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Abstract  8 

Local characterization of groundwater systems is critical for managing and protecting 9 

vulnerable resources. Geophysical methods can provide dense imaging of subsurface 10 

parameters to delineate lithological boundaries and water tables for hydrogeological 11 

investigation. Though, using a single geophysical method for determining lithologies can yield 12 

erroneous interpretations as different lithologies can have similar properties. By using several 13 

geophysical methods, it is possible to reduce this risk and better assign likely lithologies to 14 

subsurface units. We present two case studies where transient electromagnetic (TEM) and 15 

surface nuclear magnetic resonance (SNMR) are used in combination to delineate 16 

hydrogeological structures. Novel spatially constrained inversion in SNMR was used to 17 

provide horizontal consistency between soundings. Three coincident parameters, resistivity 18 

from the TEM measurements and water content and relaxation time from the SNMR 19 

measurements were used in a K-means clustering scheme to resolve subsurface structures. 20 

The K-means clustering was evaluated with a silhouette index to pick the number of clusters. 21 

After clustering, each cluster was assigned a hydrogeological description based on the distinct 22 

features in the three parameters, e.g. a low resistivity, high water content, and high T2
* is 23 

assigned as saltwater saturated sand. In the first case study, the clusters enabled improved 24 

resolution of a regional water table in an unconfined aquifer setting by the multi-geophysical 25 

approach. The water table estimates were positively evaluated against multiple boreholes 26 

within 500 m of coincident geophysical models. The second case study illustrates how 27 

clustering, of SNMR and TEM models, can delineate saltwater intrusion in an island coastal 28 

aquifer, which would not be possible with any of these methods individually. Additionally, the 29 

clustering resolved the main shallow aquifer on the island. Our work illustrates how the 30 

combination of geophysical data can be used to improve resolution of hydrogeological layers 31 

and reduce interpretational bias.  32 
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1 Introduction 1 

Climate-resilient groundwater management hinges on the need for detailed characterization 2 

of local groundwater systems (Dragoni & Sukhija, 2008). Historically, lithological descriptions 3 

of wells have been used to establish geological models to forecast local groundwater behavior 4 

and inform conceptual models of local systems (van Roosmalen et al., 2007). The high cost 5 

associated with drilling yields geological maps that are generally based on sparse point 6 

coverage, with long-distance interpolation, and simplicity assumptions between observations 7 

where structures may actually be complex. To address these data sparsity issues, geophysics 8 

can be used to delineate structures non-invasively, giving high resolution imaging of the 9 

subsurface to complement direct borehole observations (Binley et al., 2015). Methods based 10 

on imaging of subsurface electrical properties are used extensively in hydrological 11 

investigations, where spatial variations in the electrical properties of the subsurface, 12 

specifically the resistivity, are used electrical properties, specifically the resistivity, of the 13 

subsurface are used to study pollution, explore groundwater resources, and delineate 14 

saltwater interfaces, among many other applications (Binley et al., 2015). Within methods 15 

imaging electrical properties, electromagnetic (EM) methods are widely used. They operate 16 

inductively by creating a varying magnetic field inducing eddy-currents in the ground 17 

(Nabighian & Macnae, 1991). The secondary magnetic field produced by the decaying eddy-18 

currents is measured inductively at the surface. The measurements are rapid, which leads to 19 

high data acquisition rates that enable mapping of large areas using towed or airborne 20 

platforms (e.g. Auken et al., 2019; Sørensen and Auken, 2004). The EM data are translated 21 

into 1D models of resistivities by inversion (Christiansen et al., 2006), providing valuable 22 

insights into local (hydro-)geology. A limitation in of these methods is that they rely on 23 

inconsistent ambiguous links between lithology and resistivity. An implication of this is that 24 

local knowledge is required to link assigning lithology to a specific electrical resistivity requires 25 

local knowledge of the link between resistivity and with the associated lithology or geological 26 

unit (Dickinson et al., 2010). A common challenge is that different geological units have 27 

overlapping resistivity ranges making unique identification based on resistivity alone difficult 28 

or sometimes impossible.  29 

Surface nuclear magnetic resonance (SNMR) provides direct sensitivity to water residing in 30 

large pores (Hertrich et al., 2007; Legchenko et al., 2002). By transmitting an excitation pulse 31 

oscillating at a specific frequency proportional to the Earth’s magnetic field strength, the 32 

magnetic moment of hydrogen nuclei is shifted from its equilibrium state (Yaramanci et al., 33 

1999). After terminating the pulse, the buildup magnetization decays and is related to the 34 

subsurface water quantity and pore parameters. This allows SNMR to track changes in water 35 

content across lithological boundaries and can provide valuable information on pore sizes. A 36 
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limitation in SNMR is the inability to distinguish unsaturated sand from clay, as both will be 1 

seen with low WC, in the clays caused by the magnetization decaying extremely rapidly in 2 

small pores making it immeasurablewhich makes the clay-bound water undetectable with the 3 

SNMR. As such, SNMR cannot has difficulties distinguishing unconfined aquifers from semi-4 

confined or confined aquifers without supplemental data, as the increase in water content 5 

cannot be established determined to be a saturation or a lithological transition (Behroozmand 6 

et al., 2015), Fig. 1. However, the combined interpretation of SNMR and TEM data, sensitive 7 

to different properties, may alleviate ambiguities in distinguishing between for instance 8 

unsaturated sand and clays (SNMR ambiguity) or clays and saline saltwater saturated sands 9 

(TEM ambiguity), which is highly relevant for coastal studies of unconsolidated settings 10 

(Costabel et al., 2017). Similarly, electrical resistivity soundings and SNMR has been used to 11 

alleviate ambiguities in hydrogeological investigations through a joint inversion approach 12 

(Günther and Müller-Petke, 2012).  13 

Consider the example of an unconfined/confined system, where SNMR cannot determine 14 

whether a transition from low to high water content marks the water table or a lithological shift 15 

from clays to sands. TEM can address this as it would resolve the conductive clay layer if 16 

present and delineate the lithological change to sand as seen in Figure 1Figure 1. If it was an 17 

unconfined system, the TEM would image high resistivities in both layers while the saturation 18 

change is tracked by SNMR. Another example involves saline intrusion, where TEM cannot 19 

differentiate between saline saltwater saturated sand and clay. If it is indeed a transition only 20 

in salinity, not water content, SNMR would reveal continuous high water content across the 21 

salinity boundary. SNMR alone would not be able to distinguish freshwater sand from saline 22 

saltwater saturated sand, as it is only sensitive to the abundance of water and not salinity. 23 

Formatted: English (United States)



4 
 

 1 

Figure 11 Different hydrogeological units resolved with TEM and SNMR. In dashed boxes, only one method is 2 
used, and the overlapping units show the ambiguities found. T2

* can be implemented to further separate units. 3 
Colors in text are not related to colorbars. 4 

A multiple data type approach requires forming interpretations consistent with multiple 5 

geophysical model types simultaneously, which can be achieved through manual inspection 6 

of disparate data types. This enables one to distinguish hydrogeological layers through 7 

combined interpretation of all data types, but requires subjective choices regarding boundary 8 

delineation. Others have used a joint-inversion approach where layer boundaries are set using 9 

multiple geophysical methods (Günther and Müller-Petke, 2012; Behroozmand et al., 2012). 10 

The joint approaches have the ability to delineate layer boundaries, not seen when inverted 11 

separately. An alternative approach employs statistical correlations across separate 12 

parameters to partition these into different clusters. One such approach is K-means clustering, 13 

which enables the subdivision of datasets based on multiple parameters (Kodinariya & 14 

Makwana, 2013). Different clustering approaches have also previously been applied to 15 

geophysical data and focus primarily on single source datasets, such as large EM datasets 16 

