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Summary

The authors train machine learning (ML) models to reproduce lidar-based snow depth
measurements across a large spatial domain, several years, and different points in the season.
Using the trained models, the authors predict the effect of forest fires on snow depth by
perturbing the model predictor variables to represent counterfactual burned and unburned
conditions. The authors analyze spatial and temporal variability in these model predictions and
provide a process-based interpretation of their data-driven findings.

Strengths

The fundamental premise of the study is fairly obvious and simple, yet elegant and interesting,
which is perhaps the best kind of study. The application of “big data” (>100 lidar surveys) to
post-fire snow hydrology is important and novel. This is the kind of paper I would definitely cite
in the future, and it provides a clear launching pad for similar future investigations (perhaps
comparing additional models, finer resolutions, or other geographic areas). The efforts towards a
physical interpretation of ML results is also commendable. The numeric results are interesting
both from a basic science standpoint and are directly transferrable to water/forest management
questions and future model validation applications.

Main Comments

(1) Treatment of non-forest alpine areas

It is unclear to me how the authors are currently treating the large portions of the study
watersheds that are above treeline. In the Sierra Nevada, there are many thousands of km?
covered by talus and granite bedrock. In these alpine areas, it would be meaningless to talk about
the effect of burning a non-existent forest.

It seems like the authors may have dealt with this issue by masking out pixels with <10% forest
cover, but persistent usage of terminology like “basin-wide” makes this unclear. Additionally,
several of the figures clearly show predicted ASD (snow depth difference in burned forests)
across entire basins, even in high alpine regions without forests, which is confusing and
physically implausible.
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I see two possibilities: (A) the current study is masking out the non-forest pixels already, in
which case this should be clarified throughout (and the maps should be similarly masked) to
avoid confusion, or (B) the current study is predicting ASD everywhere, even in barren alpine
regions, which should be corrected.

A related concern is the possibility of pixels that are initially forested and then go to 0% forest
cover after a major fire (quite common with the RCMAP dataset used here). How are these
pixels handled, and how are newly deforested pixels discriminated from never-forested pixels?

(2) Informal use of “inference” language

Throughout the manuscript, the authors refer to their methods as “inference,” but the study does
not seem to contain any formal inferential framework. I understand that in the machine learning
world, “inference” is used equivalently to “prediction.” However, in my view this is an
unfortunate artifact of the informal ML lingo that should not be perpetuated in the natural
sciences.

It seems like the so-called “process-based inference” (Discussion section) is informally derived
from the authors’ expert knowledge and literature review rather than quantitative inference. To
call something “inference,” I would want to see a quantitative framework defining prior and
posterior distributions, a likelihood function, etc. Maybe a compromise would be to call it
“process-informed reasoning” or something? Things like Bayesian ML do exist, and should be
distinguished from the informal inferential procedure used here (not that informal inference
doesn’t have a strong legacy in hydrology...cf. Beven’s GLUE).

Specific suggestions for rewording are included in my detailed comments. If the authors want to
persist in using “inference,” I think this should be very carefully and explicitly caveated where it
appears (Abstract, Methods, Discussion, etc.) to acknowledge that the type of “inference”
performed here does not yield statistical confidence intervals, posterior distributions, hypothesis
tests, etc. Alternatively, the study could be reworked to leverage the large wealth of hybrid
Bayesian-ML approaches, which could enable true inference in a statistical sense, but this would
probably require quite a bit of additional work, so it’s probably easier to change the language.

(3) Spatial autocorrelation and cross-validation

The out-of-sample predictive accuracy of the trained model is obviously of paramount
importance for this study, since that is how the snow depth difference is calculated. However, the
current approach to model validation is potentially impacted by spatial autocorrelation, and a
more robust approach to train/test data partitioning would greatly enhance believability.



Section 2.3 refers to “cross validation” and “out-of-sample comparison,” but it is unclear how the
separate train/test sets are derived for these comparisons. Lacking any specific explanation, I
assume that all pixels within a single ASO survey were randomly sampled for training the trees
comprising each XGBoost model. However, with 50 m grid cells covering a complete spatial
area, most grid cells are adjacent to many other grid cells with near-identical predictors (nearly
the same elevation/aspect/slope/forest/fire history). Thus, I wonder whether the model is actually
learning meaningful information, or whether it is just interpolating between pixels. For example,
if the pixels at (x, y-1) and (x, y+1) are in the training dataset, it is quite easy to predict the pixel
at (X, y) in the test dataset through simple spatial interpolation. Thus, I am concerned that the
cross-validation error metrics could be confounded by spatial autocorrelation within the gridded
snow depth data.

