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Abstract 11 

The combination of various nitrogen (N) transformation pathways (mineralization, nitrification, denitrification, DNRA, 12 

anammox) modulates the fixed-N availability in aquatic systems, with important environmental consequences. Several 13 

models have been developed to investigate specific processes and estimate their rates, especially in benthic habitats, known 14 

hotspots for N-transformation reactions. Constraints on the N cycle are often based on the isotopic composition of N species, 15 

which integrates signals from various reactions. However, a comprehensive benthic N-isotope model, encompassing all 16 

canonical pathways in a stepwise manner, and including nitrous oxide, was still lacking. Here, we introduce a new diagenetic 17 

N-isotope model to analyse benthic N processes and their N-isotopic signatures, validated using field data from the 18 

porewaters of the oligotrophic Lake Lucerne (Switzerland). As parameters in such a complex model cannot all uniquely be 19 

identified from sparse data alone, we employed Bayesian inference to integrate prior parameter knowledge with data-derived 20 

information. For parameters where marginal posterior distributions considerably deviated from prior expectations, we 21 

performed sensitivity analyses to assess the robustness of these findings. Alongside developing the model, we established a 22 

methodology for its effective application in scientific analysis. For Lake Lucerne, the model accurately replicated observed 23 

porewater N-isotope and concentration patterns. We identified aerobic mineralization, denitrification, and nitrification as 24 

dominant processes, whereas anammox and DNRA played a less important role in surface sediments. Among the estimated 25 

N isotope effects, the value for nitrate reduction during denitrification was unexpectedly low (2.8±1.1‰). We identified the 26 

spatial overlap of multiple reactions to be influential for this result.  27 



3 
 

1 Introduction 28 

Nitrogen (N) is an essential element for all living organisms (Xu et al., 2022) and often limits primary production in aquatic 29 

systems (Kessler et al., 2014). In order to meet the global demand for fixed N (nitrate, NO3-, and ammonium, NH4+), 30 

industrial fixation of atmospheric dinitrogen (N2) through the Haber-Bosch process now exceeds biological N2 fixation, with 31 

unforeseeable consequences regarding the ability of the environment to remove the excess fixed N, leaving the global N 32 

cycle imbalanced (Kessler et al., 2014). High fixed-N in aquatic systems has detrimental environmental consequences (Denk 33 

et al., 2017; Yuan et al., 2023), including eutrophication, ecosystem deterioration, and greenhouse gas emissions (e.g., 34 

nitrous oxide, N2O). Thus, understanding the fate of fixed N in aquatic ecosystems and quantifying N fluxes are crucial for 35 

global budget estimates (Pätsch and Kühn, 2008). 36 

In aquatic systems, benthic habitats are important hotspots in the transformation of large amounts of fixed N (Dale et al., 37 

2019; Pätsch and Kühn, 2008; Xu et al., 2022), owing to sharp oxyclines and the co-occurrence of aerobic and anaerobic 38 

processes. The active N cycle in these sediments is driven by the flux of organic matter (OM) from the photic zone along 39 

with elevated concentrations of other electron donors (Ibánhez and Rocha, 2017; Wankel et al., 2015). Aerobic reactions, 40 

such as nitrification (stepwise NH4+ oxidation to NO3- via nitrite, NO2-, with N2O as by-product), are usually restricted to the 41 

top few millimetres in OM-rich sediments (e.g., in small lakes) or extend several centimetres deep in OM-poor sediments 42 

(e.g., in large oligotrophic lakes and the ocean) (Pätsch and Kühn, 2008; Wankel et al., 2015). The fate of NO3-, produced via 43 

nitrification either locally in the sediments or in the water column, determines a system’s capacity to function as an efficient 44 

N sink (Wankel et al., 2015). Denitrification, the stepwise reduction of NO3- to N2 (via NO2- and N2O), has been identified as 45 

a key pathway for anaerobic N removal. Additionally, anammox, the anaerobic oxidation of NH4+ to N2 using NO2-, can 46 

contribute to N loss (Ibánhez and Rocha, 2017; Kampschreur et al., 2012; Wankel et al., 2015), especially in oligotrophic 47 

lake sediments (Crowe et al., 2017). In anammox, partial oxidation of NO2- generates NO3- as a by-product to provide 48 

reducing equivalents for the fixation of inorganic carbon (C) (Brunner et al., 2013; Strous et al., 1999). Counteracting N 49 

removal by anammox and denitrification, the dissimilatory NO3- reduction to NH4+ (DNRA) contributes to N retention 50 

(Denk et al., 2017; Ibánhez and Rocha, 2017; Rooze and Meile, 2016). The relative balance between these N-transforming 51 

reactions is strongly influenced by environmental conditions, particularly the ratio of organic C to NO3- and oxygen (O2) 52 

availability. For instance, DNRA may be predominant under high C:NO3- ratios (Ibánhez and Rocha, 2017; Kraft et al., 53 

2011; Wang et al., 2020). Oxygen is a central regulator in this context: it controls the coupling of nitrification with 54 

denitrification, anammox and DNRA, and modulates N2O production and consumption, with peak N2O yields typically 55 

occurring at the oxic-anoxic interface (Ni et al., 2011). The spatial overlap of aerobic and anaerobic N cycling processes at 56 

this transition zone in sediments often results in very low concentrations of metabolic intermediates (e.g., N2O) in porewater, 57 

complicating their measurements in natural benthic environments. This is particularly true for the analysis of natural-58 

abundance DIN isotopologues, which provide critical insights into N-cycling reactions and pathways. However, measuring 59 

these isotopologues, especially low-concentration intermediates in porewater, is technically challenging, if not impossible at 60 
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present. To overcome these limitations, isotope modelling has become an essential tool for quantifying rapid N turnover at 61 

the oxic-anoxic interface, and for evaluating environmental controls on N dynamics and isotope signatures across diverse 62 

settings (Denk et al., 2017; Wankel et al., 2015). 63 

Natural abundance stable isotope measurements provide insights into the N cycle, and the fluxes within its pathways, as 64 

microbial processes impart unique isotopic imprints on the involved N pools (Lehmann et al., 2003; Rooze and Meile, 2016; 65 

Wankel et al., 2015). In most microbial processes, the isotopically lighter molecules are preferentially consumed, yielding 66 
15N-depleted products and 15N-enriched substrates (normal N-isotopic fractionation) (Kessler et al., 2014), with few 67 

exceptions, such as NO2- oxidation, which occurs with an inverse N isotope fractionation (Casciotti, 2009; Martin et al., 68 

2019). The isotopic composition of a given N pool is expressed in d-notation, d15N (‰ vs. std) = [(Rsample/Rstd) – 1] x 1000, 69 

where R is the isotope ratio 15N/14N, and the internationally recognized standard is atmospheric N2 (Denk et al., 2017; Martin 70 

et al., 2019). The extent of the isotopic fractionation for a reaction is quantified using the isotope effect, e, defined as e (‰) = 71 

[1 – (Hk/Lk)] x 1000, where Hk and Lk are the specific reaction rates for the isotopically heavy and light molecules, 72 

respectively (Sigman and Fripiat, 2019). For instance, d15N-NO2- analysis can help differentiate reductive and oxidative 73 

pathways of NO2- consumption, as they are characterised by a normal and an inverse kinetic isotope effect, respectively 74 

(Dale et al., 2019; Martin et al., 2019; Rooze and Meile, 2016). Despite considerable efforts to estimate isotope effects for 75 

most N-transformation processes (Denk et al., 2017), isotope effects estimated in batch cultures often differ from in situ 76 

measurements (Martin et al., 2019). To date, only limited efforts have been made to develop comprehensive benthic isotope 77 

models that integrate multiple N-transformation processes in a stepwise manner, and assess the expression of their isotope 78 

effects in the porewater of aquatic sediments, validated with observational data (Denk et al., 2017; Rooze and Meile, 2016). 79 

Existing N-isotope models address specific aspects of the N cycle (Denk et al., 2017), such as denitrification (Kessler et al., 80 

2014; Lehmann et al., 2003; Wankel et al., 2015), NO2- oxidation and reduction (Buchwald et al., 2018) or N2O dynamics 81 

(Ni et al., 2011; Wunderlin et al., 2012). As denitrification is the primary pathway for fixed-N loss in many aquatic systems, 82 

models integrating dual NO3- isotopes (Lehmann et al., 2003; Wankel et al., 2015) have been used for example, to constrain 83 

its partitioning between water-column and benthic denitrification (Lehmann et al., 2005), as well as the contribution of 84 

regenerated NO3- supporting denitrification (Lehmann et al., 2004). Rooze and Meile (2016) combined isotope data with a 85 

reaction-transport model to investigate the influence of hydrodynamics on fixed-N removal, highlighting enhanced coupling 86 

of nitrification-N2 production by benthic infauna. Buchwald et al. (2018) used dual NO3- and NO2- isotope analyses, and a 87 

reaction-diffusion model to demonstrate the tight coupling of NO3- reduction and NO2- oxidation near oxic-anoxic interfaces, 88 

emphasizing the central role of NO2- in N recycling. In contrast, most N2O modelling efforts (primarily concentration-based 89 

models) to date have focused on engineered systems such as wastewater treatment, where they have been used to assess N2O 90 

production pathways under variable conditions, and to minimize its emissions (Ni et al., 2011; Wunderlin et al., 2012). 91 

Challenges in measuring N2O isotopologues in natural settings, especially in sediment porewaters, have limited the broader 92 

application of N2O isotopic approaches and led to the exclusion of N2O from benthic N-isotope modelling efforts so far. 93 

Nonetheless, given the key role of N2O in the N cycle, and its sensitivity to redox conditions, there is a growing need for 94 
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modelling frameworks that integrate multi-species N-isotope dynamics, even in the absence of direct measurements of N-99 

cycle intermediate like NO2- and N2O to more accurately capture the interconnected nature of N transformations in natural 100 

systems. 101 

With this study, we introduce a comprehensive 1-D diffusion-reaction model, encompassing all canonical N-transformation 102 

processes and most DIN isotopologues, to assess the role of distinct environmental factors (e.g., OM reactivity, bioturbation) 103 

in shaping porewater N dynamics and the N isotopic signatures the different N transformations (and combinations thereof) 104 

generate. Furthermore, by considering the stepwise nature of the N-cycling pathways, the model quantifies and isotopically 105 

characterizes key intermediates (i.e., N2O, NO2-), which serve as substrates for subsequent reactions (Martin et al., 2019). 106 

Moreover, the model acts as a valuable research tool for analysing process couplings (e.g., DNRA-anammox interactions) 107 

(Dale et al., 2019; Hines et al., 2012), which are crucial for accurately estimating N removal and recycling, and can influence 108 

the apparent isotope effects of NO3- and NO2-. Incorporating N2O isotopologues as state variables enables the model to 109 

resolve the relative importance of N2O producing mechanisms across small-scale benthic oxic-anoxic interfaces, and to 110 

quantify their contribution to sedimentary N2O emissions. 111 

The application of a comprehensive diagenetic N isotope model to measured porewater profiles of selected inorganic N 112 

compounds often results in parameter identifiability issues. Specifically, similar fits to the observed data might be achieved 113 

with comparable accuracy using different parameter sets, each yielding distinct transformation rates. To reduce the risk of 114 

drawing erroneous conclusions from such identifiability problems, we employed the following modelling strategies: 115 

• Use of prior knowledge 116 

Prior knowledge informed both the development of the model structure and the selection of parameter values. The 117 

model parameterization was adapted as deemed necessary to effectively integrate this prior knowledge. This 118 

approach aims to produce a plausible representation of the mechanisms governing the data. 119 

• Consideration of uncertainty 120 

Uncertainty in model parameters was explicitly accounted for using epistemic probability distributions. Bayesian 121 

inference (Bernardo and Smith, 1994; Gelman et al., 2013; Robert, 2007) was employed to combine prior 122 

knowledge with information obtained from observational data. The resulting posterior distribution of the parameters 123 

and calculated results provide a comprehensive uncertainty description, which is, however, still conditioned on prior 124 

information about the model structure and parameters. 125 

• Sensitivity analysis 126 

To test the robustness of key results against modelling assumptions, we assessed their sensitivity to the choice of 127 

prior probability distribution of the model parameters and to the inclusion of specific active processes within the 128 

model.  129 

Since the numerical implementation of Bayesian inference requires the computationally intensive Markov Chain Monte 130 