(Dumont et al., 2018) or large electrical resistivity datasets (Song et al., 2010). Some studies 17 

investigate clustering on derived parameters such as clay fraction and resistivity, both linked 18 

to EM surveys (Foged et al., 2014). Clustering across disparate data types, such as Bouguer 19 

anomaly data and magnetic data has been shown to improve the resolution of mineral deposits 20 

(Sun and Li, 2016). A study focused on delineating structures in urban settings by clustering 21 

on multichannel analysis of surface waves (MASW) and electrical methods to evaluate soil 22 
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foundation structure (Le et al., 2022) and found the K-means clustering to resolve important 1 

structures in the shallow subsurface.  2 

In this study, we demonstrate the benefits of combined SNMR and TEM data collection, where 3 

K-means clustering based on coincident models in two survey areas is shown to enhance 4 

interpretations and address ambiguities that persist if only a single data type is considered. 5 

The first example includes mapping of the water table in an unconfined meltwater plain aquifer, 6 

where a combined approach is used to address ambiguity as to the upper aquifer being 7 

confined/unconfined/or semi-confined across the investigated region. A second example taken 8 

from a small island shows how the method can delineate salt-water intrusion from clay-rich 9 

regions through a combined interpretation. We demonstrate a workflow for handling 10 

interpretations of SNMR and TEM simultaneously reducing possible interpretational bias.  11 

2 Methods 12 

2.1 Transient electromagnetic 13 

In this study we use Transient Electromagnetics (TEM) to resolve subsurface resistivities. The 14 

tTEM instrument (Auken et al., 2019) was used in both field areas and can resolve the 15 

resistivity structure of the top 70m, however, here only the top 25m of the full model domain 16 

are used in the analyses. The induced voltages recorded by the tTEM are translated to 1D 17 

resistivity models by Spatially Constrained Inversion (SCI) using Aarhusinv (Auken et al., 18 

2015; Viezzoli et al., 2009). The model is discretized into 30 layers with thicknesses varying 19 

from 1m shallowly, to 10m at depth following resolution limitations at depth. The resulting 20 

resistivity models will be used for subsequent clustering.  21 

2.2 Surface nuclear magnetic resonance 22 

In this survey we use a recently developed technique for SNMR called steady-state. The 23 

steady-state has an increased stacking rate leading to a higher signal-to-noise ratio amplitude 24 

and a decrease in acquisition times (Grombacher et al., 2021). A set of transmit pulses, 25 

optimized to resolve the top 25 m, was employed in both studies with the Apsu instrument with 26 

an acquisition time of 25 min per site (Larsen et al., 2020). The resolved water content and 27 

the relaxation parameter, T2
*, are used in the subsequent clustering. The SNMR models are 28 

discretized into 31 layers down to 50 m, increasing in thickness at depth from 0.5 m to 4 m. 29 

The resistivity structure from the nearest TEM sounding is used for the inversion. Resistivity 30 

is needed to obtain the excitation fields used for kernel calculations (Braun and Yaramanci, 31 

2008). 32 

One limitation in SNMR is to detect water residing in very small pores. Because of instrument 33 

dead times associated with transmitting the excitation pulse (on the order of 8 ms), receiving 34 
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data immediately after pulse termination is not possible. Signals from very small pores can 1 

therefore partially or fully decay, i.e. lose their amplitude and coherency, before the instrument 2 

has begun recording data. As such, the magnetization from water residing in very small pores 3 

decay prior to data recording, which prevents observation of small pore water in SNMR. As 4 

such, SNMR water contents can be interpreted as a measure of “free” water or an effective 5 

porosity. T2
* relaxation time is linked to pore sizes with low values occurring in small pores, 6 

while large pores have large values. This can be used to differentiate high water content units 7 

by their pore sizes. 8 

2.3 Inversion considerations 9 

Traditionally, 1D SNMR inversions are most commonly treated separately as limited 10 

measurements are carried out. However, recent acquisition speed-ups enabled by steady-11 

state approaches have significantly enhanced spatial data density, which enables the use of 12 

horizontal constraints linking inversions of nearby measurement sites (Grombacher et al., 13 

2021). One such example is the use of laterally constrained inversion (LCI) for SNMR as 14 

proposed by Behroozmand et al. (2012) where neighboring sites in a transect can be 15 

connected. Here, we add a dimension to the constraints using a spatially constrained inversion 16 

(SCI) framework, not only to bind models in line, but all neighboring models. Delauney 17 

triangulation is used to find the relevant neighbors as in Viezzoli et al. (2009). The strength of 18 

lateral bounds is scaled by the distance between models, with a maximum strength defined 19 

when models are closer than a threshold distance. This threshold distance is typically set to 20 

the nominal or average distance between neighboring soundings (Vang et al., 2024).   21 

The computational load increases immensely when implementing SCI with many layers and 22 

parameters. To reduce the number of iterations, the SCI starting models are defined by single 23 

site inversion results. This allows the SCI to converge within a few iterations. The TEM data 24 

are inverted separately with an SCI for the entire survey.  25 

2.4 Clustering 26 

Large datasets enable statistical approaches to inform on significant hydrogeological units. In 27 

the following examples, datasets are composed of 50 and 51 coincident SNMR/TEM 28 

soundings where a K-means clustering is employed (Kanungo et al., 2002) on their model 29 

parameters. The first step in this type of clustering is to select the number of clusters, K, into 30 

which the data sets will be clustered (Kodinariya & Makwana, 2013). After selecting the 31 

number of clusters, the algorithm makes an initial guess for the position of each cluster center 32 

in the parameter domain. The Euclidean distance from each data point to the cluster center is 33 

calculated, and each data point is assigned to the nearest cluster. The total distance from all 34 

data to their assigned clusters is then iteratively minimized through updating cluster center 35 
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locations until either a minimum distancethe centroid difference between iterations varies 1 

below a set tolerance or a maximum number of iterations is reached.   2 

To improve clustering of datasets for parameters exhibiting different sensitivities and spanning 3 

different ranges, normalization was used to ensure that each parameter has the same weight 4 

in the clustering algorithm. Here, we use a Z-score for normalization, where x is either 5 

resistivity (ρ), water content (WC), or relaxation parameter (T2
*): 6 

𝑥𝑖,𝑛𝑜𝑟𝑚 =
𝑥𝑖−

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1

𝜎
          (1) 7 

where σ is the standard deviation on the cloud of parameters from the inversion, xi is the 8 

parameter value for the ith data point and n number of data points. Following the normalization, 9 

we use the Scikit learn package in Python for the clustering and silhouette analysis 10 

(Pedregosa et al, 2011).  11 

In this study, the number of clusters is chosen based on the Silhouette index, which calculates 12 

the membership Si of each data point, i: 13 

             𝑆𝑖 =
𝑏𝑖−𝑎𝑖

max(𝑎𝑖,𝑏𝑖)
, 𝑆𝑖 ∊ [−1, 1]   (2) 14 

where ai is average distance from data point i to other data points in the same assigned cluster, 15 

bi is the minimum average distance of the ith data point to all other data points in other clusters. 16 

The resulting index, or membership score, is a measure of how well a data point is associated 17 

with the assigned cluster. If the score of a given data point is 1 it infers that the data point is 18 

correctly assigned, while a score of -1 indicates that the data is wrongly assigned (Kodinariya 19 

& Makwana, 2013; Shutaywi & Kachouie., 2021). By evaluating these results, we can qualify 20 

the preferred number of clusters. The preferred number of clusters is chosen based on two 21 

criteria. Firstly, the highest average silhouette index indicates that datapoints in general have 22 

the highest membership score with the given number of clusters. Secondly, we look at each 23 

cluster and their silhouette index. If more than 50% of the cluster is above the average 24 

silhouette index, the cluster is well-defined, between 30-50% the cluster is fairly-defined, and 25 

below 30% it is poorly defined. In some cases, prior information can be used to fix the number 26 

of clusters, such as prior geological knowledge of the area (Dumont et al.,2018).  27 

