
 1 

Replies to comments of Reviewer 1 

Authors would like to express sincere gratitude to an anonymous reviewer for his/her valuable 

comments and suggestions. Our manuscript has greatly benefited from these insights. We have 

carefully revised the manuscript, taking all comments into account. Our responses to the reviewer’s 

comments are provided below. 

GENERAL COMMENTS 

The study by Khatri et al. investigates precipitable water vapour (PWV) retrieval using near-

infrared spectral irradiances measured by a ground-based spectroradiometer (EKO MS-700) and 

deep neural network (DNN) models trained with a microwave radiometer (MWR) as the reference 

instrument. The manuscript explores the algorithm potential by testing individual spectral bands 

as well as their combination, and by evaluating spectral irradiances in different geometrical 

configurations (direct, global, diffuse, separately and jointly). The models generally demonstrate 

good performance, except for the one based only on direct irradiances under clear-sky conditions, 

which is mainly attributed to the limited amount of training data available. 

Overall, the manuscript is clearly written and represents a valuable methodological study that 

could form the basis for new PWV retrieval approaches. However, as the primary motivation of 

the work is to extend monitoring to locations lacking reference instruments, certain concerns 

regarding the practical applicability of the proposed algorithm should be addressed before 

publication. These are detailed in the sections below. 

→ We sincerely appreciate the reviewer’s thoughtful and constructive comments. These have 

allowed us to improve the clarity of the manuscript, including the study’s motivation and its 

practical applicability. In response, we have revised the relevant text and added additional 

discussion and figure where appropriate. Detailed responses to each comment are provided below. 

 

SPECIFIC COMMENTS 

1. To my understanding, the main motivation of the study is to develop an algorithm enabling the 

wider deployment of accurate PWV measurements using "inexpensive, robust sensors" (line 92), 

such as solar spectroradiometers. According to the authors, this would "enhance the retrieval of 

water vapour, especially in regions where high-cost instrumentation is scarce" (line 105) and be 

"valuable for expanding the operational viability of PWV monitoring in cost-constrained or 

logistically limited environments" (lines 528–529). However, the results indicate that a large 

amount of reference data, presumably covering a broad range of atmospheric conditions, must be 

collected before the DNN model can be applied, e.g. the training set used in the paper spans four 

years. This, in practice, requires co-located, high-cost reference instrumentation such as MWRs 

for a long time. Therefore, I suggest that the authors clarify several points to better demonstrate 

whether the proposed algorithm can be implemented under real-world conditions: 

→ Thank you for this important comment. As indicated by the title and described in the abstract, 

this study aims to assess the feasibility of retrieving PWV under all-sky conditions using surface-

observed spectral irradiances. The motivation for such study stems in part from the fact that most 

well-established surface-based networks—such as AERONET (Holben et al., 1998), SKYNET 

(Nakajima et al., 2020), A-SKY (Irie et al., 2011; Mizobuchi et al., 2025), and NDACC (De 

Mazière et al., 2018)—currently provide PWV retrievals only under clear-sky conditions. The 

statements in the “Introduction” regarding inexpensive sensors, enhanced retrieval capability in 

data-sparse regions, and potential applicability in cost-constrained environments were intended to 
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highlight the broader, long-term benefits that could arise if such all-sky retrieval capability could 

be established. They were not intended to imply that low-cost operational deployment is the 

primary motivation of the present work. Rather, the present study focuses on assessing the 

scientific feasibility and performance of an all-sky PWV retrieval approach derived from surface 

spectral irradiance measurements. 

 

 

For clarity, we have revised the original sentences in the manuscript by adding  new text to 

better explain the study’s aim, motivation, and potential long-term benefits (Lines 54-103). 

 

In this study, MWR observations were used as the PWV reference because they were 

continuously available at the site and provide reliable measurements. However, the methodological 

framework does not require MWRs specifically. In principle, the model can be trained using PWV 

data from other standard reference sources, such as radiosonde observations or GNSS-based PWV 

retrievals, depending on data availability at the location. 

 

For clarity, we have added the following sentences in the revised manuscript  (Lines 258-261) 

 

In this study, MWR data were used because they were available at the site as a reliable PWV 

reference. However, the method can operate without relying specifically on MWR measurements. 

The model can be trained using PWV data from other standard reference sources, such as 

radiosonde observations or GNSS-based PWV retrievals, depending on data availability at a given 

location. 

