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Abstract.

Monitoring annual atmospheric CO2 growth rates is a key constraint on assessing the long-term effectiveness of emission

reduction strategies. We analyzed annual growth rates of column-averaged dry-air mole fractions of CO2 (XCO2) using long-

term data from 12 sites within the Total Carbon Column Observing Network (TCCON), spanning four regions: the Arctic, two

Northern Hemisphere midlatitude bands (40–50◦ N and 30–40◦ N), and the Southern Hemisphere. While in situ ground-based5

measurements provide detailed records of near-surface CO2 concentrations, XCO2 reflects the column-averaged abundance

across the entire atmosphere, offering a complementary perspective.

We compared TCCON-derived growth rates with ground-based in situ observations from the Mauna Loa Observatory

(MLO). Three calculation methods—Monthly Mean (MM), Fourier Fit residuals (FF), and Dynamic Linear Model (DLM)—were

evaluated, with particular attention to the Eureka site, where polar night introduces substantial data gaps. In addition, the Coper-10

nicus Atmosphere Monitoring Service (CAMS) reanalysis product was used to assess consistency with TCCON-based growth

rates and to evaluate each method’s robustness to missing data. Among the methods tested, the DLM approach proved most

resilient to data gaps.

Regionally averaged CO2 growth rates, calculated from 2010 or from the earliest available data through 2024, ranged from

approximately 2.33 to 2.40 ppm/year. The most prominent signal was associated with the 2015–2016 El Niño – Southern15

Oscillation (ENSO) event, during which growth rates increased by up to 1.7 ppm/year. The impact of COVID-19-related

emission reductions in 2020 was also examined: a decline of 0.4 ppm/year was observed in the 30–40◦N region, whereas

1

https://doi.org/10.5194/egusphere-2025-4080
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



other regions showed no significant decline. Correlation analysis between growth rates and ENSO strength revealed significant

relationships in the Southern Hemisphere and at Mauna Loa, but not in northern mid- or high-latitude regions.

1 Introduction20

It is estimated that Earth’s global surface temperature were more than 1°C warmer in the decade 2011–2020 compared to

pre-industrial levels (Lee et al., 2023). The rise in Earth’s surface temperature has severe consequences, including sea level

rise, extreme heat events, drastic shifts in precipitation patterns, and droughts, all of which pose significant risks to ecosystems

and human societies (Lee et al., 2023). To mitigate these impacts and achieve the goals set by the Paris Agreement, limiting

global temperature rise to 1.5°C by 2050, there is an urgent need to drastically reduce anthropogenic greenhouse gas (GHG)25

emissions and reach net-zero CO2 emissions (UNFCC, 2015; Lee et al., 2023).

Since the Industrial Revolution, anthropogenic CO2 emissions have generally monotonically increased, but with occasional

declines during major global events, such as the 2008 economic recession and the 2020 COVID-19 pandemic (Crippa et al.,

2023). During these periods, economic slowdowns led to temporary reductions in CO2 emissions. The COVID-19 pandemic,

in particular, provides a unique opportunity to evaluate the atmospheric response to an abrupt and large-scale drop in emissions.30

In 2019, global CO2 emissions were estimated at 37.8 Gt/year (Crippa et al., 2023). According to IPCC scenarios consistent

with limiting warming to 1.5°C, global GHG emissions must decline by approximately 84% by 2050 relative to 2019 levels

(Lee et al., 2023), implying steep reductions in gross emissions and/or increased CO2 removal. This corresponds to an average

annual reduction of approximately 1 Gt CO2/year. Due to restrictions related to the COVID-19 pandemic, global fossil fuel

CO2 emissions in 2020 decreased by approximately 1.9 Gt compared to 2019 (Crippa et al., 2023), a drop nearly twice as large35

as this expected annual average. Understanding whether such reductions are detectable in atmospheric CO2 concentrations is

crucial for assessing the effectiveness of future emission reduction strategies.

Data from National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory indicate that the

annual CO2 growth rate, as measured at the Mauna Loa Observatory, decreased by 8% in 2020. However, this reduction is

relatively small compared to the much larger increases observed during strong El Niño events, such as the 45% increase in40

2015–2016 (NOAA, 2024). This highlights the challenge of distinguishing between natural variability and anthropogenic emis-

sion changes. Moreover, monitoring atmospheric CO2 concentrations across multiple regions is essential, as the detectability of

emission-driven changes can vary due to differences in regional fossil fuel emissions, biospheric fluxes, and atmospheric trans-

port patterns. For example, mid-latitude regions with high anthropogenic emissions may exhibit more immediate responses,

while remote or high-latitude regions may show delayed or muted signals.45

Several surface in-situ observation sites around the world monitor CO2 concentrations in the atmosphere, however, surface

measurements are more sensitive to local emissions, especially when observation sites are located near high-emission regions,

and they are greatly affected by boundary layer dynamics. Total column observations, on the other hand, are less sensitive to

local emissions and more representative of regional emissions (Keppel-Aleks et al., 2011). Given their larger spatial footprints,

total column measurements provide more information for inverse modeling of regional emissions and trends. Moreover, with50
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advancements in remote sensing techniques from space, column-averaged dry–air mole fraction of CO2 can now be measured

in remote regions, enabling broader spatial coverage.

The Total Carbon Column Observing Network (TCCON) with 28 stations across four continents, provides long-term ground-

based remote sensing observations of CO2 that are also widely used for validating satellite measurements (Wunch et al., 2010).