In this study we clustered on three parameters: WC, T2
*, and ρ. The two geophysical methods 28 

used in this study have different sensitive volumes. SNMR inversion is discretized finely with 29 

30 layers down to 50 m and the TEM has 30 layers in 120 m. To cluster on coincident values, 30 

a projection and averaging of the TEM ρ models onto the SNMR discretization is used. All 31 

TEM soundings within 60 m of an SNMR sounding are included. If there is no ρ model (TEM 32 
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sounding) within 60 m, the nearest is used and mapped onto the SNMR discretization. This 1 

allows all SNMR points to be matched and prevents a reduction in data points.  2 

2.5 Field site description 3 

Two field surveys were conducted in different geologies to evaluate the use of clustering as a 4 

tool for alleviating interpretational ambiguity. Both sites were examined thoroughly with SNMR 5 

and TEM to provide the basis for the subsequent clustering analysis. 6 

2.5.1 Kompedal 7 

The first field site is Kompedal, a national forest in the Central Region, Denmark. The local 8 

geology consists of meltwater sand and glacial tills with varying clay contents. The sparse 9 

borehole coverage finds sand shallowly, and the water table varies from 5 m to 12 m in depth. 10 

Two geophysical surveys have been conducted here using TEM and SNMR, respectively. The 11 

scope of the surveys was to delineate the water table on a regional scale and assess whether 12 

the shallow aquifer can be considered unconfined or semi-confined across the region. The 13 

TEM data were collected with the tTEM instrument (Auken et al., 2019) while driving along the 14 

gravel roads within the forest, as seen in Figure 2Figure 2a in blue. ρ in the area are generally 15 

high, above 200 Ωm, with some layers of lower ρ found at depth. There is little to no contrast 16 

between the unsaturated and saturated part of the meltwater sand in ρ. The SNMR survey 17 

consists of 50 soundings acquired over five days in June 2021, spread across the forest as 18 

seen in Figure 2Figure 2a (Vang et al., 2023). The SNMR survey found low WC (~ 5 %) and 19 

low T2
* values (~ 0.1 s) shallowly, with a sharp increase to higher WC (~ 25 %) at 6 m to 10 m 20 

depth. Layers with low WC and T2
* can be associated with both unsaturated sands, and clay-21 

rich material. The section indicated in Figure 2Figure 2a will be used to show the results of the 22 

combined cluster analysis. 23 

2.5.2 Endelave 24 

The second location is a small 13 km2 island, Endelave, in Kattegat, Denmark with a maximum 25 

elevation of 8 m. The island’s geology consists of glacial till, meltwater sands, and post-glacial 26 

sands, while boreholes intercept Paleogene clay at depth throughout the island. Generally, 27 

the glacial tills are found in the west part of the island, where the post-glacial sands are found 28 

to the north. TEM and SNMR surveys shown in Figure 2Figure 2b were conducted at this more 29 

geologically heterogeneous location to resolve possible saltwater intrusion and delineate the 30 

shallow aquifer found in the meltwater sands and tills. The TEM soundings data were acquired 31 

in April 2022 and cover the majority of the island and show ρ below 150 Ωm for the entire area 32 

(McLachlan et al., 2025). The ρ resolve buried valley structures and a very conductive 33 

basement. By TEM alone it is not possible to distinguish Paleogene clay from the saltwater 34 
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saturated sand. The SNMR survey consists of 51 soundings over eight days in July and 1 

October 2023 and finds high WC shallowly in the east and north part of the island, where the 2 

west part shows low WC and T2
*.  3 

  4 
Figure 22 a) The Kompedal survey area. SNMR (red) together with TEM (blue) was collected in the area. b) Map 5 
of Endelave survey with SNMR (red) and TEM (blue). Map data: © Google Maps 2024, UTM Zone: 32N. 6 

3 Results 7 

3.1 Kompedal case study 8 

3.1.1 Clustering analysis 9 

For our combined analysis, we begin by selecting the number of clusters, K, using the 10 

silhouette index. Figure 3Figure 3 shows results from four different clustering analyses with 11 

two to five clusters for the Kompedal data set. Each cluster is labeled with its index and the 12 

number of data points within each cluster. In each cluster, the silhouette indices are sorted to 13 

give a higher index when moving up the y-axis. If most of the data within a given cluster have 14 

values above the average silhouette index, it is considered as well defined, while clusters with 15 

some data below are considered fairly defined, and with many data points below the average 16 

silhouette index they are poorly definedWe use the distinction of well-defined, fairly-defined 17 

and poorly-defined, subdivided as mentioned in the results section. In the two-cluster analysis 18 

in Figure 3Figure 3a, we see that both clusters are well-defined with more than 300 members 19 

in each and could be a well-suited number of clusters. With three clusters (Figure 3Figure 3b), 20 

two cluster 1 is are wellfairly-defined, while cluster 2 is poorly defined with many data points 21 

having a below-average silhouette index, and cluster 3 is well-defined. In the four-cluster 22 

analysis, two clusters, cluster 1 and cluster 4, become poorly defined, as seen in Figure 23 

3Figure 3c. Lastly, five clusters yield three poorly poorly-defined clusters (2, 3 and 4) with only 24 
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few data points having a high membership score. The total average silhouette scores indicated 1 

by the grey line highlight that either two or three clusters should be used. Given the silhouette 2 

indices, either choosing two or three clusters is appropriate. Prior hydrogeological information 3 

can be used to further qualify the choice between these (Dumont et al., 2018) and in 4 

Kompedal, we expect three distinct hydrogeological units, unsaturated sand, saturated sand 5 

and underlying till. The low silhouette indices in cluster 2 in Figure 3Figure 3b, is a product of 6 

large variation within the cluster, which can be expected in glacial environments as mixing 7 
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occuredoccurred during deposition. Finally, three clusters were chosen to subdivide the data 1 

into meaningful and decently determined clusters.   2 
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Figure 33 Silhouette index analysis for the Kompedal dataset. Four clustering routines were run with different 1 
number of clusters, K, (a) two, (b) three, (c) four and (d) five. The sorted silhouette values are shown for each 2 
cluster with the average value indicated by the grey dashed line.  3 

Given three clusters, K-means clustering is used to partition the model parameters, WC, T2
*, 4 

and ρ. In Figure 4Figure 4a, the three model parameters are shown in a scatter plot where the 5 

color of a point reflects the assigned cluster. The other three 2D scatter plots, Figure 4Figure 6 

4b, c, and d, show the clustering results projected onto a plane that reveals correlations 7 

between two of the three. Cluster 1 in blue, is characterized by a high WC and high T2
* value, 8 

and a high ρ. Table 1 shows that large variation occurs within this unit in the SNMR parameters 9 

as seen in Figure 4Figure 4b. The unit is interpreted as a sandy aquifer given its high WC, 10 

high T2
*, and high ρ. The very high ρ (above 300 Ωm) is a product of very coarse material and 11 

that the TEM method can have limited sensitivity to determine resistivity above 150 Ωm 12 

(Christiansen et al., 2006). The yellow cluster 2 has the largest variation in ρ, hence the low 13 

average silhouette index, but generally with lower ρ values than the other two clusters seen in 14 