The way I have handled similar problems myself is by separating train/test datasets using a large
grid, e.g., alternating 1 km blocks of training and test pixels. In the authors’ application, the
model is asked to predict the effect of hypothetical fires at locations that are many kilometers
away from any historical fire location. Thus, the authors should demonstrate that the model is
capable of predicting snow depth at a similar distance from the training data, not just the next
pixel over. For each ASO survey, I suggest imposing a 1 km (or larger) grid of train/test regions,
training the model only within some of these 1 km grid regions, and testing the model predictive
accuracy on the other out-of-sample 1 km grid regions. This would provide more of a true out-of-
sample estimate of predictive accuracy since snow depth autocorrelation is much lower at
kilometer scales compared to 50 m. This would also overcome some of my concerns about using
UTM x-y as a predictor variable (namely, that the model can just memorize the snow depth map
by interpolating between known training coordinates).

Detailed Comments
Abstract: “trained on 50-m resolution airborne lidar [snow depth data?]”

Abstract: The sentence beginning “During the accumulation season” seems out of place to me—I
would expect some broader statement first, like “On average, snow depth is X% lower in burned
areas.”

Abstract: “basin-wide average predicted snow depth in burned areas” is unclear to me—
presumably it’s implausible for the entire basin to burn, since much of it is just alpine rock?
Maybe just take out “basin-wide” in the abstract until this can be clarified later.

Abstract: Sometimes the lower elevations actually have an increase in burned snow depth if I
understand correctly? Might be worth adding that to the “smaller, near-zero changes.”



Lines 26-27: “long-lasting impacts of large fires on mountainous snowpacks” Maybe add
“mountainous snowpacks and snow-dominated water resources” to broaden the implications? We
just had a study accepted at HESS might be relevant, which shows that the Creek Fire increased
annual San Joaquin runoff by as much as 18% during a drought year, with substantial
implications for water management in that basin:

Boardman, E. N., Boisramé¢, G. F. S., Wigmosta, M. S., Shriver, R. K., and Harpold, A.
A.: Improving Model Calibrations in a Changing World: Controlling for Nonstationarity
After Mega Disturbance Reduces Hydrological Uncertainty, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2025-1877, 2025

Line 39: This string of citations seems to have some typographical errors and repeats

Line 81: “relatively accurate” might be an understatement given the nominal snow depth
uncertainty of <1 cm when aggregated to 50 m resolution (cf. ASO survey reports). Also, the
observations are at 3 m resolution, which seem to be typically distributed along with the 50 m
data in the survey zip folders.

Line 85: Not just the irregular timing of surveys—the interannual weather variability also
massively confounds pre/post-fire analyses, which is why counterfactual modeling experiments
(as done here with ML, or using process-based models) are the norm for disturbance attribution.
Interannual variability in albedo caused by different levels of atmospheric deposition could also
be salient for a snow study.

Line 98: “changes vary” is confusing wording to me—it’s technically correct, and I know what is
meant, but maybe consider rewording for clarity?

Line 107: “five-year study period” is confusing because of the two preceding date ranges—it
seems like there are two periods under consideration (2015-2024 and 2020-2024), and it’s not
immediately clear how these two periods are being used differently.

Figure 1: I think this would be really cool as a multi-panel figure, with a second panel showing
the most recent year burned (colors filled within each fire perimeter) and perhaps additional
panels showing RCMAP forest cover and ASO snow depth (perhaps the maximum pixel-wise
snow depth across all acquisitions?)

Line 121: Some years/basins have even more than 6 flights (2016 in the Tuolumne comes to
mind), so perhaps just say “from one to six or more flights per season”

Line 122: The total area of “2e17 km?” seems to be a typo, because this is physically
implausible. For reference, the land area of Earth is 1.5e8 km?, which is 9 orders of magnitude
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smaller. Given 115 ASO flights, with a maximum basin area of say 10,000 km? (i.e., the Feather),
the total surveyed area cannot be more than 1e6 km?. Similar problem in Table 1: why are the
units in 10" km?? This is again physically implausible. I would recommend just listing the basin
areas in km?, since the area of each basin falls in the range of ~1,000 to ~10,000 km?.

