Replies to comments of Reviewer 1

Authors would like to express sincere gratitude to an anonymous reviewer for his/her valuable
comments and suggestions. Our manuscript has greatly benefited from these insights. We have
carefully revised the manuscript, taking all comments into account. Our responses to the reviewer’s
comments are provided below.

GENERAL COMMENTS

The study by Khatri et al. investigates precipitable water vapour (PWV) retrieval using near-
infrared spectral irradiances measured by a ground-based spectroradiometer (EKO MS-700) and
deep neural network (DNN) models trained with a microwave radiometer (MWR) as the reference
instrument. The manuscript explores the algorithm potential by testing individual spectral bands
as well as their combination, and by evaluating spectral irradiances in different geometrical
configurations (direct, global, diffuse, separately and jointly). The models generally demonstrate
good performance, except for the one based only on direct irradiances under clear-sky conditions,
which is mainly attributed to the limited amount of training data available.

Overall, the manuscript is clearly written and represents a valuable methodological study that
could form the basis for new PWV retrieval approaches. However, as the primary motivation of
the work is to extend monitoring to locations lacking reference instruments, certain concerns
regarding the practical applicability of the proposed algorithm should be addressed before
publication. These are detailed in the sections below.

- We sincerely appreciate the reviewer’s thoughtful and constructive comments. These have
allowed us to improve the clarity of the manuscript, including the study’s motivation and its
practical applicability. In response, we have revised the relevant text and added additional
discussion and figure where appropriate. Detailed responses to each comment are provided below.

SPECIFIC COMMENTS

1. To my understanding, the main motivation of the study is to develop an algorithm enabling the
wider deployment of accurate PWV measurements using "inexpensive, robust sensors" (line 92),
such as solar spectroradiometers. According to the authors, this would "enhance the retrieval of
water vapour, especially in regions where high-cost instrumentation is scarce" (line 105) and be
"valuable for expanding the operational viability of PWV monitoring in cost-constrained or
logistically limited environments" (lines 528-529). However, the results indicate that a large
amount of reference data, presumably covering a broad range of atmospheric conditions, must be
collected before the DNN model can be applied, e.g. the training set used in the paper spans four
years. This, in practice, requires co-located, high-cost reference instrumentation such as MWRs
for a long time. Therefore, I suggest that the authors clarify several points to better demonstrate
whether the proposed algorithm can be implemented under real-world conditions:

—> Thank you for this important comment. As indicated by the title and described in the abstract,
this study aims to assess the feasibility of retrieving PWV under all-sky conditions using surface-
observed spectral irradiances. The motivation for such study stems in part from the fact that most
well-established surface-based networks—such as AERONET (Holben et al., 1998), SKYNET
(Nakajima et al., 2020), A-SKY (Irie et al., 2011; Mizobuchi et al., 2025), and NDACC (De
Maziére et al., 2018)—currently provide PWV retrievals only under clear-sky conditions. The
statements in the “Introduction” regarding inexpensive sensors, enhanced retrieval capability in
data-sparse regions, and potential applicability in cost-constrained environments were intended to



highlight the broader, long-term benefits that could arise if such all-sky retrieval capability could
be established. They were not intended to imply that low-cost operational deployment is the
primary motivation of the present work. Rather, the present study focuses on assessing the
scientific feasibility and performance of an all-sky PWV retrieval approach derived from surface
spectral irradiance measurements.

For clarity, we have revised the original sentences in the manuscript by adding new text to
better explain the study’s aim, motivation, and potential long-term benefits (Lines 54-103).

In this study, MWR observations were used as the PWV reference because they were
continuously available at the site and provide reliable measurements. However, the methodological
framework does not require MWRs specifically. In principle, the model can be trained using PWV
data from other standard reference sources, such as radiosonde observations or GNSS-based PWV
retrievals, depending on data availability at the location.

For clarity, we have added the following sentences in the revised manuscript (Lines 255-261)

In this study, MWR data were used because they were available at the site as a reliable PWV
reference. However, the method can operate without relying specifically on MWR measurements.
The model can be trained using PWV data from other standard reference sources, such as
radiosonde observations or GNSS-based PWYV retrievals, depending on data availability at a given
location.

