 Professional IC Vario, Metrohm).
333 $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-NH}_4^+$ were determined using the denitrifier method (Casciotti et al., 2002; Sigman et al., 2001), and the
334 hypobromite-azide method (Zhang et al., 2007), respectively. In both methods, sample N from NO_3^- or NH_4^+ is converted
335 into N_2O , which is then purified and analysed by isotope ratio mass spectrometry (Delta V Plus, Thermo Fisher Scientific).
336 The typical analytical precision is $\sim 0.25\text{\textperthousand}$ (McIlvin and Casciotti, 2010).

337 **3.2 Process rate measurements**

338 For model parameterization, reaction rates for denitrification, DNRA, and anammox were determined using established
339 protocols for ^{15}N -tracer incubations (Holtappels et al., 2011). After recovery and sectioning of the core into 1-cm intervals, 1
340 g of sediment was placed into 12 mL gas-tight glass vials (Exetainers®, Labo, UK). These Exetainers were then filled with
341 anoxic, sterilized bottom water, amended with the following tracers: (Exp1) $^{15}\text{NO}_3^-$, (Exp2) $^{15}\text{NH}_4^+ + ^{14}\text{NO}_2^-$. Exetainers were
342 incubated at 6 °C in the dark, and terminated at designated time points (0, 6, 12, 24, and 36 hours) by adding ZnCl_2 . Gas
343 headspace samples were analysed for the production of $^{14}\text{N}^{15}\text{N}$ and $^{15}\text{N}^{15}\text{N}$ using gas-chromatography isotope ratio mass

344 spectrometry (GC-IRMS; Isoprime, Manchester, UK). Linear regression of $^{14}\text{N}^{15}\text{N}$ and $^{15}\text{N}^{15}\text{N}$ production over time was
345 used to calculate N_2 production rates, with standard errors derived from deviations in the regression slopes across the five-
346 time points. For the determination of $^{15}\text{NH}_4^+$ production from $^{15}\text{NO}_3^-$ additions, $^{15}\text{NH}_4^+$ was chemically converted to N_2 gas
347 using the alkaline-hypobromite method (Jensen et al., 2011). The resulting $^{14}\text{N}^{15}\text{N}$ was quantified by GC-IRMS. Linear
348 regression of $^{14}\text{N}^{15}\text{N}$ production over time was used to calculate potential rates of $^{29}\text{N}_2$ (i.e., $^{15}\text{NH}_4^+$) production. Rates of
349 denitrification, DNRA, and anammox were calculated according to Holtappels et al. (2011) and Risgaard-Petersen et al.
350 (2003). Only data from the upper 1 cm were used to parameterize the model, as the investigated sediments displayed a
351 shallow nitracline and the highest anammox contribution at 0-0.5 cm depth.

352 4. Results and Discussion

353 The developed diagenetic N isotope model addresses existing knowledge gaps in understanding porewater N dynamics, and
354 aims to clarify the roles of distinct N-transformation processes in shaping the distribution of N isotopes to be potentially used
355 to constrain benthic N (isotope) fluxes across different environments. Here, we present (1) the results of Bayesian inference
356 applied to a large number (~ 60) of model parameters (see prior definition in Appendix C: *Prior values for inference*), with a
357 focus on assessing their uncertainty, (2) a detailed scenario analysis, focusing on parameters that exhibit significant shifts in
358 their marginal posterior distributions relative to their prior, as well as on the effect of variable contributions from different
359 NO_3^- and NO_2^- reduction pathways, and the impact of enhanced bioturbation on model outcomes, (3) a sensitivity analysis,
360 evaluating the importance of individual model processes in shaping benthic N isotope dynamics, (4) the importance of
361 process coupling in benthic N cycling, with a particular focus on the role of intermediate NO_2^- in influencing $\delta^{15}\text{N}-\text{NO}_3^-$
362 dynamics. All results are based on porewater concentration, isotope, and rate measurement data from a sampling campaign
363 conducted in Lake Lucerne in April 2021. Additionally, we performed (5) a sensitivity analysis examining model output
364 responses to modifications of selected parameters using artificially simulated settings (e.g., variable contributions of
365 denitrification/anammox/DNRA); this analysis demonstrates the model's capability for addressing diverse research
366 questions.

367 4.1 Bayesian inference

368 The model implementation was highly efficient, achieving simulation times of about 12 s on an 13th Gen Intel® Core™ i9-
369 13,900K processor with 3.00 GHz and 64 GB of memory (of which only a small fraction was needed) for a 100-day
370 simulation starting from constant concentration profiles. This efficiency enabled the execution of Markov chains of 20,000
371 iterations within a few days on the scientific computing centre at the University of Basel (<https://scicore.unibas.ch>). By
372 combining these chains, samples of 100,000 iterations were generated. The Hamiltonian Monte Carlo algorithm
373 outperformed the adaptive Metropolis algorithm during burn-in to the core of the posterior distribution. However, for final
374 posterior sampling with about 60 parameters, adaptive Metropolis sampling proved more efficient in terms of effective

375 sample size per unit of simulation time. Despite these efforts in getting computational efficiency, and the use of advanced
376 MCMC algorithms, reaching convergence of the Markov chains remained challenging. We got five consistent Markov
377 chains without discernible trends for each scenario; however, some widening of the chains and the resulting effective sample
378 size on the order of 500 indicate that we are not able to get a good coverage of the tails of the posterior distribution. This
379 outcome demonstrates that incorporating so many uncertain model parameters pushes the limits of Bayesian inference in
380 terms of numerical tractability. However, the resulting uncertainty estimates are certainly more realistic than those obtained
381 by fixing many poorly constrained parameters to unique values to reduce the dimension of the parameter space.

382 The simulation results of solute concentration and $\delta^{15}\text{N}$ profiles in the most plausible Base scenario (Fig. 2) integrate prior
383 knowledge (Appendix C: *Prior values for inference*) with observational data through Bayesian inference. The profiles
384 closely reproduce the available, albeit limited, data, and conform to expected depth-related trends: oxidants (i.e., O_2 , NO_3^-
385 and SO_4^{2-}) are readily consumed via aerobic mineralization and nitrification (O_2), denitrification (NO_3^-), and SO_4^{2-} reduction.
386 While mineralization is assumed to involve negligible N isotopic fractionation, the first step of nitrification causes
387 significant enrichment in ^{15}N of the residual NH_4^+ pool, yielding $\delta^{15}\text{N}-\text{NH}_4^+$ values up to 11.2‰ at 0.15 cm, due to strong N
388 isotope fractionation, estimated at $\varepsilon_{\text{Nitr}} = 12.0\text{‰}$ (to NO_2^-) and 36.4‰ (to N_2O). Unfortunately, extremely low NH_4^+
389 concentrations measured in the top 2 cm hindered the determination and verification of the modelled $\delta^{15}\text{N}-\text{NH}_4^+$ in this zone
390 with field data. Both NO_2^- and N_2O accumulate in the upper 0.5 cm, reaching up to 0.4 μM and 2 μM , respectively. Below
391 0.3 cm, denitrification leads to the progressive ^{15}N enrichment of NO_3^- , NO_2^- and N_2O , while N_2 -producing mechanisms (i.e.,
392 denitrification and anammox) cause only minimal changes to the modelled $\delta^{15}\text{N}-\text{N}_2$ profile, due to the dominance of a large
393 pre-existing N_2 pool. For concentrations, the 95% credibility intervals of parametric uncertainty are rather narrow, whereas
394 the much broader total uncertainty is dominated by the lumped uncertainty term in the likelihood function, which primarily
395 reflects the model's structural uncertainty. The error, beyond the parameter error, is parameterized using the two sigma
396 values ($\sigma_{C,a}$ and $\sigma_{C,b}$; see Sect. 2.5), and exceeds what would arise from measurement and sampling alone. This suggests that
397 the larger error is attributable to the model's structural limitations. Conversely, $\delta^{15}\text{N}$ profiles exhibit small total uncertainty,
398 as model results for $\delta^{15}\text{N}$ closely match observational data, with minimal random and systematic deviations (parameterized
399 using the sigma value σ_{δ} , see Sect. 2.5).

400 The model provides insights into the underlying process rates (Fig. 3) that shape the simulated profiles (Fig. 2). Vertical
401 profiles of transformation rates for NH_4^+ , NO_3^- , NO_2^- and N_2O clearly illustrate the sequential dominance of different N-
402 transformation processes with increasing sediment depth and decreasing O_2 availability. Aerobic processes, namely aerobic
403 mineralization and nitrification, primarily control NH_4^+ transformation rates, peaking at 450 and 350 $\mu\text{M d}^{-1}$, respectively
404 (Fig. 3a). Nitrification sustains denitrification by producing both NO_2^- (up to 350 $\mu\text{M d}^{-1}$) and NO_3^- (up to 275 $\mu\text{M d}^{-1}$) in the
405 upper 0.4 cm (Fig. 3b-c). A strong spatial overlap of nitrification and denitrification emerges in the depth distribution of
406 processes affecting the NO_2^- pool, suggesting a potential interplay between these pathways (Fig. 3c).

407 A key strength of this model is the incorporation of N₂O as a state variable. Our model results reveal that, although N₂O
408 production via nitrification is minimal (not visible in Fig. 3d), the strong isotopic fractionation associated with this reaction
409 ($\varepsilon_{Nitr,N2O} = 36.4\text{\textperthousand}$) generates N₂O with $\delta^{15}\text{N}$ values of -1.2‰ to -2.2‰ in the top 0.2 cm (Fig. 2c). At a depth of
410 approximately 0.35 cm, up to 2.1 μM of N₂O accumulate, coinciding with the highest rates of N₂O production through
411 denitrification. Conversely, N₂O consumption by the last denitrification step peaks at 0.5 cm, leading to a progressive
412 increase in $\delta^{15}\text{N-N}_2\text{O}$ with depth. This zonation likely reflects the O₂ sensitivity of the distinct N₂O-producing and -
413 consuming processes. Specifically, N₂O reductases are known to be strongly inhibited by O₂, and therefore exhibit greater
414 activity below the oxycline (Wenk et al., 2016). Although the model does not explicitly include the enzymes responsible for
415 N-transformation pathways, the chosen and estimated kinetic parameters reflect substrate affinity and inhibition strength.
416 Consequently, inhibition constants like $K_{O2,Den2}$ and $K_{O2,Den3}$ provide indirect insights into the O₂ dependency of these
417 enzyme-mediated reactions, effectively shaping the modelled redox zonation.

418 The model adequately captures the concentration and isotopic composition of the state variables, in agreement with field
419 measurement and the expected patterns of underlying N-transformation processes and reaction coupling (Fig. 2 and 3). One
420 key strength of the step-wise model is its ability to quantify reaction coupling, which is challenging to infer directly from
421 state variable pools (i.e., reactive intermediates), if they are rapidly turned over.

422 To address the variable ranges for the model parameters found in the literature, and to reduce structural uncertainty imposed
423 by fixed parameter values, we estimated a large set of parameters using Bayesian inference. The obtained joint posterior
424 distribution of model parameters enabled us to assess the knowledge acquired from data. Marginal posterior distributions of
425 individual parameters, and two-dimensional marginal distributions of parameter pairs, were particularly useful in this context
426 (Fig. 4 shows examples for the four categories defined below; Fig. S1 provides an overview of all marginal prior and
427 posterior parameter distributions). By comparing marginal posterior distributions with their corresponding priors, parameters
428 were classified as well identifiable or poorly identifiable. While this classification involves some subjectivity in determining
429 how much narrower a posterior distribution should be compared to its prior distribution to classify such parameter as well
430 identifiable, some clear patterns emerged:

431 1. Well identifiable parameters: The marginal posterior distribution is clearly narrower than the prior, indicating that
432 data provide meaningful information about the parameter's value. Two cases were observed:

433 a. The marginal posterior distribution is within the prior range, suggesting that the information from the data is in
434 agreement with prior knowledge (Fig. 4a). Examples include: f factors for anammox ($f_{Anam,Den2} = 0.2$) and both
435 DNRA steps ($f_{DNRA1,Den1} = 0.005, f_{DNRA2,Den2} = 0.005$), estimated using ¹⁵N-tracer incubation experiments for the
436 investigated system, and parameters such as $K_{NO3,Den1}$ and $K_{O2,MinOx}$, constrained from clearly defined oxidant
437 declines. Maximum conversion rates for aerobic mineralization, denitrification, SO₄²⁻ reduction, and anaerobic
438 mineralization, as well as the NH₄⁺ flux from deeper sediment layers, also belong to this category, although we
439 approximated very wide priors by uniform priors (see Sect. 2.4), making it less visible in the plot.

440 b. The marginal posterior distribution significantly deviated from the prior range (Fig. 4b), suggesting that the
441 information from the data is in conflict with prior knowledge. The most striking example is ε_{Den1} , estimated at
442 $2.8 \pm 1.1\%$ for the Lake Lucerne dataset, far lower than the typical 15-25% reported in the literature for NO_3^-
443 reduction (Lehmann et al., 2003; Rooze and Meile, 2016), suggesting a reduced N-isotopic fractionation (or at
444 least, of its expression) at the porewater level. This finding contrasts with model-derived values for the cellular
445 isotope effect of NO_3^- reduction observed in the porewater of marine sediments ($\varepsilon_{Den} > 10\%$) (Lehmann et al.,
446 2007). While a detailed investigation of the biological mechanisms behind such reduced expression across
447 benthic environments is beyond the scope of this study and will be addressed separately by the authors, the
448 potential role of reaction couplings in modulating benthic N isotope dynamics is discussed in Section 4.4.

449 2. Poorly identifiable parameters: The marginal posterior distribution resembles the prior distribution, suggesting poor
450 identifiability. This can occur for two possible reasons:

451 a. The parameter exerts negligible influence on the model output that corresponds to observational data (Fig. 4c).
452 For example, parameters like the N_2O yield during nitrification, $a_{\text{N}_2\text{O},\text{Nit1}}$ and $b_{\text{N}_2\text{O},\text{Nit1}}$, could not be constrained
453 without specific data on N_2O production. The current model encompasses several processes and state variables,
454 which, at times, were hard to corroborate with the limited dataset in hand (a situation that may apply regularly
455 to environmental studies, particularly in benthic environments). Therefore, their values were taken from
456 previous studies (Ji et al., 2018). For other parameters, such as $\gamma_{\text{NH}_4,\text{DNRA1}}$ and $\gamma_{\text{NH}_4,\text{DNRA2}}$, little knowledge was
457 acquired from the data in hand, due to the relatively low maximum rates of DNRA compared to other
458 processes. In such cases, the posterior distribution may remain close to the prior, not because the prior range
459 was incorrect, but because the available data could not further constrain it.

460 b. Although data are available and the model output is sensitive to the parameter, other parameters influence the
461 output similarly. This leads to parameter correlation in the posterior distribution and reduces identifiability, as
462 observed for $\gamma_{\text{NH}_4,\text{MinSulfRed}}$ and F_{NH_4} (Fig. 4d), which exhibit correlation, making their estimates interdependent
463 (Guillaume et al., 2019). Here, the estimate of the NH_4^+ flux from the lower boundary of the model depends on
464 the estimate of the amount of NH_4^+ released via OM mineralization coupled to SO_4^{2-} reduction.

465 The comparison of marginal priors and posteriors of the parameters (Fig. S1) demonstrates that excellent agreement between
466 model outputs and observational data (Fig. 2) can be achieved for 54 of the 58 estimated parameters compatible with their
467 priors. Exceptions include: the higher-than-expected rate for the second denitrification step relative to the first (expressed by
468 the factor $f_{\text{Den2},\text{Den1}}$), the large half-saturation constant for SO_4^{2-} reduction ($K_{\text{SO}_4,\text{MinSulfRed}}$), and smaller-than-expected N
469 isotope effects for the first steps of denitrification and nitrification ($\varepsilon_{\text{Den1}}$ and $\varepsilon_{\text{Nit1},\text{NO}_2}$, respectively). The largest deviation is
470 observed for $\varepsilon_{\text{Den1}}$, which is further examined in the next subsection.

471 Notably, the seven parameters, for which a uniform prior was chosen to approximate a very wide prior (k_{MinOx} k_{Den1} ,
472 $k_{\text{MinSulfRed}}$, k_{MinAna} , k_{Nit1} , F_{NH_4} , $\delta^{15}\text{N}_{\text{F}_{\text{NH}_4}}$), were identifiable, indicating that highly system-specific prior knowledge is not

473 crucial for these estimates. Most of the other model parameters showed limited narrowing of the marginal posterior relative
474 to the prior, reflecting the rather limited information gain that can be obtained from data. The three model error parameters
475 ($\sigma_{C,a}$, $\sigma_{C,b}$, σ_δ) were well identifiable and will be used in the following sections to compare the fit quality across different
476 modelling scenarios.