Line 138 (RCMAP section): [ would add a sentence outlining the basic methodology for how
Rigge et al. derive these data. Also, be careful of using the year immediately before a fire. |
haven noticed that major fires often show up as “ghosts” in the prior year’s dataset (i.e., the
September 2020 Creek Fire perimeter is visible in the 2020 RCMAP data as a slight reduction in
canopy cover, even though there was no fire effect during the 2020 snow season). They might
have fixed this in a later data release—not sure—but definitely worth visually checking some of
the immediately pre-fire years. Additionally, I have noticed that the canopy cover in RCMAP is
often reduced to 0% or 1% after a major fire—how is this being handled in the >10% masking?
Specifically, do pixels that are initially forested and change to 0% tree cover after a fire still get
included in the ML training? Are the authors using a static mask across all years (in which case,
what years are used to define the 10% threshold?) or are the authors using a dynamic mask for
each separate year (in which case, how do newly treeless pixels get handled?)

Line 145 (Peak SWE section): might be worth checking pairs of ASO flights from before/after
SNODAS peak SWE to validate that all of the post-peak-date ASO surveys have less basin-total
SWE than the pre-peak-date surveys.

Section 2.3: A word search doesn’t return any results for “counterfactual,” which I think is a key
word related to the approach here. Specifically, it would enhance the clarity in my mind if the
authors specified that the ML model is used to predict snow depth in counterfactual
burned/unburned scenarios, which eliminates the issue of interannual variability for the burn-
effect attribution. Might also help with future keyword search optimization.

Line 161: Using UTM x and y as predictors is potentially problematic. With a large enough
model, it could just memorize the snow depth for each unique x-y location. Currently, there
seems to be no justification for why these x-y predictors are used, or what the plausible physical
interpretation would be. I suspect this is being used to capture synoptic scale weather patterns,
i.e., “the north side of the basin gets more snow,” but in that case, why not use climatological
maps from PRISM or similar? At minimum, I would like to see some explanation of what these
x-y predictors are intended to capture, and a more robust spatial sensitivity test (see major
comment on spatial autocorrelation and validation). Ideally, I would like to see if similar results
could be reproduced using something other than x-y, such as interpolated climatological maps, or
even a smoothing kernel applied to the ASO snow maps (to capture preferential deposition or
other weather effects that might be missing from climatological maps).



Line 163: is it realistic to treat areas that burned prior to 2015 as unburned, given the (slow?)
growth rate of alpine conifer forests? I realize that the albedo effect is probably small after that
much time, but I’m not convinced that the interception recovers completely that fast.

Line 170: I think the “success” of a given SWE product is subjective and depends on the
intended use; I would just take out that word and say “applied to develop a daily SWE product.”

XGboost section overall: I would like to see some discussion of convolutional neural networks or
other SOTA neural approaches to spatial ML like GANs or VAEs. In particular, convolutional
nets can use the local spatial context for predictions (i.e., drifts downwind of terrain features,
forest edges, gaps, etc.). This is probably less important in forest regions, which tend to have
more uniform snowpacks—perhaps this could be stated as a justification for using a simpler tree-
based approach, combined with the computational efficiency (though backpropagation is also
pretty efficient). I’'m also curious why the XGBoost prediction features don’t include any
topographic metrics beyond elevation/aspect/slope—what about topographic roughness, position
index, upwind angle, etc.?

Line 184: “under null conditions to the training data” what does this mean? Even as someone
who fancies myself a bit of a ML researcher at times, I’ve never heard this phrase, and I suspect
it will be foreign to many non-ML snow scientists too. Please elaborate.

Line 189: I think this section should be substantially expanded since it gets at the real crux of the
whole study—the comparison of counterfactual burned/unburned. Specifically, a few things are
unclear to me currently: if this comparison was done “for all pixels,” does this include pixels that
have never been forested (above treeline)? If it’s only for the masked pixels with >10% forest
cover, see comment on RCMAP pixels that decrease to near 0% after fire. Also, why only set
burn severity to high? It seems like for minimal additional effort, the authors could add an
additional interesting comparison between the effects of high/medium/low severity and number
of years post-fire.

Line 199: “basin-wide” is a bit misleading I think, assuming that the comparison is only made
within the forested region? Maybe area-average would be a more precise term, or “basin average
within the forested region.” Otherwise, I think this carries the implication that a 10% change in
post-fire forest snow equates to a 10% change in basin-total snow, which is not true (potentially
much of the snow is above treeline in some basins).

Line 204: See major comment on spatial cross-validation.