 

We also acknowledge that larger and more diverse training datasets generally improve the 

robustness of DNN models. The four-year dataset used here reflects the length of the time series 

available to us, rather than a methodological requirement. The amount of training data needed is 

expected to depend on local atmospheric variability and the intended operational context. For 

example, sites with limited seasonal variation may require comparatively shorter training periods, 

whereas locations with stronger variability may need longer datasets. A systematic evaluation of 

minimum data requirements is an important subject for future investigation. 

 

For clarity, we have added the following sentences in the revised manuscript  (Lines 261-263) 

 

Although larger and more diverse training datasets generally improve model robustness, the 

four-year dataset used here reflects data availability rather than a strict requirement of the 

method. The necessary training period can be adapted to local atmospheric variability and 

operational needs. 

 

1a. The study focuses on a single site for both training and testing. Is the DNN model site-

dependent? Must the algorithm be trained under conditions similar to those expected during future 

measurements? From my understanding, the DNN does not explicitly distinguish between 

instrument-dependent and site-dependent features, and relocating the spectroradiometer to a site 

with substantially different conditions would likely degrade retrieval accuracy. 

→ Thank you for this valuable comment. We agree that the model does not explicitly separate site-

dependent and instrument-dependent features; rather, it learns statistical relationships between the 
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input spectral irradiances and PWV. As these relationships can be influenced by atmospheric and 

surface conditions, relocating the same instrument to a site with substantially different conditions 

without any model adaptation may indeed reduce retrieval accuracy. 

However, this does not limit the applicability of the approach to a single site. The model can be 

extended to new locations through several strategies. The most straightforward option is to retrain 

the model using PWV values obtained from locally available reference sources, such as 

radiosondes or GNSS-based PWV retrievals. Except it, a more efficient and widely used strategy 

is transfer learning (Pan et al., 2010; Weiss et al., 2016), where a model trained on one dataset is 

adapted to a new dataset by fine-tuning selected layers. In this context, a model trained at one site 

can be adapted to a new site using only a comparatively small amount of local irradiance–PWV 

data, thereby reducing the need for long-term co-located reference observations while maintaining 

retrieval performance. Such transfer learning approaches have been widely applied in ML-based 

remote sensing retrievals (e.g., Chen et al., 2025; Dong et al., 2024; Gupta et al., 2024). These 

studies demonstrate that model adaptation with limited site-specific data can effectively maintain 

retrieval accuracy when applying trained models to new environments. 

 

We have summarized the above discussion in the revised manuscript as follows (Lines 264-270). 

 

Furthermore, the model learns statistical relationships between spectral irradiances and PWV, 

which can be influenced by local atmospheric and surface conditions. Relocating the instrument 

to a site with substantially different conditions may reduce accuracy. However, the model can be 

adapted to new locations through retraining with local reference PWV data or, more efficiently, 

via transfer learning (Pan et al., 2010; Weiss et al., 2016), in which a pre-trained model is fine-

tuned using a relatively small amount of site-specific data. Recent studies (e.g., Chen et al., 2025; 

Dong et al., 2024; Gupta et al., 2024) show that such adaptation strategies effectively preserve 

retrieval performance when transferring ML-based remote-sensing models across sites. 

 

1b. For new instruments or sites, how long would the training phase need to be? If several years 

of reference data are required before deployment, would such a training procedure be practical for 

large-scale implementation of the technique? 

→ The duration of the training period for a new instrument or site depends primarily on the 

variability of local atmospheric and surface conditions rather than a fixed period. While longer 

datasets generally improve DNN robustness, sites with relatively stable conditions may require 

only a few months of high-quality reference data. In this study, as a first step, we developed and 

evaluated the procedure using data from a single site to establish feasibility and demonstrate that 

surface spectral irradiances can effectively capture PWV information under well-characterized 

conditions. Once feasibility is confirmed, the method can be extended to other sites, and the 

required training period can be adjusted based on local atmospheric variability. Moreover, as 

described above, a transfer learning strategy can further reduce the amount of site-specific 

reference measurements needed, supporting efficient adaptation to new instruments and/or 

locations.  