477 **4.2 Scenario analysis**

478 Building on the findings discussed in the previous subsection, we explored the apparent prior-data conflict regarding ε_{Denl} in
479 greater detail. Additionally, we assessed whether the estimated process rates overlooked potential reaction coupling, which
480 might go undetected through ^{15}N -tracer incubation experiments, by exploring the variability in contributions of anammox
481 and DNRA (i.e., f_{Anam} , f_{DNRA1} and f_{DNRA2}). Lastly, given the uncertainty regarding solute-diffusion enhancement by
482 bioturbation, we investigated a scenario with increased bioturbation. These considerations led to four key scenarios:

- 483 A. *Narrow priors for ε .* This scenario investigated the effects of restricting ε variability to a narrower range (prior
484 standard deviation of 1% instead of 5%). The aim was to test whether the marked reduction in the marginal
485 posterior of ε_{Denl} persisted under stricter prior assumptions, and whether this decreased flexibility significantly
486 impacted the quality of the model fit.
- 487 B. *Fixed ε .* Here, the model output was assessed under the assumption that the literature data regarding N isotope
488 effects are correct (i.e., ε values not estimated). This scenario complemented Scenario A by testing whether a good
489 fit to the data could still be achieved by fixing the ε_{Denl} value (and all other isotope effects) at its prior mean.
- 490 C. *Wider priors for f .* In this scenario, greater variability in DNRA and anammox contributions (prior standard
491 deviation of 100% instead of 25%) was allowed to test the impact of relaxed prior assumptions on the relative
492 contributions of these processes in the model output.
- 493 D. *Enhanced bioturbation.* This scenario simulated a faster solute-diffusive transport due to higher infaunal activity by
494 doubling the bioturbation coefficient ($D_{bio} = 2 \text{ cm}^2 \text{ d}^{-1}$ instead of $1 \text{ cm}^2 \text{ d}^{-1}$), to investigate the sensitivity of the
495 results to this uncertain parameter, which was not included in the Bayesian analysis. In the model, the bioturbation
496 strength at the sediment surface is defined by the parameter D_{bio} , and it decreases exponentially with depth, with the
497 typical bioturbation depth parameter, $depth_{bio}$. As the diffusion enhancement by bioturbation is highly uncertain,
498 this scenario aims to assess solely the sensitivity of the model output to changing bioturbation magnitude.

499 The results demonstrate a strong dependence of the estimated parameters on the chosen prior assumptions (Fig. 5). Across all
500 scenarios, marginal posterior distributions for the selected parameters are generally narrower than the prior distributions,
501 though results vary substantially. In Scenario A (*Narrow priors for ε*), restricting the prior range significantly constrained
502 ε_{Denl} , limiting its deviation from the prior (Fig. 5m; note that the prior for Scenario A is five times narrower than the one
503 shown, which represents the prior for all other scenarios). These results closely resemble those from Scenario B (*Fixed ε*),
504 where no deviation was possible (Fig. 5, Fig. S2). Both scenarios exhibit lower denitrification rates than the Base scenario

505 (Fig. 5b), but comparable fit quality for total ($^{14}\text{N} + ^{15}\text{N}$) concentration, quantified by $\sigma_{C,a}$ (i.e., the dominant term of standard
506 deviation of the model error for concentrations, see Sect. 2.5) (Fig. 5x). On the other hand, Scenarios A and B display poorer
507 fit quality for $\delta^{15}\text{N}$ profiles, indicated by a large value of σ_δ (Fig. 5z), suggesting that the model structure cannot adequately
508 reproduce the $\delta^{15}\text{N-NO}_3^-$ profiles without adapting the $\varepsilon_{\text{Den1}}$ value. While biological isotope effects of 15-30‰ are typical for
509 NO_3^- reduction (Lehmann et al., 2007), lower values under almost-complete NO_3^- consumption have been reported (Thunell
510 et al., 2004; Wenk et al., 2014). This finding is further confirmed by comparable marginal posteriors for $\varepsilon_{\text{Den1}}$ across all
511 scenarios considered in this study, besides scenarios A and B. To test the robustness of our model, we ran a base scenario
512 simulation for marine sediments in the Bering Sea (station MC16) (Lehmann et al., 2007) (data not shown). Moreover, a
513 manuscript currently in preparation presents an extensive comparison of model application across different sites and
514 demonstrates a much wider range of $^{15}\varepsilon_{\text{Den1}}$ values, exceeding 20‰.

515 In Scenario C (*Wider f*), allowing greater variability in anammox and DNRA contributions results in the lowest $f_{\text{Anam,Den2}}$
516 values, although such deviation is not substantial compared to the Base scenario output (Fig. 5i). The estimated $f_{\text{DNRA1,Den1}}$
517 and $f_{\text{DNRA2,Den2}}$ values in Scenario C mostly align with those of the Base scenario, corroborating the marginal role of DNRA
518 in Lake Lucerne. Such findings confirm the accuracy of the rate measurements performed with ^{15}N tracer incubations.

519 Scenario D (*Enhanced bioturbation*) stands out with the highest conversion rates (i.e., k_{MinOx} , $k_{\text{MinSulfRed}}$, and k_{NitI}) (Fig. 5a,e,g)
520 to ensure sufficient oxidant consumption at higher supply/flux rates (reproducing the observed gradient despite higher
521 diffusivity). Despite these changes, bioturbation had negligible effects on porewater N isotope dynamics, with estimated
522 isotope effects and fit quality for $\delta^{15}\text{N}$ profiles (σ_δ) comparable to those of the Base scenario.

523 The obtained concentration depth profiles for the four scenarios are generally comparable, as newly estimated parameters
524 ensured good fitting of the data (Fig. S2). However, in Scenarios A and B, stricter constraints on prior knowledge for
525 parameter estimation result in little to no suppression of all isotope effects (i.e., relatively strong N isotopic fractionation),
526 leading to great variability in the $\delta^{15}\text{N}$ profiles. Poor fits to the $\delta^{15}\text{N}$ data are observed under these conditions, as evidenced
527 by the greater ^{15}N enrichment of the NO_3^- pool compared to the measured-data profiles (Fig. S2). Similarly, the $\delta^{15}\text{N-N}_2\text{O}$
528 profiles exhibit sharp declines to approximately -15‰ in the upper 0.5 cm under Scenarios A and B, driven by the strong
529 expression of $\varepsilon_{\text{NitI,N}_2\text{O}}$ (40.1‰ and 40.0‰, respectively). In contrast, Scenarios C and D closely resemble the Base scenario,
530 with only minor $\delta^{15}\text{N-N}_2\text{O}$ variations.

531 **4.3 Importance of modelled processes and their impact on porewater N isotope signatures**

532 The importance of modelled processes and their impact on N isotope signatures were investigated by selectively deactivating
533 individual processes and comparing the model outputs to the Base scenario. Aerobic mineralization, denitrification, and
534 SO_4^{2-} reduction were considered essential to preserve redox zonation (e.g., sequential decline of O_2 , NO_3^- , and SO_4^{2-}) and N
535 dynamics. The following processes were individually turned off: (a) nitrification (“NitOff”); (b) anammox (“AnamOff”);
536 and (c) DNRA (“DNRAOff”). Initially, each process was simply inactivated to assess its impact on model outputs (Fig. 6).

537 Subsequently, inference was conducted after deactivating each process, to investigate their importance for model
538 performance, parameter and flux estimation, and for the identifiability of rate parameters by evaluating the quality of the fit
539 to the data, especially on the $\delta^{15}\text{N}$ profiles (Fig. 7, Fig. S3, Fig. S4).

540 Switching off nitrification significantly alters the model output compared to the Base scenario (Fig. 6a-b,e-f), indicating its
541 central role in the benthic N dynamics. Key effects include NH_4^+ accumulation throughout the investigated depths, with a
542 flattening of the $\delta^{15}\text{N}-\text{NH}_4^+$ profile (i.e., less curvature towards higher $\delta^{15}\text{N}$ values) in the upper 0.5 cm, as the only other
543 source of ^{15}N -enriched NH_4^+ besides nitrification would be anammox, which is inhibited under oxic conditions. Furthermore,
544 nitrification-denitrification coupling via NO_2^- weakens in this scenario, resulting in lower overall N_2 production (as indicated
545 by the lower maximum N_2 concentration of 734 μM compared to 745 μM in the Base scenario). These results suggest that
546 partially reducing, or fully eliminating, nitrification lowers the system's capacity to act as an efficient N sink. In other words,
547 the findings confirm that nitrification is a critical process that, when closely coupled to denitrification, helps to enhance the
548 ecosystem's potential to remove fixed N. All other N-isotopic state variables also show a flatter $\delta^{15}\text{N}$ profile, with only a
549 progressive enrichment in ^{15}N below 0.5 cm, primarily driven by denitrification (NO_3^- , NO_2^- , and N_2O). The impact of
550 disabling nitrification is clearly reflected in the $\delta^{15}\text{N}-\text{N}_2\text{O}$ profile across the upper 0.3 cm, where the typical nitrification-
551 induced dip is absent, and $\delta^{15}\text{N}-\text{N}_2\text{O}$ values remain relatively constant (~7-8‰). In contrast, the effects of turning off
552 anammox or DNRA are more subtle, owing to their generally lower reaction rates in Lake Lucerne (Fig. 6c-d,g-h). Notably,
553 in the absence of anammox, N_2O exhibits lower $\delta^{15}\text{N}$ values in the upper 0.3 cm compared to the Base scenario, likely due to
554 higher N_2O yields via nitrification, as reduced competition for NH_4^+ with anammox provides more substrate for nitrification.
555 Upon running inference for each case, concentration and N isotope profiles for the NitOff, AnamOff, and DNRAOff
556 scenarios are generally similar to those of the Base scenario (Fig. S3), with notable exceptions in the NitOff case. In the
557 absence of nitrification, NH_4^+ accumulates and the $\delta^{15}\text{N}-\text{NH}_4^+$ profile remains largely flat, since anammox, the only other
558 NH_4^+ -consuming process, is minimal under oxic conditions. No $\delta^{15}\text{N}-\text{NH}_4^+$ measurements are available for the top 1 cm, so
559 the model output could not be verified with field data. The N_2O pool systematics also diverge between the NitOff and Base
560 scenarios. Specifically, in the NitOff case, no nitrification-derived N_2O accumulates in the upper 0.4 cm, and consequently,
561 the $\delta^{15}\text{N}-\text{N}_2\text{O}$ profiles lacks the typical nitrification-associated decline in this layer. Instead, N_2O becomes progressively
562 enriched in ^{15}N below 0.4 cm. While most estimated parameters and fluxes are consistent across the four scenarios, the
563 NitOff scenario stands out again, exhibiting strong effects on the anammox rates and associated isotope effects (e.g.,
564 $f_{\text{Anam},\text{Den2}}$, $\varepsilon_{\text{Anam},\text{NH4}}$) (Fig. S4), as well as on benthic fluxes of NH_4^+ , NO_2^- , NO_3^- and N_2O (Fig. 7). Nonetheless, the NH_4^+
565 concentration profile is well-captured, as indicated by a low $\sigma_{\text{C},a}$, reflecting a good match between model and concentration
566 data even in the absence of nitrification. This finding implies that the model cannot resolve the relative contributions of
567 nitrification versus anammox to NH_4^+ consumption based on the concentration and isotope data, highlighting the importance
568 of prior knowledge regarding $f_{\text{Anam},\text{Den2}}$.

569 The comparison of process rates across these four scenarios provides insights, unveiling the extent of process coupling and
570 competition (Fig. S5) (Hines et al., 2012). For instance, anammox and nitrification compete for both NH_4^+ and NO_2^- as
571 substrates, causing the rate of one process to be enhanced, when the other is switched off. For instance, NH_4^+ oxidation and
572 NO_2^- production rates via nitrification (Nit1) are higher (~ 0.2 cm depth) in the AnamOff scenario than in the Base scenario.
573 Even more obviously, enhanced rates of NH_4^+ oxidation, NO_2^- consumption, and NO_3^- production via anammox are observed
574 in the NitOff scenario than in the Base scenario. Process coupling, specifically nitrification-denitrification, is further
575 confirmed by lower rates for NO_2^- reduction via denitrification (Den2) in the absence of nitrification. In general, the
576 influence of DNRA on production and consumption rates of the considered state variable appears minimal, owing to the
577 limited environmental relevance of DNRA in Lake Lucerne. Overall, the similarly good fits obtained across these three
578 scenarios and the *Base* scenario reflect the poor identifiability of the switched off processes; this suggests that the data can be
579 well-fitted even without these three processes, emphasizing the importance of prior knowledge about their environmental
580 relevance.

581 4.4 The role of process coupling via NO_2^-

582 Previous models of benthic N isotope dynamics have focused on individual reactions or overlooked the role of intermediate
583 species, such as NO_2^- (Kessler et al., 2014; Lehmann et al., 2007). Our study confirms that NO_2^- plays a critical role in
584 coupling multiple N-transformation processes and shaping benthic N isotope dynamics, including that of $\delta^{15}\text{N-NO}_3^-$. While
585 such process coupling has been examined in the water column (Frey et al., 2014), it remains, to our knowledge, largely
586 unexplored in sedimentary environments.

587 To assess the significance of this coupling, we implemented a one-step denitrification approach that bypasses NO_2^- as an
588 intermediate, replacing the three-step pathway used throughout this paper (Fig. 8). In this simplified model, NO_2^-
589 concentrations and isotopic signatures are shaped solely by nitrification (and to a marginal extent, DNRA and anammox), as
590 denitrification no longer contributes to NO_2^- production. This modification leads to significantly reduced NO_2^- accumulation,
591 restricted to the upper 0.3 cm, and lower anammox activity, due to a lack of NO_2^- substrate below the oxycline. The absence
592 of denitrification-derived NO_2^- has profound effects on the N isotope dynamics. First, a consistent ~15‰ offset between
593 $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-NO}_2^-$ is evident across all modelled depths (Fig. 8c). This offset is ascribed to the isotope effect of the
594 second nitrification step ($\varepsilon_{\text{Nit}2} = -13.7\text{\textperthousand}$), and the lack of ^{15}N enrichment in the NO_2^- pool from denitrification. Second, the
595 estimated isotope effect for NO_3^- reduction (ε_{Den}) increases to $5.5 \pm 0.9\text{\textperthousand}$, nearly double than in the Base scenario, indicating
596 that elevated $\delta^{15}\text{N-NO}_3^-$ values in the field data may, to some extent, reflect NO_2^- isotope dynamics, rather than solely the
597 effect of NO_3^- reduction (Fig. 1).

598 These findings emphasise the importance of both NO_2^- -producing and -consuming processes in modulating $\delta^{15}\text{N-NO}_3^-$, and
599 consequently, estimates of $\varepsilon_{\text{Den}1}$. Although nitrification is typically aerobic and denitrification anaerobic, evidence exists that
600 indicates spatial overlap of these two processes at the bottom of oxyclines in natural aquatic environments (Frey et al., 2014;

601 Granger and Wankel, 2016). In this transition zone, NO_2^- produced by either pathway can be oxidised to NO_3^- or reduced to
602 N_2O , NH_4^+ or N_2 (Fig. 3), significantly affecting its $\delta^{15}\text{N}$ signature (depending on the N-branching). For instance, NO_2^-
603 reduction to N_2O enriches the residual NO_2^- pool in ^{15}N . If this ^{15}N -enriched NO_2^- is subsequently oxidized to NO_3^- (a
604 reaction that exhibits an inverse kinetic isotope effect), the resulting NO_3^- will be markedly enriched in ^{15}N (Fig. 1). Such
605 interactions have been shown to influence apparent isotope effects for NO_3^- in the water column (Frey et al., 2014), and
606 likely exert similar effects in sediments, where sharp redox gradients create overlapping zones of nitrification and
607 denitrification. This coupling may explain the discrepancy in estimated $\varepsilon_{\text{Den1}}$ values between the Base scenario ($2.8 \pm 1.1\%$)
608 and the one-step denitrification model approach ($5.5 \pm 0.9\%$).

609 Anammox further complicates these dynamics, as it depends on NO_2^- excreted into the environment. Without denitrification,
610 which releases NO_2^- (Sun et al., 2024), anammox is substrate limited (Fig. 8). Thus, while previous benthic studies estimated
611 denitrification isotope effects using one-step denitrification approaches (Lehmann et al., 2007), our findings call for the
612 adoption of a stepwise modelling approach (Sun et al., 2024) that better captures the interdependence of N-transformation
613 pathways, and their integrated effects on NO_3^- isotope dynamics. A more detailed examination of these interactions is
614 essential for refining our understanding and quantification of isotope effects associated with NO_3^- reduction in sedimentary
615 systems.

616 4.5 Model applicability in distinct scenarios

617 Beyond applying and testing the developed diagenetic N isotope model at our site of interest (Lake Lucerne), we believe its
618 strength hinges on its versatility to address distinct research questions and objectives. We explored two scenarios as
619 examples of how the model can be adapted to provide insights into the N cycle in benthic environments and the N isotopic
620 fingerprints that the combined N-cycling processes leave behind (Fig. 9). Understanding these fingerprints and how they
621 might be modulated in natural environments (e.g., through the variable balance between individual processes constrained by
622 environmental conditions) is important for correctly interpreting the distribution of $^{15}\text{N}/^{14}\text{N}$ ratios in N species as
623 biogeochemical tracer, helping to pinpoint and disentangle individual N-turnover processes where they co-occur.