Carlo (MCMC) sampling technique (Andrieu et al., 2003), an efficient model implementation is required. To meet this need, 131 

we implemented the model in Julia (Bezanson et al., 2017) (https://julialang.org), a high-performance programming 132 
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language. This choice also enables the use of automatic differentiation, which supports advanced MCMC techniques like 134 

Hamiltonian Monte Carlo (HMC) (Betancourt, 2017; Neal, 2011). The model was tested using field measurements from 135 

oligotrophic Lake Lucerne. It is important to emphasize that this isotope model is designed as a research tool, rather than a 136 

predictive instrument. Its primary purpose is to test hypotheses and assumptions related to the biogeochemical controls on N 137 

isotope signatures in natural environments, and to assess the identifiability of process rates and N isotope effects from 138 

observational data. 139 

2 Model description 140 

2.1 Model formulation 141 

A one-dimensional diffusion-reaction model was developed to simulate the concentrations of inorganic N compounds (NO3-, 142 

NO2-, NH4+, N2, N2O), distinguishing between 14N and 15N isotopes (14NO3-, 15NO3-, 14NO2-, 15NO2-, 14NH4+, 15NH4+, 14N2, 143 
14N15N, 15N2, 14N2O, 14N15NO, 15N2O), as well as for O2 and sulfate (SO42-) concentrations. Their production and 144 

consumption rates are described by incorporating key processes of the canonical N cycle: aerobic mineralization, 145 

denitrification, nitrification, anammox, DNRA, mineralization by SO42- reduction, and anaerobic mineralization (other than 146 

SO42--driven) (Fig. 1). All reactions (Table 1) are described using the general formula: 147 

     rate = kmax · limitation · inhibition  (1) 148 

where kmax represents the maximum conversion rate under ideal conditions (in µM d-1). The terms for limitation by substrate 149 

X and inhibition by substance Y for the process i are defined following Michaelis-Menten kinetics (Martin et al., 2019): 150 

  limitation = ["]
$!,#%["]

 (2)     inhibition = $$,#
$$,#%[&]

  (3) 151 

where [X] and [Y] are the concentrations (in µM) of substances X and inhibitor Y, respectively, while KX,i and KY,i are their 152 

respective half-saturation and inhibition constants (in µM) for process i, respectively. While the model supports exponential 153 

equations for limitation and inhibition terms, Michaelis-Menten kinetics were chosen for this study, as they are more 154 

commonly employed in N models (Rooze and Meile, 2016). The specific reaction rate equations are implemented taking into 155 

account the concentrations of 14N, 15N, 14N14N, 14N15N, and 15N15N species separately for the limitation term. For 15N-156 

containing species, specific reaction rates are reduced by (1-e/1000) relative to 14N-containing species, reflecting the isotope 157 

effect associated with a given reaction (detailed descriptions of the model processes are provided in Appendix A: Model 158 

processes and stoichiometry). 159 

Molecular diffusion is modelled taking into account the reduced solute movement due to tortuosity (Burdige, 2007). 160 

Additionally, bioturbation is included as a transport term enhancing diffusion, with its influence exponentially decreasing 161 

with depth. Boundary conditions are set based on observed concentrations of N compounds, O2, SO42- at the upper boundary, 162 

and by zero fluxes at the lower boundary, except for NH4+. The NH4+ flux (and its d15NFNH4) was jointly estimated with the 163 Deleted: ,164 
Deleted: t165 
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model parameters, as the field data display a clear NH4+ concentration gradient at 5 cm. Total N, 14N and 15N concentrations, 167 

along with their fluxes, are used for model parameterization (see Appendix B: Reaction-diffusion model for details).  168 

The model is formulated as a dynamic model, but simulated to steady-state for comparison with observational data. 169 

Concentrations of 14N- and 15N-containing compounds are converted to total concentrations and d15N.  170 

 171 
Figure 1: Simplified scheme of the N-transformation reactions considered for the diagenetic isotope model described in this paper. 172 
Continuous lines identify aerobic processes, while dashed lines indicate anaerobic processes. The state variables explicitly modelled 173 
as substrates for the considered reactions are highlighted with outlined boxes; O2 is modelled as a state variable and as a regulator 174 
of aerobic and anaerobic processes; organic matter (OM) is not a state variable per se within the framework of this model, but acts 175 
as a source of N for the remaining processes. The isotopic fractionation of each process is shown using + and – signs to represent 176 
the 15N-enriching and 15N-depleting effects of the respective reactions. 177 

2.2 Description of modelled transformation processes 178 

This section outlines the modelled processes for 14N and 14N14N compounds (Table 1). A comprehensive overview of the 179 

transformation processes for all isotopologues, and stoichiometric relations is provided in Appendix A: Model processes and 180 

stoichiometry. 181 

Mineralization of OM, the sole external N source, is differentiated in the model according to the specific electron acceptor 182 

involved: aerobic mineralization (O2), denitrification and DNRA (NO3-), SO42- reduction, and anaerobic mineralization. The 183 

latter encompasses all remaining redox species (i.e., other than O2, NO3-, and SO42-) below the nitracline (e.g., manganese, 184 

iron oxides, carbon dioxide).  185 

Denitrification is modelled as a three-step process: (1) NO3- to NO2-; (2) NO2- to N2O; and (3) N2O to N2. The first step, 186 

typically regarded as the rate-limiting step (Kampschreur et al., 2012), is the primary control on the overall expression of the 187 

N isotope effect (Kessler et al., 2014; Rooze and Meile, 2016). To prevent unrealistic rates, subsequent steps are constrained 188 

by setting kDen2 = fDen2 × kDen1 and kDen3 = fDen3 × kDen1, and specifying priors for fDen2 and fDen3. The re-parameterization of the 189 

second and third steps using the fDen2Den1 and fDen3Den1 factors corresponds to exactly the same model without any 190 

approximation or simplification. It serves solely to facilitate the specification of priors, as more knowledge is typically 191 

OM
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available about ratios of maximum rates (i.e., fDen2Den1 = kDen2/kDen1) than about the absolute maximum rates themselves. The 192 

NO3- N isotope effect during benthic denitrification is known to be suppressed in the overlying water due to diffusion 193 

limitation (Dale et al., 2022; Kessler et al., 2014; Lehmann et al., 2003), though its expression at the porewater level remains 194 

less well constrained (Wankel et al., 2015). Transiently accumulating intermediates, such as N2O, that can escape to the 195 

overlying water and alter benthic N fluxes (Rooze and Meile, 2016), are also considered. Lastly, to ensure mass balance, the 196 

model accounts for clumped (doubly substituted; e.g., 15N15NO and 15N15N) isotopocules, but does not distinguish between 197 

isotopomers (i.e., 14N15NO and 15N14NO) due to lack of N2O isotope data needed for model validation. For the purpose of 198 

comparison with previous N models, a simplified one-step denitrification pathway (NO3- to N2 with no release of NO2- or 199 

N2O into the environment) approach is also implemented in the model code.  200 

Nitrification is modelled as a two-step process: (1a) NH4+ to NO2-; (1b) NH4+ to N2O; (2) NO2- to NO3-. As for 201 

denitrification, the second step of nitrification is constrained to prevent unrealistic rates: kNit2 = fNit2 × kNit1, with specifying a 202 

prior for fNit2. N2O production yield during the first step is O2-dependent, and is modelled accordingly: 203 

     𝑓'()_'+,- =	
.	0

[)%]%0
  (4) 204 

where b and a are empirical parameters derived from (Ji et al., 2018). N2O production also occurs via nitrification-205 

denitrification, implicitly modelled by allowing reaction coupling via the intermediate NO2-. The expression of isotope 206 

effects depends on substrate availability and reaction completion. For instance, incomplete nitrification has been shown to 207 

result in isotopically heavy NH4+ efflux from the sediments (Dale et al., 2022; Lehmann et al., 2004; Rooze and Meile, 208 

2016). However, similar phenomena for N2O and NO2- remain poorly understood. 209 

The limited understanding of porewater N isotope dynamics, especially for processes other than denitrification, hinges on the 210 

scarcity of isotope data for crucial N species like NH4+ and NO2- in natural settings (Martin et al., 2019; Wankel et al., 2015). 211 

In the present model, we investigated the importance of these solutes, and how N-turnover processes like DNRA and 212 

anammox shape the distribution of their N isotopes. DNRA is modelled as a two-step process: (1) NO3- to NO2-; and (2) 213 

NO2- to NH4+. This approach separates the impact of NO2- reduction on NH4+, and allows comparison of NO2- isotopic 214 

signatures induced by denitrification, DNRA, and anammox. Anammox is modelled to include both the comproportionation 215 

of NH4+ and NO2- to N2 (main reaction, “m”), and the NO3- production via NO2- oxidation (side reaction, “s”) (0.3 mol NO3- 216 

produced per 1 mol NH4+ and 1.3 mol NO2-) (Tables 1 and A1) (Martin et al., 2019), which imparts a strong inverse isotope 217 

fractionation (Brunner et al., 2013; Magyar et al., 2021).  218 

The relative importance of reductive NO3- pathways is constrained by altering maximum conversion rates, k, as: kDNRA1 = 219 

fDNRA1,Den1 × kDen1; kDNRA2 = fDNRA2,Den2 × kDen2; kAnam = fAnam,Den2 × kDen2, where prior information on f factors was obtained from 220 

experimental rate measurements (see below). Altogether these reactions provide a comprehensive overview of N isotope 221 

dynamics in porewater and enable the assessment of influential environmental conditions in shaping them. 222 
Table 1: Chemical equations and reaction rate formulations for 14N and 14N14N compounds across all modelled processes. The 223 
rates for 15N, 15N14N, and 15N15N are formulated analogously by replacing the concentration of the isotopologue of interest as 224 
needed. The turnover rates for 15N-containing species are scaled by a factor of (1-e/1000), as outlined in the text. The complete set 225 
of equations including all isotopic compositions, and the process stoichiometry is provided in Appendix A: Model processes and 226 
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stoichiometry. Anaerobic mineralization encompasses OM degradation coupled to iron and manganese reduction, as well as 227 
through methanogenesis.  228 

Reaction Equation Reaction rate 

Aerobic 
mineralization 

C106H263O110N16P + 106O2 → 106HCO3
- + 16NH4

+ + HPO4
2− + 92H+ 

 
𝑟!"#$% = 𝑘!"#$% 	

[𝑂&]
𝐾$&,!"#$% +	[𝑂&]

 

Anaerobic 
Mineralization 

C106H263O110N16P + 212MnO2 + 120H2O  → 106HCO3
- + 16NH4

+ + HPO4
2- + 212Mn2+ + 332OH- 

C106H263O110N16P + 424FeOOH + 120H2O  → 106HCO3
- + 16NH4

+ + HPO4
2- + 424Fe2+ + 332OH- 

C106H263O110N16P → 53CH4
+ + 53HCO3

- + 16NH4
+ + HPO4

2- + 53H2O + 14H+ 

𝑟!"#(#)* = 𝑘!"#(#)*
𝐾+$,,!"#(#)*

𝐾+$,,!"#(#)* + * 𝑁𝑂-.
,
/
, + * 𝑁𝑂-0

,
/
,
	

𝐾$&,!"#(#)*
𝐾$&,!"#(#)* +	[𝑂&]

 

Sulfate Reduction 
coupled to 
Mineralization 

C106H263O110N16P + 53SO4
2- + 15H+ → 106HCO3

- + 16NH4
+ + HPO4

2- + 53H2S 

𝑟&'()*+,-./ = 𝑘&'()*+,-./
𝐾012,&'()*+,-./

𝐾012,&'()*+,-./ + & 𝑁𝑂34
2
5
) + & 𝑁𝑂36

2
5
)
	

𝐾17,&'()*+,-./
𝐾17,&'()*+,-./ +	[𝑂7]

	
[𝑆𝑂475]

𝐾)14,&'()*+,-./ +	[𝑆𝑂475]
 

Nitrification      [1a] NH4
+ + 1.5O2 → NO2

- + 2H+ + H2O 

 
𝑟+"1-) = 𝑘+"1--1 − 𝑓+&$,+"1-1

* 𝑁𝐻-.
.
2
,

𝐾+3.,+"1- + * 𝑁𝐻-.
.
2
, + * 𝑁𝐻-0

.
2
,
	

[𝑂&]
𝐾$&,+"1- +	[𝑂&]

 

                          [1b] NH4
+ + O2 → 0.5N2O + H+ + 1.5H2O 

 
𝑟+"1-4 = 𝑘+"1-	𝑓+&$,+"1- * 𝑁𝐻-.