 

 

1c. How stable is the spectroradiometer expected to be, and how frequently should the model be 

recalibrated (e.g. to account for instrumental drift or degradation)? 
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→ Although modern spectroradiometers are generally stable, small instrumental drifts or gradual 

degradation may occur over time. Fundamentally, our retrieval framework assumes that the input 

spectral irradiances are properly calibrated, and any systematic changes in instrument response 

should ideally be addressed at the calibration or quality-control level. At the same time, in practical 

applications,  the model learns robust statistical relationships between spectral irradiances and 

PWV, and these relationships may remain largely valid even if minor changes in instrument 

response happen. In such situations,, instead of full retraining, periodic fine-tuning of the model 

using a limited amount of recent reference data—such as a few weeks or months of 

measurements—can typically correct for instrumental drift and maintain retrieval accuracy. This 

approach can preserve the core learned patterns of the DNN while adapting to slow changes in 

instrument performance, making the method practical for long-term, operational deployment 

without compromising reliability. 

 

We have summarized the above discussion in the revised manuscript as follows (Lines 271-276). 

 

Finally, although modern spectroradiometers are generally stable, minor instrumental drifts can 

occur over time. Our retrieval framework assumes that the input spectral irradiances are properly 

calibrated, and any systematic changes in instrument response should ideally be handled at the 

calibration or quality-control level. In practical operation, however, the DNN learns robust 

relationships between spectral irradiances and PWV that can remain largely stable even when 

small residual drifts occur. In such cases, periodic fine-tuning with a limited amount of recent 

reference data may be typically sufficient to adjust for these gradual shifts and maintain retrieval 

accuracy.  

 

2. Related to points 1b–1c: the manuscript states that the day number of the year is included as an 

input variable in the training. This effectively provides the algorithm with a prior on the most likely 

atmospheric conditions for a given time of year. Could the authors assess the relative importance 

of all input variables in the DNN, including the day number? How can they be confident that the 

agreement shown in Figs. 5 and 8 is not partly driven by the climatology implicit in the training 

data? Moreover, what would happen if the model were applied to a site with a very different PWV 

climatology? 

→ Thank you for this important comment. As suggested by the reviewer, we evaluated the relative 

importance of all input variables used in the DNN by applying the SHAP (SHapley Additive 

exPlanations) method (Lundberg and Lee, 2017). SHAP provides a unified, theoretically grounded 

framework based on cooperative game theory to quantify the contribution of each input feature to 

the model output by computing Shapley values, defined as the average marginal contribution of a 

feature across all possible feature combinations. This method has been widely used in recent ML-

based atmospheric and remote-sensing studies to assess the relative influence of input variables on 

model predictions (e.g., Lundberg et al., 2020; Zhao et al., 2024). 

In our study, the major input features include solar-zenith-angle–normalized spectral 

irradiances at multiple wavelengths and the day number of the year (DOY). When using spectral 

global, direct, and diffuse irradiances, we additionally incorporated the ratio of direct to diffuse 

irradiances as supplementary feature. Tables R1-R3 below summarize the SHAP values obtained 

for all input features under different modeling strategies (i.e., using global, direct, and diffuse 

irradiances jointly, or using only global or only direct irradiances), as described in the manuscript. 
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The SHAP values for the radiative components shown in the table represent averages across all 

wavelengths, given that wavelength-by-wavelength SHAP reporting would be excessively lengthy. 

 

Table R1. Relative SHAP values (in %) of the input features for the DNN models trained 

using spectral direct, diffuse, and global irradiances of different absorption bands, together 

with the direct-to-diffuse irradiance ratio (Ratio) and the day of year (DOY) 

Centered band/Features Direct(%) Diffuse(%) Global(%) Ratio(%) DOY(%) 

940 nm 23.80 17.89 35.67 22.42 0.22 

820 nm 18.30 19.20 48.39 13.97 0.14 

720 nm 20.03 15.24 44.69 19.95 0.08 

Combined (all above)  27.18 19.43 32.92 20.35 0.11 

 

 

Table R2. Relative SHAP values (in %) of the input features for the DNN models trained 

using spectral global irradiances of different absorption bands together with day of year 

(DOY) 

Centered band/Features Global(%) DOY(%) 

940 nm 98.65 1.35 

820 nm 99.67 0.33 

720 nm 99.51 0.49 

Combined (all above)  99.54 0.46 

 

 

Table R3. Relative SHAP values (in %) of the input features for the DNN models trained 

using spectral direct irradiances of different absorption bands together with day of year 

(DOY) 

Centered band/Features Global(%) DOY(%) 

940 nm 97.84 2.16 

820 nm 99.19 0.81 

720 nm 99.15 0.85 

Combined (all above)  98.49 1.51 

 

 

These tables show that the DNN predictions are overwhelmingly driven by the spectral irradiances 

themselves. In Table R1, global irradiance consistently provides the largest contribution, followed 

by direct and diffuse components, while the direct-to-diffuse ratio contributes moderately and 

DOY contributes almost negligible. Tables R2 and R3 further confirm that when only global or 

only direct irradiances are used, their SHAP importance exceeds 97–99%, with DOY accounting 

for less than 2%.  