624 For comparison purposes, we used the estimated parameters from the Base scenario and modified the relative importance of
625 NO_3^- or NO_2^- reduction via (i) denitrification vs. DNRA, and (ii) denitrification vs. anammox. This was done by
626 progressively increasing the factors that define the contributions of DNRA ($f_{\text{DNRA1,Den1}}$ and $f_{\text{DNRA2,Den2}}$) and anammox
627 ($f_{\text{Anam,Den2}}$) from 0 (i.e., no DNRA/anammox) to 2 (corresponding to DNRA and anammox accounting for 2/3 of the total
628 NO_3^- and NO_2^- reduction, respectively). Simultaneously, the rates of the first two steps of denitrification (k_{Den1} and $f_{\text{Den2,Den1}}$)
629 were adjusted to maintain consistent overall NO_3^- and NO_2^- reduction rates across scenarios. These model results were not
630 validated against observational data and should therefore be considered as illustrative examples of the model's sensitivity to
631 selected parameters, rather than as predictions with direct environmental relevance.

632 i. N removal versus N retention

633 The model results confirm the spatial co-occurrence of DNRA and denitrification, with peak NO_3^- (data not shown)
634 and NO_2^- (Fig. 9a) reduction activities localized between 0.4-0.6 cm depth. In contrast, NH_4^+ and N_2 production
635 exhibit subtle differences in depth distribution: NH_4^+ production via DNRA extends across a broader sediment layer
636 than N_2 production via denitrification (Fig. 9b). This pattern likely reflects the inhibitory effect of O_2 on N_2O
637 reduction, the final denitrification step, pushing N_2 production to deeper, anoxic layers below the oxycline.

638 Reduction of NO_3^- exhibits distinct isotope effects depending on the pathway: denitrification ($\varepsilon_{\text{Den}1} \approx 2.8 \pm 1.1\%$)
639 and DNRA ($\varepsilon_{\text{DNRA}1} \approx 20.0 \pm 2.9\%$), according to our model estimates (Fig. 5m,v). This large difference reflects the
640 difficulty of constraining DNRA isotope effects through Bayesian inference, due to its low environmental relevance
641 in the top 1 cm of Lake Lucerne sediments. Although not proven so far, this isotope offset implies that NO_3^-
642 reducers impart distinct isotopic fractionation depending on the pathway, which is rather implausible. However, if
643 true, increasing DNRA activity would lead to a stronger ^{15}N enrichment in the residual NO_3^- pool (Fig. S6d), with
644 downstream impacts on the product pools (N_2 and NH_4^+) (Fig. 9c-d).

645 Denitrification-derived N_2 mixes with a large ambient N_2 pool (717 μM ; $\delta^{15}\text{N} \sim 0\text{‰}$), resulting in slightly elevated
646 $\delta^{15}\text{N-N}_2$ values in the top 1 cm. While this increase is subtle ($\Delta\delta^{15}\text{N} < 0.1\text{‰}$), it becomes more pronounced as a
647 larger fraction of NO_3^- (and subsequently NO_2^-) is reduced to N_2 (denitrification) rather than to NH_4^+ (DNRA) (Fig.
648 9c) due to the distinct isotope effects associated with NO_3^- reduction via denitrification and DNRA. Under full
649 expression of the denitrification isotope effect (i.e., $\varepsilon_{\text{Den}1} \approx 20\text{‰}$), $\delta^{15}\text{N-N}_2$ much lower than 0‰ would be expected;
650 in contrast, $\varepsilon_{\text{Den}1} \approx 2.8\text{‰}$ likely suppresses such isotopic dynamics, resulting in only subtle $\delta^{15}\text{N-N}_2$ changes. As
651 more NO_3^- is reduced via DNRA ($\varepsilon_{\text{DNRA}1} \approx 20.0\text{‰}$) than via denitrification ($\varepsilon_{\text{Den}1} \approx 2.8\text{‰}$), a stronger ^{15}N depletion
652 is expected in the NO_2^- pool; if this NO_2^- is then reduced to N_2 will lead to lower $\delta^{15}\text{N-N}_2$ than in a purely-
653 denitrifying case. Such interaction can explain the shift toward lower $\delta^{15}\text{N-N}_2$ values as NO_3^- is increasingly
654 reduced via DNRA with a strong isotope effect recorded in our model. Thus, the slightly elevated $\delta^{15}\text{N-N}_2$ values
655 observed in our model confirms that denitrification dominates over DNRA, and operates with a reduced isotope
656 effect (2.8‰), likely due to diffusive limitation.

657 In contrast, enhanced DNRA activity leads to NH_4^+ accumulation and a progressive decrease in $\delta^{15}\text{N-NH}_4^+$ in the
658 upper 0.5 cm, consistent with strong isotopic fractionation during DNRA (Fig. 9d). This NH_4^+ pool appears to
659 promote nitrification, as indicated by higher NH_4^+ and NO_2^- oxidation rates (Fig. S6a-b), resulting in the production
660 of ^{15}N -depleted NO_2^- (Fig. S6c). Notably, if this isotopically light NO_2^- is subsequently reduced via denitrification,
661 it can lead to the formation of N_2 with unusually low $\delta^{15}\text{N}$ values, even if denitrification itself operates with a
662 modest isotope effect. This secondary effect underscores how DNRA not only alters substrate availability but also
663 indirectly influences the isotopic composition of denitrification end products. The strong spatial overlap of DNRA,
664 denitrification and nitrification highlights the central role of DNRA in fuelling internal N recycling (Wang et al.,
665 2020) with implications that extend to the $\delta^{15}\text{N}$ of both intermediate and terminal N pools.

666 Thus, if NO_3^- reduction via DNRA and denitrification occurs with distinct isotope effects, our model has the
667 potential to disentangle their respective contributions based on $\delta^{15}\text{N}$ profiles of NO_3^- and NH_4^+ , and to a lesser
668 extent of N_2 and NO_2^- . Importantly, our results underscore a potentially critical, yet underappreciated, coupling
669 between DNRA and nitrification in benthic environments. If verified, this interaction, largely invisible in
670 concentration profiles alone, can significantly influence isotopic signatures and must be considered when
671 interpreting sediment N dynamics through an isotope lens.

672 ii. N removal via denitrification versus anammox

673 The results for this case scenario reveal, somewhat unexpectedly, some similarities between denitrification and
674 anammox with respect to NO_2^- reduction to N_2 and associated N isotope signatures. The isotope effects associated
675 with denitrification are low (2.8‰ for NO_3^- reduction and 7.9‰ for NO_2^- reduction), whereas anammox imparts
676 stronger isotopic fractionation (14.4‰ for NO_2^- reduction to N_2 and -30.0‰ for its oxidation to NO_3^-). These values
677 reflect parameter estimations specific to Lake Lucerne's surface sediments (upper 1 cm), where anammox activity
678 is low.

679 Both NO_2^- reduction and N_2 production peak around 0.5 cm depth, with minor differences in the thickness of the
680 active layer due to variations in substrate affinity between modelled processes (Fig. 9e-f). The total rate of NO_2^-
681 reduction to N_2 , via either anammox or denitrification, remains consistent across all case scenarios. Nonetheless,
682 slight differences can be observed in some N pools as anammox becomes the dominant fixed-N loss path. Increased
683 anammox activity leads to elevated N_2 and NO_2^- concentrations (Fig. 9g-h), likely due to the use of NH_4^+ as a
684 substrate, which mitigates substrate limitation under low NO_2^- availability (i.e., 1.3 mol NO_2^- needed to produce 1
685 mol N_2 via anammox versus 2 mol NO_2^- via denitrification). When anammox prevails, $\delta^{15}\text{N-NO}_2^-$ values increase
686 due to the stronger isotope effect associated with NO_2^- reduction via anammox relative to denitrification. This
687 enrichment is partially counterbalanced by the inverse kinetic isotope effect during NO_2^- oxidation to NO_3^- (Brunner
688 et al., 2013), leading to ^{15}N -enriched NO_3^- below 0.8 cm; notably, this isotopic shift occurs without significant
689 changes in total NO_3^- concentrations (Fig. S6g-h). Lastly, substantial differences emerge in the NH_4^+ pool: higher
690 anammox activity correlates with lower NH_4^+ concentrations and elevated $\delta^{15}\text{N-NH}_4^+$ values throughout most of the
691 sampled depths (Fig. S6e-f). This isotopic enrichment likely overlaps with the effect of nitrification on the NH_4^+
692 pool in the upper 0.3 cm.

693 While some differentiation between denitrification and anammox is evident in the isotope signatures of NO_3^- and
694 NH_4^+ , the expected contrasts in the NO_2^- and N_2 pools are surprisingly muted. This near-indistinguishability in
695 isotopic outcomes suggests a degree of functional and isotopic redundancy between the two pathways under the
696 modelled conditions. These results highlight the need for further investigation, particularly through refined isotope-
697 based methods (e.g., inclusion of NO_x O-isotopes or clumped nitrate isotopes) and more mechanistic modelling, to
698 distinguish the respective contributions of denitrification and anammox to N removal in sedimentary systems.

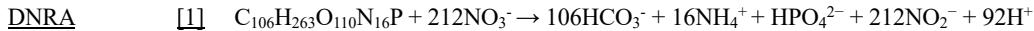
699 **5. Conclusions**

700 We developed a comprehensive diagenetic N isotope model that integrates multiple N transformations in benthic
701 environments. The model's complexity requires the use of prior knowledge in addition to the observed data, in order to
702 achieve the most plausible descriptions of the ongoing processes. To address uncertainty in prior knowledge, and to reduce
703 structural errors associated with fixed parameter values, we applied Bayesian inference for a large parameter set (~60) for
704 data analysis. The computational demands of this approach were met by implementing the model in Julia, with compatibility
705 for automatic differentiation to allow for advanced Markov chain Monte Carlo algorithms needed for Bayesian inference.
706 Despite these optimization efforts to enhance efficiency, inference runs still took 2-3 weeks of computation time (in addition
707 to preceding simulations to reduce burn-in) to achieve sufficiently good convergence of the Markov chains of the posterior
708 parameter distribution. Alongside concentrations and $\delta^{15}\text{N}$ values for different N species, the model provides depth profiles
709 of process rates and all fluxes, including their uncertainties. These outputs enable a detailed assessment of the processes
710 shaping N cycling (i.e., concentration profiles) and isotope patterns in sediments.

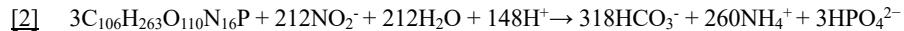
711 Application of the developed model to a test dataset from Lake Lucerne successfully reproduced measured profiles of O_2 ,
712 SO_4^{2-} , NH_4^+ , NO_2^- , NO_3^- , $\delta^{15}\text{N-NH}_4^+$, and $\delta^{15}\text{N-NO}_3^-$. The model also produced realistic vertical distributions of conversion
713 rates, revealing clear depth-dependent zonation. Most marginal posterior distributions of estimated parameters were in good
714 agreement with their priors. Yet, strong deviations were observed for the N isotope effect associated with the first step of
715 denitrification, $\varepsilon_{\text{Den1}}$, which was estimated at $\sim 2.8 \pm 1.1\text{\textperthousand}$, significantly lower than the expected $\sim 20\text{\textperthousand}$. These findings were
716 confirmed by additional simulations performed using narrower priors and a fixed $\varepsilon_{\text{Den1}}$ value of $20\text{\textperthousand}$, both of which resulted
717 in a substantial deterioration in the model's ability to reproduce $\delta^{15}\text{N-NO}_3^-$ profiles. This, in turn, can be taken as indication
718 for a suppressed denitrification NO_3^- isotope effect at the porewater level in Lake Lucerne, potentially due to process
719 coupling via NO_2^- . The model's ability to quantify such interactions, which can be difficult to discern in situ or from field
720 data alone, is a key strength of this stepwise model framework. A manuscript assessing such dynamics across distinct sites is
721 currently being prepared to further corroborate these findings.

722 Further sensitivity tests highlighted that the model could still achieve good fits to the observational data even when certain
723 individual processes were excluded, demonstrating the critical role of prior knowledge regarding estimated parameters and
724 their associated uncertainties.

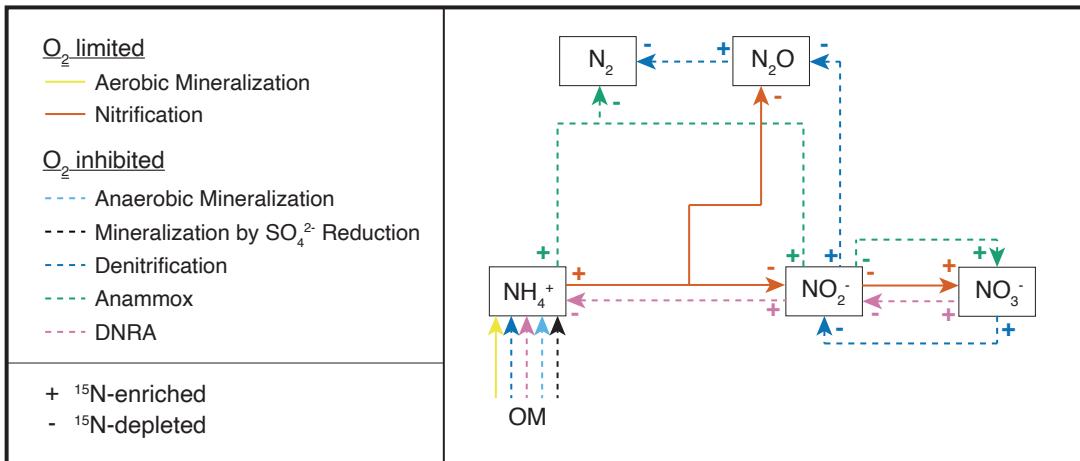
725 Overall, this study presents one of the first comprehensive diagenetic N isotope models that explicitly incorporate multiple N
726 transformation pathways in a stepwise manner and are validated against field measurements. Rather than serving as a purely
727 predictive tool, this model is intended to stimulate scientific discussion on the quantification of N transformations and
728 isotope dynamics in sediments based on observed data. Future developments could focus on improving identifiability
729 through additional, targeted observations, expanding model validation across distinct benthic environments, and the
730 incorporating additional isotope tracers, such as $\delta^{18}\text{O}$ of NO_3^- and NO_2^- , to further strengthen the model structure and
731 improve its reliability.


Table 1: Chemical equations and reaction rate formulations for ^{14}N and $^{14}\text{N}^{14}\text{N}$ compounds across all modelled processes. The rates for ^{15}N , $^{15}\text{N}^{14}\text{N}$, and $^{15}\text{N}^{15}\text{N}$ are formulated analogously by replacing the concentration of the isotopologue of interest as needed. The turnover rates for ^{15}N -containing species are scaled by a factor of $(1-\varepsilon/1000)$, as outlined in the text. The complete set of equations including all isotopic compositions, and the process stoichiometry is provided in Appendix A: *Model processes and stoichiometry*. Anaerobic mineralization encompasses OM degradation coupled to iron and manganese reduction, as well as through methanogenesis.