.
2
,	* 𝑁𝐻-.

.
2
,

-𝐾+3.,+"1- + * 𝑁𝐻-.
.
2
, + * 𝑁𝐻-0

.
2
,1
& 	

[𝑂&]
𝐾$&,+"1- +	[𝑂&]

 

                            [2] NO2
- + 0.5O2 → NO3

- 

 
𝑟+"1& = 𝑘+"1&

	* 𝑁𝑂-.
&
/
,

𝐾+$&,+"1& + * 𝑁𝑂-.
&
/
, + * 𝑁𝑂-0

&
/
,
	

[𝑂&]
𝐾$&,+"1& +	[𝑂&]

 

Denitrification    [1] 5C106H263O110N16P + 424NO3
- → 212HCO3

- + 32NH4
+ + 2HPO4

2− + 424NO2
− + 184H+ + 3C106H263O110N16P 

 
𝑟5*#- = 𝑘5*#- * 𝑁𝑂-.

,
/
,

𝐾+$,,5*#- + * 𝑁𝑂-.
,
/
, + * 𝑁𝑂-0

,
/
,
	

𝐾$&,5*#-
𝐾$&,5*#- +	[𝑂&]

 

                            [2] 3C106H263O110N16P + 424NO2
- + 240H+ → 212HCO3

- + 32NH4
+ + 2HPO4

2− + 212N2O + 212H2O +  

C106H263O110N16P 

 
𝑟5*#& = 𝑘5*#& * 𝑁𝑂-.

&
/
,
&

-𝐾+$&,5*#& + * 𝑁𝑂-.
&
/
, + * 𝑁𝑂-0

&
/
,1
& 	

𝐾$&,5*#&
𝐾$&,5*#& +	[𝑂&]
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                            [3] C106H263O110N16P + 212N2O → 106HCO3
- + 16NH4

+ + HPO4
2− + 212N2 + 92H+ 

 
𝑟5*#, = 𝑘5*#, * 𝑁&𝑂-.-.

,
𝐾+&$,5*#, + * 𝑁&𝑂-.-.

, + * 𝑁&𝑂-.-0
, + * 𝑁&𝑂-0-0

,
	

𝐾$&,5*#,
𝐾$&,5*#, +	[𝑂&]

 

DNRA                 [1] C106H263O110N16P + 212NO3
- → 106HCO3

- + 16NH4
+ + HPO4

2− + 212NO2
− + 92H+ 

 
𝑟5+6(- = 𝑘5+6(- * 𝑁𝑂-.

,
/
,

𝐾+$,,5+6(- + * 𝑁𝑂-.
,
/
, + * 𝑁𝑂-0

,
/
,
	

𝐾$&,5+6(-
𝐾$&,5+6(- +	[𝑂&]

 

                            [2] 3C106H263O110N16P + 212NO2
- + 212H2O + 148H+→ 318HCO3

- + 260NH4
+ + 3HPO4

2−  

 
𝑟5+6(& = 𝑘5+6(& * 𝑁𝑂-.

&
/
,

𝐾+$&,5+6(& + * 𝑁𝑂-.
&
/
, + * 𝑁𝑂-0

&
/
,
	

𝐾$&,5+6(&
𝐾$&,5+6(& +	[𝑂&]

 

Anammox NH4
+ + 1.3NO2

- + 0.15CO2 → N2 + 0.3NO3
- + 0.15CH2O + 1.85H2O 

 
𝑟(#)7 = 𝑘(#)7 * 𝑁𝐻-.

.
2
,

𝐾+3.,(#)7 + * 𝑁𝐻-.
.
2
, + * 𝑁𝐻-0

.
2
,

* 𝑁𝑂-.
&
/
,

𝐾+$&,(#)7 + * 𝑁𝑂-.
&
/
, + * 𝑁𝑂-0

&
/
,
	

𝐾$&,(#)7
𝐾$&,(#)7 +	[𝑂&]

 

2.3 Model assumptions 229 

The model builds on the following considerations and assumptions: 230 

i. The inputs of sinking OM and associated advective transport relative to the sediment surface are not explicitly 231 

modelled, as the dissolved O2 and N-compound profiles tend to reach quasi-steady state on short timescales (days to 232 

weeks). This simplification may not be valid for continental shelf sediments, where advection dominates solute 233 

movement due to high sediment permeability (Rooze and Meile, 2016). Therefore, in our model, porewater profiles 234 

are shaped primarily by molecular diffusion and bioturbation (the latter approximated as enhanced diffusion), along 235 

with reaction processes. 236 

ii. Hinging on assumption i., the rates of OM-degrading processes are assumed to be limited by the availability of 237 

oxidants and not of OM, as in Kessler et al. (2014), an assumption that holds for sediments with sufficient readily 238 

degradable OM, but may break down at great depths. As OM is neither a state variable nor a limiting substrate, its 239 

production and consumption rates are not tracked and are considered uninfluential within the current model.  240 

iii. Microorganisms involved in N-transformation pathways are not explicitly modelled, meaning that maximum 241 

conversion rates, k, represent a combination of bacterial maximum specific growth rates and abundance. These 242 

parameters likely vary significantly across systems, due to differences in OM loading. Variabilities in cell-specific 243 

rates, and consequently in isotope effects, over depth and substrate availability were not considered. 244 

iv. N assimilation is not included, which is plausible if the turnover rates of the modelled processes are considerably 245 

higher than the N assimilation rates. 246 

v. Maximum specific conversion rates for all reactions are constant with depth, implying uniform bacterial abundance 247 

and activity across the sediment layer affected by any given process. 248 
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vi. Limitation and inhibition kinetics are modelled using Michaelis-Menten functions, as they are commonly employed 250 

in N-cycle models (Rooze and Meile, 2016); exponential equations are provided within the code as an alternative 251 

approach, depending on user preference. 252 

vii. OM composition is approximated by the Redfield ratio (C:N:P = 106:16:1), used to estimate the fraction of NH4+ 253 

released during OM mineralization, g. 254 

viii. Anaerobic mineralization includes all processes involving redox species below the nitracline (e.g., manganese, iron, 255 

and carbon dioxide) with the exception of SO42- reduction, with no distinction in reaction rate for different oxidants. 256 

Reduction of SO42- is modelled separately, as it can occur at faster rates than oxidation by iron(III), Fe3+, and 257 

manganese, Mn4+, in some lacustrine systems (Steinsberger et al., 2020), and is the dominant anaerobic 258 

mineralization process in marine settings. 259 

ix. Re-oxidation of reduced species other than NH4+ and NO2- (e.g., Fe2+, Mn2+, H2S, CH4) is neglected in the O2 260 

budget for the modelled interval; this is appropriate where their upward fluxes are minor, but may underestimate O2 261 

demand in settings with substantial reduced-species fluxes. Future users are encouraged to adapt the model to their 262 

research questions and dataset, including adding processes and state variables, provided that they can be 263 

constrained. 264 

x. OM mineralization occurs with no N isotopic fractionation; that is, the released NH4+ has the same N isotopic 265 

composition of OM, which is a model parameter considered for estimation. 266 

xi. Diffusivities of isotopologues are considered identical, as their differences have been reported to be minimal 267 

(Lehmann et al., 2007; Wankel et al., 2015). 268 

xii. Bioturbation enhances diffusion equally for all modelled species. As no solid was included as a state variable of the 269 

model, the impact of bioturbation on solid phase mixing was neglected. 270 

xiii. The yield of NO3- during anammox is fixed at 0.3 mol NO3- per 1 mol NH4+, although reported values range from 271 

0.26 to 0.32 (Brunner et al., 2013). 272 

xiv. The NO3- and NO2- equilibrium during anammox has been previously reported to occur under environmental stress 273 

conditions with a strong isotopic fractionation (up to -60.5‰) (Brunner et al., 2013). Since it leads to the production 274 

of 15N-enriched NO3-, similarly to the kinetic isotopic fractionation during NO2- oxidation to NO3-, variable values 275 

of eAnam,side (-15‰ to -45‰) can encompass both kinetic and equilibrium fractionation. 276 

xv. NH4+ adsorption and desorption rates are assumed to be comparable, and to occur with negligible isotopic 277 

fractionation, resulting in no net effect on the NH4+ pool concentration or isotopic composition. 278 

The model incorporates deliberate simplifications to reduce complexity, while remaining adaptable to new data or insights; 279 

however, it is acknowledged that these assumptions may significantly influence model outcomes and should be carefully 280 

considered when interpreting results. 281 
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2.4 Prior knowledge about model parameters 285 

Model parameter values were derived from an extensive literature review, and formulated as prior distributions, as detailed 286 

and referenced in Appendix C: Prior values for inference. Positive parameters were parameterized as Lognormal priors, 287 

while priors of positive or negative parameters were parameterized as Normal distributions. Mean values were derived from 288 

the provided references, standard deviations were assigned either as absolute values or as percentages of the mean, 289 

depending on the class of variables. For parameters that are lake-specific (see model assumption iii.) and expected to be well 290 

identifiable from data, such as the maximum conversion rates of various processes (i.e., aerobic mineralization, the first step 291 

of nitrification, the first step of denitrification, mineralization by SO42- reduction, anaerobic mineralization) and the NH4+ 292 

flux from deeper sediment layers, only limited prior knowledge is available, making the use of uniform priors preferable. As 293 

their interpretability can be questionable, uniform priors were applied only to parameters expected to be well-identifiable, 294 

ensuring that prior variations within the marginal posterior range would remain small, even with alternative broad priors. 295 

This approach avoids specifying typical expected values, while maintaining robust identifiability. The maximum conversion 296 

rates for anammox, DNRA, as well as the second step of nitrification and the second and third steps of denitrification 297 

(Anam, DNRA1, DNRA2, Nit2, Den2 and Den3) were more challenging to identify from data, as the sensitivity of model 298 

results to these parameters becomes very low when the concentration of the converted substance becomes small. 299 

Additionally, prior specification for these rates was difficult, due to the expected variability among different lakes, similar to 300 

other maximum conversion rate parameters. Therefore, their priors were formulated as ratios relative to the better-301 

constrained maximum conversion rate of the first nitrification (i.e., kNit1) or denitrification step (i.e., kDen1). This approach 302 

allowed for the characterization of the relative importance of each process without requiring absolute rate values. The joint 303 

prior for all parameters was assumed to be an independent combination of their respective marginal prior distributions. 304 

2.5 Model-based analysis process 305 

To partially reduce structural uncertainty of the model and to account for parameter non-identifiability, Bayesian inference 306 

was applied, considering all uncertain parameters listed in Appendix C: Prior values for inference. Some parameters were 307 

excluded from this analysis, including molecular diffusion coefficients, compound concentrations at the sediment surface, 308 

zero fluxes from deeper sediment layers (except for the NH4+ flux, which was inferred jointly with other parameters) and 309 

bioturbation. These values are considerably less uncertain than the other model parameters, except for bioturbation, which 310 

was addressed separately through a scenario analysis, following Bayesian inference under the Base scenario. 311 

The posterior distribution (probability density) of the model parameters, fpost, is expressed as 312 

    𝑓post(θ) =
!8"𝐶#θ$	!pri(')

∫ !8"𝐶#θ'$	!pri('')	d''
   (5) 313 

where fpri is the prior distribution (probability density) of the model parameters, fL(C|q) is the likelihood function of the 314 

model, C represents the observed compound concentrations, or d15N values, and q denotes the model parameters. The 315 
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likelihood function fL(C|q) is defined as a multivariate, uncorrelated Normal distribution with constant variances (standard 316 

deviation, sd) for d15N values, and variances increasing linearly with concentration, leading to a standard deviation 𝜎1 =317 