Figure 4Figure 4c, and with a large range in WC. A layer with these signatures is consistent 15 

with a saturated sandy till to a more clay rich till, with low ρ. The overlap with cluster 1 in WC 16 

and T2
* in Figure 4Figure 4b is interpreted as a gradual mixing of till and sands. Cluster 3 in 17 

red, has low T2
* and a low WC and high ρ, which corresponds to unsaturated sand. However, 18 

low SNMR parameters in high ρ could indicate a silty deposit with smaller pore sizes, but with 19 

a similar conductivity. In places where the red cluster is found shallowly, it is interpreted as a 20 
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unsaturated sand, and at depth under the water table, it is intrepretedinterpreted as a 1 

saturated silt.   2 

 3 
Figure 44 Clustering results from the Kompedal survey on three parameters: WC, T2

* and ρ. (a) all three parameters 4 
in a scatter, (b) WC and T2

*, (c) ρ and WC, and (d) ρ and T2
*. The color of each datapoint defines the assigned 5 

cluster; 1-blue, 2-yellow, and 3-red, and their interpreted geology seen in table 1. 6 

 7 

 8 

 9 

Table 1: Cluster parameter bounds and interpreted geology for Kompedal.  10 

Cluster  WC  

[m3/m3] 

T2
* [s] ρ [Ωm] Interpreted 

geology 

Label 

1 (blue) High  

[0.1-0.4] 

High  

[0.1-0.4] 

High  

[130-1000] 

Saturated 

sand aquifer 

SA (Sand Aquifer) 

2 (yellow) Medium  

[0.07-0.26] 

Medium  

[0.03-0.26] 

Low  

[20-300] 

Saturated 

till 

Ti (Till) 
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3 (red) Low  

[0.04-0.18] 

Low  

[0.03-0.14] 

High  

[130-900] 

Unsaturated 

sand 

US (Unsaturated sand) 

or Si (Saturated silt)  

3.1.2 Spatial interpretation 1 

The three clusters are described in Table 1 and will be referred to by their labels, which are 2 

used in the figures to highlight their spatial extent. After assigning interpreted geologies to 3 

each cluster, we focus on their spatial position illustrated by a cross-section (location shown 4 

in Figure 2Figure 2a). Consider section 1 in Figure 5Figure 5, where the coincident data used 5 

in the clustering are shown as bars with colors associated with the assigned cluster. The US/Si 6 

cluster is situated mostly in the shallow subsurface extending from the surface down to depths 7 

of 5 m to 10 m. The grey lines track selected cluster boundaries at the sounding locations. The 8 

upper grey line in Figure 5Figure 5 tracks the bottom of the US cluster and is interpreted to be 9 

a change from low-to-high saturation, since the US-cluster is defined by low WC and the 10 

underlying clusters have a higher WC. The SA-cluster is found in most soundings and has a 11 

variable thickness from 2 m to 17 m. The transition at sounding location 8, is from US to Ti-12 

cluster likely due to lower ρ in this area. A second deeper grey line tracks the transition below 13 

the SA-cluster to the underlying Ti cluster.  14 

 15 
Figure 55 Clustering section from Kompedal where the partitioning of data is shown at every sounding. The grey 16 
lines track selected cluster boundaries. See Table 1 for cluster descriptions. A is increasing in the South direction. 17 

To evaluate possible variations within the boundaries estimated from the clustering, the profile 18 

shown in Figure 5Figure 5 is reproduced in Figure 6Figure 6 with ρ values and WC and T2
*. 19 

Since clustering is a discrete and often brutal partitioning of smoothly varying parameters, it is 20 

important to return to the original parameters for evaluation. The SNMR WC are shown as 21 

bars in Figure 6Figure 6a and both T2
*(left part of bar) and T2(right part of bar) are shown side 22 

by side with the same color scale in Figure 6Figure 6b and will be referred to as T2
*/ T2 profiles. 23 

The grey lines from the clustering are superimposed on this section to track variations within 24 

each cluster unit. Figure 6Figure 6a displays the first section where shallow low WC and high 25 
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ρ coinciding with the US-cluster where the T2
*/ T2 profiles show low values. Boreholes identify 1 

this unit as sand near sounding location 3 and 6, which match the interpreted geology as an 2 

unsaturated sand. The upper grey line is tracking an increase in WC from ~ 15 % to ~30 % in 3 

Figure 6Figure 6a and from ~ below 0.1 s to above 0.15 s in T2
* in Figure 6Figure 6b, while 4 

there is no contrast in ρ. The lack of structure in the ρ indicates that the TEM is not sensitive 5 

enough to track this  this is likely a saturation change, where as a lithological change would 6 

generally be expected to coincide with a larger ρ contrast, visible in the TEM data. The 7 

elevated T2
* is caused by less interaction with the grain surfaces because of increased 8 

saturation in the sand (Falzone and Keating, 2016). Additionally, a borehole water table 9 

measurement coincides with this transition line at sounding location 6. The SA-cluster unit 10 

contains a range in WC from 20 % to 30 % and in T2
* from 0.15 s to 0.3 s, indicating slight 11 

variations within the cluster. The SA-Ti transition coincides with a decrease in WC and ρ, 12 

interpreted as a similar reduction in pore size, a product of an increase in fines content. The 13 

T2
* found in the Ti-cluster, while quite varying, are generally lower than in the SA-cluster, 14 

consistent with the interpretation of increasing fines content at depth, as in a till.  15 

 16 
Figure 66 Profile of 8 SNMR soundings (bars) and TEM profile(background). Section 1 in Figure 2Figure 2a. (a) 17 
SNMR WC, (b) a split bar with T2

* (left) and T2 (right). Boreholes at sounding location 3 and 6 are shifted ~40 m to 18 
avoid overlapping with the bars. Grey lines are tracking transitions between clusters in Figure 5Figure 5. A is 19 
increasing in the South direction. 20 

Formatted: English (United States)

Formatted: English (United States)



17 
 

To further evaluate the accuracy of the ability to track water tables by the upper cluster 1 

transition, consider Figure 7Figure 7, where water tables from clustering are compared to 2 

available borehole-measured water tables within 500 m of SNMR sites. The clustering water 3 

tables are picked as the transition from the low WC US-cluster to any underlying cluster, SA 4 

or Ti, as both have a high WC compared to the US-cluster. The red line has a slope of 1 and 5 

the uncertainty bars are based onequal to the inversion layer thickness at the transition depth, 6 

as the clustering method is ternary (i.e., it has three options) and consequently, some layers 7 

found at cluster transitions could be assigned to either cluster. We see that clustering tends to 8 

overestimate the water table elevation in many cases. This is a product of clustering being a 9 

brute thresholding in the parameter space. In this geology, the threshold from the clustering 10 

occurs at slightly lower WC than those coinciding with the water table and produces too 11 

shallow estimates. The trend, however, is similar to a slope of 1, indicating that a higher 12 

threshold could provide a better resolution of the regional water table. Additionally, the distance 13 

between borehole and coincident SNMR and TEM models could add uncertainty for the 14 

comparison, but this uncertainty is expected to follow the slope of 1. The two data points with 15 

yellow outline, far from the middle axis, stem from the north of the area where the water table 16 

was measured in 1980, yielding some uncertainty due to possible long-term temporal or 17 
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seasonal changes. Overall, the clustering captures the water table trend within an unconfined 1 

aquifer at a regional scale in an automated manner. 2 

 3 

 4 
Figure 77 Borehole water table compared to the clustering water table at 12 SNMR locations with boreholes within 5 
500 m. The red line has a slope of 1 and the error bars on the clustering estimates are based on thethe inversion 6 
layer thickness just below the water table estimate to provide a type of uncertainty. Yellow points have water table 7 
measurements over 40 years old. 8 
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3.2 Endelave case study 1 

3.2.1 Clustering analysis 2 

As before, we start by selecting the appropriate number of clusters, through silhouette index 3 

analyses, shown in Figure 8. Considering we expect a more heterogeneous geology, three to 4 

six clusters are used in the analysis. In Figure 8, three clusters are used to partition the data, 5 

and result in one well-defined, one fairly-defined and one poorly-defined cluster, whereas the 6 

yellow has low and even negative silhouette values, indicating wrongly assigned data points. 7 