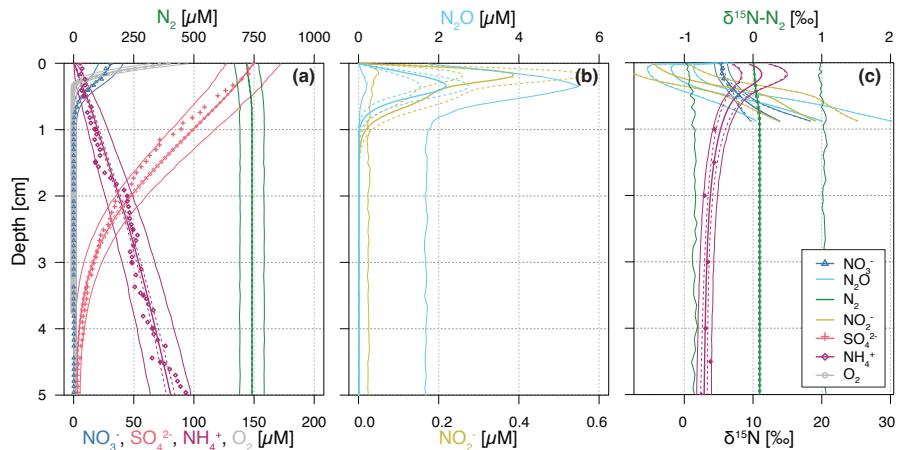
Reaction	Equation	Reaction rate
<u>Aerobic mineralization</u>	$\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 106\text{O}_2 \rightarrow 106\text{HCO}_3^- + 16\text{NH}_4^+ + \text{HPO}_4^{2-} + 92\text{H}^+$	
		$r_{MinOx} = k_{MinOx} \frac{[\text{O}_2]}{K_{O2,MinOx} + [\text{O}_2]}$
<u>Anaerobic Mineralization</u>	$\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 212\text{MnO}_2 + 120\text{H}_2\text{O} \rightarrow 106\text{HCO}_3^- + 16\text{NH}_4^+ + \text{HPO}_4^{2-} + 212\text{Mn}^{2+} + 332\text{OH}^-$	
	$\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 424\text{FeOOH} + 120\text{H}_2\text{O} \rightarrow 106\text{HCO}_3^- + 16\text{NH}_4^+ + \text{HPO}_4^{2-} + 424\text{Fe}^{2+} + 332\text{OH}^-$	
	$\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} \rightarrow 53\text{CH}_4^+ + 53\text{HCO}_3^- + 16\text{NH}_4^+ + \text{HPO}_4^{2-} + 53\text{H}_2\text{O} + 14\text{H}^+$	
		$r_{MinAnae} = k_{MinAnae} \frac{K_{NO3,MinAnae}}{K_{NO3,MinAnae} + [^{14}\text{NO}_3^-] + [^{15}\text{NO}_3^-]} \frac{K_{O2,MinAnae}}{K_{O2,MinAnae} + [\text{O}_2]}$
<u>Sulfate Reduction coupled to Mineralization</u>	$\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 53\text{SO}_4^{2-} + 15\text{H}^+ \rightarrow 106\text{HCO}_3^- + 16\text{NH}_4^+ + \text{HPO}_4^{2-} + 53\text{H}_2\text{S}$	
		$r_{MinSulfRed} = k_{MinSulfRed} \frac{K_{NO3,MinSulfRed}}{K_{NO3,MinSulfRed} + [^{14}\text{NO}_3^-] + [^{15}\text{NO}_3^-]} \frac{K_{O2,MinSulfRed}}{K_{O2,MinSulfRed} + [\text{O}_2]} \frac{[\text{SO}_4^{2-}]}{K_{SO4,MinSulfRed} + [\text{SO}_4^{2-}]}$
<u>Nitrification</u>	<u>[1a]</u> $\text{NH}_4^+ + 1.5\text{O}_2 \rightarrow \text{NO}_2^- + 2\text{H}^+ + \text{H}_2\text{O}$	
		$r_{Nit1a} = k_{Nit1} (1 - f_{N2O,Nit1}) \frac{[^{14}\text{NH}_4^+]}{K_{NH4,Nit1} + [^{14}\text{NH}_4^+] + [^{15}\text{NH}_4^+]} \frac{[\text{O}_2]}{K_{O2,Nit1} + [\text{O}_2]}$
	<u>[1b]</u> $\text{NH}_4^+ + \text{O}_2 \rightarrow 0.5\text{N}_2\text{O} + \text{H}^+ + 1.5\text{H}_2\text{O}$	
		$r_{Nit1b} = k_{Nit1} f_{N2O,Nit1} \frac{[^{14}\text{NH}_4^+] [^{14}\text{NH}_4^+]}{(K_{NH4,Nit1} + [^{14}\text{NH}_4^+] + [^{15}\text{NH}_4^+])^2} \frac{[\text{O}_2]}{K_{O2,Nit1} + [\text{O}_2]}$
	<u>[2]</u> $\text{NO}_2^- + 0.5\text{O}_2 \rightarrow \text{NO}_3^-$	
		$r_{Nit2} = k_{Nit2} \frac{[^{14}\text{NO}_2^-]}{K_{NO2,Nit2} + [^{14}\text{NO}_2^-] + [^{15}\text{NO}_2^-]} \frac{[\text{O}_2]}{K_{O2,Nit2} + [\text{O}_2]}$
<u>Denitrification</u>	<u>[1]</u> $5\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 424\text{NO}_3^- \rightarrow 212\text{HCO}_3^- + 32\text{NH}_4^+ + 2\text{HPO}_4^{2-} + 424\text{NO}_2^- + 184\text{H}^+ + 3\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P}$	
		$r_{Den1} = k_{Den1} \frac{[^{14}\text{NO}_3^-]}{K_{NO3,Den1} + [^{14}\text{NO}_3^-] + [^{15}\text{NO}_3^-]} \frac{K_{O2,Den1}}{K_{O2,Den1} + [\text{O}_2]}$
	<u>[2]</u> $3\text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P} + 424\text{NO}_2^- + 240\text{H}^+ \rightarrow 212\text{HCO}_3^- + 32\text{NH}_4^+ + 2\text{HPO}_4^{2-} + 212\text{N}_2\text{O} + 212\text{H}_2\text{O} + \text{C}_{106}\text{H}_{263}\text{O}_{110}\text{N}_{16}\text{P}$	


$$r_{Den2} = k_{Den2} \frac{[{}^{14}NO_2^-]^2}{(K_{NO2,Den2} + [{}^{14}NO_2^-] + [{}^{15}NO_2^-])^2} \frac{K_{O2,Den2}}{K_{O2,Den2} + [O_2]}$$

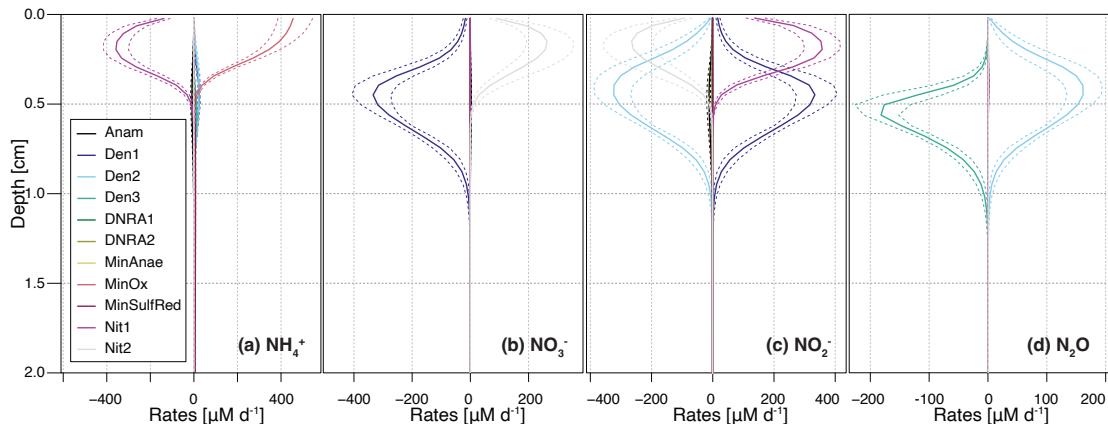
$$r_{Den3} = k_{Den3} \frac{[{}^{14}{}^{14}N_2O]}{K_{N2O,Den3} + [{}^{14}{}^{14}N_2O] + [{}^{14}{}^{15}N_2O] + [{}^{15}{}^{15}N_2O]} \frac{K_{O2,Den3}}{K_{O2,Den3} + [O_2]}$$


$$r_{DNRA1} = k_{DNRA1} \frac{[{}^{14}NO_3^-]}{K_{NO3,DNRA1} + [{}^{14}NO_3^-] + [{}^{15}NO_3^-]} \frac{K_{O2,DNRA1}}{K_{O2,DNRA1} + [O_2]}$$

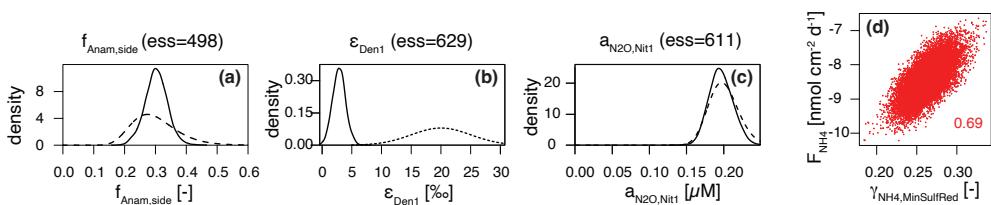
$$r_{DNRA2} = k_{DNRA2} \frac{[{}^{14}NO_2^-]}{K_{NO2,DNRA2} + [{}^{14}NO_2^-] + [{}^{15}NO_2^-]} \frac{K_{O2,DNRA2}}{K_{O2,DNRA2} + [O_2]}$$



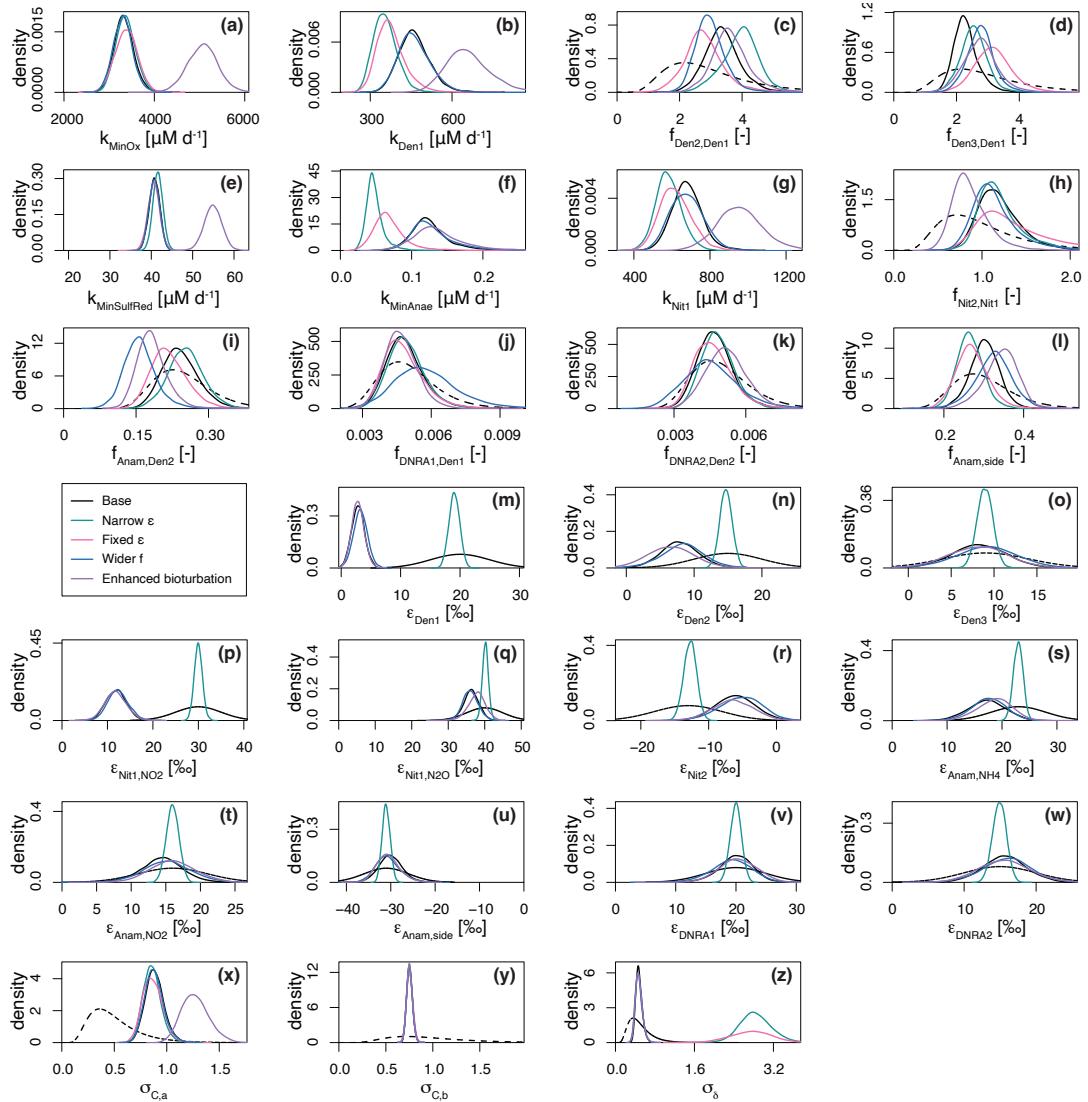
$$r_{Anam} = k_{Anam} \frac{[{}^{14}NH_4^+]}{K_{NH4,Anam} + [{}^{14}NH_4^+] + [{}^{15}NH_4^+]} \frac{[{}^{14}NO_2^-]}{K_{NO2,Anam} + [{}^{14}NO_2^-] + [{}^{15}NO_2^-]} \frac{K_{O2,Anam}}{K_{O2,Anam} + [O_2]}$$


738

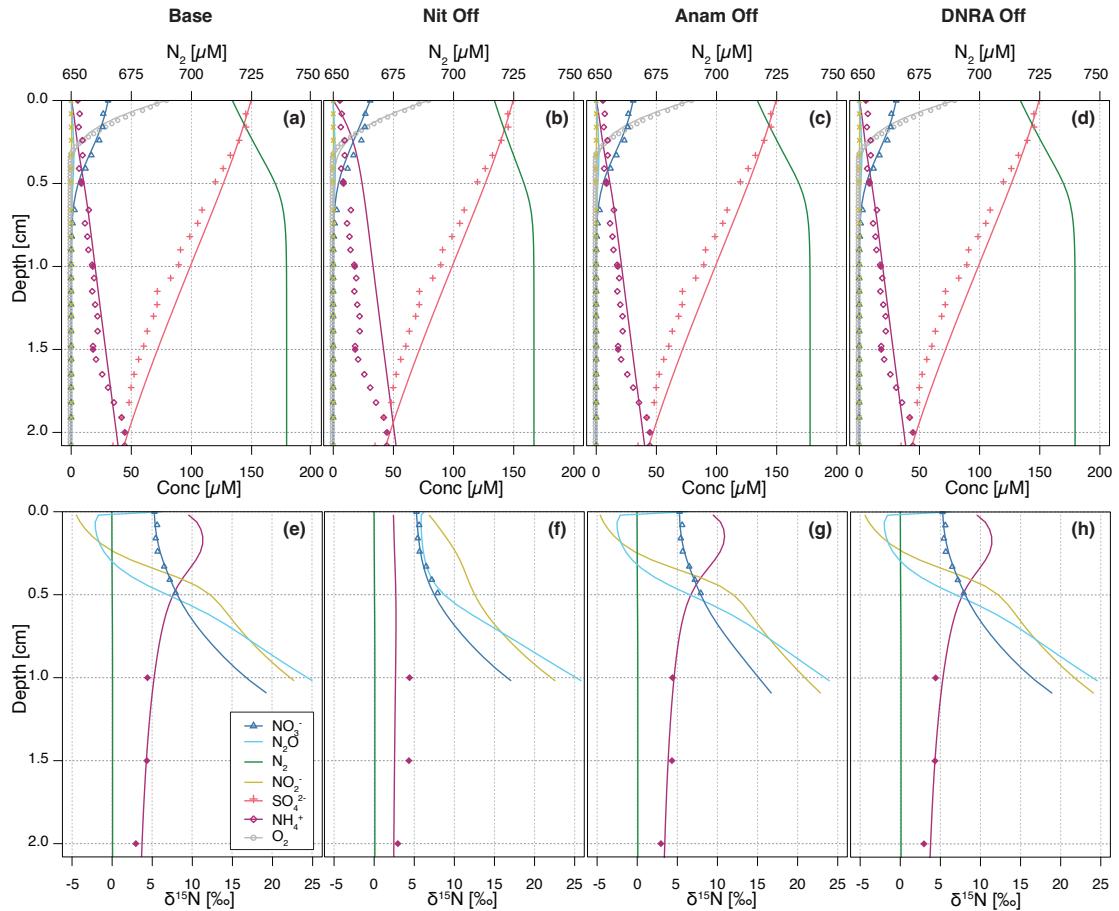
739 **Figure 1: Simplified scheme of the N-transformation reactions considered for the diagenetic isotope model described in this paper.**
740 **Continuous lines identify aerobic processes, while dashed lines indicate anaerobic processes. The state variables explicitly modelled**
741 **as substrates for the considered reactions are highlighted with outlined boxes; O₂ is modelled as a state variable and as a regulator**
742 **of aerobic and anaerobic processes; organic matter (OM) is not a state variable *per se* within the framework of this model, but acts**
743 **as a source of N for the remaining processes. The isotopic fractionation of each process is shown using + and - signs to represent**
744 **the ¹⁵N-enriching and ¹⁵N-depleting effects of the respective reactions.**


745

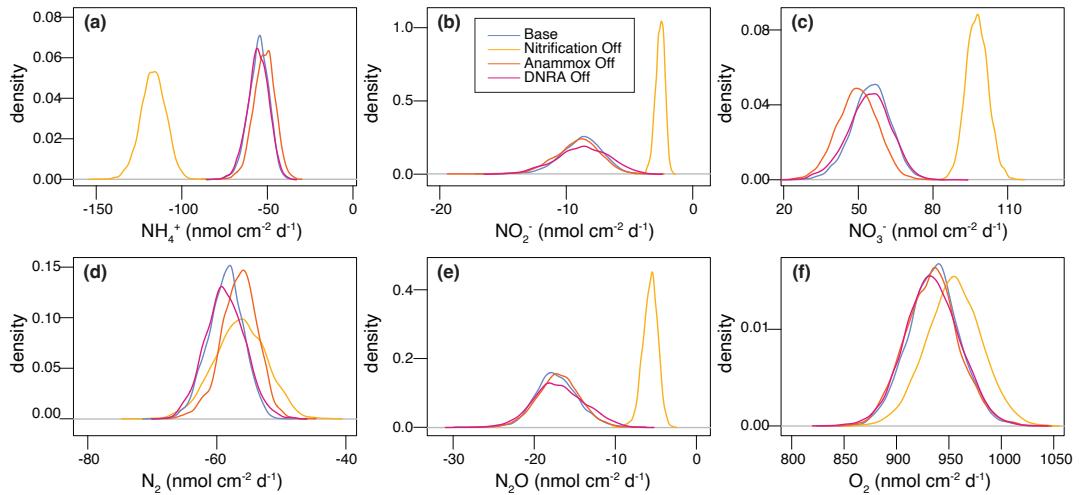
746 Figure 2. Vertical porewater profiles of concentrations (a-b) and isotopic composition ($\delta^{15}\text{N}$) (c) of the state variables for the Base
 747 scenario. Continuous lines represent model simulations, while symbols represent observational data from Lake Lucerne. For NH_4^+
 748 concentrations, filled diamonds represent low-resolution data from Rhizon sampling, while open diamonds represent the high-
 749 resolution WCS data, adjusted to align with absolute concentrations measured in the low-resolution dataset. Dashed lines enclose
 750 95% credibility intervals resulting from parametric uncertainty, while thin solid lines represent total uncertainty.