We also acknowledge that larger and more diverse training datasets generally improve the
robustness of DNN models. The four-year dataset used here reflects the length of the time series
available to us, rather than a methodological requirement. The amount of training data needed is
expected to depend on local atmospheric variability and the intended operational context. For
example, sites with limited seasonal variation may require comparatively shorter training periods,
whereas locations with stronger variability may need longer datasets. A systematic evaluation of
minimum data requirements is an important subject for future investigation.

For clarity, we have added the following sentences in the revised manuscript (Lines 261-263)

Although larger and more diverse training datasets generally improve model robustness, the
four-year dataset used here reflects data availability rather than a strict requirement of the
method. The necessary training period can be adapted to local atmospheric variability and
operational needs.

la. The study focuses on a single site for both training and testing. Is the DNN model site-
dependent? Must the algorithm be trained under conditions similar to those expected during future
measurements? From my understanding, the DNN does not explicitly distinguish between
instrument-dependent and site-dependent features, and relocating the spectroradiometer to a site
with substantially different conditions would likely degrade retrieval accuracy.

—> Thank you for this valuable comment. We agree that the model does not explicitly separate site-
dependent and instrument-dependent features; rather, it learns statistical relationships between the



input spectral irradiances and PWV. As these relationships can be influenced by atmospheric and
surface conditions, relocating the same instrument to a site with substantially different conditions
without any model adaptation may indeed reduce retrieval accuracy.

However, this does not limit the applicability of the approach to a single site. The model can be
extended to new locations through several strategies. The most straightforward option is to retrain
the model using PWV values obtained from locally available reference sources, such as
radiosondes or GNSS-based PWV retrievals. Except it, a more efficient and widely used strategy
is transfer learning (Pan et al., 2010; Weiss et al., 2016), where a model trained on one dataset is
adapted to a new dataset by fine-tuning selected layers. In this context, a model trained at one site
can be adapted to a new site using only a comparatively small amount of local irradiance—PWV
data, thereby reducing the need for long-term co-located reference observations while maintaining
retrieval performance. Such transfer learning approaches have been widely applied in ML-based
remote sensing retrievals (e.g., Chen et al., 2025; Dong et al., 2024; Gupta et al., 2024). These
studies demonstrate that model adaptation with limited site-specific data can effectively maintain
retrieval accuracy when applying trained models to new environments.

We have summarized the above discussion in the revised manuscript as follows (Lines 264-270).

Furthermore, the model learns statistical relationships between spectral irradiances and PWYV,
which can be influenced by local atmospheric and surface conditions. Relocating the instrument
to a site with substantially different conditions may reduce accuracy. However, the model can be
adapted to new locations through retraining with local reference PWV data or, more efficiently,
via transfer learning (Pan et al., 2010; Weiss et al., 2016), in which a pre-trained model is fine-
tuned using a relatively small amount of site-specific data. Recent studies (e.g., Chen et al., 2025;
Dong et al., 2024, Gupta et al., 2024) show that such adaptation strategies effectively preserve
retrieval performance when transferring ML-based remote-sensing models across sites.

1b. For new instruments or sites, how long would the training phase need to be? If several years
of reference data are required before deployment, would such a training procedure be practical for
large-scale implementation of the technique?

= The duration of the training period for a new instrument or site depends primarily on the
variability of local atmospheric and surface conditions rather than a fixed period. While longer
datasets generally improve DNN robustness, sites with relatively stable conditions may require
only a few months of high-quality reference data. In this study, as a first step, we developed and
evaluated the procedure using data from a single site to establish feasibility and demonstrate that
surface spectral irradiances can effectively capture PWV information under well-characterized
conditions. Once feasibility is confirmed, the method can be extended to other sites, and the
required training period can be adjusted based on local atmospheric variability. Moreover, as
described above, a transfer learning strategy can further reduce the amount of site-specific
reference measurements needed, supporting efficient adaptation to new instruments and/or
locations.

lc. How stable is the spectroradiometer expected to be, and how frequently should the model be
recalibrated (e.g. to account for instrumental drift or degradation)?