As shown by those statistical anlayses, DOY can have very low importance because it only 

provides indirect seasonal information, whereas the spectral irradiances directly capture the actual 

atmospheric state (water-vapor absorption, scattering, SZA effects, etc.). Overall, the results 

indicate that the spectral radiometric information dominates the model performance rather than 

DOY.  
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We have summarized the above discussion in the revised manuscript by including Table R1 as 

Table 2 ( ), and by adding the following sentences in the section discussing the results of 

Figure 5 (Lines 459-474 ). 

 

Since DOY is included as one of the input features in our DNN models, it is important to examine 

whether the agreement between predicted and true values shown in Figure 5 could have been 

influenced by climatological patterns encoded in DOY. To assess the relative importance of DOY, 

together with other input features, we applied the SHAP (SHapley Additive exPlanations) method 

(Lundberg and Lee, 2017) by computing Shapley values, which represent the average marginal 

contribution of a feature across all possible feature combinations. This method has been widely 

used in ML-based atmospheric and remote-sensing studies to evaluate the relative influence of 

input variables on model predictions (e.g., Lundberg et al., 2020; Zhao et al., 2024). Table 2 

summarizes the SHAP values (in %) for the input features—global, direct, and diffuse irradiances, 

the direct-to-diffuse irradiance ratio, and DOY—for individual absorption bands and for their 

combined dataset. The SHAP values for the radiative components in Table 2 represent averages 

over all wavelengths, as reporting wavelength-specific SHAP values would be excessively lengthy. 

The results clearly show that when global, direct, and diffuse irradiances are used jointly, the 

global irradiance component consistently exhibits the highest relative SHAP importance (32–48%), 

followed by the direct and diffuse components. The direct-to-diffuse irradiance ratio contributes a 

moderate but meaningful amount (approximately 14–22%). In contrast, DOY contributes less than 

0.3%, indicating that the seasonal patterns observed in Figure 5 are dominated by spectral-

irradiance-based features rather than by DOY input feature. DOY can have very low importance 

because it only provides indirect seasonal information, whereas the spectral irradiances directly 

capture the actual atmospheric state (water-vapor absorption, scattering, SZA effects, etc.). 

 

Similarly, we have added the following sentences when discussing the results of Figure 8 in 

the previous version and Figure 9 in the revised manuscript (611-616 ). 

 

Since DOY is included as one of the input features in our DNN model, we also evaluated SHAP 

values for the input features—global (or direct) irradiance and DOY—when modelling using 

spectral global or direct irradiances alone, following the same procedure described for Figure 5. 

In both cases, the irradiance-related feature accounts for more than 97–99% of the total SHAP 

importance, while the contribution of DOY remains below 2% across all absorption bands. This 

indicates that the predictive information is overwhelmingly contained in the spectral irradiances 

themselves, with DOY providing only a very minor contribution. 

 

Since the present work is intended as a feasibility study for DNN-based PWV retrieval, we have 

not explicitly examined the performance of the DNN model in climatologically distinct regions. 

However, as explained in our response to Comment 1a, the proposed method can be implemented 

at other sites through strategies such as retraining or transfer learning when local reference data 

are available. Future studies aim to evaluate the method across a wider range of atmospheric 

conditions. 
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3. What level of uncertainty can be expected or considered acceptable in this context? What are 

the typical uncertainties associated with the reference instruments, and what level of uncertainty 

would be tolerable depending on the intended application? Benchmark values should be introduced 

before discussing the results (e.g., RMSE) and before stating that the model performance is good. 

→ The spectral irradiance measurements used for both training and validation were obtained from 

the same instrument and processed using a consistent procedure. Consequently, any instrument-

specific systematic characteristics are implicitly learned by the DNN and largely compensated 

during model training. Therefore, the dominant source of uncertainty in the predicted PWV is 

expected to arise from the reference PWV values provided by the MWR, rather than from the 

irradiance measurements themselves. It is thus reasonable to consider the uncertainty of predicted 

PWV to be comparable to that of the reference MWR measurements. 