751

752 Figure 3. Vertical profiles of transformation rates for distinct N-cycling processes affecting the NH_4^+ , NO_3^- , NO_2^- , and N_2O pools.
 753 Dashed lines enclose 95% credibility intervals resulting from parametric uncertainty. Positive reaction rate values indicate
 754 production, negative values indicate consumption of a given DIN species.

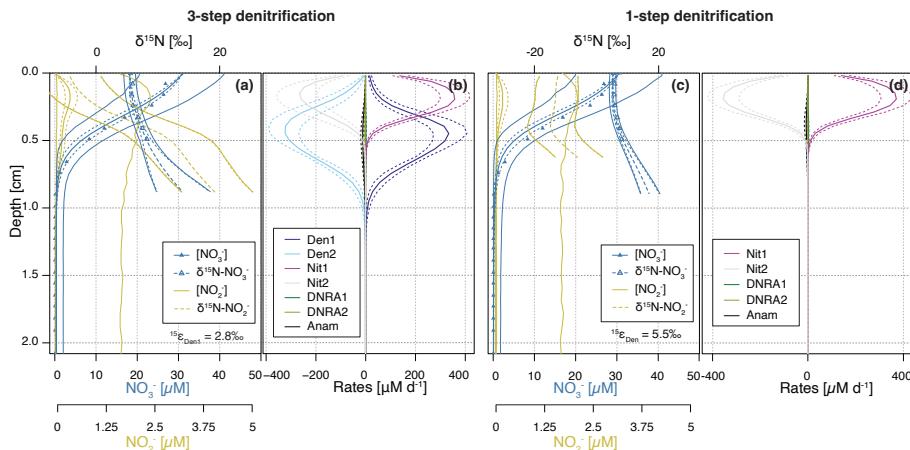

755

756 Figure 4. Prior (dashed line) and posterior marginal distributions (continuous line) for illustrative parameters, which could be
 757 identified and showed (a) good ($f_{\text{Anam},\text{side}}$) and (b) poor agreement ($\varepsilon_{\text{Den1}}$) with prior knowledge, and (c) for parameters, that could
 758 not be identified ($a_{\text{N}_2\text{O},\text{Nit1}}$); 2D correlation plot for $\gamma_{\text{NH}_4,\text{MinSulfRed}}$ versus F_{NH_4} (d).

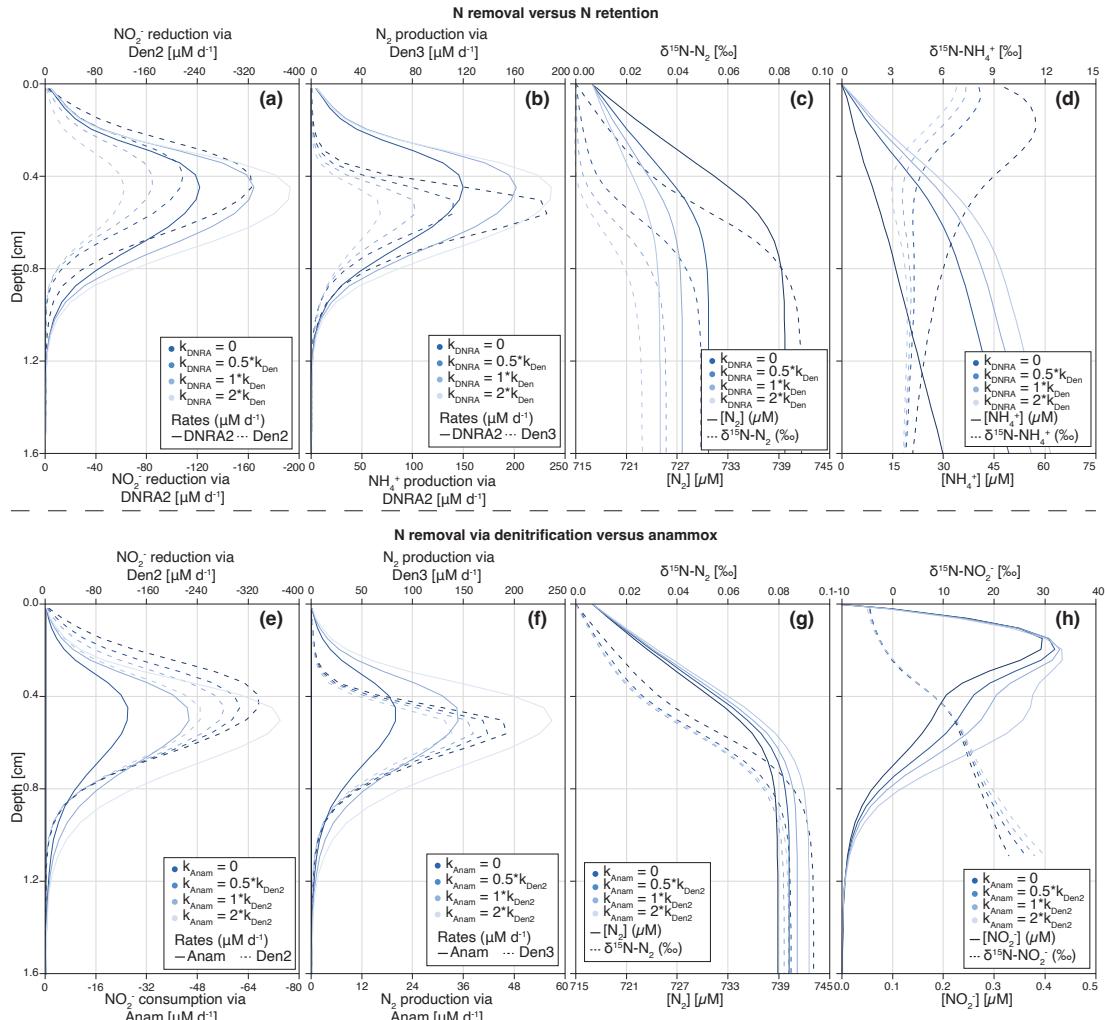


759

760 **Figure 5. Marginal probability densities across the five considered scenarios for selected estimated parameters, showing both prior**
 761 **(dashed line) and posterior distributions (continuous lines): *Base scenario* ($SD_f = 25\%$, $SD_\epsilon = 5\%$, $D_{bio} = 1 \text{ cm}^2 \text{ d}^{-1}$), *Narrower ϵ* (SD_ϵ
 762 $= 1\%$), *Fixed ϵ* (i.e., ϵ taken from bibliography), *Wider f* ($SD_f = 100\%$) and *Enhanced bioturbation* ($D_{bio} = 2.0 \text{ cm}^2 \text{ d}^{-1}$). Of the ~ 60
 763 estimated parameters, those shown here were selected for their relevance to the discussion. See main text for further details.**



764
765 **Figure 6.** Vertical concentration (a-d) and isotopic composition (e-h) profiles for state variables. Model output obtained with all
766 processes included (a, e) are compared with model simulations where individual processes are switched off: nitrification (b, f),
767 anammox (c, g), and DNRA (d, h), without running inference again. Continuous lines represent the model output, while symbols
768 represent measured data from Lake Lucerne. For NH_4^+ , open diamonds represent the high-resolution dataset, adjusted to align
769 with absolute concentrations measured in the low-resolution dataset (filled diamonds).


770

771 **Figure 7. Posterior marginal probability distributions of modelled sediment-water interface fluxes (in $\text{nmol cm}^{-2} \text{ d}^{-1}$) for all state**
 772 **variables, generated from inference runs, across the four scenarios considered for model validation against experimental data**
 773 **from Lake Lucerne.**

774

775 **Figure 8. Depth profiles of NO_3^- and NO_2^- concentrations and N isotopic composition (A,C), and rates of NO_2^- -producing and -**
 776 **consuming processes (B,D), as simulated by the Base scenario (A,B), and the one-step denitrification approach (C,D). In the one-**
 777 **step approach, NO_3^- is reduced directly to N_2 , omitting NO_2^- as an intermediate; thus, no NO_2^- is produced or consumed through**
 778 **denitrification. Dashed lines enclose 95% credibility intervals resulting from parametric uncertainty.**

779

780 **Figure 9. Depth profiles of process rates, solute concentrations and $\delta^{15}\text{N}$ values for the two idealized case scenarios investigated: (i)**
 781 **NO₃⁻ reduction via DNRA and denitrification (a-d), (ii) N₂ production via anammox and denitrification (e-h). Shadings represent**
 782 **different model scenarios within each case, as defined in the legend. For case (i), colour shading lightens with increasing**
 783 **contribution of DNRA (relative to denitrification) to total NO₃⁻ reduction. DNRA accounts for 0% ($f_{\text{DNRA}} = 0$), 33% ($f_{\text{DNRA}} = 0.5$),**
 784 **50% ($f_{\text{DNRA}} = 1$) and 66% ($f_{\text{DNRA}} = 2$) of total NO₃⁻ reduction (panel a). The resulting effects on the production rates of NH₄⁺ and N₂**
 785 **(b), as well as on their concentrations and N isotopic composition (c-d), are shown. For case (ii), colour shading lightens with**
 786 **increasing contribution of anammox (relative to denitrification) to total NO₂⁻ consumption and associated N₂ production.**
 787 **Anammox contributes 0% ($f_{\text{Anam}} = 0$), 33% ($f_{\text{Anam}} = 0.5$), 50% ($f_{\text{Anam}} = 1$) and 66% ($f_{\text{Anam}} = 2$) of total NO₂⁻ consumption (e-f). The**
 788 **resulting impacts on N₂ and NO₂⁻ concentrations and $\delta^{15}\text{N}$ values are shown in panels g-h.**

790 Table A1. Overview of all modelled N-transformation pathways, including their stoichiometry and governing equations. R denotes the $^{15}\text{N}/(^{14}\text{N}+^{15}\text{N})$ ratio derived from OM. The γ
 791 parameter defines the fraction of NH_4^+ released during OM mineralization for each reaction. Anammox encompasses both the comproportionation of NH_4^+ and NO_2^- to N_2 , defined as
 792 the main (“m”) reaction, and the production of NO_3^- from NO_2^- , defined as the side (“s”) reaction.

Process	Step	NH_4^+	NO_2^-	NO_3^-	N_2O	N_2	O_2	SO_4^{2-}	Rate
Oxic min.		$\gamma_{\text{MinOx}} (1-R)$	$\gamma_{\text{MinOx}} R$				-1		r_{MinOx}
Denitrification	[1]	$\gamma_{\text{Den1}} (1-R)$	$\gamma_{\text{Den1}} R$	1	-1				$r'_{\text{Den1}} [^{14}\text{NO}_3^-]$
	[2]	$\gamma_{\text{Den1}} (1-R)$	$\gamma_{\text{Den1}} R$	1	-1				$r'_{\text{Den1}} [^{15}\text{NO}_3^-] (1-\varepsilon_{\text{Den1}})$
		$2\gamma_{\text{Den2}} (1-R)$	$2\gamma_{\text{Den2}} R$	-2		1			$r'_{\text{Den2}} [^{14}\text{NO}_2^-] [^{14}\text{NO}_2^-]$
		$2\gamma_{\text{Den2}} (1-R)$	$2\gamma_{\text{Den2}} R$	-1	-1	1			$2r'_{\text{Den2}} [^{14}\text{NO}_2^-] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Den2}})$
	[3]	$2\gamma_{\text{Den2}} (1-R)$	$2\gamma_{\text{Den2}} R$	-2					$r'_{\text{Den2}} [^{15}\text{NO}_2^-] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Den2}})^2$
		$\gamma_{\text{Den3}} (1-R)$	$\gamma_{\text{Den3}} R$			-1	1		$r'_{\text{Den3}} [^{14}\text{N}_2\text{O}]$
		$\gamma_{\text{Den3}} (1-R)$	$\gamma_{\text{Den3}} R$			-1	1		$r'_{\text{Den3}} [^{14}\text{N}_2\text{O}] (1-\varepsilon_{\text{Den3}})$
		$\gamma_{\text{Den3}} (1-R)$	$\gamma_{\text{Den3}} R$			-1	1		$r'_{\text{Den3}} [^{15}\text{N}_2\text{O}] (1-\varepsilon_{\text{Den3}})$
Sulfate reduction		$\gamma_{\text{MinSulfRed}} (1-R)$	$\gamma_{\text{MinSulfRed}} R$				-1		$r_{\text{MinSulfRed}}$
Anaerobic min.		1-R	R						r_{MinAnae}
Nitrification	[1]	-1	1				-1.5		$r'_{\text{Nit1a}} [^{14}\text{NH}_4^+]$
		-1	1				-1.5		$r'_{\text{Nit1a}} [^{15}\text{NH}_4^+] (1-\varepsilon_{\text{Nit1,NO2}})$
		-2		1			-2		$r'_{\text{Nit1b}} [^{14}\text{NH}_4^+] [^{14}\text{NH}_4^+]$
		-1	-1			1	-2		$2r'_{\text{Nit1b}} [^{14}\text{NH}_4^+] [^{15}\text{NH}_4^+] (1-\varepsilon_{\text{Nit1,NO2}})$
		-2	-2			1	-2		$r'_{\text{Nit1b}} [^{15}\text{NH}_4^+] [^{15}\text{NH}_4^+] (1-\varepsilon_{\text{Nit1,NO2}})^2$
	[2]			-1	1	1	0.5		$r'_{\text{Nit2}} [^{14}\text{NO}_2^-]$
				-1	1		0.5		$r'_{\text{Nit2}} [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Nit2}})$
Anammox	[m]	-1	-1	-1			1		$r'_{\text{Anam}} [^{14}\text{NH}_4^+] [^{14}\text{NO}_2^-]$
		-1	-1	-1			1		$r'_{\text{Anam}} [^{14}\text{NH}_4^+] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NO2}})$
		-1	-1	-1			1		$r'_{\text{Anam}} [^{15}\text{NH}_4^+] [^{14}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NH4}})$
		-1	-1	-1			1		$r'_{\text{Anam}} [^{15}\text{NH}_4^+] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NO2}}) (1-\varepsilon_{\text{Anam,NH4}})$
	[s]			-1	1				$f_{\text{side}} r'_{\text{Anam}} [^{14}\text{NH}_4^+] [^{14}\text{NO}_2^-]$
				-1	1				$f_{\text{side}} r'_{\text{Anam}} [^{14}\text{NH}_4^+] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NO2}}) (1-\varepsilon_{\text{Anam,side}})$
				-1	1				$f_{\text{side}} r'_{\text{Anam}} [^{15}\text{NH}_4^+] [^{14}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NH4}})$
				-1	1				$f_{\text{side}} r'_{\text{Anam}} [^{15}\text{NH}_4^+] [^{15}\text{NO}_2^-] (1-\varepsilon_{\text{Anam,NO2}}) (1-\varepsilon_{\text{Anam,NH4}}) (1-\varepsilon_{\text{Anam,side}})$
DNRA	[1]	$\gamma_{\text{DNRA1}} (1-R)$	$\gamma_{\text{DNRA1}} R$	1	-1				$r'_{\text{DNRA1}} [^{14}\text{NO}_3^-]$
		$\gamma_{\text{DNRA1}} (1-R)$	$\gamma_{\text{DNRA1}} R$	1	-1				$r'_{\text{DNRA1}} [^{15}\text{NO}_3^-] (1-\varepsilon_{\text{DNRA1}})$