—> Although modern spectroradiometers are generally stable, small instrumental drifts or gradual
degradation may occur over time. Fundamentally, our retrieval framework assumes that the input
spectral irradiances are properly calibrated, and any systematic changes in instrument response
should ideally be addressed at the calibration or quality-control level. At the same time, in practical
applications, the model learns robust statistical relationships between spectral irradiances and
PWYV, and these relationships may remain largely valid even if minor changes in instrument
response happen. In such situations,, instead of full retraining, periodic fine-tuning of the model
using a limited amount of recent reference data—such as a few weeks or months of
measurements—can typically correct for instrumental drift and maintain retrieval accuracy. This
approach can preserve the core learned patterns of the DNN while adapting to slow changes in
instrument performance, making the method practical for long-term, operational deployment
without compromising reliability.

We have summarized the above discussion in the revised manuscript as follows (Lines 271-276).

Finally, although modern spectroradiometers are generally stable, minor instrumental drifis can
occur over time. Our retrieval framework assumes that the input spectral irradiances are properly
calibrated, and any systematic changes in instrument response should ideally be handled at the
calibration or quality-control level. In practical operation, however, the DNN learns robust
relationships between spectral irradiances and PWYV that can remain largely stable even when
small residual drifts occur. In such cases, periodic fine-tuning with a limited amount of recent
reference data may be typically sufficient to adjust for these gradual shifts and maintain retrieval
accuracy.

2. Related to points 1b—1c: the manuscript states that the day number of the year is included as an
input variable in the training. This effectively provides the algorithm with a prior on the most likely
atmospheric conditions for a given time of year. Could the authors assess the relative importance
of all input variables in the DNN, including the day number? How can they be confident that the
agreement shown in Figs. 5 and 8 is not partly driven by the climatology implicit in the training
data? Moreover, what would happen if the model were applied to a site with a very different PWV
climatology?

—> Thank you for this important comment. As suggested by the reviewer, we evaluated the relative
importance of all input variables used in the DNN by applying the SHAP (SHapley Additive
exPlanations) method (Lundberg and Lee, 2017). SHAP provides a unified, theoretically grounded
framework based on cooperative game theory to quantify the contribution of each input feature to
the model output by computing Shapley values, defined as the average marginal contribution of a
feature across all possible feature combinations. This method has been widely used in recent ML-
based atmospheric and remote-sensing studies to assess the relative influence of input variables on
model predictions (e.g., Lundberg et al., 2020; Zhao et al., 2024).

In our study, the major input features include solar-zenith-angle-normalized spectral
irradiances at multiple wavelengths and the day number of the year (DOY). When using spectral
global, direct, and diffuse irradiances, we additionally incorporated the ratio of direct to diffuse
irradiances as supplementary feature. Tables R1-R3 below summarize the SHAP values obtained
for all input features under different modeling strategies (i.e., using global, direct, and diffuse
irradiances jointly, or using only global or only direct irradiances), as described in the manuscript.



The SHAP values for the radiative components shown in the table represent averages across all
wavelengths, given that wavelength-by-wavelength SHAP reporting would be excessively lengthy.

Table R1. Relative SHAP values (in %) of the input features for the DNN models trained
using spectral direct, diffuse, and global irradiances of different absorption bands, together
with the direct-to-diffuse irradiance ratio (Ratio) and the day of year (DOY)

Centered band/Features  Direct(%)  Diffuse(%) Global(%)  Ratio(%) DOY (%)

940 nm 23.80 17.89 35.67 22.42 0.22
820 nm 18.30 19.20 48.39 13.97 0.14
720 nm 20.03 15.24 44.69 19.95 0.08
Combined (all above) 27.18 19.43 32.92 20.35 0.11

Table R2. Relative SHAP values (in %) of the input features for the DNN models trained
using spectral global irradiances of different absorption bands together with day of year
DOY)

Centered band/Features ~ Global(%) DOY (%)

940 nm 98.65 1.35
820 nm 99.67 0.33
720 nm 99.51 0.49
Combined (all above) 99.54 0.46

Table R3. Relative SHAP values (in %) of the input features for the DNN models trained
using spectral direct irradiances of different absorption bands together with day of year
(DOY)

Centered band/Features  Global(%) DOY (%)

940 nm 97.84 2.16
820 nm 99.19 0.81
720 nm 99.15 0.85
Combined (all above) 98.49 1.51

These tables show that the DNN predictions are overwhelmingly driven by the spectral irradiances
themselves. In Table R1, global irradiance consistently provides the largest contribution, followed
by direct and diffuse components, while the direct-to-diffuse ratio contributes moderately and
DOY contributes almost negligible. Tables R2 and R3 further confirm that when only global or
only direct irradiances are used, their SHAP importance exceeds 97-99%, with DOY accounting
for less than 2%.