Satellite missions, such as GOSAT and OCO-2, have been measuring total column CO2 from space since 2009 and 2014,55

respectively (Yokota et al., 2009; Crisp, 2015), significantly enhancing global monitoring of CO2 levels in the atmosphere.

These satellite datasets have also been incorporated into the Copernicus Atmosphere Monitoring Service (CAMS), which

assimilates measurement data to produce CO2 flux estimates and gapless total column mole fractions all over the world (Agustí-

Panareda et al., 2023).

In-situ networks, TCCON, satellite observations, and CAMS reanalysis all offer valuable datasets for investigating CO260

growth rates across different regions of the world. Several studies have employed ground-based and space-based total col-

umn data to examine CO2 trends and their driving factors. For instance, Lindqvist et al. (2015) compared CO2 column mole

fractions from the GOSAT satellite with measurements from various TCCON stations, providing insights into the seasonal

and interannual variability of atmospheric CO2. Sussmann and Rettinger (2020) developed a framework for deriving annual

growth rates from TCCON column-averaged dry-air mole fractions of carbon dioxide (XCO2) and estimating uncertainties.65

They applied this method to assess the detectability of COVID-19-related CO2 emission reductions, highlighting the challenge

of distinguishing small anthropogenic signals from natural variability. Buchwitz et al. (2018) used an ensemble-based satellite

product to calculate annual CO2 growth rates both globally and by latitude bands, later refined with updated measurements and

an improved ensemble version (Reuter et al., 2020). Extending this work, Labzovskii et al. (2021) analyzed CO2 growth rates

derived from 24 TCCON stations and compared them to results from CarbonTracker, CAMS reanalysis, and satellite-based70

estimates by Reuter et al. (2020). Collectively, these studies demonstrate how integrating TCCON and satellite data products

enhances our understanding of interannual variability in CO2 growth rates across different regions.

Given the unique opportunity presented by the 2020 emission reductions, we extend the analysis of TCCON-based CO2

growth rates initially conducted by Sussmann and Rettinger (2020) by incorporating the 2020 measurements, which were

not available at the time of their study. To calculate annual growth rates, we examine three previously established methods75

and identify the most robust approach for our purposes. Our analysis is expanded to include a larger set of TCCON stations,

with a focus on the northern temperate regions (30°–50°N), the Arctic, and the Southern Hemisphere. In addition, we leverage

modeled data from CAMS, which offer continuous, gap-free time series, to evaluate the consistency of predicted XCO2 growth

rates with TCCON observations, particularly at sites affected by substantial data gaps.

Section 2 offers an overview of the measurement sites and modeled products utilized in this study. In section 3, we provide a80

brief introduction to three methods for calculating annual growth rates and describe their application to our datasets. Section 4

presents the results of the growth rate calculation method analysis, along with the calculated growth rates for each study region

based on the most effective method. Finally, section 5 discusses the implications of our findings and explores potential future

applications of this analysis.
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2 Data85

In this analysis, we use XCO2 measurements from 12 TCCON sites and surface CO2 in-situ observations from Mauna Loa

Observatory (MLO) to compare CO2 growth rate trends. Although the focus of this study is on total column measurements,

MLO is included due to its long-term record, its central role in global CO2 growth rate assessments (e.g., NOAA GML, UK Met

Office analyses (Betts et al., 2024)). In addition its high-altitude location, makes it more representative of the free troposphere

and therefore more comparable to total column observations. Additionally, a gridded modeled total column CO2 product is90

included for comparison against the observational data.

2.1 In-Situ Measurement Site

The Mauna Loa Observatory provides the longest continuous atmospheric CO2 record, initiated by the Scripps Institution of

Oceanography in 1958 and complemented by NOAA’s Global Monitoring Laboratory, which has conducted continuous in-situ

measurements since 1974 (Lan et al., 2025; Thoning et al., 2024). For this study, we specifically use the continuous in-situ95

dataset from NOAA/GML at MLO, which is widely employed for calculating annual growth rates. For example, the UK Met

Office uses Mauna Loa data to forecast annual CO2 growth rates within their seasonal-to-decadal climate models (Betts et al.,

2024).

2.2 TCCON Sites

We utilize the XCO2 data from 12 TCCON sites, the column-averaged dry-air mole fraction of CO2 retrieved using the GGG100

software by profile scaling (TCCON Team, 2020; Laughner et al., 2024). The a priori profiles are constructed using meteoro-

logical data from the Goddard Earth Observing System Forward Processing for Instrument Teams (GEOS-FP-IT) atmospheric

data assimilation system (Lucchesi, 2013). TCCON column retrievals are scaled to the WMO trace gas scale using aircraft- or

balloon-based measurements (Laughner et al., 2024).

To investigate the atmospheric response to changes in anthropogenic CO2 emissions, we choose a subset of TCCON stations105

in various regions. Recognizing that the majority of fossil fuel emissions occur in the mid-latitudes of the Northern Hemisphere

(30-50 ◦N) and considering the latitudinal gradient in CO2 we choose three stations in each of the two different latitude bands

40-50 ◦N and 30-40 ◦N. We also choose three stations in the high Northern latitudes to investigate the growth rate in the Arctic

region. In addition, we consider three stations in the Southern Hemisphere where CO2 growth is largely influenced by transport

from the Northern Hemisphere. From each region, we select sites that have at least five years of data, and have data available110

up to 2020 and are not located in highly urbanized regions.