[2]	$1 + \gamma_{DNRA2} (1-R)$	$\gamma_{DNRA2} R$	-1						$r'_{DNRA2} [{}^{14}\text{NO}_2^-]$
	$\gamma_{DNRA2} (1-R)$	$1 + \gamma_{DNRA2} R$	-1						$r'_{DNRA2} [{}^{15}\text{NO}_2^-] (1 - \varepsilon_{DNRA2})$

$$793 \quad r_{\text{MinOx}} = k_{\text{MinOx}} \frac{[O_2]}{K_{O2,\text{MinOx}} + [O_2]} \quad r_{\text{MinAnae}} = k_{\text{MinAnae}} \frac{K_{\text{NO3,MinAnae}}}{K_{\text{NO3,MinAnae}} + [{}^{14}\text{NO}_3^-] + [{}^{15}\text{NO}_3^-]} \frac{K_{O2,\text{MinAnae}}}{K_{O2,\text{MinAnae}} + [O_2]}$$

$$794 \quad r_{\text{MinSulfRed}} = k_{\text{MinSulfRed}} \frac{[SO_4^{2-}]}{K_{\text{SO4,MinSulfRed}} + [SO_4^{2-}]} \frac{K_{\text{NO3,MinSulfRed}}}{K_{\text{NO3,MinSulfRed}} + [NO_3^-]} \frac{K_{O2,\text{MinSulfRed}}}{K_{O2,\text{MinSulfRed}} + [O_2]}$$

$$795 \quad r'_{\text{Anam}} = k_{\text{Anam}} \frac{1}{K_{\text{NH4,Anam}} + [{}^{14}\text{NH}_4^+] + [{}^{15}\text{NH}_4^+]} \frac{1}{K_{\text{NO2,Anam}} + [{}^{14}\text{NO}_2^-] + [{}^{15}\text{NO}_2^-]} \frac{K_{O2,\text{Anam}}}{K_{O2,\text{Anam}} + [O_2]}$$

$$796 \quad r'_{\text{Nit1a}} = k_{\text{Nit1}} (1 - f_{\text{N2O,Nit1}}) \frac{1}{K_{\text{NH4,Nit1}} + [{}^{14}\text{NH}_4^+] + [{}^{15}\text{NH}_4^+]} \frac{[O_2]}{K_{O2,\text{Nit1}} + [O_2]} \quad r'_{\text{Nit1b}} = k_{\text{Nit1}} f_{\text{N2O,Nit1}} \frac{1}{(K_{\text{NH4,Nit1}} + [{}^{14}\text{NH}_4^+] + [{}^{15}\text{NH}_4^+])^2} \frac{[O_2]}{K_{O2,\text{Nit1}} + [O_2]}$$

$$797 \quad r'_{\text{Nit2}} = k_{\text{Nit2}} \frac{1}{K_{\text{NO2,Nit2}} + [{}^{14}\text{NO}_2^-] + [{}^{15}\text{NO}_2^-]} \frac{[O_2]}{K_{O2,\text{Nit2}} + [O_2]}$$

$$798 \quad r'_{\text{Den1}} = k_{\text{Den1}} \frac{1}{K_{\text{NO3,Den1}} + [{}^{14}\text{NO}_3^-] + [{}^{15}\text{NO}_3^-]} \frac{K_{O2,\text{Den1}}}{K_{O2,\text{Den1}} + [O_2]} \quad r'_{\text{Den2}} = k_{\text{Den2}} \frac{1}{(K_{\text{NO2,Den2}} + [{}^{14}\text{NO}_2^-] + [{}^{15}\text{NO}_2^-])^2} \frac{K_{O2,\text{Den2}}}{K_{O2,\text{Den2}} + [O_2]}$$

$$799 \quad r'_{\text{Den3}} = k_{\text{Den3}} \frac{1}{K_{\text{N2O,Den3}} + [{}^{14}\text{N}_2\text{O}] + [{}^{14}\text{N}_2\text{O}] + [{}^{15}\text{N}_2\text{O}]} \frac{K_{O2,\text{Den3}}}{K_{O2,\text{Den3}} + [O_2]}$$

$$800 \quad r'_{\text{DNRA1}} = k_{\text{DNRA1}} \frac{1}{K_{\text{NO3,DNRA1}} + [{}^{14}\text{NO}_3^-] + [{}^{15}\text{NO}_3^-]} \frac{K_{O2,\text{DNRA1}}}{K_{O2,\text{DNRA1}} + [O_2]} \quad r'_{\text{DNRA2}} = k_{\text{DNRA2}} \frac{1}{K_{\text{NO2,DNRA2}} + [{}^{14}\text{NO}_2^-] + [{}^{15}\text{NO}_2^-]} \frac{K_{O2,\text{DNRA2}}}{K_{O2,\text{DNRA2}} + [O_2]}$$

$$801 \quad f_{\text{N2O,Nit1}} = b_{\text{N2O,Nit1}} \frac{a_{\text{N2O,Nit1}}}{a_{\text{N2O,Nit1}} + [O_2]}$$

$$802 \quad k_{\text{Den2}} = f_{\text{Den2,Den1}} k_{\text{Den1}} \quad k_{\text{Den3}} = f_{\text{Den3,Den1}} k_{\text{Den1}} \quad k_{\text{Nit2}} = f_{\text{Nit2,Nit1}} k_{\text{Nit1}}$$

$$803 \quad k_{\text{Anam}} = f_{\text{Anam,Den2}} k_{\text{Den2}} \quad k_{\text{DNRA1}} = f_{\text{DNRA1,Den1}} k_{\text{Den1}} \quad k_{\text{DNRA2}} = f_{\text{DNRA2,Den2}} k_{\text{Den2}}$$

804 **Appendix B: Reaction-diffusion model**805 Nomenclature

806	t	time [d]
807	z	depth coordinate within sediment (0 at the sediment surface, d at the lower boundary of the modelled sediment layer) [cm]
808	d	depth of the modelled sediment layer [cm]
809	$C(z,t)$	substance concentration (mass per volume of water) as a function of depth and time
810	$p(z)$	porosity of the sediment (water volume divided by sediment volume) as a function of sediment depth
811	$D(z)$	diffusivity of the substance in the water as a function of depth (usually constant and equal to the molecular diffusion coefficient; however, bioturbation could be modelled as an increase in diffusivity close to the sediment surface)
812	$r(C)$	transformation rate of the substance (mass per volume of water per unit of time)
813	C_0	substance concentration at the sediment surface
814	F_d	substance flux from deep sediment into the modelled sediment layer at the lower boundary of the modelled sediment layer (mass per unit of total sediment surface and per unit of time)

815 Partial Differential Equation for Sediment Layer

816 Mass balance within the sediment layer:

817
$$p \frac{\partial C}{\partial t} - \frac{\partial}{\partial z} \left(D p \frac{\partial C}{\partial z} \right) = p r$$

818 Differential equation for concentration:

819
$$\frac{\partial C}{\partial t} = \frac{1}{p} \frac{\partial}{\partial z} \left(D p \frac{\partial C}{\partial z} \right) + r$$

820 Diffusion (molecular diffusion corrected for tortuosity, and bioturbation):

821
$$D = \frac{D_{\text{mol}}}{a_{\text{tort}} p^{1-m_{\text{tort}}}} + D_{\text{bio}} e^{-\frac{z}{d_{\text{bio}}}}$$

822 Boundary conditions:

823
$$C(0, t) = C_0, \quad D(d, t) p(d, t) \frac{\partial C}{\partial z}(d, t) = F_d$$

824

825 For N compounds with a single N atom, the boundary conditions are calculated from total concentrations, C_{tot} , and $\delta^{15}\text{N}$ as follows:

826
$$r = \left(\frac{\delta^{15}\text{N}}{1000} + 1 \right) R_{\text{std}} \quad C_{^{14}\text{N}} = \frac{1}{1+r} C_{\text{tot}} \quad C_{^{15}\text{N}} = \frac{r}{1+r} C_{\text{tot}}$$

827 For N compounds with two N atoms, the boundary conditions are calculated from total concentrations, C_{tot} , and $\delta^{15}\text{N}$ as follows (Drury et al., 1987):

828
$$r = \left(\frac{\delta^{15}\text{N}}{1000} + 1 \right) R_{\text{std}} \quad C_{^{14}\text{N}^{14}\text{N}} = \frac{1}{1+2r+r^2} C_{\text{tot}} \quad C_{^{15}\text{N}^{14}\text{N}} = \frac{2r}{1+2r+r^2} C_{\text{tot}} \quad C_{^{15}\text{N}^{15}\text{N}} = \frac{r^2}{1+2r+r^2} C_{\text{tot}}$$

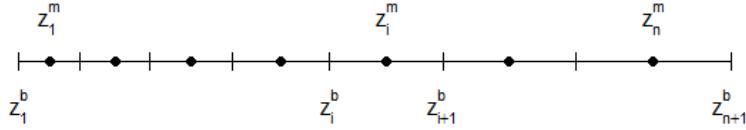
Appendix C: Prior values for inference

Table C1. Model parameters estimated using Bayesian inference, alongside their prior values and associated uncertainties. The posterior values (estimated mean with their standard deviation) for the base scenario (Section 4.1) are also reported. Parameters are grouped into three categories: (A) reaction rates parameters (i.e., defining process kinetics), (B) isotope parameters (i.e., isotope effects for the modelled processes and the N isotopic composition of OM), and (C) parameters used in the one-step denitrification approach ($\text{NO}_3^- \rightarrow \text{N}_2$ instead of $\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{N}_2\text{O} \rightarrow \text{N}_2$). Where a wide range of values was reported in the literature, the most relevant value for benthic environments was selected, and the corresponding reference is reported.

Description		Symbol	Distribution	Mean	St.deviation	Reference(s)	Posterior mean (\pm SD)
(A) Reaction rate parameters							
<u>Aerobic mineralization</u>	Maximum conversion rate	k_{MinOx}	Uniform	—	—	—	3330 (\pm 220) $\mu\text{M d}^{-1}$
	O_2 limitation constant	$K_{O2,MinOx}$	Lognormal	8 μM	20%	(Rooze and Meile, 2016)	6.9 (\pm 0.9) μM
	Fraction of NH_4^+ produced	$\gamma_{NH4,MinOx}$	Lognormal	0.1509	10%	Stoichiometry	0.15 (\pm 0.01)
<u>Anaerobic mineralization</u>	Maximum conversion rate	$k_{MinAnae}$	Uniform	—	—	—	0.13 (\pm 0.03) $\mu\text{M d}^{-1}$
	O_2 limitation constant	$K_{O2,MinAnae}$	Lognormal	5 μM	20%	(Paraska et al., 2011)	5.1 (\pm 0.7) μM
	NO_3^- limitation constant	$K_{NO3,MinAnae}$	Lognormal	5 μM	20%	(Paraska et al., 2011)	4.9 (\pm 0.7) μM
<u>Sulfate reduction coupled to mineralization</u>	Maximum conversion rate	$k_{MinSulfRed}$	Uniform	—	—	—	41 (\pm 1) $\mu\text{M d}^{-1}$
	O_2 limitation constant	$K_{O2,MinSulfRed}$	Lognormal	5 μM	20%	Assumed to be comparable to $K_{O2,MinAnae}$	5.1 (\pm 0.7) μM
	NO_3^- limitation constant	$K_{NO3,MinSulfRed}$	Lognormal	5 μM	20%	Assumed to be comparable to $K_{NO3,MinAnae}$	5.4 (\pm 0.7) μM
	SO_4^{2-} limitation constant	$K_{SO4,MinSulfRed}$	Lognormal	20 μM	20%	(Richards and Pallud, 2016)	44 (\pm 1) μM
	Fraction of NH_4^+ produced	$\gamma_{NH4,MinSulfRed}$	Lognormal	0.3019	10%	Stoichiometry	0.26 (\pm 0.02)
<u>Nitrification</u>	[1] Maximum conversion rate	k_{Nit1}	Uniform	—	—	—	680 (\pm 79) $\mu\text{M d}^{-1}$
	O_2 limitation constant	$K_{O2,Nit1}$	Lognormal	3.5 μM	20%	(Martin et al., 2019)	3.1 (\pm 0.4) μM
	NH_4^+ limitation constant	$K_{NH4,Nit1}$	Lognormal	2.0 μM	20%	(Wyffels et al., 2004)	2.2 (\pm 0.3) μM
	N_2O production	a	Lognormal	0.2 μM	10%	(Ji et al., 2018)	0.20 (\pm 0.02) μM
	Maximum N_2O production	b	Lognormal	0.08	10%	(Ji et al., 2018)	0.080 (\pm 0.006)
	[2] Reaction rate factor	f_{Nit2}	Lognormal	1	50%	—	1.2 (\pm 0.2)
	O_2 limitation constant	$K_{O2,Nit2}$	Lognormal	0.8 μM	20%	(Martin et al., 2019)	0.8 (\pm 0.1) μM
	NO_2^- limitation constant	$K_{NO2,Nit2}$	Lognormal	0.8 μM	20%	(Wyffels et al., 2004)	0.7 (\pm 0.1) μM
<u>Denitrification</u>	[1] Maximum conversion rate	k_{Den1}	Uniform	—	—	—	462 (\pm 57) $\mu\text{M d}^{-1}$
	O_2 inhibition constant	$K_{O2,Den1}$	Lognormal	3 μM	20%	(Wenk et al. 2014)	2.9 (\pm 0.4) μM
	NO_3^- limitation constant	$K_{NO3,Den1}$	Lognormal	2.46 μM	20%	(Su et al., 2023)	2.3 (\pm 0.3) μM

	Fraction of NH_4^+ produced	$\gamma_{\text{NH4,Den1}}$	Lognormal	0.0755	10%	Stoichiometry	0.073 (± 0.006)	
[2]	Reaction rate factor	f_{Den2}	Lognormal	3	50%		3.4 (± 0.6)	
	O_2 inhibition constant	$K_{\text{O2,Den2}}$	Lognormal	3 μM	20%	Assumed to be comparable to $K_{\text{O2,Den1}}$	2.9 (± 0.4) μM	
	NO_2^- limitation constant	$K_{\text{NO2,Den2}}$	Lognormal	0.41 μM	20%	(Su et al., 2023)	0.37 (± 0.05) μM	
	Fraction of NH_4^+ produced	$\gamma_{\text{NH4,Den2}}$	Lognormal	0.0755	10%	Stoichiometry	0.073 (± 0.006)	
[3]	Reaction rate factor	f_{Den3}	Lognormal	3	50%		2.3 (± 0.4)	
	O_2 inhibition constant	$K_{\text{O2,Den3}}$	Lognormal	0.1 μM	20%	(Suenaga et al., 2018)	0.10 (± 0.01) μM	
	N_2O limitation constant	$K_{\text{N2O,Den3}}$	Lognormal	3.7 μM	20%	(Suenaga et al., 2018)	3.6 (± 0.5) μM	
	Fraction of NH_4^+ produced	$\gamma_{\text{NH4,Den3}}$	Lognormal	0.0755	10%	Stoichiometry	0.074 (± 0.006)	
<u>DNRA</u>	[1]	Reaction rate factor	$f_{\text{DNRA1,Den1}}$	Lognormal	0.005	25%	^{15}N -tracer incubations (this study)	0.0049 (± 0.0008)
		$K_{\text{O2, DNRA1}}$	Lognormal	3 μM	20%	Assumed to be comparable to $K_{\text{O2,Den1}}$	2.9 (± 0.4) μM	
		$K_{\text{NO3, DNRA1}}$	Lognormal	2.46 μM	20%	Assumed to be comparable to $K_{\text{NO3,Den1}}$	2.5 (± 0.3) μM	
		$\gamma_{\text{NH4, DNRA1}}$	Lognormal	0.0755	10%	Stoichiometry	0.076 (± 0.006)	
	[2]	Reaction rate factor	$f_{\text{DNRA2,Den2}}$	Lognormal	0.005	25%	^{15}N -tracer incubations (this study)	0.0047 (± 0.0008)
		$K_{\text{O2, DNRA2}}$	Lognormal	3 μM	20%	Assumed to be comparable to $K_{\text{O2,Den2}}$	3.1 (± 0.4) μM	
		$K_{\text{NO2, DNRA2}}$	Lognormal	0.41 μM	20%	Assumed to be comparable to $K_{\text{NO2,Den2}}$	0.43 (± 0.06) μM	
		$\gamma_{\text{NH4, DNRA2}}$	Lognormal	0.226	10%	Stoichiometry	0.22 (± 0.02)	
<u>Anammox</u>	Reaction rate factor	$f_{\text{Anam,Den2}}$	Lognormal	0.2	25%	^{15}N -tracer incubations (this study)	0.20 (± 0.03)	
	O_2 inhibition constant	$K_{\text{O2,Ana}}$	Lognormal	2.5 μM	20%	(Kalvelage et al., 2011)	2.5 (± 0.3) μM	
	NH_4^+ limitation constant	$K_{\text{NH4,Ana}}$	Lognormal	1 μM	20%	(Wenk et al. 2014)	1.0 (± 0.1) μM	
	NO_2^- limitation constant	$K_{\text{NO2,Ana}}$	Lognormal	5 μM	20%	Reported for NO_3^- (Wenk et al. 2014)	5.0 (± 0.7) μM	
	NO_3^- production factor	$f_{\text{Anam, side}}$	Lognormal	0.3	10%	(Brunner et al., 2013)	0.30 (± 0.04)	
(B) Isotope effects, boundary conditions and $\delta^{15}\text{N}$								
<u>Nitrification</u>	[1a]	$\text{NH}_4^+ \rightarrow \text{NO}_2^-$	$\varepsilon_{\text{Nit1,NO2}}$	Normal	30‰	5‰	(Dale et al., 2022; Denk et al., 2017)	11.9 (± 2.2) ‰
	[1b]	$\text{NH}_4^+ \rightarrow \text{N}_2\text{O}$	$\varepsilon_{\text{Nit1,N2O}}$	Normal	40‰	5‰	(Denk et al., 2017)	36.3 (± 2.2) ‰
	[2]	$\text{NO}_2^- \rightarrow \text{NO}_3^-$	$\varepsilon_{\text{Nit2}}$	Normal	-13‰	5‰	(Denk et al., 2017)	- 6.0 (± 3.1) ‰
<u>Denitrification</u>	[1]	$\text{NO}_3^- \rightarrow \text{NO}_2^-$	$\varepsilon_{\text{Den1}}$	Normal	20‰	5‰	(Rooze and Meile 2016; A. W. Dale et al. 2019)	2.8 (± 1.1) ‰
	[2]	$\text{NO}_2^- \rightarrow \text{N}_2\text{O}$	$\varepsilon_{\text{Den2}}$	Normal	15‰	5‰	(Dale et al., 2019; Denk et al., 2017)	7.9 (± 2.9) ‰
	[3]	$\text{N}_2\text{O} \rightarrow \text{N}_2$	$\varepsilon_{\text{Den3}}$	Normal	9‰	5‰	(Wenk et al. 2016)	8.3 (± 3.3) ‰
<u>DNRA</u>	[1]	$\text{NO}_3^- \rightarrow \text{NO}_2^-$	$\varepsilon_{\text{DNRA1}}$	Normal	20‰	5‰	(Rooze and Meile 2016; A. W. Dale et al. 2019)	20.0 (± 2.9) ‰