As shown by those statistical anlayses, DOY can have very low importance because it only
provides indirect seasonal information, whereas the spectral irradiances directly capture the actual
atmospheric state (water-vapor absorption, scattering, SZA effects, etc.). Overall, the results
indicate that the spectral radiometric information dominates the model performance rather than
DOY.



We have summarized the above discussion in the revised manuscript by including Table R1 as
Table 2 (), and by adding the following sentences in the section discussing the results of
Figure 5 (Lines 459-474 ).

Since DOY is included as one of the input features in our DNN models, it is important to examine
whether the agreement between predicted and true values shown in Figure 5 could have been
influenced by climatological patterns encoded in DOY. To assess the relative importance of DOY,
together with other input features, we applied the SHAP (SHapley Additive exPlanations) method
(Lundberg and Lee, 2017) by computing Shapley values, which represent the average marginal
contribution of a feature across all possible feature combinations. This method has been widely
used in ML-based atmospheric and remote-sensing studies to evaluate the relative influence of
input variables on model predictions (e.g., Lundberg et al., 2020, Zhao et al., 2024). Table 2
summarizes the SHAP values (in %) for the input features—global, direct, and diffuse irradiances,
the direct-to-diffuse irradiance ratio, and DOY—for individual absorption bands and for their
combined dataset. The SHAP values for the radiative components in Table 2 represent averages
over all wavelengths, as reporting wavelength-specific SHAP values would be excessively lengthy.
The results clearly show that when global, direct, and diffuse irradiances are used jointly, the
global irradiance component consistently exhibits the highest relative SHAP importance (32—48%),
followed by the direct and diffuse components. The direct-to-diffuse irradiance ratio contributes a
moderate but meaningful amount (approximately 14—22%). In contrast, DOY contributes less than
0.3%, indicating that the seasonal patterns observed in Figure 5 are dominated by spectral-
irradiance-based features rather than by DOY input feature. DOY can have very low importance
because it only provides indirect seasonal information, whereas the spectral irradiances directly
capture the actual atmospheric state (water-vapor absorption, scattering, SZA effects, etc.).

Similarly, we have added the following sentences when discussing the results of Figure 8 in
the previous version and Figure 9 in the revised manuscript (611-616 ).

Since DOY is included as one of the input features in our DNN model, we also evaluated SHAP
values for the input features—global (or direct) irradiance and DOY—when modelling using
spectral global or direct irradiances alone, following the same procedure described for Figure 5.
In both cases, the irradiance-related feature accounts for more than 97-99% of the total SHAP
importance, while the contribution of DOY remains below 2% across all absorption bands. This
indicates that the predictive information is overwhelmingly contained in the spectral irradiances
themselves, with DOY providing only a very minor contribution.

Since the present work is intended as a feasibility study for DNN-based PWYV retrieval, we have
not explicitly examined the performance of the DNN model in climatologically distinct regions.
However, as explained in our response to Comment 1a, the proposed method can be implemented
at other sites through strategies such as retraining or transfer learning when local reference data
are available. Future studies aim to evaluate the method across a wider range of atmospheric
conditions.



3. What level of uncertainty can be expected or considered acceptable in this context? What are
the typical uncertainties associated with the reference instruments, and what level of uncertainty
would be tolerable depending on the intended application? Benchmark values should be introduced
before discussing the results (e.g., RMSE) and before stating that the model performance is good.
—> The spectral irradiance measurements used for both training and validation were obtained from
the same instrument and processed using a consistent procedure. Consequently, any instrument-
specific systematic characteristics are implicitly learned by the DNN and largely compensated
during model training. Therefore, the dominant source of uncertainty in the predicted PWV is
expected to arise from the reference PWV values provided by the MWR, rather than from the
irradiance measurements themselves. It is thus reasonable to consider the uncertainty of predicted
PWYV to be comparable to that of the reference MWR measurements.