We choose three sites from higher latitudes in the Northern Hemisphere: 1. Sodankylä, a rural area located in Northern

Finland (Kivi et al., 2022; Kivi and Heikkinen, 2016) ; 2. Ny-Ålesund, which hosts AWIPEV Arctic Research Base on the

Svalbard Norwegian island in northern Europe (Buschmann et al., 2022); and 3. Eureka located in Nunavut, which hosts the

Polar Environment Atmospheric Research Laboratory (PEARL) (Strong et al., 2022).115
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Figure 1. Selected TCCON stations used in this study (marked by white stars). High–latitude NH sites: eu (Eureka), ny (Ny-Ålesund), so

(Sodankylä). 40-50 ◦N latitude band: gm (Garmisch), pa (Park Falls), rj (Rikubetsu), 30-40 ◦N Latitude band: oc (Lamont), df (Dryden) ,

js (Saga). Southern Hemisphere sites db (Darwin), wg (Wolangong), lr (Lauder) as well as Izaña (iz) are marked by white stars. The in situ

measurement site, Mauna Loa Observatory (MLO), is indicated by a red cross. Global map based on Natural Earth public domain data and

plotted using the Cartopy Python library (Met Office, 2024; Natural Earth., 2025).

For the Northern latitude bands 40-–50 degrees North, we choose 1. Park Falls located in Wisconsin USA, within the

boreal forest (Wennberg et al., 2022a), 2. Garmisch , located in a small town in Southern Germany in the foothills of the

Alps (Sussmann and Rettinger, 2025) ; and 3. Rikubetsu in the island of Hokkaido, Northern Japan, positioned in a rural,

mountainous region (Morino et al., 2022).

For the Northern latitude bands 30–40 ◦N, we choose 1. Dryden , California, USA, at the Armstrong Flight Research Center120

(AFRC) on Edwards Air Force Base (Iraci et al., 2022), desert area, located 150 km northeast of Los Angeles. 2. Lamont , a

rural area located in Southern great plains in Oklahama, USA (Wennberg et al., 2022b). 3. Saga , a small town located in the

island of Kyushu in Southern Japan (Shiomi et al., 2022).

The three Southern Hemisphere stations that meet our time series criteria are: 1. Darwin, Australia, located in Northern

Australia (Deutscher et al., 2023b); 2. Wollongong, located in Southeast Australia (Deutscher et al., 2023a); and 3. Lauder,125

located on New Zealand’s South Island (Pollard et al., 2022). Although these stations fall within different latitude bands, the

relatively subdued variability in CO2 levels across the Southern Hemisphere enables meaningful comparisons of CO2 growth

trends by combining data from these locations (Stephens et al., 2013). Data from Darwin and Wollongong are available starting
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Table 1. TCCON, in-situ, and CAMS data used for CO2 growth rate calculation: site locations, measurement periods and average number of

measurements per year.

Region Site Name Latitude (◦) Longitude (◦) Alt (masl) Measurement Period Avg Measurements/yr Reference

High-Latitude Northern Hemisphere

(> 60◦N Arctic)

Eureka (eu) 80.05 -86.42 610 2010–2020 3015 Strong et al. (2022)

Ny-Ålesund (ny) 78.92 11.92 20 2005–2022 6896 Buschmann et al. (2022)

Sodankylä (so) 67.37 26.63 188 2009–2023 12040 Kivi et al. (2022)

Mid-Latitude Northern Hemisphere

(40–50◦N)

Garmisch (gm) 47.48 11.06 745 2007–2023 7309 Sussmann and Rettinger (2025)

Park Falls (pa) 45.94 -90.27 476 2004–2023 21450 Wennberg et al. (2022a)

Rikubetsu (rj) 43.46 143.77 380 2014–2021 3853 Morino et al. (2022)

Mid-Latitude Northern Hemisphere

(30–40◦N)

Lamont (oc) 36.60 -97.49 320 2011–2024 29985 Wennberg et al. (2022b)

Dryden (df) 34.96 -117.88 700 2013–2023 43626 Iraci et al. (2022)

Saga (js) 33.24 130.29 9 2011–2022 9643 Shiomi et al. (2022)

Southern Hemisphere (SH)

(10–50◦S)

Darwin (db) -12.42 130.89 30 2013–2022 21107 Deutscher et al. (2023b)

Wollangong (wg) -34.41 150.88 30 2013–2022 7406 Deutscher et al. (2023a)

Lauder (lr) -45.04 169.68 370 2004–2023 15432 Pollard et al. (2022)

In-Situ Site Mauna Loa (MLO) 19.54 155.58 3397 1974–2024 3400 Thoning et al. (2024)

CAMS coverage Global (1◦ ×1◦) -90 – 90 -180 – 180 – 2014–2023 2900 Chevallier et al. (2023)

in 2013, while Lauder provides an earlier record beginning in 2010. The 2010–2012 Lauder record used here was provided

privately and is not included in the publicly available TCCON files. Accordingly, Lauder is used exclusively to estimate growth130

rates for 2011–2013, and from 2014 onward, all three sites are included in the Southern Hemisphere average.

Table 1 summarizes the measurement sites used in this study, including their geographic locations, measurement periods,

and the average number of individual measurements per year as an indicator of data availability. TCCON measurements are

based on roughly 2-minute acquisition intervals and are only taken when sunlight is available, whereas Mauna Loa data consist

of hourly averages collected continuously, independent of weather or time of day. Consequently, the number of data points135

from Mauna Loa is substantially lower. The geographic distribution of the selected sites is shown in Figure 1.