The average silhouette index is the highest found with the assigned clusters. By using four 8 

clusters in Figure 8b, two are well-defined, one fairly and one poorly clustered. We see less 9 

negative silhouette index data here, while still maintaining a high average silhouette index. 10 

Further increasing the number of clusters to five reveals similar silhouette indexes but has two 11 

fairly-defined clusters, however the average silhouette index drops, see Figure 8c. Using six 12 

clusters is similar with a few well-defined and fairly-defined, and with a lower average 13 

silhouette index. The silhouette analyses show that the number of clusters should either be 14 

three or four as they have well-partitioned clusters, with the highest silhouette index. Prior 15 

information from the area indicates that we have four distinct geological units: tills, sand 16 

aquifers, Paleogene clay, and possible saline intrusion into sand. The blue cluster in Figure 8b 17 

was found to have important hydrogeological information, regardless of its low silhouette index 18 

and, as such, we used four clusters for further results. 19 
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 1 

Figure 8 Silhouette index analysis for the Endelave dataset. Four clustering routines were run with different number  2 
of clusters, K, (a) three, (b) four, (c) five and (d) six. The sorted silhouette values are shown for each cluster with 3 
the average value indicated by the grey dashed line. 4 

A similar methodology was used to examine the appropriate number of clusters for Endelave. 5 

Due to a more heterogeneous geology, four clusters were used to properly partition the data. 6 

Next, the partitioning of WC, T2
* and ρ is inspected in Figure 9.. Consider Figure 8, where the 7 

clustering results are shown, represented by the three clustered parameters (Figure 8a) or 8 

two (Figure 8b, c, d). First, the red cluster (1) is defined by quite low WC and T2
* values (Figure 9 

9Figure 8b), while the ρ varies from 10 Ωm to 120 Ωm. This cluster exhibits properties 10 

consistent with till containing varying sand content and affecting ρ (Figure 9Figure 8c). The 11 

green cluster (2) has mainly high ρ, high WC, and medium T2
* values in Figure 9Figure 8a. 12 

The high WC and ρ are properties associated with sand saturated sand aquifers. The yellow 13 

cluster (3) has similar SNMR attributes to the red cluster, with low WC and T2
*, but has a lower 14 

ρ range illustrated in Figure 9Figure 8d. This unit is interpreted to be of Paleogene clay due to 15 

the very low ρ found in this cluster. The range of WC found within the yellow cluster could 16 

indicates that layers with low to medium sand contents, but with low ρ are grouped here. The 17 

last cluster, blue (4) has a distinct T2
* range in Figure 9Figure 8b and a large range of WC with 18 

ρ situated around 10 Ωm. The WC and T2
* values would indicateindicate that this layer has 19 

aquifer properties usually associated with sand, while the ρ indicates this as a conductive 20 
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material. This is interpreted as saltwater saturated sand. In general, the clusters are not as 1 

distinct within the Endelave dataset, as the glacial interaction with the deposited sediment has 2 

caused a mixing of lithologies. This is evident from the ρ values where none exceed 130 Ωm, 3 

whereas the Kompedal survey consisted of ρ from 50 Ωm to 1000 Ωm. All the descriptions 4 

and interpreted geologies are found in Table 2. 5 

 6 
Figure 98 Clustering results from the Endelave survey on WC, T2

* and ρ. (a) all three in a scatter, (b) WC and T2
*, 7 

(c) ρ and WC, and (d) ρ and T2
*. The color of each datapoint defines the assigned clustercluster, and their 8 

interpreted geology, abbreviations seen in table 2. 9 

 10 

 11 

 12 

 13 

 14 

Table 2: Cluster parameter bounds and interpreted geology for Kompedal. 15 

Formatted: English (United States)

Formatted: English (United States)



22 
 

 1 

3.2.2 Spatial interpretation 2 

Following the clustering we will examine their spatial extent on Endelave. We will show the 3 

results of two sections (Figure 2Figure 2b). to see how the clustering performs in a more 4 

heterogenous setting. Consider first the section across the main shallow aquifer in Figure 5 

10Figure 9a, where we see a shallow Ti-unit corresponding to either a till or unsaturated sand. 6 

The SA-cluster unit has a thickness from 5 m to 12 m and is found below the Ti-cluster at 7 

sounding locations 3 to 6. Sounding location 1 is located 30 m from the coast, which aligns 8 

with the presence of the Sws-cluster. The Ti-cluster at depth is interpreted as a decrease in 9 

pore size from an increased clay or silt content. At sounding 7, all layers are grouped as the 10 

Ti-cluster, a sign of low SNMR parameters throughout the entire sounding location. The 11 

deepest discretized layers at most sounding locations are grouped in the Cl-cluster, tracked 12 

by a grey line, indicating a drop in ρ, as expected from the Paleogene clay. 13 

To highlight possible saltwater intrusion, a section intersecting sounding locations at the coast 14 

is shown. The section in Figure 10Figure 9b is quite complicated as it transects different 15 

geological regions. We consider three main points in this section, the Sws-cluster, the SA-16 

cluster and the south end of the profile. In Figure 10Figure 9b we see the Sws-cluster at 17 

sounding locations 1 to 3, defining a shallow and deep layer, while at sounding locations 6, 8 18 

and 9 the cluster is seen shallowly at low elevations following the coast. The transition from 19 

the Sws-cluster to the underlying clusters is tracked by a grey line at sounding locations 1 to 20 

3. Below the grey line at sounding locations 1 and 2, the layers are grouped with the Cl-cluster 21 

representing low ρ, lower T2
* and WCs. It is important to note that even with combined SNMR 22 

and TEM, it will be hard to distinguish between saltwater and freshwater clays as both will be 23 

conductive and have a low free water content and T2
* signatures in SNMR.  24 

From sounding locations 3 to 8, the SA-cluster is found with a varying thickness from 2m to 25 

10m. This unit, interpreted as the aquifer, is outlined in grey to compare with original parameter 26 

Cluster  WC [m3/m3] T2
* [s] ρ [Ωm] Interpreted geology Label 

1 (red) Low-medium 

[0.03-0.18] 

High [0.02-

0.1] 

High  

[10-120] 

Till Ti (Till) 

2 (green) High  

[0.15-0.40] 

Medium 

[0.04-0.13] 

High  

[15-120] 

Sandy aquifer SA  

(Sand aquifer) 

3 

(yellow) 

Low-medium  

[0.03-0.18] 

Low  

[0.02-0.1] 

Low  

[1-25] 

Paleogene clay Cl (Clay) 

4 (blue) Low-High 

 [0.07-0.40] 

High [0.07-

0.21] 

Low  

[2-35] 

Saltwater sands Sws (Saltwater 

saturated sand) 
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values and borehole information later. At the south end of the profile, the clustering divides 1 

layers into Cl- and Ti-clusters, associated with clay and till by their low WC and T2
*.  2 

 3 
Figure 109 Clustering sections from Endelave where the partitioning of data is shown at every sounding location. 4 
(a) Section 1 (b) Section 2 in Figure 2Figure 2a. The grey lines track selected cluster boundaries. A is increasing 5 
in the Southeast direction. B is increasing in the South direction. 6 

The discrete boundaries from the clusters are now used in the original parameter space to 7 

evaluate possible variations within the clusters and the estimated boundaries. In Figure 8 

11Figure 10, we consider the main shallow aquifer found on Endelave. The grey lines from 9 

Figure 10a Figure  are used to delineate cluster extents and each unit is assigned a cluster 10 

label. Shallowly, the Ti-unit coincides with low WC and a high ρ in Figure 11Figure 10a. T2
*/T2 11 

are low in this unit and boreholes reveal either till or unsaturated sand here, matching the 12 

clustering interpretation. The upper Ti-SA grey line tracks an increase in WC at four sounding 13 

locations and coincides with a lithological change from clay to sand in two boreholes and 14 

coincides with a water table measurement in a separate borehole. This is interpreted as a 15 

semi-confined system with thea water table at coinciding with the a lithological layer boundary 16 

due to shifts in geological deposits.. The SA unit here consists of high WC and low to medium 17 