Previous studies indicate that integrated water vapor retrievals from ground-based MWRs
typically exhibit uncertainties on the order of £0.1-0.3 cm under favorable conditions, while in
less favorable situations uncertainties may be larger (Elgered and Jarlemark, 1998; Minowa et al.,
2024; Bock et al., 2025). In this study, the RMSE between observed and predicted PWV values
was generally less than 0.24 cm, and in some cases as low as 0.157 cm when all direct, diffuse,
and global irradiance components were included (Figure 4). Even when using a single radiation
component (global or direct irradiance), RMSE values (Figure 7a) mostly fall below or near the
upper bound of £0.3 cm under favorable conditions. These results demonstrate that the proposed
method provides reliable PWV estimates under operational conditions, with errors consistent with
the expected uncertainty of the reference MWR measurements.

We have summarized the above information in the revised manuscript as given below while
discussing the results of the models based on spectral direct, diffuse, and global irradiances
(Lines 443-449 )

As the spectral irradiance data used for both training and validation were obtained from the same
instrument and processed consistently, instrument-specific systematic effects were effectively
learned and compensated by the DNN. As a result, the main source of uncertainty in the predicted
PWYV is likely associated with the reference MWR measurements. Ground-based MWRs typically
retrieve PWV with uncertainties of about £0.1-0.3 cm (Elgered and Jarlemark, 1998; Minowa et
al., 2024, Bock et al., 2025). The RMSE values obtained in this study were below 0.24 cm, well
within this range, indicating that the prediction accuracy is consistent with the expected
uncertainty of the standard reference measurements—namely, the MWR observations used in this
study.

Similary, we have added below sentences as given below while discussing results corresponding
to only global or direct irradiance-based models (Lines 559-561 ).

These RMSE values are closer to the upper bound of PWV uncertainty corresponding to MWR
measurements under favorable conditions (Elgered and Jarlemark, 1998, Minowa et al., 2024,
Béck etal., 2025), as discussed in section 4.1.2.1.



4. The authors emphasise the need for "continuous retrievals" (line 73). However, the retrieval
technique described in the manuscript, which relies on solar measurements, can only be applied
during daylight hours, with an unavoidable interruption at night. I could not find any explicit
reference to this limitation in the manuscript (although I may have missed it), and it should be
clearly acknowledged and discussed.
- We thank the reviewer for this important comment. In the manuscript, the term “continuous
retrievals” is intended to indicate that the proposed method can operate under both clear and cloudy
conditions without interruption due to cloud cover, rather than implying 24-hour (day—night)
temporal continuity.

To avoid misinterpreation, we have removed the word “continuous” in the revised manuscript.
This modification does not affect the interpretation, methodology, or conclusions of the study, but
simply clarifies the intended meaning.

5. Figures 5 and 8 are useful for illustrating PWYV variations across the seasons. However, they are
not ideal for assessing the quality of the comparison throughout the year, as the spread of the
measurements is large and the whiskers do not provide information about point-to-point
correspondence. If the aim is to demonstrate how the agreement between the two instruments
varies seasonally, it might be more effective to compute the ratio of each pair of measurements
and present a boxplot of that ratio as a function of month.

- As suggested by the reviewer, we computed box plots for ratio of each pair of measurements
as function of month and added in Figure 5 (here Figure R1) and Figure 9 (here Figure R2,
which corresponds to Figure 8 of previous version), as shown below.
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Figure R1. Monthly comparison of DNN-predicted versus actual PWYV values for spectral
bands centered at (a) 940 nm, (b) 820 nm, (¢) 720 nm, and (d) combination of all of them;
and ratios of actual to predicted PWVs for spectral bands centered at (e¢) 940 nm, (f) 820 nm,
(g) 720 nm, and (h) combination of all of them. The box represents the 25th and 75th
percentiles, the yellow line inside the box indicates the median, and the whiskers extend to
the most extreme points within 1.5 times the interquartile range.
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Figure R2. Monthly comparison of predicted and observed PWYV values for the spectral band
centered at 940 nm, using models based on (a) only global irradiance and (b) only clear-sky
direct irradiance as input features; and ratios of actual to predicted values for (d) only global
irradiance and (d) only clear-sky direct irradiance as input features. The box represents the
25th and 75th percentiles, the yellow line inside the box indicates the median, and the
whiskers extend to the most extreme points within 1.5 times the interquartile range.