2.3 Modelled Reanalysis Product

CO2 growth rates derived from TCCON measurements may be subject to biases when significant gaps occur within specific

years. Standard TCCON retrievals require direct sunlight and cannot be performed during cloudy conditions or at night, which

leads to gaps in the time series. In high-latitude regions, extended periods of low solar elevation or polar night can result in full140

seasonal gaps, further increasing the risk of seasonal biases in the annual growth rate estimates. On the other hand, reanalysis

datasets like those from Carbon Tracker and CAMS (Jacobson et al., 2023; Agustí-Panareda et al., 2023; Chevallier, 2024)

address these gaps by using model estimations. This approach enables the examination of how gaps in measurement data

could affect annual growth rate calculations. In this study, we use the CAMS Reanalysis XCO2 total column product, which

assimilates satellite retrievals from OCO-2 together with surface and aircraft observations to provide a comprehensive estimate145

of atmospheric CO2. The data have a spatial resolution of 1.4° × 0.7° and a 3-hourly temporal resolution, spanning from 2014

to 2023 (Chevallier, 2024).
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3 Methods

Accurately calculating annual CO2 growth rates is critical for understanding atmospheric trends and identifying regional dif-

ferences. In this study, we evaluate three commonly used methods to assess their robustness and sensitivity to data gaps,150

particularly at sites with limited observational coverage. A sensitivity analysis is performed to examine how data availability

affects growth rate estimates by applying these methods to both TCCON measurements and CAMS satellite reanalysis data at

sites with the most pronounced data gaps. Finally, we apply the most reliable method, based on this evaluation, to the regionally

averaged time series for each study region.

3.1 Data Preparation155

For TCCON, we use the publicly available dataset processed with GGG2020 (TCCON Team, 2020; Laughner et al., 2024),

excluding CO2 measurements with errors exceeding 3 ppm to ensure high data quality. MLO in-situ measurements are filtered

using the dataset’s quality control flags. These datasets differ in temporal resolution: TCCON provides measurements every 2

minutes whenever sufficient solar radiation is available, MLO data are reported hourly, and CAMS reanalysis offers continuous,

gap-free data at 3-hour intervals.160

To account for atmospheric variability on synoptic scales, we compute weekly averages following the approach of Sussmann

and Rettinger (2020). To ensure consistency, we analyze TCCON and MLO data starting from 2010 and align comparisons

with CAMS reanalysis data from 2014 onward. For spatial consistency, we use the CAMS grid point nearest to each TCCON

site.

Regional growth rates are calculated by averaging the weekly time series from stations within each region, which reduces the165

influence of outliers and increases sampling density. This results in narrower confidence intervals and a more representative,

stable regional trend. Although data availability varies across sites—sometimes causing unequal contributions—combining

multiple stations overall improves estimate robustness.

3.2 Growth Rate Calculation Methods

We examine three previously established methods to estimate annual CO2 growth rates: the Monthly Mean (MM), Fourier170

Fit residuals (FF), and Dynamic Linear Model (DLM). The growth rate here refers to the increase in atmospheric CO2 con-

centration, expressed in parts per million per year (ppm/yr), calculated over a one-year period. Each method is applied to

weekly averaged data to minimize short-term variability and to maintain consistency across datasets with differing temporal

resolutions. These three methods were selected based on their prior use in similar studies and their suitability for datasets with

varying temporal coverage and data density.175

3.2.1 Monthly Mean (MM)

The Monthly Mean (MM) method, originally introduced by Buchwitz et al. (2018) for satellite observations and later applied to

TCCON ground-based measurements by Labzovskii et al. (2021), estimates annual growth rates by first computing the average
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CO2 value for each calendar month m (e.g., January, February, etc.) in each year y, denoted as Cy,m. This yields up to 12

monthly averages per year. Monthly growth rates are then calculated by differencing the same months from consecutive years,180

i.e., ∆Cy,m = Cy,m −Cy−1,m. The annual growth rate for year y is then obtained by averaging the available monthly growth

rates as

gry =
1

Ny

Ny∑

m=1

∆Cy,m (1)

where Ny is the number of months with valid data in both year y and year y− 1. The associated uncertainty is estimated

by calculating the standard deviation σy of the ∆Cy,m values and scaling it to account for incomplete month coverage, i.e.,185

δgry = σy ·
√

12/Ny . This method is valued for its simplicity and ease of implementation; however, it is sensitive to data gaps,

as missing months may reduce Ny and potentially introduce biases in the estimated annual growth rates.

3.2.2 Fourier Fit (FF)

The Fourier Fit (FF) method combines linear regression with a Fourier series to model the long-term trend and seasonal cycle

in CO2 time series, as described by Sussmann and Rettinger (2020). The fit is expressed as F (t,a0,a1, b1, . . . , b8), where a0190

is the intercept, a1 is the slope of the linear trend, and b1 to b8 are the Fourier coefficients for four annual harmonics. The

residuals are calculated as the difference between the measured CO2 values M and the model fit: M −F (t). These residuals

represent deviations from the overall trend at each time step and are used to quantify annual offsets.