T2
* within a resistive unit. The boreholes identify this unit as sand or a mixture of sand and silt, 18 

which explains the range of WC grouped within this unit. The lower SA/TI transition tracks a 19 

decrease in WC, still with low to medium T2
* seen in Figure 11Figure 10b. The transition 20 
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coincides with a decrease in ρ at sounding locations 1 and 2, and with a lithological boundary 1 

from sand to clay in a few boreholes. Furthermore, two boreholes terminate exactly at this 2 

interface, which could indicate that the drillers hit something harder or more clay rich, 3 

prompting them to stop drilling. The Ti/Cl transition at depth tracks a decrease in ρ, which in 4 

the deep borehole is identified as a lithological boundary from clays and sand to Paleogene 5 

clay, agreeing with the clustering interpretations. This deep boundary is not seen in the SNMR-6 

parameters as the Ti and Cl-clusters are only distinguishable by their ρ. 7 

 8 
Figure 1110 Profile of 7 SNMR soundings (bars) and TEM ρ (background). Section 1 in Figure 2Figure 2b. (a) 9 
SNMR WC (b) a split bar with T2

* (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 10 
10Figure 9. A is increasing in the Southeast direction. 11 

After reviewing the section through the main shallow aquifer in Figure 11Figure 10, we will 12 

assess a second, more complex section. The grey lines from Figure  will be used to delineate 13 

the cluster units and illustrate differences within the units. Consider now Figure 12Figure 11, 14 

where the ρ and SNMR parameters are shown with lines following cluster transitions. The Sws 15 

unit is seen mainly at location 1 to 3 and is defined by high WC, very high T2
* and low ρ. At 16 

sounding location 8, a borehole finds sand coinciding with the Sws-cluster in agreement with 17 

the saline saltwater saturated sand interpretation. The high T2
*/T2 associated with the Sws-18 

cluster in Figure 12Figure 11b is a product of limited compaction within the newly deposited 19 

saline sand in the coastal environments. Below the Sws-unit, the grey line tracks a transition 20 
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to lower WC and T2
*, but maintaining the low ρ, which is defined by the Cl cluster. At sounding 1 

location 6, this transition is different with an increase in ρ tracking the border to the SA unit. 2 

Low WC at sounding locations 10 and 11 coincide with clay in a local borehole for the first 15 3 

m where all layers are grouped within the Ti or Cl-clusters. The low water content and T2
* 4 

signature at these locations prevent them from being clustered with the saline saltwater 5 

saturated sands in Sws, highlighting the value of SNMR to distinguish these conductive units. 6 

The gyttja layer found in the borehole coincides with a drop in the SNMR WC due to the 7 

increases in organic matter, decreasing the pore size, and was grouped with the Cl-cluster 8 

(Mashhadi et al., 2024). 9 

 10 
Figure 1211  Profile of 11 SNMR soundings (bars) and TEM ρ (background). Section 2 in Figure 2Figure 2b. (a) 11 
SNMR WC (b) a split bar with T2

* (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure 12 
10Figure 9. B is increasing in the South direction. 13 

By clustering on this dataset, we have proven the ability to identify regions of possible 14 

saltwater intrusion. Figure 13Figure 12 shows which sounding locations have layers that 15 

cluster within the saltwater aquifer, the freshwater aquifer, that have layers of both clusters, or 16 

only have the till and clay clusters. The saltwater cluster is observed mostly at the northern 17 

sounding locations where the post-glacial sands are located, but also along the east coast. 18 

The main aquifer unit, SA, is found in the east and north parts of the island, while the west 19 
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part is dominated by the low water content clusters, shown in yellow and red. One sounding 1 

location with both saline and freshwater clusters far from the coast, is observed in the north of 2 

the island. The closest TEM sounding was acquired in a lowland south of this sounding, with 3 

elevation almost at sea level, which might causehave issues with saltwater intrusion. There is 4 

also a wetland close to this location, which might have a higher clay content with low ρ. If the 5 

TEM and SNMR are not exactly coincident, some differences and anomalies in the clustering 6 

might occur. But in general, the K-means clustering is able to map this possible saltwater 7 

intrusion, which is a valuable asset in aquifer management. 8 

 9 
Figure 1312 Sounding locations where salt water or fresh water has been identified. Locations with only clay and 10 
till clusters are shown with red and yellow. Map data: © Google Maps 2024, UTM Zone: 32N. 11 

4 Discussion 12 

In this study we investigated the use of clustering to combine the analysis of two geophysical 13 

methods, SNMR and TEM. Previously, the two methods were typically used together in either 14 

a joint-inversion or manual joint-interpretation approach. The limited availability of data has 15 

constrained the use of SNMR for clustering. Recent developments in SNMR have allowed for 16 

rapid acquisitions leading to much higher data densities (Grombacher et al., 2021) requiring a 17 

less subjective and fast interpretation scheme, such as clustering approaches. To track 18 

lithological boundaries using geophysics, it is necessary to have a contrast in layer parameters 19 
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between the geological units. An example of this limitation in TEM occurs when saline sand 1 

lies above clay, as both have low ρ, creating little to no ρ contrast. In SNMR, a similar limitation 2 

occurs when distinguishing unsaturated sand and clay/till layers. SNMR can detect an 3 

increase in water content but cannot define whether the aquifer is unconfined or confined. 4 

Using these methods together can reduce ambiguities encountered when interpreting them 5 

separately, as they have complementary characteristics and different sensitivities. The TEM 6 

ambiguity in the saline sands/clays example will be resolved by SNMR as a decrease in WC 7 

at the lithological boundary as SNMR is sensitive only to the quantity of water, not its salinity. 8 

In the SNMR unsaturated limit, TEM would resolve a resistive unit in the unconfined case and 9 

a conductive unit in the semi-confined or confined example. The ability to distinguish these 10 

layers and track them spatially between boreholes is why SNMR and TEM were chosen to 11 

find discrete boundaries using K-means clustering.  12 

In this study we investigated the use of clustering to combine the analysis of two geophysical 13 

methods, SNMR and TEM. The K-means clustering was found to be able to differentiate units 14 

into interpretable hydrogeological layers and was consistent with manual interpretations. 15 

Combining the datasets helped alleviate some of the ambiguities found when interpreting 16 

based only on a single dataset, i.e., unsaturated/confined conditions in Kompedal, and 17 

saltwater/freshwater in Endelave.  18 

K-means clustering on geophysical models offers a simple, automated approach to identifying 19 

lithological transitions. It allows for reproduceable boundary definitions without subjective 20 

interpretations of the geophysical models. Discretizing smoothly varying parameters into 21 

predefined clusters is, however, brutal and there will be variability within the unit definitions. 22 

The ability to return to the original parameter space with cluster boundaries is crucial in 23 

addressing subtle variations within units and can be used to evaluate cluster transitions.  24 

K-means clustering applied to geophysical models is not limited to SNMR and TEM 25 

parameters; it can also be extended to other collocated datasets with distinct sensitivities. For 26 

example, in areas where a deep water table is expected within a sand layer, seismic methods 27 

may be appropriate. However, because the seismic velocity of saturated sands can be similar 28 

to that of clays or tills, incorporating collocated TEM models can help reduce interpretational 29 

bias. Similarly, relying solely on TEM data may make it difficult to detect the water table due 30 

to limited sensitivity to high-to-high resistivity contrasts. 31 

 32 

In SNMR, correlations between WC and T2
* may exist (Falzone and Keating, 2016). For 33 

example, in unsaturated sands, the low water content residing in the pores will be in close 34 

contact with the grain surfaces, resulting in interactions leading to low T2
*/T2. Since water 35 
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content is proportional to signal amplitude, in low WC environments, low signal amplitude 1 

results in reduced confidence in on the T2
* estimates. When such parameters are linked, it 2 

might be of interest to simplify the approach by clustering on the product of water content and 3 