%𝜎1,0	𝐶 +	𝜎1,.
( for O2, SO42-, and N compound concentrations. This formulation incorporates the combined uncertainties in 318 

model structure, sampling, and concentration measurements. To account for the unknown magnitude of these uncertainties, 319 

the coefficients of these relationships, sC,a, sC,b, and sd, were inferred alongside the model parameters. 320 

The marginal posteriors of individual parameters were compared with their priors to evaluate whether observational data 321 

provided information about these parameters, and whether this information was in conflict with the priors. In addition, two-322 

dimensional marginals were examined to identify potential identifiability issues. Finally, uncertainty in the model results was 323 

calculated by propagating parameter uncertainty to the model results under consideration of their uncertainty for given 324 

parameter values as formulated in the likelihood function: 325 

    𝑓post(C) = 	∫ 𝑓+(𝐶|θ)	𝑓post(θ)	dθ	 (6) 326 

For the parameters with marginal posteriors in conflict with prior information, we conducted additional scenario analyses, 327 

fixing parameters, and narrowing or widening prior distributions. These analyses evaluated the model’s compatibility with 328 

observational data if parameters better aligned with prior information and assessed changes in posterior distribution with 329 

weaker priors. These scenario analyses complemented the assessment of bioturbation uncertainty mentioned above. 330 

2.6 Discretization and numerical algorithms 331 

The partial differential equations outlined in Appendix B: Reaction-diffusion model were solved using the Method of Lines. 332 

For spatial discretization, a grid was employed with cell thickness increasing progressively from the sediment surface toward 333 

deeper layers. This adaptive grid design reduced the total number of cells required, while still maintaining high resolution 334 

near the sediment-water interface, where steep concentration gradients typically occur (Appendix D: Model discretization). 335 

The resulting system of ordinary differential equations (ODE) was solved by a standard ODE solver. Parameter inference 336 

was conducted using two advanced Bayesian inference algorithms: Metropolis (Andrieu et al., 2003; Vihola, 2012) and 337 

Hamiltonian Monte Carlo (Betancourt, 2017; Neal, 2011) algorithms. 338 

2.7 Model implementation 339 

The model was implemented in Julia (Bezanson et al., 2017) (https://julialang.org) to achieve high-performance and 340 

facilitate automatic differentiation. The DifferentialEquations.jl package (Rackauckas and Nie, 2017) was used to solve the 341 

system of ODEs; performance testing of several ODE solvers identified the FBDF solver (adaptive order and adaptive time-342 

step backward-differencing solver) as the most suitable for handling the stiffness of the ODE system. The ForwardDiff.jl 343 

package (Revels et al., 2016) was used for automatic differentiation; Bayesian inference was conducted using the adaptive 344 

Metropolis sampler from the AdaptiveMCMC package (Vihola, 2020), and the Hamiltonian Monte Carlo algorithm 345 

implemented in the AdvancedHMC.jl package (Xu et al., 2020). Further implementation details are provided in Appendix E: 346 

https://julialang.org/
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Model implementation. Simulations were performed at sciCORE (https://scicore.unibas.ch), the scientific computing centre 347 

at the University of Basel. 348 

3. Sample collection and analyses 349 

3.1 DIN concentrations and isotopes 350 

Sediment cores were retrieved at the deepest location of the Kreuztrichter basin in Lake Lucerne, a large oligotrophic lake in 351 

Switzerland (Baumann et al., 2024), in April 2021 using a gravity corer with PVC liners. The sediment cores were stored at 352 

4 °C and processed using two porewater-sampling methods: whole-core squeezing (WCS; (Bender et al., 1987)) for NO3- 353 

samples, and Rhizon samplers (Rhizosphere research products, Wageningen, NL) for NH4+ samples. The WCS technique 354 

provides a high depth resolution near the sediment-water interface (0-5 cm, resolution: ~ 0.7-1 mm), where NO3- is present 355 

in porewaters, while the Rhizon sampling method allows collecting samples at greater sediment depths (> 5 cm, resolution: ³ 356 

0.5 cm). NO3- and NH4+ concentrations were measured using ion chromatography (940 Professional IC Vario, Metrohm). 357 

d15N-NO3- and d15N-NH4+ were determined using the denitrifier method (Casciotti et al., 2002; Sigman et al., 2001), and the 358 

hypobromite-azide method (Zhang et al., 2007), respectively. In both methods, sample N from NO3- or NH4+ is converted 359 

into N2O, which is then purified and analysed by isotope ratio mass spectrometry (Delta V Plus, Thermo Fisher Scientific). 360 

The typical analytical precision is ~ 0.25‰ (McIlvin and Casciotti, 2010). 361 

3.2 Process rate measurements 362 

For model parameterization, reaction rates for denitrification, DNRA, and anammox were determined using established 363 

protocols for 15N-tracer incubations (Holtappels et al., 2011). After recovery and sectioning of the core into 1-cm intervals, 1 364 

g of sediment was placed into 12 mL gas-tight glass vials (Exetainers®, Labo, UK). These Exetainers were then filled with 365 

anoxic, sterilized bottom water, amended with the following tracers: (Exp1) 15NO3-, (Exp2) 15NH4+ + 14NO2-. Exetainers were 366 

incubated at 6 °C in the dark, and terminated at designated time points (0, 6, 12, 24, and 36 hours) by adding ZnCl2. Gas 367 

headspace samples were analysed for the production of 14N15N and 15N15N using gas-chromatography isotope ratio mass 368 

spectrometry (GC-IRMS; Isoprime, Manchester, UK). Linear regression of 14N15N and 15N15N production over time was 369 

used to calculate N2 production rates, with standard errors derived from deviations in the regression slopes across the five-370 

time points. For the determination of 15NH4+ production from 15NO3- additions, 15NH4+ was chemically converted to N2 gas 371 

using the alkaline-hypobromite method (Jensen et al., 2011). The resulting 14N15N was quantified by GC-IRMS. Linear 372 

regression of 14N15N production over time was used to calculate potential rates of 29N2 (i.e., 15NH4+) production. Rates of 373 

denitrification, DNRA, and anammox were calculated according to Holtappels et al. (2011) and Risgaard‐Petersen et al. 374 

(2003). Only data from the upper 1 cm were used to parameterize the model, as the investigated sediments displayed a 375 

shallow nitracline and the highest anammox contribution at 0-0.5 cm depth. 376 

https://scicore.unibas.ch/
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4. Results and Discussion 377 

The developed diagenetic N isotope model addresses existing knowledge gaps in understanding porewater N dynamics, and 378 

aims to clarify the roles of distinct N-transformation processes in shaping the distribution of N isotopes to be potentially used 379 

to constrain benthic N (isotope) fluxes across different environments. Here, we present (1) the results of Bayesian inference 380 

applied to a large number (~ 60) of model parameters (see prior definition in Appendix C: Prior values for inference), with a 381 

focus on assessing their uncertainty, (2) a detailed scenario analysis, focusing on parameters that exhibit significant shifts in 382 

their marginal posterior distributions relative to their prior, as well as on the effect of variable contributions from different 383 

NO3- and NO2- reduction pathways, and the impact of enhanced bioturbation on model outcomes, (3) a sensitivity analysis, 384 

evaluating the importance of individual model processes in shaping benthic N isotope dynamics, (4) the importance of 385 

process coupling in benthic N cycling, with a particular focus on the role of intermediate NO2- in influencing d15N-NO3- 386 

dynamics. All results are based on porewater concentration, isotope, and rate measurement data from a sampling campaign 387 

conducted in Lake Lucerne in April 2021. Additionally, we performed (5) a sensitivity analysis examining model output 388 

responses to modifications of selected parameters using artificially simulated settings (e.g., variable contributions of 389 

denitrification/anammox/DNRA); this analysis demonstrates the model’s capability for addressing diverse research 390 

questions. 391 

4.1 Bayesian inference 392 

The model implementation was highly efficient, achieving simulation times of about 12 s on an 13th Gen Intel® CoreTM i9-393 

13,900K processor with 3.00 GHz and 64 GB of memory (of which only a small fraction was needed) for a 100-day 394 

simulation starting from constant concentration profiles. This efficiency enabled the execution of Markov chains of 20,000 395 

iterations within a few days on the scientific computing centre at the University of Basel (https://scicore.unibas.ch). By 396 

combining these chains, samples of 100,000 iterations were generated. The Hamiltonian Monte Carlo algorithm 397 

outperformed the adaptive Metropolis algorithm during burn-in to the core of the posterior distribution. However, for final 398 

posterior sampling with about 60 parameters, adaptive Metropolis sampling proved more efficient in terms of effective 399 

sample size per unit of simulation time. Despite these efforts in getting computational efficiency, and the use of advanced 400 

MCMC algorithms, reaching convergence of the Markov chains remained challenging. We got five consistent Markov 401 

chains without discernible trends for each scenario; however, some widening of the chains and the resulting effective sample 402 

size on the order of 500 indicate that we are not able to get a good coverage of the tails of the posterior distribution. This 403 

outcome demonstrates that incorporating so many uncertain model parameters pushes the limits of Bayesian inference in 404 

terms of numerical tractability. However, the resulting uncertainty estimates are certainly more realistic than those obtained 405 

by fixing many poorly constrained parameters to unique values to reduce the dimension of the parameter space. 406 

The simulation results of solute concentration and d15N profiles in the most plausible Base scenario (Fig. 2) integrate prior 407 

knowledge (Appendix C: Prior values for inference) with observational data through Bayesian inference. The profiles 408 

https://scicore.unibas.ch/
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closely reproduce the available, albeit limited, data, and conform to expected depth-related trends: oxidants (i.e., O2, NO3- 409 

and SO42-) are readily consumed via aerobic mineralization and nitrification (O2), denitrification (NO3-), and SO42- reduction. 410 

While mineralization is assumed to involve negligible N isotopic fractionation, the first step of nitrification causes 411 

significant enrichment in 15N of the residual NH4+ pool, yielding d15N-NH4+ values up to 11.2‰ at 0.15 cm, due to strong N 412 

isotope fractionation, estimated at eNit1 = 12.0‰ (to NO2-) and 36.4‰ (to N2O). Unfortunately, extremely low NH4+ 413 

concentrations measured in the top 2 cm hindered the determination and verification of the modelled d15N-NH4+ in this zone 414 

with field data. Both NO2- and N2O accumulate in the upper 0.5 cm, reaching up to 0.4 µM and 2 µM, respectively. Below 415 

0.3 cm, denitrification leads to the progressive 15N enrichment of NO3-, NO2- and N2O, while N2-producing mechanisms (i.e., 416 

denitrification and anammox) cause only minimal changes to the modelled d15N-N2 profile, due to the dominance of a large 417 

pre-existing N2 pool. For concentrations, the 95% credibility intervals of parametric uncertainty are rather narrow, whereas 418 

the much broader total uncertainty is dominated by the lumped uncertainty term in the likelihood function, which primarily 419 

reflects the model’s structural uncertainty. The error, beyond the parameter error, is parameterized using the two sigma 420 

values (sC,a and sC,b; see Sect. 2.5), and exceeds what would arise from measurement and sampling alone. This suggests that 421 

the larger error is attributable to the model’s structural limitations. Conversely, d15N profiles exhibit small total uncertainty, 422 

as model results for d15N closely match observational data, with minimal random and systematic deviations (parameterized 423 

using the sigma value sd, see Sect. 2.5). 424 

The model provides insights into the underlying process rates (Fig. 3) that shape the simulated profiles (Fig. 2). Vertical 425 

profiles of transformation rates for NH4+, NO3-, NO2- and N2O clearly illustrate the sequential dominance of different N-426 

transformation processes with increasing sediment depth and decreasing O2 availability. Aerobic processes, namely aerobic 427 

mineralization and nitrification, primarily control NH4+ transformation rates, peaking at 450 and 350 µM d-1, respectively 428 

(Fig. 3a). Nitrification sustains denitrification by producing both NO2- (up to 350 µM d-1) and NO3- (up to 275 µM d-1) in the 429 

upper 0.4 cm (Fig. 3b-c). A strong spatial overlap of nitrification and denitrification emerges in the depth distribution of 430 

processes affecting the NO2- pool, suggesting a potential interplay between these pathways (Fig. 3c). 431 

A key strength of this model is the incorporation of N2O as a state variable. Our model results reveal that, although N2O 432 

production via nitrification is minimal (not visible in Fig. 3d), the strong isotopic fractionation associated with this reaction 433 