Figure 2: A lighter shade of green might make these boxes easier to distinguish in black-and-
white. Also, something is weird with the legend—"“Burn” seems to be repeated both sides of the
red box.



Line 220: the increase/decrease terminology is confusing, since it implies a directionality in
ASD, whereas I think the intended meaning is just the magnitude of this effect.

Figure 3: This is great! My only though is that “Peak’ might be clearer than “pSWE” for the
horizontal axes labels.

Figures 4 and S4: I don’t understand why the ASD maps extend all the way to the highest
reaches of the Tuolumne, Merced, San Joaquin, Kings, etc., which is an extreme alpine area
devoid of forest. Are the ASD values calculated everywhere, or just within the forested region? It
wouldn’t make sense to talk about the ASD of these high alpine slopes. If the main ASD stats in
the paper are masked just to the forested region (is this what the 10% canopy cover threshold is
for?), this should also be reflected in Figure S4 to avoid confusion.

Line 273: How many burned forest pixels exist above 3000 m? (Or 3500 m for that matter—
Figure 5). Is this a sufficient sample size to justify these comparisons? In the Illilouette, we seem
to have an upper fire line around 2600 m. Either way, it would be helpful to know the
distribution of burn area training data with elevation.

Figure 6: It looks like the 0-1500 m elevation range has a positive median ASD per Figure 5a,
but I don’t see any positive ASD for the 0-1500 m range in Figure 6b. Am I misunderstanding
something?

Line 320: “variability in these differences varies” awkward wording, how about “these
differences vary spatially”

Line 367 / Section 4.2: I’'m not sure I would go so far as to call this process-based, when the
process implications seem to just be assumed from prior literature. Something more process-
based might be calibrating a model like SnowPALM to ASO, then running it in counterfactual
burned/unburned scenarios.

Line 381: I don’t see any inferential statistics. Where is this inference performed, and what are
the associated hypothesis tests, likelihood functions, credible intervals, etc.? Not all modeling
experiments count as “inference” in my opinion.

Line 385: I think the choice of “process-based reasoning” (used here) is much more accurate
than “process-based inference” (used elsewhere).

Lines 386-392: This comparison of RMSE values is unfair. The other SWE datasets discussed
are not directly trained on the target data. In theory, given a large enough model and enough
predictors, the approach used here (“predicting” SWE within individual flights) should achieve
RMSE ~0, since the true answer is used as the training data.



Line 393: The authors seem to pose a false dichotomy between “traditional statistical
approaches” and “machine learning,” when in fact there is a substantial overlap. Relegating
“traditional statistics” to just mean “linear regression” ignores a huge body of prior work on
advanced nonlinear statistical inference. For instance, Gaussian Process regression is a fully
Bayesian ML method that does not require pre-specifying functional forms, most Bayesian
sampling algorithms use the same automatic differentiation method that is at the core of all
neural networks, etc. Moreover, techniques like variational Bayes can be interpreted equally well
using either traditional statistics or machine learning conceptualizations
(https://en.wikipedia.org/wiki/Variational Bayesian _methods). I suggest that the authors

substantially reword or remove this section in light of the considerable overlap and intermingling
between “traditional statistics” and “machine learning,” rather than just dismissing “traditional
statistics” as basically antiquated.

Line 404 (Hydrologic impacts section): I would add more references to literature specifically
addressing the hydrological impacts of fire in the Sierra Nevada, not just the snow impacts. In
addition to our study of the Creek Fire water yield effects cited earlier, here are a few more:

Abolafia-Rosenzweig, R., Gochis, D., Schwarz, A., Painter, T.H., Deems, J., Dugger, A.,
Casali, M. and He, C. (2024), Quantifying the Impacts of Fire-Related Perturbations in
WRF-Hydro Terrestrial Water Budget Simulations in California's Feather River Basin.
Hydrological Processes, 38: e15314. https://doi.org/10.1002/hyp.15314

Boisramé, G. F. S., Thompson, S. E., Tague, C., & Stephens, S. L. (2019), Restoring a
natural fire regime alters the water balance of a Sierra Nevada catchment. Water
Resources Research, 55, 5751-5769. https://doi.org/10.1029/201 8WR 024098

Roche JW, Goulden ML, Bales RC. Estimating evapotranspiration change due to forest
treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology.
2018; 11:e1978. https://doi.org/10.1002/ec0.1978

Line 407: “entire basin as hypothetically burned” even huge areas of granite talus above treeline?

Conclusion: This is a nice concise summary, well done.
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