For each year, a constant offset a0,yr is fitted to the residuals, representing how that year’s median deviates from the overall

fit. The annual growth rate is then calculated as the difference in these offsets between consecutive years, added to the linear195

trend term a1, as follows:

gryr = a0,yr − a0,yr−1 + a1 (2)

This formulation captures both the long-term linear increase in CO2 and interannual deviations from the trend. Confidence

intervals are estimated using bootstrap resampling with 5,000 iterations, following Sussmann and Rettinger (2020), with the

2.5th and 97.5th percentiles defining the 95% confidence interval.200

3.2.3 Dynamic Linear Model (DLM)

The Dynamic Linear Model (DLM) is a statistical framework well suited for analyzing time series with irregular sampling

and data gaps. It was, for example, applied by Laine (2020) to analyze ozone trends in the atmosphere, and later adapted for

satellite-based methane retrievals by Hachmeister et al. (2024). For this analysis, we use the dlmhelper package developed

by Hachmeister (2025), which streamlines the application of DLMs in atmospheric datasets.205
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We determine the best-fit model from an ensemble of DLMs with different numbers of harmonic components (1, 2, 3, or 4),

selecting the configuration that yields the lowest total covariance level. In most regions, the best performance is obtained using

four harmonics, while in the Arctic region, only one harmonic is selected.

We apply the DLM to fit weekly time series of XCO2, providing estimates of the underlying CO2 levels at that temporal

resolution. The DLM method provides a fit on the same time resolution as the input data, so using weekly input results in a210

weekly-resolved growth rate time series. From this, we calculate annual growth rates as the difference between deseasonalized

annual means of the DLM fit in consecutive years:

grDLM
yr = µyr −µyr−1 (3)

where µyr is the mean of the deseasonalized, detrended DLM fit for year yr. The associated uncertainty in each annual

growth rate is estimated as the square root of the sum of the annual level covariances from adjacent years, i.e., σDLM
gr,yr =215 √

σ2
µ,yr + σ2

µ,yr−1. Uncertainties tend to be larger at the beginning and end of the time series due to edge effects.

3.2.4 Method Evaluation and Selection

To assess the robustness of the three methods, we evaluate them at three sites with varying data coverage. Mauna Loa (MLO)

offers high-quality, near-continuous hourly in-situ measurements, including nighttime observations. Lamont, a TCCON site

located in a region with frequent sunlight, provides a dense and consistent dataset. In contrast, Eureka, a high-latitude TCCON220

site, experiences sparse measurements a pronounced data gap during the polar night in winter due to the absence of sunlight.

To evaluate the impact of such data gaps in a high-latitude context, we conduct a sensitivity analysis at Eureka using the

gap-free CAMS reanalysis dataset. Growth rates are first calculated using the complete CAMS time series, then recalculated

after downsampling the dataset to match the temporal coverage of the TCCON measurements. This comparison reveals the

method most resilient to missing data, which is subsequently applied to the regionally averaged TCCON time series across the225

four study regions.

4 Results

4.1 Growth rate calculation method comparison

To evaluate the performance of different growth rate calculation methods, we applied three approaches to the three represen-

tative sites selected in Section 2.2. We used all available data from 2009 onward, allowing annual growth rates to be derived230

starting in 2010. Figure A1 displays the time series of measurements from the three stations. The MLO in-situ measurements

cover the entire period, except for a gap from December 2022 to July 4, 2023, caused by the Mauna Loa Volcano eruption

(Thoning et al., 2024). Lamont TCCON measurements began in April 2011, allowing for annual growth rate calculations from

2012 onward. Eureka has data available from 2010, but there are no measurements for 2012 and 2013. Furthermore, measure-
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ments were interrupted in July 2020 due to instrument issues that could not be addressed due to COVID-19 travel restrictions,235

limiting growth rate calculations to data available through 2020.

Figure 2 presents annual growth rate estimates and the associated uncertainty ranges at each station using the three different

methods. While each method uses its own approach to estimate uncertainties, a qualitative comparison shows that the Monthly

Mean method tends to produce broader uncertainty ranges, making it more difficult to resolve year-to-year changes. By con-

trast, the Fourier Fit and DLM methods yield comparatively smaller uncertainty ranges, as evaluated within each method’s240

framework.

At Eureka, the DLM interpolates growth rates during the 2012–2014 gap. However, these estimates must be interpreted with

caution, as they rely on the assumption of smooth variation, and cannot capture potential short-term fluctuations similar to

those seen at Lamont and MLO during that period.

At MLO and Lamont, the growth rates from all three methods show close agreement. At Eureka, a notable discrepancy245

appears in 2019 between the DLM estimate and the other two methods, possibly due to data sparsity at this station. The

following section explores the sensitivity of each method to data gaps in more detail.

4.1.1 Gap sensitivity analysis

Figure A2 presents the CAMS reanalysis XCO2 time series overlaid with TCCON measurements at Eureka. This overlay

demonstrates the practical advantage of using CAMS in Arctic regions, where TCCON observations are frequently unavailable250

due to polar night or instrument downtime. To assess whether the observed differences in growth rate estimates between TC-

CON and CAMS stem from actual variability or are primarily driven by data availability, the CAMS dataset was downsampled

to match the temporal coverage of the TCCON measurements.