(eNit1,N2O = 36.4‰) generates N2O with d15N values of -1.2‰ to –2.2‰ in the top 0.2 cm (Fig. 2c). At a depth of 434 

approximately 0.35 cm, up to 2.1 µM of N2O accumulate, coinciding with the highest rates of N2O production through 435 

denitrification. Conversely, N2O consumption by the last denitrification step peaks at 0.5 cm, leading to a progressive 436 

increase in d15N-N2O with depth. This zonation likely reflects the O2 sensitivity of the distinct N2O-producing and -437 

consuming processes. Specifically, N2O reductases are known to be strongly inhibited by O2, and therefore exhibit greater 438 

activity below the oxycline (Wenk et al., 2016). Although the model does not explicitly include the enzymes responsible for 439 

N-transformation pathways, the chosen and estimated kinetic parameters reflect substrate affinity and inhibition strength. 440 
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Consequently, inhibition constants like KO2,Den2 and KO2,Den3 provide indirect insights into the O2 dependency of these 441 

enzyme-mediated reactions, effectively shaping the modelled redox zonation. 442 

The model adequately captures the concentration and isotopic composition of the state variables, in agreement with field 443 

measurement and the expected patterns of underlying N-transformation processes and reaction coupling (Fig. 2 and 3). One 444 

key strength of the step-wise model is its ability to quantify reaction coupling, which is challenging to infer directly from 445 

state variable pools (i.e., reactive intermediates), if they are rapidly turned over.  446 

 447 

Figure 2. Vertical porewater profiles of concentrations (a-b) and isotopic composition (d15N) (c) of the state variables for the Base 448 
scenario. Continuous lines represent model simulations, while symbols represent observational data from Lake Lucerne. For NH4

+ 449 
concentrations, filled diamonds represent low-resolution data from Rhizon sampling, while open diamonds represent the high-450 
resolution WCS data, adjusted to align with absolute concentrations measured in the low-resolution dataset. Dashed lines enclose 451 
95% credibility intervals resulting from parametric uncertainty, while thin solid lines represent total uncertainty. 452 

 453 
Figure 3. Vertical profiles of transformation rates for distinct N-cycling processes affecting the NH4

+, NO3
-, NO2

-, and N2O pools. 454 
Dashed lines enclose 95% credibility intervals resulting from parametric uncertainty. Positive reaction rate values indicate 455 
production, negative values indicate consumption of a given DIN species.  456 

To address the variable ranges for the model parameters found in the literature, and to reduce structural uncertainty imposed 457 

by fixed parameter values, we estimated a large set of parameters using Bayesian inference. The obtained joint posterior 458 
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distribution of model parameters enabled us to assess the knowledge acquired from data. Marginal posterior distributions of 461 

individual parameters, and two-dimensional marginal distributions of parameter pairs, were particularly useful in this context 462 

(Fig. 4 shows examples for the four categories defined below; Fig. S1 provides an overview of all marginal prior and 463 

posterior parameter distributions). By comparing marginal posterior distributions with their corresponding priors, parameters 464 

were classified as well identifiable or poorly identifiable. While this classification involves some subjectivity in determining 465 

how much narrower a posterior distribution should be compared to its prior distribution to classify such parameter as well 466 

identifiable, some clear patterns emerged: 467 

1. Well identifiable parameters: The marginal posterior distribution is clearly narrower than the prior, indicating that 468 

data provide meaningful information about the parameter’s value. Two cases were observed: 469 

a. The marginal posterior distribution is within the prior range, suggesting that the information from the data is in 470 

agreement with prior knowledge (Fig. 4a). Examples include: f factors for anammox (fAnam,Den2 = 0.2) and both 471 

DNRA steps (fDNRA1,Den1 = 0.005, fDNRA2,Den2 = 0.005), estimated using 15N-tracer incubation experiments for the 472 

investigated system, and parameters such as KNO3,Den1 and KO2,MinOx, constrained from clearly defined oxidant 473 

declines. Maximum conversion rates for aerobic mineralization, denitrification, SO42- reduction, and anaerobic 474 

mineralization, as well as the NH4+ flux from deeper sediment layers, also belong to this category, although we 475 

approximated very wide priors by uniform priors (see Sect. 2.4), making it less visible in the plot. 476 

b. The marginal posterior distribution significantly deviated from the prior range (Fig. 4b), suggesting that the 477 

information from the data is in conflict with prior knowledge. The most striking example is eDen1, estimated at 478 

2.8±1.1‰ for the Lake Lucerne dataset, far lower than the typical 15-25‰ reported in the literature for NO3- 479 

reduction (Lehmann et al., 2003; Rooze and Meile, 2016), suggesting a reduced N-isotopic fractionation (or at 480 

least, of its expression) at the porewater level. This finding contrasts with model-derived values for the cellular 481 

isotope effect of NO3- reduction observed in the porewater of marine sediments (eDen > 10‰)  (Lehmann et al., 482 

2007). While a detailed investigation of the biological mechanisms behind such reduced expression across 483 

benthic environments is beyond the scope of this study and will be addressed separately by the authors, the 484 

potential role of reaction couplings in modulating benthic N isotope dynamics is discussed in Section 4.4. 485 

2. Poorly identifiable parameters: The marginal posterior distribution resembles the prior distribution, suggesting poor 486 

identifiability. This can occur for two possible reasons: 487 

a. The parameter exerts negligible influence on the model output that corresponds to observational data (Fig. 4c). 488 

For example, parameters like the N2O yield during nitrification, aN2O, Nit1 and bN2O, Nit1, could not be constrained 489 

without specific data on N2O production. The current model encompasses several processes and state variables, 490 

which, at times, were hard to corroborate with the limited dataset in hand (a situation that may apply regularly 491 

to environmental studies, particularly in benthic environments). Therefore, their values were taken from 492 

previous studies (Ji et al., 2018). For other parameters, such as gNH4,DNRA1 and gNH4,DNRA2, little knowledge was 493 



19 
 

acquired from the data in hand, due to the relatively low maximum rates of DNRA compared to other 494 

processes. In such cases, the posterior distribution may remain close to the prior, not because the prior range 495 

was incorrect, but because the available data could not further constrain it. 496 

b. Although data are available and the model output is sensitive to the parameter, other parameters influence the 497 

output similarly. This leads to parameter correlation in the posterior distribution and reduces identifiability, as 498 

observed for gNH4,MinSulfRed and FNH4 (Fig. 4d), which exhibit correlation, making their estimates interdependent 499 

(Guillaume et al., 2019). Here, the estimate of the NH4+ flux from the lower boundary of the model depends on 500 

the estimate of the amount of NH4+ released via OM mineralization coupled to SO42- reduction. 501 

The comparison of marginal priors and posteriors of the parameters (Fig. S1) demonstrates that excellent agreement between 502 

model outputs and observational data (Fig. 2) can be achieved for 54 of the 58 estimated parameters compatible with their 503 

priors. Exceptions include: the higher-than-expected rate for the second denitrification step relative to the first (expressed by 504 

the factor fDen2,Den1), the large half-saturation constant for SO42- reduction (KSO4,MinSulfRed), and smaller-than-expected N 505 

isotope effects for the first steps of denitrification and nitrification (eDen1 and eNit1,NO2, respectively). The largest deviation is 506 

observed for eDen1, which is further examined in the next subsection.  507 

Notably, the seven parameters, for which a uniform prior was chosen to approximate a very wide prior (kMinOx kDen1, 508 

kMinSulfRed, kMinAnae, kNit1, FNH4, d15N,FNH4), were identifiable, indicating that highly system-specific prior knowledge is not 509 

crucial for these estimates. Most of the other model parameters showed limited narrowing of the marginal posterior relative 510 

to the prior, reflecting the rather limited information gain that can be obtained from data. The three model error parameters 511 

(sC,a, sC,b, sd) were well identifiable and will be used in the following sections to compare the fit quality across different 512 

modelling scenarios. 513 

 514 
Figure 4. Prior (dashed line) and posterior marginal distributions (continuous line) for illustrative parameters, which could be 515 
identified and showed (a) good (fAnam,side) and (b) poor agreement (eDen1) with prior knowledge, and (c) for parameters, that could 516 
not be identified (aN2O, Nit1); 2D correlation plot for gNH4,MinSulfRed versus FNH4 (d). 517 

4.2 Scenario analysis 518 

Building on the findings discussed in the previous subsection, we explored the apparent prior-data conflict regarding eDen1 in 519 

greater detail. Additionally, we assessed whether the estimated process rates overlooked potential reaction coupling, which 520 

might go undetected through 15N-tracer incubation experiments, by exploring the variability in contributions of anammox 521 
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and DNRA (i.e., fAnam, fDNRA1 and fDNRA2). Lastly, given the uncertainty regarding solute-diffusion enhancement by 522 

bioturbation, we investigated a scenario with increased bioturbation. These considerations led to four key scenarios: 523 

A. Narrow priors for e. This scenario investigated the effects of restricting e variability to a narrower range (prior 524 

standard deviation of 1‰ instead of 5‰). The aim was to test whether the marked reduction in the marginal 525 

posterior of eDen1 persisted under stricter prior assumptions, and whether this decreased flexibility significantly 526 

impacted the quality of the model fit. 527 

B. Fixed e. Here, the model output was assessed under the assumption that the literature data regarding N isotope 528 

effects are correct (i.e., e values not estimated). This scenario complemented Scenario A by testing whether a good 529 

fit to the data could still be achieved by fixing the eDen1 value (and all other isotope effects) at its prior mean. 530 

C. Wider priors for f. In this scenario, greater variability in DNRA and anammox contributions (prior standard 531 

deviation of 100% instead of 25%) was allowed to test the impact of relaxed prior assumptions on the relative 532 

contributions of these processes in the model output. 533 

D. Enhanced bioturbation. This scenario simulated a faster solute-diffusive transport due to higher infaunal activity by 534 

doubling the bioturbation coefficient (Dbio = 2 cm2 d-1 instead of 1 cm2 d-1), to investigate the sensitivity of the 535 

results to this uncertain parameter, which was not included in the Bayesian analysis. In the model, the bioturbation 536 

strength at the sediment surface is defined by the parameter Dbio, and it decreases exponentially with depth, with the 537 

typical bioturbation depth parameter, depthbio. As the diffusion enhancement by bioturbation is highly uncertain, 538 

this scenario aims to assess solely the sensitivity of the model output to changing bioturbation magnitude. 539 

The results demonstrate a strong dependence of the estimated parameters on the chosen prior assumptions (Fig. 5). Across all 540 

scenarios, marginal posterior distributions for the selected parameters are generally narrower than the prior distributions, 541 

though results vary substantially. In Scenario A (Narrow priors for e), restricting the prior range significantly constrained 542 

eDen1, limiting its deviation from the prior (Fig. 5m; note that the prior for Scenario A is five times narrower than the one 543 

shown, which represents the prior for all other scenarios). These results closely resemble those from Scenario B (Fixed e), 544 

where no deviation was possible (Fig. 5, Fig. S2). Both scenarios exhibit lower denitrification rates than the Base scenario 545 

(Fig. 5b), but comparable fit quality for total (14N + 15N) concentration, quantified by sC,a (i.e., the dominant term of standard 546 

deviation of the model error for concentrations, see Sect. 2.5) (Fig. 5x). On the other hand, Scenarios A and B display poorer 547 

fit quality for d15N profiles, indicated by a large value of sd (Fig. 5z), suggesting that the model structure cannot adequately 548 

reproduce the d15N-NO3- profiles without adapting the eDen1 value. While biological isotope effects of 15-30‰ are typical for 549 

NO3- reduction (Lehmann et al., 2007), lower values under almost-complete NO3- consumption have been reported (Thunell 550 

et al., 2004; Wenk et al., 2014). This finding is further confirmed by comparable marginal posteriors for eDen1 across all 551 

scenarios considered in this study, besides scenarios A and B. To test the robustness of our model, we ran a base scenario 552 

simulation for marine sediments in the Bering Sea (station MC16) (Lehmann et al., 2007) (data not shown). Moreover, a 553 
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manuscript currently in preparation presents an extensive comparison of model application across different sites and 554 

demonstrates a much wider range of 15eDen1 values, exceeding 20‰. 555 

In Scenario C (Wider f), allowing greater variability in anammox and DNRA contributions results in the lowest fAnam,Den2 556 

values, although such deviation is not substantial compared to the Base scenario output (Fig. 5i). The estimated fDNRA1,Den1 557 

and fDNRA2,Den2 values in Scenario C mostly align with those of the Base scenario, corroborating the marginal role of DNRA 558 

in Lake Lucerne. Such findings confirm the accuracy of the rate measurements performed with 15N tracer incubations. 559 