Previous studies indicate that integrated water vapor retrievals from ground-based MWRs 

typically exhibit uncertainties on the order of ±0.1–0.3 cm under favorable conditions, while in 

less favorable situations uncertainties may be larger (Elgered and Jarlemark, 1998; Minowa et al., 

2024; Böck et al., 2025). In this study, the RMSE between observed and predicted PWV values 

was generally less than 0.24 cm, and in some cases as low as 0.157 cm when all direct, diffuse, 

and global irradiance components were included (Figure 4). Even when using a single radiation 

component (global or direct irradiance), RMSE values (Figure 7a) mostly fall below or near the 

upper bound of ±0.3 cm under favorable conditions. These results demonstrate that the proposed 

method provides reliable PWV estimates under operational conditions, with errors consistent with 

the expected uncertainty of the reference MWR measurements. 

 

We have summarized the above information in the revised manuscript as given below while 

discussing the results of the models based on spectral direct, diffuse, and global irradiances 

(Lines 443-449 ) 

 

As the spectral irradiance data used for both training and validation were obtained from the same 

instrument and processed consistently, instrument-specific systematic effects were effectively 

learned and compensated by the DNN. As a result, the main source of uncertainty in the predicted 

PWV is likely associated with the reference MWR measurements. Ground-based MWRs typically 

retrieve PWV with uncertainties of about ±0.1–0.3 cm (Elgered and Jarlemark, 1998; Minowa et 

al., 2024; Böck et al., 2025). The RMSE values obtained in this study were below 0.24 cm, well 

within this range, indicating that the prediction accuracy is consistent with the expected 

uncertainty of the standard reference measurements—namely, the MWR observations used in this 

study. 

 

Similary, we have added below sentences as given below while discussing results corresponding 

to only global or direct irradiance-based models (Lines 559-561 ). 

 

These RMSE values are closer to the upper bound of PWV uncertainty corresponding to MWR 

measurements under favorable conditions (Elgered and Jarlemark, 1998; Minowa et al., 2024; 

Böck et al., 2025), as discussed in section 4.1.2.1. 
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4. The authors emphasise the need for "continuous retrievals" (line 73). However, the retrieval 

technique described in the manuscript, which relies on solar measurements, can only be applied 

during daylight hours, with an unavoidable interruption at night. I could not find any explicit 

reference to this limitation in the manuscript (although I may have missed it), and it should be 

clearly acknowledged and discussed. 

→ We thank the reviewer for this important comment. In the manuscript, the term “continuous 

retrievals” is intended to indicate that the proposed method can operate under both clear and cloudy 

conditions without interruption due to cloud cover, rather than implying 24-hour (day–night) 

temporal continuity.  

To avoid misinterpreation, we have removed the word “continuous” in the revised manuscript. 

This modification does not affect the interpretation, methodology, or conclusions of the study, but 

simply clarifies the intended meaning. 

 

5. Figures 5 and 8 are useful for illustrating PWV variations across the seasons. However, they are 

not ideal for assessing the quality of the comparison throughout the year, as the spread of the 

measurements is large and the whiskers do not provide information about point-to-point 

correspondence. If the aim is to demonstrate how the agreement between the two instruments 

varies seasonally, it might be more effective to compute the ratio of each pair of measurements 

and present a boxplot of that ratio as a function of month. 

→ As suggested by the reviewer, we computed box plots for ratio of each pair of measurements 

as function of month and added in Figure 5 (here Figure R1) and Figure 9 (here Figure R2, 

which corresponds to Figure 8 of previous version), as shown below. 

 

 

 
 

Figure R1. Monthly comparison of DNN-predicted versus actual PWV values for spectral 

bands centered at (a) 940 nm, (b) 820 nm, (c) 720 nm, and (d) combination of all of them; 

and ratios of actual to predicted PWVs for spectral bands centered at (e) 940 nm, (f) 820 nm, 

(g) 720 nm, and (h) combination of all of them. The box represents the 25th and 75th 

percentiles, the yellow line inside the box indicates the median, and the whiskers extend to 

the most extreme points within 1.5 times the interquartile range. 
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Figure R2. Monthly comparison of predicted and observed PWV values for the spectral band 

centered at 940 nm, using models based on (a) only global irradiance and (b) only clear-sky 

direct irradiance as input features; and ratios of actual to predicted values for (d) only global 

irradiance and (d) only clear-sky direct irradiance as input features. The box represents the 

25th and 75th percentiles, the yellow line inside the box indicates the median, and the 

whiskers extend to the most extreme points within 1.5 times the interquartile range. 