To perform the downsampling, the high-frequency TCCON data were first averaged into 3-hourly means to match the

native temporal resolution of the CAMS reanalysis. Next, both time series were merged by timestamp, and only 3-hourly255

intervals where both TCCON and CAMS had valid data were retained. This allowed the CAMS dataset to be filtered such

that its temporal coverage mirrored that of TCCON. The resulting downsampled CAMS data were then averaged into weekly

means—consistent with the treatment of other datasets—prior to applying the growth rate calculation methods. The downsam-

pled CAMS time series is also included in Figure A2 for reference. The analysis period was restricted to 2014 onward to match

the start date of the CAMS reanalysis product.260

For both the TCCON and downsampled CAMS datasets, the DLM ensemble member with the lowest level covariance

corresponded to a configuration with only one seasonal parameter, which we selected for our analysis. Similarly, for the FF

method, we initially applied four harmonics as used for other stations, but significant data gaps in the Eureka record led to

overfitting. To improve the stability of the fit and align with the DLM configuration, we reduced the model to a single seasonal

parameter. The MM method does not involve curve fitting and instead relies on the available monthly data. Due to the relatively265

sparse measurements at Eureka, the MM approach resulted in broader uncertainty ranges reflecting the smaller sample size.

Figure 3 illustrates the annual CO2 growth rates at Eureka, derived from both TCCON measurements and CAMS reanalysis

data. For the TCCON dataset (solid bars), all three methods produce broadly consistent growth rates, except for 2019, as noted

10

https://doi.org/10.5194/egusphere-2025-4080
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 2. Annual CO2 growth rates are plotted by year for each of the three sample sites using three different methods. The central line

within each bar indicates the median growth rate, and the bar length reflects the associated uncertainty, which is defined separately for each

method.
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earlier. The MM method (blue) shows larger uncertainties, in line with its statistical formulation, making it less sensitive to

interannual variability. In contrast, the DLM (yellow) and FF (maroon) methods exhibit sharper year-to-year changes.270

When applied to full-resolution CAMS data, all three methods agree well within uncertainty across all years (hatched bars).

For the downsampled CAMS dataset (dotted bars), which mimics TCCON’s temporal availability, the absence of data in 2014

prevents growth rate calculation for 2015. In subsequent years, the FF and MM methods exhibit noticeable shifts in mean

growth rates compared to full-resolution CAMS, particularly in 2016–2017—suggesting these methods are more sensitive to

sampling density. The DLM method appears least affected by downsampling, with results (hatched yellow) staying within the275

envelope of both the full CAMS and TCCON estimates, including in 2019.

In 2019, which was previously identified as a year with atypical behavior in the TCCON dataset, the DLM method remained

notably stable across all datasets, indicating greater robustness to data irregularities or gaps. In contrast, the FF and MM

methods exhibited shifts that aligned more closely with the original TCCON growth rates. While FF yields similar results in

most cases, DLM’s stability under irregular sampling makes it a more reliable choice. The MM method, while useful for cross-280

checking, lacks the resolution needed to detect interannual signals of interest. For this reason, we choose the DLM method for

investigating growth rates in different regions of the world.

Figure 3. Annual CO2 growth rates plotted for Eureka and the closest CAMS grid point original and downsampled (ds) to match the TCCON

measurements, using the three approaches for calculating growth rate. The x-axis represents calendar years. The central line within each bar

indicates the median growth rate, and the bar length reflects the associated uncertainty, which is defined separately for each method.
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4.2 Interannual variations in CO2 growth rates

Figure 4 illustrates the interannual variations in CO2 growth rates across the four TCCON study regions and the MLO in situ

site, overlaid with fossil fuel emissions from the Emissions Database for Global Atmospheric Research (EDGAR) database285

(Crippa et al., 2023). Detailed annual growth rates for individual sites within each region are provided in Figure A4.

Overall, CO2 growth rate trends show broad agreement across regions, despite year-to-year variability. Long-term average

growth rates are remarkably similar—around 2.4 ppm/year—for the Arctic, 30–40◦N, 40–50◦N, and MLO in situ, with un-

certainties ranging from ±0.3 to ±0.5 ppm/year. The Southern Hemisphere shows a growth rate of 2.3± 0.6 ppm/year. The

reported uncertainties represent the standard deviation of annual growth rates, reflecting interannual variability. The overlap-290

ping uncertainty ranges indicate consistent long-term CO2 growth trends across these spatial domains.

To better illustrate the interannual variability, Table 4.2 presents the CO2 growth rate anomalies alongside ENSO conditions

and fossil fuel emission changes. In 2016, a year marked by a strong El Niño event, all regions exhibited statistically significant

increases in CO2 growth rates compared to 2015, with most sites showing large absolute increases exceeding 1 ppm/year. An

exception is the 40–50◦N region, which showed a smaller but still statistically significant increase of +0.7 ppm/year.295

In 2020, following a notable 5% reduction in fossil fuel CO2 emissions, a distinct divergence in growth rates is observed

across regions. While the MLO site shows only a slight decline compared to 2019, the Arctic and Southern Hemisphere

exhibit modest increases, but these changes fall within the range of interannual variability and are not statistically significant.

In contrast, the 40–50◦N region shows a statistically significant increase in growth rate. Meanwhile, the 30–40◦N region

experiences a statistically significant decrease compared to 2019; however, the magnitude of this decline (–0.4 ppm/year) is300

modest relative to changes observed during strong ENSO years. Given the substantial drop in anthropogenic emissions, the

decrease in this densely urbanized latitude band likely reflects a regional sensitivity to reduced fossil fuel activity—an effect not

clearly observed elsewhere. This interpretation is supported by fossil fuel emissions maps from EDGAR (Figure A5), which

show that the majority of anthropogenic CO2 emissions occur within the 30–40◦N latitude band where there’s a large portion

of urban areas. In 2020, large emission reductions are observed in countries such as Japan and the USA further reinforcing the305

link between localized emission changes and observed growth rate anomalies in this region.