2019)						
<u>Anammox</u>	[2] $\text{NO}_2^- \rightarrow \text{NH}_4^+$	ε_{DNRA2}	Normal	15‰	5‰	Assumed to be comparable to ε_{Den2}
	$\text{NH}_4^+ \rightarrow \text{N}_2$	$\varepsilon_{Anam,NH4}$	Normal	23‰	5‰	(Brunner et al., 2013)
	$\text{NO}_2^- \rightarrow \text{N}_2$	$\varepsilon_{Anam,NO2}$	Normal	16‰	5‰	(Brunner et al., 2013)
	$\text{NO}_2^- \rightarrow \text{NO}_3^-$	ε_{Anam_side}	Normal	-31‰	5‰	(Brunner et al., 2013)
<u>Lower boundary conditions</u>		F_{NH4}	Uniform	—	—	—
		$\delta^{15}\text{N}_{FNH4}$	Uniform	—	—	- 8.4 (± 0.5) mmol cm⁻² d⁻¹
<u>Organic Matter isotopic composition</u>		$\delta^{15}\text{N-OM}$	Normal	3‰	0.5‰	(Baumann et al., 2024)
						2.1 (± 0.4) ‰
(C) One-step denitrification						
<u>Denitrification</u>	Maximum conversion rate	k_{Den}	Uniform	—	—	765 (± 114) μM d⁻¹
	O_2 inhibition constant	$K_{O2,Den}$	Lognormal	3 μM	20%	(Wenk et al. 2014)
	NO_3^- limitation constant	$K_{NO3,Den}$	Lognormal	2.46 μM	20%	(Su et al., 2023)
	Fraction of NH_4^+ produced	$\gamma_{NH4,Den}$	Lognormal	0.189	10%	Stoichiometry
	Isotope effect	ε_{Den}	Normal	20‰	5‰	(Rooze and Meile 2016; A. W. Dale et al. 2019)
<u>DNRA</u>	[1] Reaction rate factor	$f_{DNRA1,Den}$	Lognormal	0.005	25%	¹⁵ N-tracer incubations (this study)
	[2] Reaction rate factor	$f_{DNRA2,Den}$	Lognormal	0.005	25%	¹⁵ N-tracer incubations (this study)
<u>Anammox</u>	Reaction rate factor	$f_{Anam,Den}$	Lognormal	0.6	25%	¹⁵ N-tracer incubations (this study)
						0.6 (± 0.1)


840 Appendix D: Model discretization

841 We discretize the partial differential equations outlined in Appendix B using the Method of Lines. This approach involves
 842 explicit discretization in space, followed by the application of an ODE solver to the resulting system of ODEs.

843 Spatial discretization

844 Numerical discretization of sediment layer (n cells, cell expansion factor f):

845 Visualization:

846

847 Cell boundaries ($i = 1, \dots, n + 1$):

$$848 z_i^b = \begin{cases} \frac{i-1}{n}d & \text{for } f < 1.1 \quad (i = 1, \dots, n+1) \\ \frac{f^{\frac{i-1}{n}} - 1}{f - 1}d & \text{for } f \geq 1.1 \quad (i = 1, \dots, n+1) \end{cases}$$

849 Cell midpoints ($i = 1, \dots, n$):

$$850 z_i^m = \frac{1}{2} (z_i^b + z_{i+1}^b)$$

851 Explanation for the cell expansion factor:

852 The cell size is approximately (the larger n the closer) proportional to

$$853 \frac{\partial z_i^b}{\partial i} = \frac{\partial}{\partial i} \left(\frac{f^{\frac{i-1}{n}} - 1}{f - 1} d \right) = \frac{\log(f)}{f - 1} \frac{1}{n} f^{\frac{i-1}{n}} d$$

854 Comparing these cell sizes at the lower and upper boundaries leads to

$$855 \frac{\frac{\partial z_i^b}{\partial i} \Big|_{i=n+1}}{\frac{\partial z_i^b}{\partial i} \Big|_{i=1}} = f$$

856 This expression clarifies the meaning of the cell expansion factor (approximately equal to the ratio of cell size of lowest to
 857 uppermost cell).

858 Discretized Ordinary Differential Equations

859 Mass balance within sediment layer cells ($i = 2, \dots, n - 1$):

$$860 p(z_i^m) \frac{\partial C}{\partial t}(z_i^m) (z_{i+1}^b - z_i^b) \\ 861 = -p(z_i^b) D(z_i^b) \frac{C(z_i^m) - C(z_{i-1}^m)}{z_i^m - z_{i-1}^m} + p(z_{i+1}^b) D(z_{i+1}^b) \frac{C(z_{i+1}^m) - C(z_i^m)}{z_{i+1}^m - z_i^m} \\ 862 + p(z_i^m) r(z_i^m) (z_{i+1}^b - z_i^b)$$

863 Differential equation for concentrations at cell midpoints of inner cells ($i = 2, \dots, n - 1$):

$$864 \frac{\partial C}{\partial t}(z_i^m) = \frac{-p(z_i^b) D(z_i^b) \frac{C(z_i^m) - C(z_{i-1}^m)}{z_i^m - z_{i-1}^m} + p(z_{i+1}^b) D(z_{i+1}^b) \frac{C(z_{i+1}^m) - C(z_i^m)}{z_{i+1}^m - z_i^m}}{p(z_i^m) (z_{i+1}^b - z_i^b)} + r(z_i^m)$$

865 Boundary conditions:

866
$$C(z_1^b) = C_0, \quad D(z_{n+1}^b, t)p(z_{n+1}^b, t) \frac{C(z_{n+1}^b) - C(z_n^m)}{z_{n+1}^b - z_n^m} = F_d$$

867
$$\rightarrow C(z_{n+1}^b) = C(z_n^m) + F_d \frac{z_{n+1}^b - z_n^m}{D(z_{n+1}^b, t)p(z_{n+1}^b, t)}$$

868 Differential equations for concentrations at cell midpoints of top and bottom cell ($i = 1, i = n$):

869
$$\frac{\partial C}{\partial t}(z_1^m) = \frac{-p(z_1^b)D(z_1^b) \frac{C(z_1^m) - C(z_1^b)}{z_1^m - z_1^b} + p(z_2^b)D(z_2^b) \frac{C(z_2^m) - C(z_1^m)}{z_2^m - z_1^m}}{p(z_1^m)(z_2^b - z_1^b)} + r(z_1^m)$$

870
$$\frac{\partial C}{\partial t}(z_n^m) = \frac{-p(z_n^b)D(z_n^b) \frac{C(z_n^m) - C(z_{n-1}^m)}{z_n^m - z_{n-1}^m} + p(z_{n+1}^b)D(z_{n+1}^b) \frac{C(z_{n+1}^b) - C(z_n^m)}{z_{n+1}^b - z_n^m}}{p(z_n^m)(z_{n+1}^b - z_n^b)} + r(z_n^m)$$

871
$$= \frac{-p(z_n^b)D(z_n^b) \frac{C(z_n^m) - C(z_{n-1}^m)}{z_n^m - z_{n-1}^m} + F_d}{p(z_n^m)(z_{n+1}^b - z_n^b)} + r(z_n^m)$$

872 **Appendix E: Model implementation**

873 The model was implemented in Julia (Bezanson et al., 2017) (<https://julialang.org>). The implementation is available with
874 open access at <https://gitlab.com/p.reichert/Nsediment>. The version used for this study corresponds to commit
875 7afecdf1af871e8f8030360d658ec1cf54d20716.

876 The partial differential equations described in Appendix B were spatially discretized according to the approach outlined in
877 Appendix D. The resulting ordinary differential equations were then numerically solved by the Method of Lines using the
878 package DifferentialEquations.jl (Rackauckas and Nie, 2017). Discretizing the modelled sediment layer into 50 cells, and
879 considering 14 state variables, resulted in a system of 700 ordinary differential equations. The performance of several ODE
880 solvers was compared, resulting in the use of the adaptive order and adaptive time step backward-differencing solver FBDF
881 to account for the stiffness of the ODE system.

882 Maintaining compatibility with automatic differentiation while allowing flexible parameter selection for inference was a key
883 implementation challenge. This was addressed by using separate arrays for parameter values and names, and by prepending
884 the parameters to be estimated, ensuring a contiguous array of the parameters. To avoid inefficiencies related to the search of
885 parameter names, the association of parameter names to array indices was resolved within the differential equation solver
886 function. This solver, which includes the function to calculate the right-hand side of the differential equation as an internal
887 function, ensures that the index resolution has to be done only once and remains available for all calls of the integrator by the
888 solver. This approach enabled compatibility of our implementation with the automatic differentiation package ForwardDiff.jl
889 (Revels et al., 2016).

890 Bayesian inference was implemented with both an adaptive Metropolis sampler from the AdaptiveMCMC package (Vihola,
891 2020) and the Hamiltonian Monte Carlo algorithm from the AdvancedHMC.jl package (Xu et al., 2020).

892 All model outputs were written to text files and post-processed using R (<https://www.r-project.org>).

893 **Code and data availability**

894 The code for the isotope model presented in this manuscript is available at <https://gitlab.com/p.reichert/Nsediment> (commit
895 7afecdf1af871e8f8030360d658ec1cf54d20716).
896 Field data, model outputs and re-processing scripts are available through zenodo at
897 <https://doi.org/10.5281/zenodo.14913873>.

898 **Supplement link**

899 Supplementary material is provided alongside this manuscript.

900 **Author contribution**

901 The research was initiated and conceptually designed by AM, PR, and MFL. All co-authors contributed to the
902 conceptualization of the model, AM and PR developed the model code and performed the simulations. AM and PR prepared
903 the manuscript with input from all co-authors.

904 **Competing interests**

905 The authors declare that they have no conflict of interest.

906 **Acknowledgments**

907 Calculations were performed at sciCORE (<http://scicore.unibas.ch/>), the scientific computing centre at the University of
908 Basel. We thank Prof. Carsten Schubert for providing logistic support for access to Lake Lucerne, and the technical staff at
909 University of Basel and Eawag for their assistance with the field campaign and the resulting analytical work.
910 AI-based language tools were used on individual sentences to refine sentence structures and enhance the readability of the
911 manuscript.

912 **Financial support**

913 This study was funded by the Swiss National Science Foundation, grant SNSF 188728.

914 **References**

915 Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.: An introduction to MCMC for Machine Learning, *Mach. Learn.*,
916 50, 5–43, <https://doi.org/10.1023/A:1020281327116>, 2003.
917 Baumann, K. B. L., Mazzoli, A., Salazar, G., Ruscheweyh, H.-J., Müller, B., Niederdorfer, R., Sunagawa, S., Lever, M. A.,
918 Lehmann, M. F., and Bürgmann, H.: Metagenomic and transcriptomic analyses of microbial nitrogen transformation
919 potential, and gene expression in Swiss lake sediments, *ISME Communications*, 4, ycae110,
920 <https://doi.org/10.1093/ismeco/ycae110>, 2024.
921 Bender, M., Martin, W., Hess, J., Sayles, R., Ball, L., and Lambert, C.: A whole-core squeezer for interfacial pore-water
922 sampling, *Limnol. Oceanogr.*, 32, 1214–1225, <https://doi.org/10.4319/lo.1987.32.6.1214>, 1987.

923 Bernardo, J. M. and Smith, A. F. M.: Bayesian Theory, John Wiley & Sons, New York,
924 <https://doi.org/10.1002/9780470316870>, 1994.

925 Betancourt, M.: A conceptual introduction to Hamiltonian Monte Carlo, arXiv: Statistics, Methodology,
926 <https://doi.org/10.48550/arXiv.1701.02434>, 2017.

927 Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A fresh approach to numerical computing, SIAM Review,
928 59, 65–98, <https://doi.org/10.1137/141000671>, 2017.

929 Brunner, B., Contreras, S., Lehmann, M. F., Matantseva, O., Rollog, M., Kalvelage, T., Klockgether, G., Lavik, G., Jetten,
930 M. S. M., Kartal, B., and Kuypers, M. M. M.: Nitrogen isotope effects induced by anammox bacteria, Proc. Natl. Acad. Sci.
931 U. S. A., 110, 18994–18999, <https://doi.org/10.1073/pnas.1310488110>, 2013.

932 Buchwald, C., Homola, K., Spivack, A. J., Estes, E. R., Murray, R. W., and Wankel, S. D.: Isotopic constraints on nitrogen
933 transformation rates in the deep sedimentary marine biosphere, Global Biogeochem. Cycles, 32, 1688–1702,
934 <https://doi.org/10.1029/2018GB005948>, 2018.

935 Burdige, D. J.: Chapter 6: Models of sediment diagenesis, in: Geochemistry of Marine Sediments, Princeton, 72–96,
936 <https://doi.org/10.1515/9780691216096-008>, 2007.

937 Casciotti, K. L.: Inverse kinetic isotope fractionation during bacterial nitrite oxidation, Geochim. Cosmochim. Acta, 73,
938 2061–2076, <https://doi.org/10.1016/j.gca.2008.12.022>, 2009.

939 Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic
940 composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912,
941 <https://doi.org/10.1021/ac020113w>, 2002.

942 Crowe, S. A., Treusch, A. H., Forth, M., Li, J., Magen, C., Canfield, D. E., Thamdrup, B., and Katsev, S.: Novel anammox
943 bacteria and nitrogen loss from Lake Superior, Sci. Rep., 7, 13757, <https://doi.org/10.1038/s41598-017-12270-1>, 2017.

944 Dale, A. W., Bourbonnais, A., Altabet, M., Wallmann, K., and Sommer, S.: Isotopic fingerprints of benthic nitrogen cycling
945 in the Peruvian oxygen minimum zone, Geochim. Cosmochim. Acta, 245, 406–425,
946 <https://doi.org/10.1016/j.gca.2018.10.025>, 2019.

947 Dale, A. W., Clemens, D., Dähnke, K., Korth, F., Wankel, S. D., Schroller-Lomnitz, U., Wallmann, K., and Sommer, S.:
948 Nitrogen cycling in sediments on the NW African margin inferred from N and O isotopes in benthic chambers, Front. Mar.
949 Sci., 9, 902062, <https://doi.org/10.3389/fmars.2022.902062>, 2022.