Scenario D (Enhanced bioturbation) stands out with the highest conversion rates (i.e., kMinOx, kMinSulfRed, and kNit1) (Fig. 5a,e,g) 560 

to ensure sufficient oxidant consumption at higher supply/flux rates (reproducing the observed gradient despite higher 561 

diffusivity). Despite these changes, bioturbation had negligible effects on porewater N isotope dynamics, with estimated 562 

isotope effects and fit quality for d15N profiles (sd) comparable to those of the Base scenario. 563 

The obtained concentration depth profiles for the four scenarios are generally comparable, as newly estimated parameters 564 

ensured good fitting of the data (Fig. S2). However, in Scenarios A and B, stricter constraints on prior knowledge for 565 

parameter estimation result in little to no suppression of all isotope effects (i.e., relatively strong N isotopic fractionation), 566 

leading to great variability in the d15N profiles. Poor fits to the d15N data are observed under these conditions, as evidenced 567 

by the greater 15N enrichment of the NO3- pool compared to the measured-data profiles (Fig. S2). Similarly, the d15N-N2O 568 

profiles exhibit sharp declines to approximately -15‰ in the upper 0.5 cm under Scenarios A and B, driven by the strong 569 

expression of eNit1,N2O (40.1‰ and 40.0‰, respectively). In contrast, Scenarios C and D closely resemble the Base scenario, 570 

with only minor d15N-N2O variations. 571 
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 572 
Figure 5. Marginal probability densities across the five considered scenarios for selected estimated parameters, showing both prior 573 
(dashed line) and posterior distributions (continuous lines): Base scenario (SDf = 25%, SDe = 5‰, Dbio = 1 cm2 d-1), Narrower e (SDe 574 
= 1‰), Fixed e (i.e., e taken from bibliography), Wider f (SDf = 100%) and Enhanced bioturbation (Dbio = 2.0 cm2 d-1). Of the ~ 60 575 
estimated parameters, those shown here were selected for their relevance to the discussion. See main text for further details. 576 

4.3 Importance of modelled processes and their impact on porewater N isotope signatures 577 

The importance of modelled processes and their impact on N isotope signatures were investigated by selectively deactivating 578 

individual processes and comparing the model outputs to the Base scenario. Aerobic mineralization, denitrification, and 579 

SO42- reduction were considered essential to preserve redox zonation (e.g., sequential decline of O2, NO3-, and SO42-) and N 580 

dynamics. The following processes were individually turned off: (a) nitrification (“NitOff”); (b) anammox (“AnamOff”); 581 

and (c) DNRA (“DNRAOff”). Initially, each process was simply inactivated to assess its impact on model outputs (Fig. 6). 582 
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Subsequently, inference was conducted after deactivating each process, to investigate their importance for model 584 

performance, parameter and flux estimation, and for the identifiability of rate parameters by evaluating the quality of the fit 585 

to the data, especially on the d15N profiles (Fig. 7, Fig. S3, Fig. S4). 586 

Switching off nitrification significantly alters the model output compared to the Base scenario (Fig. 6a-b,e-f), indicating its 587 

central role in the benthic N dynamics. Key effects include NH4+ accumulation throughout the investigated depths, with a 588 

flattening of the d15N-NH4+ profile (i.e., less curvature towards higher d15N values) in the upper 0.5 cm, as the only other 589 

source of 15N-enriched NH4+ besides nitrification would be anammox, which is inhibited under oxic conditions. Furthermore, 590 

nitrification-denitrification coupling via NO2- weakens in this scenario, resulting in lower overall N2 production (as indicated 591 

by the lower maximum N2 concentration of 734 µM compared to 745 µM in the Base scenario). These results suggest that 592 

partially reducing, or fully eliminating, nitrification lowers the system’s capacity to act as an efficient N sink. In other words, 593 

the findings confirm that nitrification is a critical process that, when closely coupled to denitrification, helps to enhance the 594 

ecosystem’s potential to remove fixed N. All other N-isotopic state variables also show a flatter d15N profile, with only a 595 

progressive enrichment in 15N below 0.5 cm, primarily driven by denitrification (NO3-, NO2-, and N2O). The impact of 596 

disabling nitrification is clearly reflected in the d15N-N2O profile across the upper 0.3 cm, where the typical nitrification-597 

induced dip is absent, and d15N-N2O values remain relatively constant (~7-8‰). In contrast, the effects of turning off 598 

anammox or DNRA are more subtle, owing to their generally lower reaction rates in Lake Lucerne (Fig. 6c-d,g-h). Notably, 599 

in the absence of anammox, N2O exhibits lower d15N values in the upper 0.3 cm compared to the Base scenario, likely due to 600 

higher N2O yields via nitrification, as reduced competition for NH4+ with anammox provides more substrate for nitrification. 601 

Upon running inference for each case, concentration and N isotope profiles for the NitOff, AnamOff, and DNRAOff 602 

scenarios are generally similar to those of the Base scenario (Fig. S3), with notable exceptions in the NitOff case. In the 603 

absence of nitrification, NH4+ accumulates and the d15N-NH4+ profile remains largely flat, since anammox, the only other 604 

NH4+-consuming process, is minimal under oxic conditions. No d15N-NH4+ measurements are available for the top 1 cm, so 605 

the model output could not be verified with field data. The N2O pool systematics also diverge between the NitOff and Base 606 

scenarios. Specifically, in the NitOff case, no nitrification-derived N2O accumulates in the upper 0.4 cm, and consequently, 607 

the d15N-N2O profiles lacks the typical nitrification-associated decline in this layer. Instead, N2O becomes progressively 608 

enriched in 15N below 0.4 cm. While most estimated parameters and fluxes are consistent across the four scenarios, the 609 

NitOff scenario stands out again, exhibiting strong effects on the anammox rates and associated isotope effects (e.g., 610 

fAnam,Den2, eAnam,NH4) (Fig. S4), as well as on benthic fluxes of NH4+, NO2-, NO3- and N2O (Fig. 7). Nonetheless, the NH4+ 611 

concentration profile is well-captured, as indicated by a low sC,a, reflecting a good match between model and concentration 612 

data even in the absence of nitrification. This finding implies that the model cannot resolve the relative contributions of 613 

nitrification versus anammox to NH4+ consumption based on the concentration and isotope data, highlighting the importance 614 

of prior knowledge regarding fAnam,Den2.  615 
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The comparison of process rates across these four scenarios provides insights, unveiling the extent of process coupling and 616 

competition (Fig. S5) (Hines et al., 2012). For instance, anammox and nitrification compete for both NH4+ and NO2- as 617 

substrates, causing the rate of one process to be enhanced, when the other is switched off. For instance, NH4+ oxidation and 618 

NO2- production rates via nitrification (Nit1) are higher (~ 0.2 cm depth) in the AnamOff scenario than in the Base scenario. 619 

Even more obviously, enhanced rates of NH4+ oxidation, NO2- consumption, and NO3- production via anammox are observed 620 

in the NitOff scenario than in the Base scenario. Process coupling, specifically nitrification-denitrification, is further 621 

confirmed by lower rates for NO2- reduction via denitrification (Den2) in the absence of nitrification. In general, the 622 

influence of DNRA on production and consumption rates of the considered state variable appears minimal, owing to the 623 

limited environmental relevance of DNRA in Lake Lucerne. Overall, the similarly good fits obtained across these three 624 

scenarios and the Base scenario reflect the poor identifiability of the switched off processes; this suggests that the data can be 625 

well-fitted even without these three processes, emphasizing the importance of prior knowledge about their environmental 626 

relevance. 627 

 628 
Figure 6. Vertical concentration (a-d) and isotopic composition (e-h) profiles for state variables. Model output obtained with all 629 
processes included (a, e) are compared with model simulations where individual processes are switched off: nitrification (b, f), 630 
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anammox (c, g), and DNRA (d, h), without running inference again. Continuous lines represent the model output, while symbols 632 
represent measured data from Lake Lucerne. For NH4

+, open diamonds represent the high-resolution dataset, adjusted to align 633 
with absolute concentrations measured in the low-resolution dataset (filled diamonds). 634 

 635 
Figure 7. Posterior marginal probability distributions of modelled sediment-water interface fluxes (in nmol cm-2 d-1) for all state 636 
variables, generated from inference runs, across the four scenarios considered for model validation against experimental data 637 
from Lake Lucerne.  638 

4.4 The role of process coupling via NO2- 639 

Previous models of benthic N isotope dynamics have focused on individual reactions or overlooked the role of intermediate 640 

species, such as NO2- (Kessler et al., 2014; Lehmann et al., 2007). Our study confirms that NO2- plays a critical role in 641 

coupling multiple N-transformation processes and shaping benthic N isotope dynamics, including that of d15N-NO3-. While 642 

such process coupling has been examined in the water column (Frey et al., 2014), it remains, to our knowledge, largely 643 

unexplored in sedimentary environments.  644 

To assess the significance of this coupling, we implemented a one-step denitrification approach that bypasses NO2– as an 645 

intermediate, replacing the three-step pathway used throughout this paper (Fig. 8). In this simplified model, NO2- 646 

concentrations and isotopic signatures are shaped solely by nitrification (and to a marginal extent, DNRA and anammox), as 647 

denitrification no longer contributes to NO2– production. This modification leads to significantly reduced NO2- accumulation, 648 

restricted to the upper 0.3 cm, and lower anammox activity, due to a lack of NO2- substrate below the oxycline. The absence 649 

of denitrification-derived NO2- has profound effects on the N isotope dynamics. First, a consistent ~15‰ offset between 650 

d15N-NO3- and d15N-NO2- is evident across all modelled depths (Fig. 8c). This offset is ascribed to the isotope effect of the 651 

second nitrification step (eNit2 = -13.7‰), and the lack of 15N enrichment in the NO2- pool from denitrification. Second, the 652 

estimated isotope effect for NO3- reduction (eDen) increases to 5.5±0.9‰, nearly double than in the Base scenario, indicating 653 

that elevated d15N-NO3- values in the field data may, to some extent, reflect NO2- isotope dynamics, rather than solely the 654 

effect of NO3- reduction (Fig. 1). 655 
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These findings emphasise the importance of both NO2--producing and -consuming processes in modulating d15N-NO3-, and 657 

consequently, estimates of eDen1. Although nitrification is typically aerobic and denitrification anaerobic, evidence exists that 658 

indicates spatial overlap of these two processes at the bottom of oxyclines in natural aquatic environments (Frey et al., 2014; 659 

Granger and Wankel, 2016) at the bottom of the oxycline. In this transition zone, NO2- produced by either pathway can be 660 

oxidised to NO3- or reduced to N2O, NH4+ or N2 (Fig. 3), significantly affecting its d15N signature (depending on the N-661 

branching). For instance, NO2- reduction to N2O enriches the residual NO2- pool in 15N. If this 15N-enriched NO2- is 662 

subsequently oxidized to NO3- (a reaction that exhibits an inverse kinetic isotope effect), the resulting NO3- will be markedly 663 

enriched in 15N (Fig. 1). Such interactions have been shown to influence apparent isotope effects for NO3- in the water 664 

column (Frey et al., 2014), and likely exert similar effects in sediments, where sharp redox gradients create overlapping 665 

zones of nitrification and denitrification. This coupling may explain the discrepancy in estimated eDen1 values between the 666 

Base scenario (2.8±1.1‰) and the one-step denitrification model approach (5.5±0.9‰).  667 