We further updated our discussions related to those figures in the revised manuscripts, in
sections 4.1.2 and 4.2.2.

Specifically, we added the following sentences in the revised manuscript.

Lines 413-415

The corresponding ratio plot (Figure 5e) reinforces this finding. The monthly medians of
Actual/Predicted values are nearly constant around 1, and the spreads are narrow, signifying
minimal systematic bias and stable retrievals across different atmospheric states.

Lines 422-424

The Actual/Predicted ratios (Figure 5f) generally remain close to unity but exhibit slightly broader
distributions compared to the 940 nm. Occasional minor departures from 1 indicate small month-
specific overestimations or underestimations, likely linked to weaker absorption features at 820
nm



Lines 431-433

In the ratio plot (Figure 5g), the median values remain roughly centred around 1, but the
interquartile ranges and whiskers are, in general, wider than those in the 940 and 820 nm bands.
This broader spread indicates relatively greater variability and lesser stable monthly retrievals
than those above two wavelength bands.

Lines 440-442

The ratio plot (Figure 5h) shows that the Actual/Predicted medians are tightly centred at around
1 for all months, and the spread remains very narrow, suggesting minimal bias and higher
temporal consistency, consistent with the best overall RMSE (0.157 cm) and R? (0.982) achieved
by this model (Figure 4d).

Lines 591-593

The lower panel Figure 9c reinforces this performance. The Actual/Predicted ratios remain centred
around 1.0 for all months, with relatively narrow boxes and whiskers, suggesting that the global-
irradiance model does not exhibit strong seasonal biases and maintains relatively stable accuracy
across the annual cycle.

Lines 606-609

This behaviour is also reflected in the ratio plot in Figure 9d. In Figure 9d, although the median
ratio remains close to unity, the interquartile ranges and whiskers are, in general, wider compared
with those shown in Figure 8c, suggesting relatively larger month-to-month deviations and greater
uncertainty in the predictions.

6. Are strictly clear-sky conditions required for direct-irradiance retrievals, or is it sufficient that
the Sun is not obscured by clouds? Moreover, please explain why clear-sky conditions are
necessary for direct irradiance but not for other geometries (line 416), as this may not be
immediately evident to all readers.

- The MS-700 spectroradiometer with a rotating shadowband measures total and diffuse
irradiance by cycling through four positions: one with the Sun unblocked to record total irradiance,
and three with the Sun blocked at different angles to capture diffuse sky radiation. Direct irradiance
is then obtained by subtracting the averaged diffuse measurements from the total (see Equations
1-3). Even if the solar disk is not visibly obscured, clouds near the Sun can scatter additional light
into the instrument’s field of view, biasing the direct-beam estimate and introducing errors in
subsequent PWV retrievals. Therefore, strictly clear-sky conditions are required for direct
irradiance-based retrievals. In contrast, while clear-sky conditions can also be used for retrievals
from other irradiance components, such as global irradiance, DNNs can learn statistical
relationships between spectral global irradiance and PWYV under a wider range of atmospheric
conditions, including cloudy skies. Consequently, DNN-based retrievals using global irradiance
can operate under broader sky conditions, whereas direct-irradiance-based retrievals remain
limited to strictly clear-sky scenes. We therefore used direct-irradiance-based retrievals only under
clear-sky conditions and other irradiance components for both clear and cloudy skies.

For clarity, we have revised the original sentences as below in the revised manuscript (Lines
506-509 ).
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While this additional screening helped to more strictly ensure clear-sky conditions —necessary
because clouds near the solar disk can scatter extra light into the sensor and contaminate the
direct-beam measurement, making it difficult to accurately assess the contribution of only direct
irradiances in PWV —it also significantly reduced the number of available data samples.