950 Denk, T. R. A., Mohn, J., Decock, C., Lewicka-Szczebak, D., Harris, E., Butterbach-Bahl, K., Kiese, R., and Wolf, B.: The
951 nitrogen cycle: A review of isotope effects and isotope modeling approaches, Soil Biol. Biochem., 105, 121–137,
952 <https://doi.org/10.1016/j.soilbio.2016.11.015>, 2017.

953 Drury, C. F., Tel, D. A., and Beauchamp, E. G.: ^{15}N analysis of highly enriched samples of a mass spectrometer, Can. J. Soil
954 Sci., 67, 779–785, <https://doi.org/10.4141/cjss87-075>, 1987.

955 Frey, C., Dippner, J. W., and Voss, M.: Close coupling of N-cycling processes expressed in stable isotope data at the
956 redoxcline of the Baltic Sea, Global Biogeochem. Cycles, 28, 974–991, <https://doi.org/10.1002/2013GB004642>, 2014.

957 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.: Bayesian Data Analysis, 2nd ed.,
958 Chapman and Hall/CRC, <https://doi.org/10.1201/b16018>, 2013.

959 Granger, J. and Wankel, S. D.: Isotopic overprinting of nitrification on denitrification as a ubiquitous and unifying feature of
960 environmental nitrogen cycling, Proc. Natl. Acad. Sci. U. S. A., 113, E6391–E6400,
961 <https://doi.org/10.1073/pnas.1601383113>, 2016.

962 Guillaume, J. H. A., Jakeman, J. D., Marsili-Libelli, S., Asher, M., Brunner, P., Croke, B., Hill, M. C., Jakeman, A. J.,
963 Keesman, K. J., Razavi, S., and Stigter, J. D.: Introductory overview of identifiability analysis: A guide to evaluating
964 whether you have the right type of data for your modeling purpose, Environmental Modelling and Software, 119, 418–432,
965 <https://doi.org/10.1016/j.envsoft.2019.07.007>, 2019.

966 Hines, D. E., Lisa, J. A., Song, B., Tobias, C. R., and Borrett, S. R.: A network model shows the importance of coupled
967 processes in the microbial N cycle in the Cape Fear River Estuary, *Estuar. Coast Shelf. Sci.*, 106, 45–57,
968 <https://doi.org/10.1016/j.ecss.2012.04.018>, 2012.

969 Holtappels, M., Lavik, G., Jensen, M. M., and Kuyper, M. M.: ^{15}N -labeling experiments to dissect the contributions of
970 heterotrophic denitrification and anammox to nitrogen removal in the OMZ waters of the ocean, in: *Methods in*
971 *Enzymology*, 486, 223–251, [https://doi.org/10.1016/S0076-6879\(11\)86010-6](https://doi.org/10.1016/S0076-6879(11)86010-6), 2011.

972 Ibánhez, J. S. P. and Rocha, C.: Kinetics of inorganic nitrogen turnover in a sandy seepage face on a subterranean estuary,
973 *Appl. Geochem.*, 87, 108–121, <https://doi.org/10.1016/j.apgeochem.2017.10.015>, 2017.

974 Jensen, M. M., Lam, P., Revsbech, N. P., Nagel, B., Gaye, B., Jetten, M. S., and Kuyper, M. M.: Intensive nitrogen loss
975 over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium, *ISME J.*, 5, 1660–1670,
976 <https://doi.org/10.1038/ismej.2011.44>, 2011.

977 Ji, Q., Buitenhuis, E., Suntharalingam, P., Sarmiento, J. L., and Ward, B. B.: Global nitrous oxide production determined by
978 oxygen sensitivity of nitrification and denitrification, *Global Biogeochem. Cycles*, 32, 1790–1802,
979 <https://doi.org/10.1029/2018GB005887>, 2018.

980 Kalvelage, T., Jensen, M. M., Contreras, S., Revsbech, N. P., Lam, P., Günter, M., LaRoche, J., Lavik, G., and Kuyper, M.
981 M. M.: Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones, *PLoS One*, 6, e29299,
982 <https://doi.org/10.1371/journal.pone.0029299>, 2011.

983 Kampschreur, M. J., Kleerebezem, R., Picioreanu, C., Bakken, L., Bergaust, L., de Vries, S., Jetten, M. S. M., and van
984 Loosdrecht, M. C. M.: Metabolic modeling of denitrification in *Agrobacterium tumefaciens*: A tool to study inhibiting and
985 activating compounds for the denitrification pathway, *Front. Microbiol.*, 3, 370, <https://doi.org/10.3389/fmicb.2012.00370>,
986 2012.

987 Kessler, A. J., Bristow, L. A., Cardenas, M. B., Glud, R. N., Thamdrup, B., and Cook, P. L. M.: The isotope effect of
988 denitrification in permeable sediments, *Geochim. Cosmochim. Acta*, 133, 156–167,
989 <https://doi.org/10.1016/j.gca.2014.02.029>, 2014.

990 Kraft, B., Strous, M., and Tegetmeyer, H. E.: Microbial nitrate respiration - Genes, enzymes and environmental distribution,
991 *J. Biotechnol.*, 155, 104–117, <https://doi.org/10.1016/j.jbiotec.2010.12.025>, 2011.

992 Lehmann, M. F., Reichert, P., Bernasconi, S. M., Barbieri, A., and McKenzie, J. A.: Modelling nitrogen and oxygen isotope
993 fractionation during denitrification in a lacustrine redox-transition zone, *Geochim. Cosmochim. Acta*, 67, 2529–2542,
994 [https://doi.org/10.1016/S0016-7037\(03\)00085-1](https://doi.org/10.1016/S0016-7037(03)00085-1), 2003.

995 Lehmann, M. F., Sigman, D. M., and Berelson, W. M.: Coupling the $^{15}\text{N}/^{14}\text{N}$ and $^{18}\text{O}/^{16}\text{O}$ of nitrate as a constraint on benthic
996 nitrogen cycling, *Mar. Chem.*, 88, 1–20, <https://doi.org/10.1016/j.marchem.2004.02.001>, 2004.

997 Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Brunelle, B. G., Hoffmann, S., Kienast, M., Cane, G., and Clement, J.:
998 Origin of the deep Bering Sea nitrate deficit: Constraints from the nitrogen and oxygen isotopic composition of water
999 column nitrate and benthic nitrate fluxes, *Global Biogeochem. Cycles*, 19, GB4005, <https://doi.org/10.1029/2005GB002508>,
1000 2005.

1001 Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Granger, J., Hoffmann, S., Cane, G., and Brunelle, B. G.: The
1002 distribution of nitrate $^{15}\text{N}/^{14}\text{N}$ in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of
1003 oceanic nitrate, *Geochim. Cosmochim. Acta*, 71, 5384–5404, <https://doi.org/10.1016/j.gca.2007.07.025>, 2007.

1004 Magyar, P. M., Hausherr, D., Niederdorfer, R., Stöcklin, N., Wei, J., Mohn, J., Bürgmann, H., Joss, A., and Lehmann, M. F.:
1005 Nitrogen isotope effects can be used to diagnose N transformations in wastewater anammox systems, *Sci. Rep.*, 11, 7850,
1006 <https://doi.org/10.1038/s41598-021-87184-0>, 2021.

1007 Martin, T. S., Primeau, F., and Casciotti, K. L.: Modeling oceanic nitrate and nitrite concentrations and isotopes using a 3-D
1008 inverse N cycle model, *Biogeosciences*, 16, 347–367, <https://doi.org/10.5194/bg-16-347-2019>, 2019.

1009 McIlvin, M. R. and Casciotti, K. L.: Fully automated system for stable isotopic analyses of dissolved nitrous oxide at natural
1010 abundance levels, *Limnol. Oceanogr. Methods*, 8, 54–66, <https://doi.org/10.4319/lom.2010.8.54>, 2010.

1011 Neal, R. M.: MCMC using Hamiltonian dynamics, Chapman and Hall/CRC, <https://doi.org/10.1201/b10905-6>, 2011.

1012 Ni, B. J., Ruscalleda, M., Pellicer-Nàcher, C., and Smets, B. F.: Modeling nitrous oxide production during biological
1013 nitrogen removal via nitrification and denitrification: Extensions to the general ASM models, *Environ. Sci. Technol.*, 45,
1014 7768–7776, <https://doi.org/10.1021/es201489n>, 2011.

1015 Paraska, D., Hipsey, M. R., and Salmon, S. U.: Comparison of organic matter oxidation approaches in sediment diagenesis
1016 models, in: 19th International Congress on Modelling and Simulation, 3754–3760, 2011.

1017 Pätsch, J. and Kühn, W.: Nitrogen and carbon cycling in the North Sea and exchange with the North Atlantic-A model study.
1018 Part I. Nitrogen budget and fluxes, *Cont. Shelf Res.*, 28, 767–787, <https://doi.org/10.1016/j.csr.2007.12.013>, 2008.

1019 Rackauckas, C. and Nie, Q.: DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential
1020 Equations in Julia, *J. Open Res. Softw.*, 5, 15, <https://doi.org/10.5334/jors.151>, 2017.

1021 Revels, J., Lubin, M., and Papamarkou, T.: Forward-Mode automatic differentiation in Julia,
1022 <https://doi.org/10.48550/arXiv.1607.07892>, 2016.

1023 Richards, C. M. and Pallud, C.: Kinetics of sulfate reduction and sulfide precipitation rates in sediments of a bar-built
1024 estuary (Pescadero, California), *Water Res.*, 94, 86–102, <https://doi.org/10.1016/j.watres.2016.01.044>, 2016.

1025 Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T., and Meyer, R. L.: Application of the isotope pairing
1026 technique in sediments where anammox and denitrification coexist, *Limnol. Oceanogr. Methods*, 1, 63–73,
1027 <https://doi.org/10.4319/lom.2003.1.63>, 2003.

1028 Robert, C. P.: The Bayesian choice - From decision-theoretic foundations to computational implementation, 2nd ed.,
1029 Springer, New York, 2007.

1030 Rooze, J. and Meile, C.: The effect of redox conditions and bioirrigation on nitrogen isotope fractionation in marine
1031 sediments, *Geochim. Cosmochim. Acta*, 184, 227–239, <https://doi.org/10.1016/j.gca.2016.04.040>, 2016.

1032 Sigman, D. M. and Fripiat, F.: Nitrogen isotopes in the ocean, in: *Encyclopedia of Ocean Sciences*, 3rd ed., 1–5, Elsevier,
1033 <https://doi.org/10.1016/B978-0-12-409548-9.11605-7>, 2019.

1034 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A bacterial method for the
1035 nitrogen isotopic analysis of nitrate in seawater and freshwater, *Anal. Chem.*, 73, 4145–4153,
1036 <https://doi.org/10.1021/ac010088e>, 2001.

1037 Steinsberger, T., Schwefel, R., Wüest, A., and Müller, B.: Hypolimnetic oxygen depletion rates in deep lakes: Effects of
1038 trophic state and organic matter accumulation, *Limnol. Oceanogr.*, 65, 3128–3138, <https://doi.org/10.1002/lno.11578>, 2020.

1039 Strous, M., Gijs Kuenen, J., and Jetten, M. S. M.: Key physiology of anaerobic ammonium oxidation, *Appl. Environ.
1040 Microbiol.*, 65, 3248–3250, <https://doi.org/10.1128/AEM.65.7.3248-3250.1999>, 1999.

1041 Su, X., Zhu, X., Li, J., Wu, L., Li, X., Zhang, Q., and Peng, Y.: Determination of partial denitrification kinetic model
1042 parameters based on batch tests and metagenomic sequencing, *Bioresour. Technol.*, 379, 128977,
1043 <https://doi.org/10.1016/j.biortech.2023.128977>, 2023.

1044 Suenaga, T., Aoyagi, R., Sakamoto, N., Riya, S., Ohashi, H., Hosomi, M., Tokuyama, H., and Terada, A.: Immobilization of
1045 Azospira sp. strain I13 by gel entrapment for mitigation of N₂O from biological wastewater treatment plants: Biokinetic
1046 characterization and modeling, *J. Biosci. Bioeng.*, 126, 213–219, <https://doi.org/10.1016/j.jbiosc.2018.02.014>, 2018.

1047 Sun, X., Buchanan, P., Zhang, I. H., Roman, M. S., Babbin, A. R., and Zakem, E.: Ecological dynamics explain modular
1048 denitrification in the ocean, *Proc. Natl. Acad. Sci. U. S. A.*, 121, e2417421121, <https://doi.org/10.1073/pnas.2417421121>,
1049 2024.

1050 Thunell, R. C., Sigman, D. M., Muller-Karger, F., Astor, Y., and Varela, R.: Nitrogen isotope dynamics of the Cariaco
1051 Basin, Venezuela, *Global Biogeochem. Cycles*, 18, GB3001, <https://doi.org/10.1029/2003GB002185>, 2004.

1052 Vihola, M.: Robust adaptive Metropolis algorithm with coerced acceptance rate, *Stat. Comput.*, 22, 997–1008,
1053 <https://doi.org/10.1007/s11222-011-9269-5>, 2012.

1054 Vihola, M.: Ergonomic and reliable Bayesian inference with adaptive Markov Chain Monte Carlo, in: Wiley StatsRef:
1055 Statistics Reference Online, Wiley, 1–12, <https://doi.org/10.1002/9781118445112.stat08286>, 2020.

1056 Wang, S., Pi, Y., Song, Y., Jiang, Y., Zhou, L., Liu, W., and Zhu, G.: Hotspot of dissimilatory nitrate reduction to
1057 ammonium (DNRA) process in freshwater sediments of riparian zones, *Water Res.*, 173, 115539,
1058 <https://doi.org/10.1016/j.watres.2020.115539>, 2020.

1059 Wankel, S. D., Buchwald, C., Ziebis, W., Wenk, C. B., and Lehmann, M. F.: Nitrogen cycling in the deep sedimentary
1060 biosphere: Nitrate isotopes in porewaters underlying the oligotrophic North Atlantic, *Biogeosciences*, 12, 7483–7502,
1061 <https://doi.org/10.5194/bg-12-7483-2015>, 2015.

1062 Wenk, C. B., Zopfi, J., Blees, J., Veronesi, M., Niemann, H., and Lehmann, M. F.: Community N and O isotope
1063 fractionation by sulfide-dependent denitrification and anammox in a stratified lacustrine water column, *Geochim.
1064 Cosmochim. Acta*, 125, 551–563, <https://doi.org/10.1016/j.gca.2013.10.034>, 2014.

1065 Wenk, C. B., Frame, C. H., Koba, K., Casciotti, K. L., Veronesi, M., Niemann, H., Schubert, C. J., Yoshida, N., Toyoda, S.,
1066 Makabe, A., Zopfi, J., and Lehmann, M. F.: Differential N₂O dynamics in two oxygen-deficient lake basins revealed by
1067 stable isotope and isotopomer distributions, *Limnol. Oceanogr.*, 61, 1735–1749, <https://doi.org/10.1002/lno.10329>, 2016.

1068 Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., and Siegrist, H.: Mechanisms of N₂O production in biological
1069 wastewater treatment under nitrifying and denitrifying conditions, *Water Res.*, 46, 1027–1037,
1070 <https://doi.org/10.1016/j.watres.2011.11.080>, 2012.

1071 Wyffels, S., Van Hulle, S. W. H., Boeckx, P., Volcke, E. I. P., Van Cleemput, O., Vanrolleghem, P. A., and Verstraete, W.:
1072 Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR), *Biotechnol.
1073 Bioeng.*, 86, 531–542, <https://doi.org/10.1002/bit.20008>, 2004.

1074 Xu, H., Song, G., Yang, S., Zhu, R., Zhang, G., and Liu, S.: Benthic nitrogen cycling in the deep ocean of the Kuroshio
1075 Extension region, *Front. Mar. Sci.*, 9, 997810, <https://doi.org/10.3389/fmars.2022.997810>, 2022.

1076 Xu, K., Ge, H., Tebbutt, W., Tarek, M., Trapp, M., and Ghahramani, Z.: AdvancedHMC.jl: A robust, modular and efficient
1077 implementation of advanced HMC algorithms, 2nd Symposium on Advances in Approximate Bayesian Inference,
1078 Proceedings of Machine Learning Research 118, 1–10, 2020.

1079 Yuan, B., Guo, M., Zhou, X., Li, M., and Xie, S.: Defining the sources and the fate of nitrate by using dual isotopes and a
1080 Bayesian isotope mixing model: Water–nitrate management in cascade dams of Lancang river, *Sci. Total Environ.*, 886,
1081 163995, <https://doi.org/10.1016/j.scitotenv.2023.163995>, 2023.

1082 Zhang, L., Altabet, M. A., Wu, T., and Hadas, O.: Sensitive measurement of NH₄⁺ ¹⁵N/¹⁴N ($\delta^{15}\text{NH}_4^+$) at natural abundance
1083 levels in fresh and saltwaters, *Anal. Chem.*, 79, 5297–5303, <https://doi.org/10.1021/ac070106d>, 2007.