The plot also highlights the influence of strong and moderate La Niña events on regional CO2 growth rate patterns. In 2011,

during a strong La Niña, a statistically significant decline in growth rates is observed in the 40–50◦N region and the Arctic. This

was followed by a moderate La Niña in 2012, after which all regions experienced increases in growth rates, likely reflecting

a rebound from the preceding strong La Niña. In 2013, northern mid-latitudes saw growth rates rise by an additional 0.8–1.2310

ppm/year relative to 2012. These increases are possibly the result of the combined effects of the transition out of the two-year

La Niña phase and a concurrent rise in anthropogenic CO2 emissions, which followed a steady upward trajectory between

2010 and 2013.

A similar pattern is observed during the 2021–2022 La Niña period: CO2 growth rates declined at MLO and in the Southern

Hemisphere, while the Arctic and northern high latitudes showed little change in 2021. Notably, the 30–40◦N region exhibited315

a statistically significant increase that year, likely reflecting a rebound in fossil fuel emissions after the COVID-19 reductions.
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However, by 2022, the continued La Niña conditions appear to have exerted a broader suppressive effect on CO2 growth rates

across multiple regions. This declining trend persisted into 2023 for all TCCON regions, with particularly significant decreases

in the 30–40◦N and 40–50◦N latitude bands, while MLO showed a rebound. These results highlight the spatial heterogeneity

of biospheric and atmospheric responses to ENSO variability and suggest the need for further analysis to better understand the320

underlying mechanisms.

Figure 5 further explores the relationship between ENSO strength and the calculated CO2 growth rates in each region.

Positive ENSO values correspond to El Niño events, while negative values indicate La Niña conditions. We adopt the ENSO

strength classification used by Labzovskii et al. (2021), which ranges from –3 for strong La Niña to +4 for very strong El Niño,

consistent with the Oceanic Niño Index (ONI) classifications provided by NOAA (https://ggweather.com/enso/oni.htm). To325

account for the lag between oceanic temperature anomalies and their influence on the carbon cycle, we associate the second

year of each two-year ENSO phase with the atmospheric response. This lag reflects the time needed for sea surface temperature

changes to affect biospheric activity and CO2 fluxes.

The correlation analysis reveals no statistically significant relationship between ENSO strength and CO2 growth rates in the

Arctic, 40–50◦N, or 30–40◦N regions (P-values > 0.05). In contrast, significant correlations with low P-values and high R2330

values are found for the Southern Hemisphere and MLO, suggesting a stronger sensitivity to ENSO-driven variability in these

regions.

Figure 4. Annual growth rates and their uncertainty ranges for the four TCCON regions and MLO, calculated using the DLM method shown

by year. The central line within each bar indicates the median growth rate, and the bar length reflects the associated uncertainty. The red line

represents global fossil fuel CO2 emission trends from EDGAR.
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Table 2. Annual CO2 growth rate anomalies (in ppm/year and percentage change relative to the previous year in parentheses) for various

regions and the Mauna Loa Observatory (MLO), shown alongside fossil fuel emission changes (from EDGAR) and ENSO classifications.

Statistical significance is based on the overlap of uncertainty ranges: anomalies are considered significant when there is no overlap, and

moderately significant when the change exceeds half the combined uncertainty. Color shading highlights positive (red) and negative (blue)

anomalies using dark shading for strong significance, medium shading for moderate significance, and light shading for marginal significance.

Year Arctic 40–50◦N 30–40◦N SH MLO Fossil Emissions ENSO Condition

2011 −1.3 (-46%) −0.6 (-27%) – – −0.2 (-9%) +3.1% strong La Niña

2012 +0.9 (+60%) +0.5 (+29%) – +0.7 (+51%) +0.2 (+12%) +1.3% moderate La Niña

2013 +0.4 (+16%) +0.9 (+40%) +1.2 (+68%) +1.2 (+54%) +0.2 (+9%) +2.0% neutral

2014 −1.3 (-45%) −0.9 (-29%) −0.9 (-32%) −1.3 (-39%) −0.3 (-12%) +0.6% neutral

2015 +0.5 (+31%) +0.2 (+8%) −0.3 (-16%) +0.2 (+10%) +0.1 (+7%) −0.4% weak El Niño

2016 +1.0 (+49%) +0.7 (+30%) +1.7 (+103%) +1.1 (+48%) +1.0 (+42%) +0.3% very strong El Niño

2017 −0.3 (-9%) −0.5 (-19%) −1.0 (-30%) −1.5 (-43%) −0.9 (-29%) +1.7% weak La Niña

2018 −0.4 (-14%) −0.4 (-16%) −0.0 (-2%) +0.6 (+33%) −0.1 (-5%) +2.5% weak La Niña

2019 −0.0 (-1%) +0.2 (+8%) +0.1 (+5%) +0.0 (+1%) +0.6 (+27%) +0.2 weak El Niño

2020 +0.1 (+4%) +0.4 (+20%) −0.4 (-15%) +0.3 (+12%) −0.1 (-4%) −5.0% neutral

2021 +0.3 (+12%) +0.1 (+2%) +0.7 (+32%) −1.0 (-35%) −0.5 (-20%) +5.4% moderate La Niña

2022 −0.5 (-17%) −0.1 (-5%) −0.4 (-14%) +0.3 (+14%) −0.1 (-4%) +0.3% moderate La Niña