 

 

We further updated our discussions related to those figures in the revised manuscripts, in 

sections 4.1.2 and 4.2.2.  

 

Specifically, we added the following sentences in the revised manuscript. 

 

Lines 413-415 

The corresponding ratio plot (Figure 5e) reinforces this finding. The monthly medians of 

Actual/Predicted values are nearly constant around 1, and the spreads are narrow, signifying 

minimal systematic bias and stable retrievals across different atmospheric states.  

Lines 422-424 

The Actual/Predicted ratios (Figure 5f) generally remain close to unity but exhibit slightly broader 

distributions compared to the 940 nm. Occasional minor departures from 1 indicate small month-

specific overestimations or underestimations, likely linked to weaker absorption features at 820 

nm 

 

(c) 

  

 

(a) (b) 

(d) 
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Lines 431-433 

In the ratio plot (Figure 5g), the median values remain roughly centred around 1, but the 

interquartile ranges and whiskers are, in general, wider than those in the 940 and 820 nm bands. 

This broader spread indicates relatively greater variability and lesser stable monthly retrievals 

than those above two wavelength bands. 

Lines 440-442 

The ratio plot (Figure 5h) shows that the Actual/Predicted medians are tightly centred at around 

1 for all months, and the spread remains very narrow, suggesting minimal bias and higher 

temporal consistency, consistent with the best overall RMSE (0.157 cm) and R² (0.982) achieved 

by this model (Figure 4d).  

Lines 591-593 

The lower panel Figure 9c reinforces this performance. The Actual/Predicted ratios remain centred 

around 1.0 for all months, with relatively narrow boxes and whiskers, suggesting that the global-

irradiance model does not exhibit strong seasonal biases and maintains relatively stable accuracy 

across the annual cycle. 

Lines 606-609 

This behaviour is also reflected in the ratio plot in Figure 9d. In Figure 9d, although the median 

ratio remains close to unity, the interquartile ranges and whiskers are, in general, wider compared 

with those shown in Figure 8c, suggesting relatively larger month-to-month deviations and greater 

uncertainty in the predictions.  

 

6. Are strictly clear-sky conditions required for direct-irradiance retrievals, or is it sufficient that 

the Sun is not obscured by clouds? Moreover, please explain why clear-sky conditions are 

necessary for direct irradiance but not for other geometries (line 416), as this may not be 

immediately evident to all readers. 

→ The MS-700 spectroradiometer with a rotating shadowband measures total and diffuse 

irradiance by cycling through four positions: one with the Sun unblocked to record total irradiance, 

and three with the Sun blocked at different angles to capture diffuse sky radiation. Direct irradiance 

is then obtained by subtracting the averaged diffuse measurements from the total (see Equations 

1–3). Even if the solar disk is not visibly obscured, clouds near the Sun can scatter additional light 

into the instrument’s field of view, biasing the direct-beam estimate and introducing errors in 

subsequent PWV retrievals. Therefore, strictly clear-sky conditions are required for direct 

irradiance-based retrievals. In contrast, while clear-sky conditions can also be used for retrievals 

from other irradiance components, such as global irradiance, DNNs can learn statistical 

relationships between spectral global irradiance and PWV under a wider range of atmospheric 

conditions, including cloudy skies. Consequently, DNN-based retrievals using global irradiance 

can operate under broader sky conditions, whereas direct-irradiance-based retrievals remain 

limited to strictly clear-sky scenes. We therefore used direct-irradiance-based retrievals only under 

clear-sky conditions and other irradiance components for both clear and cloudy skies. 

 

For clarity, we have revised the original sentences as below in the revised manuscript (Lines 

506-509 ). 

 



 11 

While this additional screening helped to more strictly ensure clear-sky conditions —necessary 

because clouds near the solar disk can scatter extra light into the sensor and contaminate the 

direct-beam measurement, making it difficult to accurately assess the contribution of only direct 

irradiances in PWV —it also significantly reduced the number of available data samples.  