T2
*. Thus, combining these two parameters may help reducee the influence of low-confidence 4 

T2
* values in low water content environments. A similar option is to use a principal component 5 

analysis to reduce the basis to two parameters that describe the most of the variance, which 6 

in the Kompedal case would be resistivity and the product of the SNMR parameters. However, 7 

in more complex geologies such as Endelave, a decrease in basis dimension may reduce the 8 

ability to distinguish layers of high WC and low T2
* from layers with low WC and high T2

*. 9 

Through examining the data’s variation and correlation, we can make informed qualified 10 

decisions about whether to decrease the parameter space.    11 

In this study, we focused on interpreting two survey areas using K-means clustering, which 12 

proved sufficient in meaningfully partitioning data and identifying lithological boundaries. One 13 

feature of the employed K-means clustering approach is the need to specify clusters 14 

beforehand. In this study we based the choice of clusters on the silhouette index and prior 15 

geological information about the area. One alternative study uses agglomerative hierarchical 16 

clustering on SkyTEM data, which avoids selecting the number of clusters by starting with one 17 

cluster and subdividing until each data point has its own cluster (Dumont et al., 2018). This 18 

can alleviate some of the choices made for the silhouette index analyses and provides a better 19 

understanding of how clusters are further subdivided. A second challenge is to attribute 20 

uncertainties to the layer boundaries picked by the discrete K-means clustering. Here, others 21 

use fuzzy C-means where data points are assigned a membership score and can be partial 22 

members of more than one cluster (Paasche et al., 2007). Applying the fuzzy C-means can 23 

give an estimate of uncertainty for the picked cluster boundaries, i.e., if a data point could be 24 

a member of several clusters, it is less certain. This could apply to the Endelave data where 25 

the saline intrusion cluster in places could overlap with the freshwater cluster.  26 

Another way of exploiting collocated datasets is the use of joint inversion for layer boundary 27 

picking. Studies identifying layers from SNMR and TEM implementing various regularization 28 

techniques has shown promise in reducing the ambiguity found when interpreting each 29 

separately (Behroozmand et al., 2012); Skibbe et al., 2018). These approaches focus mostly 30 

on the collocated datasets and invert these jointly. In our study, the tTEM data is inverted 31 

separately with the full survey of more than 23000 datasets. As such, we have the ability to 32 

track the changes in resistivity in places where the SNMR is not present. Additionally, the 33 

framework for using joint inversion in steady-state SNMR is not established as kernels are 34 

calculated before the inversion, fixing the discretization. Further investigations could focus on 35 
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implementing clustering in a joint inversion framework with a large spatial extent. This could 1 

alleviate some of the interpretational load when dealing with large datasets. 2 

Since clustering is performed on coincident values, we are limited by the lowest dimension 3 

dataset, which in this case is the SNMR, e.g. on Endelave the survey consists of 51 soundings 4 

while there are over 23000 TEM soundings in the same area. This reduction in data space 5 

disregards large amounts of TEM data, which of course have valuable regional information, 6 

but lack coincident SNMR parameters. Additionally, lower data quantity can lead to clusters 7 

not representable for the area. If SNMR information could be extrapolated to the full TEM 8 

domain through appropriate spatially variable measures, it would allow for clustering on a 9 

much larger data set. Future research will focus on extrapolating SNMR parameters across 10 

the full TEM domain. This would enable a subdivision of the full TEM domain based on the 11 

coincident data clusters, and it will be possible better to delineate areas of potential saline 12 

intrusion spatially.  13 

As there is limited ground truthing information, the clustering has been mostly compared to 14 

manual interpretations based on the data collected. This does not directly provide validation 15 

of the layers seen but infers that the clustering is performing like expert interpreters would if 16 

given a similar data set. As such this study shows the value in having clustering as the main 17 

subdivider of lithological units instead of having manual inspection of each collocated dataset. 18 

Given the recently enabled larger scale mapping with SNMR, a less subjective and fast 19 

interpretation scheme is a step towards automation from data to lithology.   20 

5 Conclusion  21 

Through two field studies we demonstrated the automated spatial identification and separation 22 

of hydrogeological units in large scale geophysical campaigns. Recent improvements in the 23 

data acquisition rates of SNMR now offer data volumes sufficient to exploit clustering 24 

approaches when combining these data with other geophysical data. K-means clustering of 25 

complementary SNMR and TEM models is shown to provide a nonless-subjective approach, 26 

where enhanced hydrogeological interpretations can be formed by exploiting the 27 

complementary nature of two data types. To detect lithological boundaries, they must 28 

correspond to a contrast in geophysical properties. SNMR is shown to provide value when 29 

discriminating clay-rich sediments from saline saturated sand conditions, a challenging task 30 

based on only TEM models. Similarly, TEM is able to separate low-water content conditions 31 

from clay-rich conditions, which is impossible with SNMR alone. This is key to discriminating 32 

between unconfined and semi-confined conditions. A silhouette index-based approach, 33 

combined with the a priori knowledge of the likely number of lithological units present, is shown 34 
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to be a robust measure for selecting the number of clusterswas used to select the number of 1 

clusters and found to be suitable for these datasets.  2 

In the examples, clustering of NMR and TEM data provides a more complete characterization 3 

of local hydrogeological conditions than what can be achieved by each data set separately. 4 

Data availability 5 

The data shown in this study are available upon request from the corresponding author. 6 

Author contributions 7 

MV wrote the manuscript, gathered data and did the analysis. JJL helped with writing the 8 

manuscript. AVC helped with the analysis and correcting the writing. DG assisted in figure 9 

development, analysis and writing the manuscript. 10 

Competing interest 11 

The corresponding author declares that none of the authors have any competing interests. 12 

References 13 

Auken, E., Foged, N., Larsen, J.J., Lassen, K.V.T., Maurya, P.K., Dath, S.M. and Eiskjær, T.T.: 14 

tTEM—A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of 15 

the subsurface. Geophysics, 84(1), pp.E13-E22, https://doi.org/10.1190/geo2018-0355.1, 16 

2019. 17 

Auken, E., Christiansen, A.V., Kirkegaard, C., Fiandaca, G., Schamper, C., Behroozmand, 18 

A.A., Binley, A., Nielsen, E., Effersø, F., Christensen, N.B. and Sørensen, K.: An overview of 19 

a highly versatile forward and stable inverse algorithm for airborne, ground-based and 20 

borehole electromagnetic and electric data. Exploration Geophysics, 46(3), pp.223-235, 21 

https://doi.org/10.1071/EG13097, 2015. 22 

Behroozmand, A.A., Auken, E., Fiandaca, G. and Christiansen, A.V., 2012. Improvement in 23 

MRS parameter estimation by joint and laterally constrained inversion of MRS and TEM 24 

data. Geophysics, 77(4), pp.WB191-WB200. 25 

Behroozmand, A.A., Keating, K. and Auken, E.: A review of the principles and applications of 26 

the NMR technique for near-surface characterization. Surveys in geophysics, 36, pp.27-85, 27 

https://doi.org/10.1007/s10712-014-9304-0, 2015. 28 

Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K. and Slater, L.D.: 29 

The emergence of hydrogeophysics for improved understanding of subsurface processes over 30 

Formatted: English (United States)



31 
 

multiple scales. Water resources research, 51(6), pp.3837-3866, 1 

https://doi.org/10.1002/2015WR017016, 2015. 2 

Braun, M. and Yaramanci, U., 2008. Inversion of resistivity in magnetic resonance 3 

sounding. Journal of Applied Geophysics, 66(3-4), pp.151-164. 4 

Christiansen, A.V., Auken, E. and Sørensen, K.: The transient electromagnetic method. 5 