Anammox further complicates these dynamics, as it depends on NO2- excreted into the environment. Without denitrification, 668 

which releases NO2- (Sun et al., 2024), anammox is substrate limited (Fig. 8). Thus, while previous benthic studies estimated 669 

denitrification isotope effects using one-step denitrification approaches (Lehmann et al., 2007), our findings call for the 670 

adoption of a stepwise modelling approach (Sun et al., 2024) that better captures the interdependence of N-transformation 671 

pathways, and their integrated effects on NO3- isotope dynamics. A more detailed examination of these interactions is 672 

essential for refining our understanding and quantification of isotope effects associated with NO3- reduction in sedimentary 673 

systems. 674 

 675 
Figure 8. Depth profiles of NO3

- and NO2
- concentrations and N isotopic composition (A,C), and rates of NO2

--producing and -676 
consuming processes (B,D), as simulated by the Base scenario (A,B), and the one-step denitrification approach (C,D). In the one-677 
step approach, NO3

- is reduced directly to N2, omitting NO2
- as an intermediate; thus, no NO2

- is produced or consumed through 678 
denitrification. Dashed lines enclose 95% credibility intervals resulting from parametric uncertainty.  679 
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4.5 Model applicability in distinct scenarios 681 

Beyond applying and testing the developed diagenetic N isotope model at our site of interest (Lake Lucerne), we believe its 682 

strength hinges on its versatility to address distinct research questions and objectives. We explored two scenarios as 683 

examples of how the model can be adapted to provide insights into the N cycle in benthic environments and the N isotopic 684 

fingerprints that the combined N-cycling processes leave behind (Fig. 9). Understanding these fingerprints and how they 685 

might be modulated in natural environments (e.g., through the variable balance between individual processes constrained by 686 

environmental conditions) is important for correctly interpreting the distribution of 15N/14N ratios in N species as 687 

biogeochemical tracer, helping to pinpoint and disentangle individual N-turnover processes where they co-occur.  688 

For comparison purposes, we used the estimated parameters from the Base scenario and modified the relative importance of 689 

NO3- or NO2- reduction via (i) denitrification vs. DNRA, and (ii) denitrification vs. anammox. This was done by 690 

progressively increasing the factors that define the contributions of DNRA (fDNRA1,Den1 and fDNRA2,Den2) and anammox 691 

(fAnam,Den2) from 0 (i.e., no DNRA/anammox) to 2 (corresponding to DNRA and anammox accounting for 2/3 of the total 692 

NO3- and NO2- reduction, respectively). Simultaneously, the rates of the first two steps of denitrification (kDen1 and fDen2,Den1) 693 

were adjusted to maintain consistent overall NO3- and NO2- reduction rates across scenarios. These model results were not 694 

validated against observational data and should therefore be considered as illustrative examples of the model’s sensitivity to 695 

selected parameters, rather than as predictions with direct environmental relevance. 696 

i. N removal versus N retention 697 

The model results confirm the spatial co-occurrence of DNRA and denitrification, with peak NO3- (data not shown) 698 

and NO2- (Fig. 9a) reduction activities localized between 0.4-0.6 cm depth. In contrast, NH4+ and N2 production 699 

exhibit subtle differences in depth distribution: NH4+ production via DNRA extends across a broader sediment layer 700 

than N2 production via denitrification (Fig. 9b). This pattern likely reflects the inhibitory effect of O2 on N2O 701 

reduction, the final denitrification step, pushing N2 production to deeper, anoxic layers below the oxycline.  702 

Reduction of NO3- exhibits distinct isotope effects depending on the pathway: denitrification (eDen1 » 2.8±1.1‰) 703 

and DNRA (eDNRA1 » 20.0±2.9‰), according to our model estimates (Fig. 5m,v). This large difference reflects the 704 

difficulty of constraining DNRA isotope effects through Bayesian inference, due to its low environmental relevance 705 

in the top 1 cm of Lake Lucerne sediments. Although not proven so far, this isotope offset implies that NO3- 706 

reducers impart distinct isotopic fractionation depending on the pathway, which is rather implausible. However, if 707 

true, increasing DNRA activity would lead to a stronger 15N enrichment in the residual NO3- pool (Fig. S6d), with 708 

downstream impacts on the product pools (N2 and NH4+) (Fig. 9c-d).  709 

Denitrification-derived N2 mixes with a large ambient N2 pool (717 µM; d15N ~ 0 ‰), resulting in slightly elevated 710 

d15N-N2 values in the top 1 cm. While this increase is subtle (Dd15N < 0.1‰), it becomes more pronounced as a 711 

larger fraction of NO3- (and subsequently NO2-) is reduced to N2 (denitrification) rather than to NH4+ (DNRA) (Fig. 712 

9c) due to the distinct isotope effects associated with NO3- reduction via denitrification and DNRA. Under full 713 
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expression of the denitrification isotope effect (i.e., eDen1 » 20‰), d15N-N2 much lower than 0‰ would be expected; 714 

in contrast, eDen1 » 2.8‰ likely suppresses such isotopic dynamics, resulting in only subtle d15N-N2 changes. As 715 

more NO3- is reduced via DNRA (eDNRA1 » 20.0‰) than via denitrification (eDen1 » 2.8‰), a stronger 15N depletion 716 

is expected in the NO2- pool; if this NO2- is then reduced to N2 will lead to lower d15N-N2 than in a purely-717 

denitrifying case. Such interaction can explain the shift toward lower d15N-N2 values as NO3- is increasingly 718 

reduced via DNRA with a strong isotope effect recorded in our model. Thus, the slightly elevated d15N-N2 values 719 

observed in our model confirms that denitrification dominates over DNRA, and operates with a reduced isotope 720 

effect (2.8‰), likely due to diffusive limitation.  721 

In contrast, enhanced DNRA activity leads to NH4+ accumulation and a progressive decrease in d15N-NH4+ in the 722 

upper 0.5 cm, consistent with strong isotopic fractionation during DNRA (Fig. 9d). This NH4+ pool appears to 723 

promote nitrification, as indicated by higher NH4+ and NO2- oxidation rates (Fig. S6a-b), resulting in the production 724 

of 15N-depleted NO2- (Fig. S6c). Notably, if this isotopically light NO2- is subsequently reduced via denitrification, 725 

it can lead to the formation of N2 with unusually low d15N values, even if denitrification itself operates with a 726 

modest isotope effect. This secondary effect underscores how DNRA not only alters substrate availability but also 727 

indirectly influences the isotopic composition of denitrification end products. The strong spatial overlap of DNRA, 728 

denitrification and nitrification highlights the central role of DNRA in fuelling internal N recycling (Wang et al., 729 

2020) with implications that extend to the d15N of both intermediate and terminal N pools. 730 

Thus, if NO3- reduction via DNRA and denitrification occurs with distinct isotope effects, our model has the 731 

potential to disentangle their respective contributions based on d15N profiles of NO3- and NH4+, and to a lesser 732 

extent of N2 and NO2-. Importantly, our results underscore a potentially critical, yet underappreciated, coupling 733 

between DNRA and nitrification in benthic environments. If verified, this interaction, largely invisible in 734 

concentration profiles alone, can significantly influence isotopic signatures and must be considered when 735 

interpreting sediment N dynamics through an isotope lens. 736 

ii. N removal via denitrification versus anammox 737 

The results for this case scenario reveal, somewhat unexpectedly, some similarities between denitrification and 738 

anammox with respect to NO2- reduction to N2 and associated N isotope signatures. The isotope effects associated 739 

with denitrification are low (2.8‰ for NO3- reduction and 7.9‰ for NO2- reduction), whereas anammox imparts 740 

stronger isotopic fractionation (14.4‰ for NO2- reduction to N2 and -30.0‰ for its oxidation to NO3-). These values 741 

reflect parameter estimations specific to Lake Lucerne’s surface sediments (upper 1 cm), where anammox activity 742 

is low.  743 

Both NO2- reduction and N2 production peak around 0.5 cm depth, with minor differences in the thickness of the 744 

active layer due to variations in substrate affinity between modelled processes (Fig. 9e-f). The total rate of NO2- 745 

reduction to N2, via either anammox or denitrification, remains consistent across all case scenarios. Nonetheless, 746 
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slight differences can be observed in some N pools as anammox becomes the dominant fixed-N loss path. Increased 747 

anammox activity leads to elevated N2 and NO2- concentrations (Fig. 9g-h), likely due to the use of NH4+ as a 748 

substrate, which mitigates substrate limitation under low NO2- availability (i.e., 1.3 mol NO2- needed to produce 1 749 

mol N2 via anammox versus 2 mol NO2- via denitrification). When anammox prevails, d15N-NO2- values increase 750 

due to the stronger isotope effect associated with NO2- reduction via anammox relative to denitrification. This 751 

enrichment is partially counterbalanced by the inverse kinetic isotope effect during NO2- oxidation to NO3- (Brunner 752 

et al., 2013), leading to 15N-enriched NO3- below 0.8 cm; notably, this isotopic shift occurs without significant 753 

changes in total NO3- concentrations (Fig. S6g-h). Lastly, substantial differences emerge in the NH4+ pool: higher 754 

anammox activity correlates with lower NH4+ concentrations and elevated d15N-NH4+ values throughout most of the 755 

sampled depths (Fig. S6e-f). This isotopic enrichment likely overlaps with the effect of nitrification on the NH4+ 756 

pool in the upper 0.3 cm. 757 

While some differentiation between denitrification and anammox is evident in the isotope signatures of NO3- and 758 

NH4+, the expected contrasts in the NO2- and N2 pools are surprisingly muted. This near-indistinguishability in 759 

isotopic outcomes suggests a degree of functional and isotopic redundancy between the two pathways under the 760 

modelled conditions. These results highlight the need for further investigation, particularly through refined isotope-761 

based methods (e.g., inclusion of NOx O-isotopes or clumped nitrate isotopes) and more mechanistic modelling, to 762 

distinguish the respective contributions of denitrification and anammox to N removal in sedimentary systems. 763 
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 764 

Figure 9. Depth profiles of process rates, solute concentrations and d15N values for the two idealized case scenarios investigated: (i) 765 
NO3

- reduction via DNRA and denitrification (a-d), (ii) N2 production via anammox and denitrification (e-h). Shadings represent 766 
different model scenarios within each case, as defined in the legend. For case (i), colour shading lightens with increasing 767 
contribution of DNRA (relative to denitrification) to total NO2

- reduction. DNRA accounts for 0‰ (fDNRA = 0), 33‰ (fDNRA = 0.5), 768 
50% (fDNRA = 1) and 66% (fDNRA = 2) of total NO2

- reduction (panel a). The resulting effects on the production rates of NH4
+ and N2 769 

(b), as well as on their concentrations and N isotopic composition (c-d), are shown. For case (ii), colour shading lightens with 770 
increasing contribution of anammox (relative to denitrification) to total NO2

- consumption and associated N2 production. 771 
Anammox contributes 0‰ (fAnam = 0), 33‰ (fAnam = 0.5), 50% (fAnam = 1) and 66% (fAnam = 2) of total NO2

- consumption (e-f). The 772 
resulting impacts on N2 and NO2

- concentrations and d15N values are shown in panels g-h. 773 

5. Conclusions 774 

We developed a comprehensive diagenetic N isotope model that integrates multiple N transformations in benthic 775 

environments. The model’s complexity requires the use of prior knowledge in addition to the observed data, in order to 776 

achieve the most plausible descriptions of the ongoing processes. To address uncertainty in prior knowledge, and to reduce 777 
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structural errors associated with fixed parameter values, we applied Bayesian inference for a large parameter set (~60) for 778 

data analysis. The computational demands of this approach were met by implementing the model in Julia, with compatibility 779 

for automatic differentiation to allow for advanced Markov chain Monte Carlo algorithms needed for Bayesian inference. 780 

Despite these optimization efforts to enhance efficiency, inference runs still took 2-3 weeks of computation time (in addition 781 

to preceding simulations to reduce burn-in) to achieve sufficiently good convergence of the Markov chains of the posterior 782 

parameter distribution. Alongside concentrations and d15N values for different N species, the model provides depth profiles 783 

of process rates and all fluxes, including their uncertainties. These outputs enable a detailed assessment of the processes 784 

shaping N cycling (i.e., concentration profiles) and isotope patterns in sediments. 785 

Application of the developed model to a test dataset from Lake Lucerne successfully reproduced measured profiles of O2, 786 