7. Could the authors more clearly articulate the main advantages of using DNN-based techniques
compared with DOAS-type retrievals or radiative transfer calculations?

—>Thank you for this suggestion. We clarfied the main advantages of using DNN-based techniques
compared with DOAS-type retrievals or radiative transfer calculation.

We have added following sentences in the revised manuscript (Lines 109-115).

Traditional DOAS-type and fully radiative transfer-based retrievals usually operate within
selected wavelength windows, require careful baseline determination, and often assume clear-sky,
direct-beam conditions, which limits their applicability under cloudy or diffuse-light scenarios
(Irie etal., 2011). In contrast, once a machine-learning model—such as a deep neural network
(DNN)—is trained, it can directly map measured spectra to PWV with negligible computational
cost, enabling high-temporal-resolution retrievals. By capturing complex, non-linear relationships
in the spectral data, ML models also reduce reliance on detailed physical assumptions, offering
a flexible, scalable, and robust solution compared with conventional DOAS or radiative-transfer-
based methods.

8. A high-temporal-resolution example would be valuable, for instance, a time series of some days
showing both the reference dataset and the corresponding DNN retrievals. At present, the paper
includes only averaged or summary plots. Including a short time window with pronounced
temporal variability (e.g., within a day or over a few days) would help illustrate how smooth or
responsive the DNN retrievals are.

- As suggested by the reviewer, we included an example of a high-temporal resultion in the
revised manuscript while discussion the comparions between observed and predicited values.

We have added a figure given below as Figure 6 in the revised manuscript and described it as
follow (Lines 453-458 ).

Further, to highlight the temporal behaviour of the predictions on shorter time scales, Figure 6
presents example comparisons between predicted and observed PWV for a mostly clear-sky day
(April 4, 2018) and a highly cloudy day (June 5, 2018). These examples provide insight into how
the models reproduce temporal fluctuations in PWV under contrasting sky conditions. Overall, the
predicted and observed values exhibit similar temporal patterns, although small differences in
magnitude occasionally appear, particularly under cloudy conditions or in weaker absorption
bands. These results further highlight the ability of models to capture PWC variability on shorter
time scales.
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Figure R3. Temporal variations of DNN-predicted and observed PWYV values on April 4,
2018 (mostly clear-sky day) and June 5, 2018 (highly cloudy day).

TECHNICAL REMARKS

Line 22: Please clarify what is meant by "limited data" in this context.
- We rewrote the sentence to add clarity in the revised mansucript (Line 23).

Lines 29-31: Bibliographic references needed.
- We added bibilogiraphic references in the revised manuscript (Line 31)

Line 60, "most weather conditions": As this section discusses the limitations of different
techniques, it would be important to specify which weather conditions are suitable for MWR
measurements.

- We specified the weather conditions in the revised mansucript (Line 61-63)

Line 171: Correct "cantered" to "centred".
- We corrected this typo in the revised manuscript (Line 177)

Lines 173—175: At least one relevant bibliographic reference should be added.
—>For clarity, we slight polished the original setnences and then added relevant bibliographic
references (Lines 227-230)

Line 207: Please explain why ReLU activation functions were chosen for the DNN
architecture.
—>We explianed the reason for using ReLLU activation function (Lines 214-216).

Line 232: This is the first occurrence of the term "unseen' in the DNN context, also used in
Section 4.1.2. It would be helpful to introduce or define it more clearly.
- We clarified in the revised manuscript (Lines 246-247).

Line 265: Consider clarifying what is specifically meant by "feature engineering" in this
context.
- We clarified in the revised manuscript (Lines 295-296 ).
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Line 387: Can the "more dynamic conditions" mentioned here be identified or quantified
more precisely?

- The "more dynamic conditions" may be hard to be quantified using only spectral irradiance
data. We, therefore, would like to remove this phrase for clarity and readiblity.

Line 424: Please specify that all-sky conditions refer to global irradiance, and clear-sky to
direct irradiance.

- We specified them in the revised mansucript (Line 177, Table 3)
Sections 4.2.2 and 5: The importance of data volume is reiterated several times. Consider

removing a few redundant mentions.
- We revised those sections and removed redundant mentions.
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