 

7. Could the authors more clearly articulate the main advantages of using DNN-based techniques 

compared with DOAS-type retrievals or radiative transfer calculations? 

→Thank you for this suggestion. We clarfied the main advantages of using DNN-based techniques 

compared with DOAS-type retrievals or radiative transfer calculation. 

 

We have added following sentences in the revised manuscript (Lines 109-115). 

 

Traditional DOAS-type and fully radiative transfer-based retrievals usually operate within 

selected wavelength windows, require careful baseline determination, and often assume clear-sky, 

direct-beam conditions, which limits their applicability under cloudy or diffuse-light scenarios 

(Irie et al., 2011). In contrast, once a machine-learning model—such as a deep neural network 

(DNN)—is trained, it can directly map measured spectra to PWV with negligible computational 

cost, enabling high-temporal-resolution retrievals. By capturing complex, non-linear relationships 

in the spectral data, ML models also reduce reliance on detailed physical assumptions, offering 

a flexible, scalable, and robust solution compared with conventional DOAS or radiative-transfer-

based methods.  

 

8. A high-temporal-resolution example would be valuable, for instance, a time series of some days 

showing both the reference dataset and the corresponding DNN retrievals. At present, the paper 

includes only averaged or summary plots. Including a short time window with pronounced 

temporal variability (e.g., within a day or over a few days) would help illustrate how smooth or 

responsive the DNN retrievals are. 

→As suggested by the reviewer, we included an example of a high-temporal resultion in the 

revised manuscript while discussion the comparions between observed and predicited values.  

 

We have added a figure given below as Figure 6 in the revised manuscript and described it as 

follow (Lines 453-458 ). 

 

Further, to highlight the temporal behaviour of the predictions on shorter time scales, Figure 6 

presents example comparisons between predicted and observed PWV for a mostly clear-sky day 

(April 4, 2018) and a highly cloudy day (June 5, 2018). These examples provide insight into how 

the models reproduce temporal fluctuations in PWV under contrasting sky conditions. Overall, the 

predicted and observed values exhibit similar temporal patterns, although small differences in 

magnitude occasionally appear, particularly under cloudy conditions or in weaker absorption 

bands. These results further highlight the ability of models to capture PWC variability on shorter 

time scales. 
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Figure R3. Temporal variations of DNN-predicted and observed PWV values on April 4, 

2018 (mostly clear-sky day) and June 5, 2018 (highly cloudy day). 

 

 

 

TECHNICAL REMARKS 

• Line 22: Please clarify what is meant by "limited data" in this context. 

→We rewrote the sentence to add clarity in the revised mansucript (Line 23). 

 

• Lines 29–31: Bibliographic references needed. 

→We added bibilogiraphic references in the revised manuscript (Line 31) 

• Line 60, "most weather conditions": As this section discusses the limitations of different 

techniques, it would be important to specify which weather conditions are suitable for MWR 

measurements. 

→We specified the weather conditions in the revised mansucript (Line 61-63) 

 

• Line 171: Correct "cantered" to "centred". 

→We corrected this typo in the revised manuscript (Line 177) 

 

• Lines 173–175: At least one relevant bibliographic reference should be added. 

→For clarity, we slight polished the original setnences and then added relevant bibliographic 

references (Lines 227-230) 

 

• Line 207: Please explain why ReLU activation functions were chosen for the DNN 

architecture. 

→We explianed the reason for using ReLU activation function (Lines 214-216 ). 

 

• Line 232: This is the first occurrence of the term "unseen" in the DNN context, also used in 

Section 4.1.2. It would be helpful to introduce or define it more clearly. 

→We clarified in the revised manuscript (Lines 246-247). 

 

• Line 265: Consider clarifying what is specifically meant by "feature engineering" in this 

context. 

→ We clarified in the revised manuscript (Lines 295-296 ). 
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• Line 387: Can the "more dynamic conditions" mentioned here be identified or quantified 

more precisely? 

→The "more dynamic conditions" may be hard to be quantified using only spectral irradiance 

data. We, therefore, would like to remove this phrase for clarity and readiblity.  

 

• Line 424: Please specify that all-sky conditions refer to global irradiance, and clear-sky to 

direct irradiance. 

→We specified them in the revised mansucript (Line 177, Table 3) 

 

• Sections 4.2.2 and 5: The importance of data volume is reiterated several times. Consider 

removing a few redundant mentions. 

→ We revised those sections and removed redundant mentions. 
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