SO42-, NH4+, NO2-, NO3-, d15N-NH4+, and d15N-NO3-. The model also produced realistic vertical distributions of conversion 787 

rates, revealing clear depth-dependent zonation. Most marginal posterior distributions of estimated parameters were in good 788 

agreement with their priors. Yet, strong deviations were observed for the N isotope effect associated with the first step of 789 

denitrification, eDen1, which was estimated at ~2.8±1.1‰, significantly lower than the expected ~20‰. These findings were 790 

confirmed by additional simulations performed using narrower priors and a fixed eDen1 value of 20‰, both of which resulted 791 

in a substantial deterioration in the model’s ability to reproduce d15N-NO3- profiles. This, in turn, can be taken as indication 792 

for a suppressed denitrification NO3- isotope effect at the porewater level in Lake Lucerne, potentially due to process 793 

coupling via NO2-. The model’s ability to quantify such interactions, which can be difficult to discern in situ or from field 794 

data alone, is a key strength of this stepwise model framework. A manuscript assessing such dynamics across distinct sites is 795 

currently being prepared to further corroborate these findings. 796 

Further sensitivity tests highlighted that the model could still achieve good fits to the observational data even when certain 797 

individual processes were excluded, demonstrating the critical role of prior knowledge regarding estimated parameters and 798 

their associated uncertainties.  799 

Overall, this study presents one of the first comprehensive diagenetic N isotope models that explicitly incorporate multiple N 800 

transformation pathways in a stepwise manner and are validated against field measurements. Rather than serving as a purely 801 

predictive tool, this model is intended to stimulate scientific discussion on the quantification of N transformations and 802 

isotope dynamics in sediments based on observed data. Future developments could focus on improving identifiability 803 

through additional, targeted observations, expanding model validation across distinct benthic environments, and the 804 

incorporating additional isotope tracers, such as d18O of NO3- and NO2-, to further strengthen the model structure and 805 

improve its reliability.  806 
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Appendix B: Reaction-diffusion model 824 

Nomenclature 825 

t time [d] 826 

z depth coordinate within sediment (0 at the sediment surface, d at the lower boundary of the modelled sediment 827 

layer) [cm] 828 

d depth of the modelled sediment layer [cm] 829 

C(z,t) substance concentration (mass per volume of water) as a function of depth and time 830 

p(z) porosity of the sediment (water volume divided by sediment volume) as a function of sediment depth 831 

D(z) diffusivity of the substance in the water as a function of depth (usually constant and equal to the molecular 832 

diffusion coefficient; however, bioturbation could be modelled as an increase in diffusivity close to the sediment 833 

surface) 834 

r(C) transformation rate of the substance (mass per volume of water per unit of time) 835 

C0 substance concentration at the sediment surface 836 

Fd substance flux from deep sediment into the modelled sediment layer at the lower boundary of the modelled 837 

sediment layer (mass per unit of total sediment surface and per unit of time) 838 

Partial Differential Equation for Sediment Layer 839 

Mass balance within the sediment layer: 840 

𝑝
𝜕𝐶
𝜕𝑡 −	

𝜕
𝜕𝑧	-𝐷	𝑝	

𝜕𝐶
𝜕𝑧/ = 𝑝	𝑟 841 

Differential equation for concentration: 842 
𝜕𝐶
𝜕𝑡 = 	

1
𝑝
𝜕
𝜕𝑧	-𝐷	𝑝	

𝜕𝐶
𝜕𝑧/ + 𝑟 843 

Diffusion (molecular diffusion corrected for tortuosity, and bioturbation): 844 

𝐷 =	
𝐷mol

𝑎tort𝑝-89tort
+𝐷bioe

8 <
=bio 845 

Boundary conditions: 846 

𝐶(0, 𝑡) = 𝐶>	,			𝐷(𝑑, 𝑡)𝑝(𝑑, 𝑡)
𝜕𝐶
𝜕𝑧 (𝑑, 𝑡) = 	𝐹= 847 

 848 

For N compounds with a single N atom, the boundary conditions are calculated from total concentrations, Ctot, and d15N as 849 

follows: 850 

𝑟 = :
𝛿-?𝑁
1000 + 1=𝑅@,= 					𝐶 '=> =

1
1 + 𝑟 𝐶,A,					𝐶 '=? =

𝑟
1 + 𝑟 𝐶,A, 851 

For N compounds with two N atoms, the boundary conditions are calculated from total concentrations, Ctot, and d15N as 852 

follows (Drury et al., 1987): 853 

𝑟 = :
𝛿-?𝑁
1000 + 1=𝑅@,= 			𝐶 '=> '=> =

1
1 + 2𝑟 + 𝑟( 𝐶,A,				𝐶 ' '=>=? =

2𝑟
1 + 2𝑟 + 𝑟( 𝐶,A,				𝐶 ' '=?=? =

𝑟(

1 + 2𝑟 + 𝑟( 𝐶,A, 854 
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Appendix D: Model discretization 860 

We discretize the partial differential equations outlined in Appendix B using the Method of Lines. This approach involves 861 

explicit discretization in space, followed by the application of an ODE solver to the resulting system of ODEs. 862 

Spatial discretization 863 

Numerical discretization of sediment layer (n cells, cell expansion factor f): 864 

Visualization: 865 

 866 
Cell boundaries (𝑖 = 1,… , 𝑛 + 1): 867 

𝑧PQ =	

⎩
⎪
⎨

⎪
⎧

𝑖 − 1
𝑛 𝑑 for	𝑓 < 1.1			(𝑖 = 1,… , 𝑛 + 1)

𝑓
PBI
R − 1
𝑓 − 1

𝑑 for	𝑓 ≥ 1.1			(𝑖 = 1,… , 𝑛 + 1)
 868 

Cell midpoints (𝑖 = 1,… , 𝑛): 869 

𝑧PS =
1
2
	6𝑧P

Q + 𝑧P4IQ
9 870 

Explanation for the cell expansion factor: 871 

The cell size is approximately (the larger n the closer) proportional to 872 

𝜕𝑧PQ

𝜕𝑖
=
𝜕
𝜕𝑖
	
M
𝑓
PBI
R − 1
𝑓 − 1

𝑑
N
=	
log	(𝑓)
𝑓 − 1

	
1
𝑛
	𝑓
PBI
R 	𝑑 873 

Comparing these cell sizes at the lower and upper boundaries leads to 874 

𝜕𝑧PQ
𝜕𝑖 Q

PTR4I
𝜕𝑧PQ
𝜕𝑖 Q

PTI

	= 	𝑓 875 

This expression clarifies the meaning of the cell expansion factor (approximately equal to the ratio of cell size of lowest to 876 

uppermost cell). 877 

Discretized Ordinary Differential Equations 878 

Mass balance within sediment layer cells (𝑖 = 2,… , 𝑛 − 1): 879 

𝑝(𝑧Pm)
𝜕𝐶
𝜕𝑡 (

𝑧Pm)6𝑧P4I
b −𝑧Pb9880 

= −𝑝6𝑧P
b
9𝐷6𝑧P

b
9
𝐶(𝑧Pm) − 𝐶(𝑧PBIm )

𝑧Pm − 𝑧PBIm + 𝑝6𝑧P4I
b
9𝐷6𝑧P4I

b
9
𝐶(𝑧P4Im ) − 𝐶(𝑧Pm)

𝑧P4Im − 𝑧Pm
881 

+ 𝑝(𝑧Pm)𝑟(𝑧Pm)6𝑧P4I
b −𝑧Pb9 882 

Differential equation for concentrations at cell midpoints of inner cells (𝑖 = 2,… , 𝑛 − 1): 883 

𝜕𝐶
𝜕𝑡 (

𝑧Pm) =
−𝑝6𝑧P

b
9𝐷6𝑧P

b
9
𝐶(𝑧Pm) − 𝐶(𝑧PBIm )

𝑧Pm − 𝑧PBIm + 𝑝6𝑧P4I
b
9𝐷6𝑧P4I

b
9
𝐶(𝑧P4Im ) − 𝐶(𝑧Pm)

𝑧P4Im − 𝑧Pm

𝑝6𝑧P
m
96𝑧P4I

b −𝑧Pb9
+ 𝑟(𝑧Pm) 884 

Boundary conditions: 885 
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𝐶6𝑧I
b
9 = 𝐶U	,			𝐷6𝑧R4I

b , 𝑡9𝑝6𝑧R4I
b , 𝑡9

𝐶6𝑧R4I
b

9 − 𝐶(𝑧R
m)

𝑧R4Ib − 𝑧Rm
=	𝐹V 886 

→ 		𝐶6𝑧R4I
b

9 = 	𝐶(𝑧R
m) + 	𝐹V 	

𝑧R4Ib − 𝑧Rm

𝐷6𝑧R4I
b , 𝑡9𝑝6𝑧R4I

b , 𝑡9
 887 

Differential equations for concentrations at cell midpoints of top and bottom cell (𝑖 = 1, 𝑖 = 𝑛): 888 

𝜕𝐶
𝜕𝑡 (

𝑧Im) =
−𝑝6𝑧I

b
9𝐷6𝑧I

b
9
𝐶(𝑧Im) − 𝐶6𝑧I

b
9

𝑧Im − 𝑧Ib
+ 𝑝6𝑧A

b
9𝐷6𝑧A

b
9
𝐶(𝑧Am) − 𝐶(𝑧Im)

𝑧Am − 𝑧Im

𝑝(𝑧Im)6𝑧A
b−𝑧Ib9

+ 𝑟(𝑧Im) 889 

𝜕𝐶
𝜕𝑡 (

𝑧Rm) =
−𝑝6𝑧R

b
9𝐷6𝑧R

b
9
𝐶(𝑧Rm) − 𝐶(𝑧RBIm )

𝑧Rm − 𝑧RBIm + 𝑝6𝑧R4I
b

9𝐷6𝑧R4I
b

9
𝐶6𝑧R4I

b
9 − 𝐶(𝑧R

m)
𝑧R4Ib − 𝑧Rm

𝑝(𝑧Rm)6𝑧R4I
b −𝑧Rb9

+ 𝑟(𝑧Rm)	890 

																	=
−𝑝6𝑧R

b
9𝐷6𝑧R

b
9
𝐶(𝑧Rm) − 𝐶(𝑧RBIm )

𝑧Rm − 𝑧RBIm + 𝐹V

𝑝(𝑧Rm)6𝑧R4I
b −𝑧Rb9

+ 𝑟(𝑧Rm) 891 

Appendix E: Model implementation 892 

The model was implemented in Julia (Bezanson et al., 2017) (https://julialang.org). The implementation is available with 893 

open access at https://gitlab.com/p.reichert/Nsediment. The version used for this study corresponds to commit 894 

7afecdf1af871e8f8030360d658ec1cf54d20716. 895 

The partial differential equations described in Appendix B were spatially discretized according to the approach outlined in 896 

Appendix D. The resulting ordinary differential equations were then numerically solved by the Method of Lines using the 897 

package DifferentialEquations.jl (Rackauckas and Nie, 2017). Discretizing the modelled sediment layer into 50 cells, and 898 

considering 14 state variables, resulted in a system of 700 ordinary differential equations. The performance of several ODE 899 

solvers was compared, resulting in the use of the adaptive order and adaptive time step backward-differencing solver FBDF 900 

to account for the stiffness of the ODE system. 901 

Maintaining compatibility with automatic differentiation while allowing flexible parameter selection for inference was a key 902 

implementation challenge. This was addressed by using separate arrays for parameter values and names, and by prepending 903 

the parameters to be estimated, ensuring a contiguous array of the parameters. To avoid inefficiencies related to the search of 904 

parameter names, the association of parameter names to array indices was resolved within the differential equation solver 905 

function. This solver, which includes the function to calculate the right-hand side of the differential equation as an internal 906 

function, ensures that the index resolution has to be done only once and remains available for all calls of the integrator by the 907 

solver. This approach enabled compatibility of our implementation with the automatic differentiation package ForwardDiff.jl 908 

(Revels et al., 2016). 909 

Bayesian inference was implemented with both an adaptive Metropolis sampler from the AdaptiveMCMC package (Vihola, 910 

2020) and the Hamiltonian Monte Carlo algorithm from the AdvancedHMC.jl package (Xu et al., 2020).  911 

All model outputs were written to text files and post-processed using R (https://www.r-project.org). 912 

https://julialang.org/
https://gitlab.com/p.reichert/Nsediment
https://www.r-project.org/
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