2023 −0.4 (-18%) −0.6 (-24%) −0.3 (-14%) −0.3 (-16%) +0.6 (+28%) +2.0% weak La Niña

5 Conclusions

TCCON provides a valuable dataset for investigating regional CO2 growth rates globally. While TCCON measurements offer

precise and consistent data, regional variations in station coverage introduce uncertainties, particularly in areas with sparse335

or intermittent observations. Using multiple stations within a region increases data density, helping to reduce uncertainty in

regional growth rate estimates. Particularly in high-latitude regions, winter data gaps can introduce biases when calculating an-

nual CO2 growth rates, but the Dynamic Linear Model further improves trend estimation by dynamically adapting to changing

growth rates and effectively handling data gaps—an essential capability given the inherently discontinuous nature of TCCON

data. Furthermore, comparison with CAMS reanalysis shows good agreement with TCCON, indicating that even where TC-340

CON data are absent, CAMS can provide consistent growth rate estimates.

Noticeable changes in annual growth rates can be observed in years affected by specific ENSO events or anthropogenic

emission shifts. A relatively strong correlation is found between growth rates at Mauna Loa and in the Southern Hemispheric

TCCON sites with ENSO strength, whereas other regions show no clear relationship. This spatial variability likely arises from

15

https://doi.org/10.5194/egusphere-2025-4080
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Correlation between TCCON calculated growth rates in four regions and MLO growth rates vs the ENSO strength each year as

defined by NOAA.

a combination of factors, including differences in biospheric sensitivity to ENSO events. For instance, Zhang et al. (2019)345

demonstrate that tropical and arid/semiarid regions—such as large parts of Australia—are among the most sensitive to ENSO

variability in terms of gross primary production (GPP). The 2020 case study indicates that the 30–40°N latitude band exhibits

a stronger sensitivity to changes in fossil fuel emissions, likely due to its higher baseline anthropogenic activity.

In-situ measurements at the MLO site provide valuable insights into changes in atmospheric CO2 mole fractions in response

to climate variability. However, extending this analysis to include TCCON measurements from different regions enhances our350

understanding of CO2 trends in relation to policy-driven emission reductions. Regional growth rate estimates derived from

TCCON can serve as independent validation tools for emission inventories and climate policies, particularly in regions with

strong fossil fuel sources. This highlights the importance of maintaining and expanding the TCCON network to support long-

term atmospheric monitoring and climate mitigation efforts.

Although this study focused on regions with long-term TCCON measurements, an important next step is to extend the355

analysis to under-observed areas that lack TCCON coverage. By leveraging the CAMS reanalysis product’s global, gap-free

coverage, along with satellite datasets from missions such as OCO-2, OCO-3, and GOSAT, it will be possible to infer CO2

growth rates in regions such as Africa, South America, and Southeast Asia. This expanded analysis will help assess whether

trends observed in well-sampled regions are globally representative and could support the development of robust, region-

specific emission verification systems. It may also provide valuable insights for countries that are currently data-sparse but are360

significant contributors to global emissions.
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Code and data availability. The TCCON retrievals are available from the Caltech library at https://tccondata.org/. In-situ observation data

from the Mauna Loa Observatory (MLO) are available from https://gml.noaa.gov/data/. CAMS global inversion-optimised CO2 mean column

values are available from https://ads.atmosphere.copernicus.eu/. CO2 annual and gridded emissions are available from the EDGAR database:

https://edgar.jrc.ec.europa.eu/dataset_ghg2024. The DLM code used to fit the CO2 time series and calculate annual growth rates is available365

at https://doi.org/10.5281/zenodo.14772372.

Appendix A: Supplementary figures

Figure A1. Time series of weekly averaged ground-level CO2 concentrations from the NOAA MLO site and weekly averaged XCO2

measurements from the Lamont and Eureka TCCON sites
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Figure A2. Time series of weekly averaged XCO2 from the Eureka TCCON overlaid with CAMS reanalysis data from the nearest grid point

to each as well as the downsampled CAMS timeseries.
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Figure A3. Time series of weekly XCO2 measurements from selected TCCON stations and regional averages, covering the period from

2009 to 2024. Each panel corresponds to a different study region: (top left) Arctic sites, (top right) 40–50◦N, (bottom left) 30–40◦N, and

(bottom right) Southern Hemisphere sites. Colored markers represent individual TCCON station measurements, while the black line shows

the smoothed regional average, with gaps masked where data is not available.
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Figure A4. Annual CO2 growth rates derived from TCCON stations, covering 2009–2024. Each panel corresponds to a different study

region: (top left) Arctic sites, (top right) 40–50◦N, (bottom left) 30–40◦N, and (bottom right) Southern Hemisphere sites. Colored bars show

annual growth rates for individual stations, and grey bars indicate the average of all sites within the region. The central line within each bar

indicates the median growth rate, and the bar length reflects the associated uncertainty.
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Figure A5. Top: Map of 2020 fossil fuel emissions based on the EDGAR 2020 fossil fuel flux data, displayed at a 0.1◦ ×0.1◦ resolution

(Crippa et al., 2023). Bottom: Map showing the difference in emissions between 2020 and 2019 at the same resolution. The locations of

TCCON stations used in this study are marked with yellow circles, while additional horizontal lines at 40°N and 50°N are added to indicate

the latitude bands used for regional analysis. Global map based on Natural Earth public domain data and plotted using the Cartopy Python

library (Met Office, 2024; Natural Earth., 2025).
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