In Groundwater geophysics: a tool for hydrogeology (pp. 179-225). Berlin, Heidelberg: 6 

Springer Berlin Heidelberg, https://doi.org/10.1007/3-540-29387-6_6, 2006. 7 

Costabel, S., Siemon, B., Houben, G. and Günther, T.: Geophysical investigation of a 8 

freshwater lens on the island of Langeoog, Germany–Insights from combined HEM, TEM and 9 

MRS data. Journal of Applied Geophysics, 136, pp.231-245, 10 

https://doi.org/10.1016/j.jappgeo.2016.11.007, 2017. 11 

Dickinson, J.E., Pool, D.R., Groom, R.W. and Davis, L.J.: Inference of lithologic distributions 12 

in an alluvial aquifer using airborne transient electromagnetic surveys. Geophysics, 75(4), 13 

pp.WA149-WA161, https://doi.org/10.1190/1.3464325, 2010. 14 

Dragoni, W. and Sukhija, B.S.: Climate change and groundwater: a short review (Vol. 288, No. 15 

1, pp. 1-12). London: The Geological Society of London, https://doi.org/10.1144/SP288.1, 16 

2008. 17 

Dumont, M., Reninger, P.A., Pryet, A., Martelet, G., Aunay, B. and Join, J.L.: Agglomerative 18 

hierarchical clustering of airborne electromagnetic data for multi-scale geological 19 

studies. Journal of Applied Geophysics, 157, pp.1-9, 20 

https://doi.org/10.1016/j.jappgeo.2018.06.020, 2018. 21 

Falzone, S. and Keating, K., 2016. A laboratory study to determine the effect of pore size, 22 

surface relaxivity, and saturation on NMR T2 relaxation measurements. Near Surface 23 

Geophysics, 14(1), pp.57-69. 24 

Foged, N., Marker, P.A., Christansen, A.V., Bauer-Gottwein, P., Jørgensen, F., Høyer, A.S. and 25 

Auken, E.: Large-scale 3-D modeling by integration of resistivity models and borehole data 26 

through inversion. Hydrology and Earth System Sciences, 18(11), pp.4349-4362, 27 

https://doi.org/10.5194/hess-18-4349-2014, 2014. 28 

Grombacher, D., Liu, L., Griffiths, M.P., Vang, M.Ø. and Larsen, J.J.: Steady‐State Surface 29 

NMR for Mapping of Groundwater. Geophysical Research Letters, 48(23), p.e2021GL095381, 30 

https://doi.org/10.1029/2021GL095381, 2021. 31 

Formatted: English (United States)

Formatted: English (United States)



32 
 

Günther, T. and Müller-Petke, M., 2012. Hydraulic properties at the North Sea island of Borkum 1 

derived from joint inversion of magnetic resonance and electrical resistivity 2 

soundings. Hydrology and earth system sciences, 16(9), pp.3279-3291. 3 

Hertrich, M., Braun, M., Gunther, T., Green, A.G. and Yaramanci, U.: Surface nuclear magnetic 4 

resonance tomography. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 5 

pp.3752-3759, https://doi.org/10.1109/TGRS.2007.903829, 2007. 6 

Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R. and Wu, A.Y.: An 7 

efficient k-means clustering algorithm: Analysis and implementation. IEEE transactions on 8 

pattern analysis and machine intelligence, 24(7), pp.881-892, 9 

https://doi.org/10.1109/TPAMI.2002.1017616, 2002. 10 

Kodinariya, T.M. and Makwana, P.R.: Review on determining number of Cluster in K-Means 11 

Clustering. International Journal of Advance Research in Computer Science and Management 12 

Studies, 1(6), pp.90-95, 2013. 13 

Larsen, J.J., Liu, L., Grombacher, D., Osterman, G. and Auken, E., 2020. Apsu—A new 14 

compact surface nuclear magnetic resonance system for groundwater 15 

investigation. Geophysics, 85(2), pp.JM1-JM11. 16 

Le, C.V.A., Nguyen, N.N.K. and Nguyen, T.V.: Application of Clustering Method in Different 17 

Geophysical Parameters for Researching Subsurface Environment. Inżynieria Mineralna, 18 

https://doi.org/10.29227/IM-2022-02-05, 2022. 19 

Legchenko, A., Baltassat, J.M., Beauce, A. and Bernard, J.: Nuclear magnetic resonance as 20 

a geophysical tool for hydrogeologists. Journal of Applied Geophysics, 50(1-2), pp.21-46, 21 

https://doi.org/10.1016/S0926-9851(02)00128-3, 2002. 22 

Mashhadi, S.R., Grombacher, D., Zak, D., Lærke, P.E., Andersen, H.E., Hoffmann, C.C. and 23 

Petersen, R.J.: Borehole nuclear magnetic resonance as a promising 3D mapping tool in 24 

peatland studies. Geoderma, 443, p.116814, 25 

https://doi.org/10.1016/j.geoderma.2024.116814, 2024. 26 

McLachlan, P., Vang, M.Ø., Pedersen, J.B., Kraghede, R. and Christiansen, A.V., 2025. 27 

Mapping the Hydrogeological Structure of a Small Danish Island Using Transient 28 

Electromagnetic Methods. Groundwater, 63(2), pp.280-290. 29 

Mohnke, O. and Yaramanci, U.: Forward modeling and inversion of MRS relaxation signals 30 

using multi‐exponential decomposition. Near Surface Geophysics, 3(3), pp.165-185, 31 

https://doi.org/10.3997/1873-0604.2005012, 2005. 32 

Formatted: English (United States)

Formatted: English (United States)

Formatted: English (United States)



33 
 

Nabighian, M.N. and Macnae, J.C.: Time domain electromagnetic prospecting methods, 1 

https://doi.org/10.1190/1.9781560802686.ch6, 1991. 2 

Paasche, H. and Tronicke, J.: Cooperative inversion of 2D geophysical data sets: A zonal 3 

approach based on fuzzy c-means cluster analysis. Geophysics, 72(3), pp.A35-A39, 4 

https://doi.org/10.1190/1.2670341, 2007. 5 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 6 

Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J.: Scikit-learn: Machine learning in 7 

Python. the Journal of machine Learning research, 12, pp.2825-2830, 2011. 8 

Shutaywi, M. and Kachouie, N.N.: Silhouette analysis for performance evaluation in machine 9 

learning with applications to clustering. Entropy, 23(6), p.759, 10 

https://doi.org/10.3390/e23060759, 2021. 11 

Skibbe, N., Günther, T. and Müller-Petke, M., 2018. Structurally coupled cooperative inversion 12 

of magnetic resonance with resistivity soundings. Geophysics, 83(6), pp.JM51-JM63. 13 

Song, Y.C., Meng, H.D., O’Grady, M.J. and O’Hare, G.M.: The application of cluster analysis 14 

in geophysical data interpretation. Computational Geosciences, 14, pp.263-271, 15 

https://doi.org/10.1007/s10596-009-9150-1, 2010. 16 

Sørensen, K.I. and Auken, E.: SkyTEM-A new high-resolution helicopter transient 17 

electromagnetic system. Exploration Geophysics, 35(3), pp.191-199, 2004. 18 

Sun, J. and Li, Y.: Joint inversion of multiple geophysical and petrophysical data using 19 

generalized fuzzy clustering algorithms. Geophysical Supplements to the Monthly Notices of 20 

the Royal Astronomical Society, 208(2), pp.1201-1216, https://doi.org/10.1093/gji/ggw442, 21 

2016. 22 

van Roosmalen, L., Christensen, B.S. and Sonnenborg, T.O.: Regional differences in climate 23 

change impacts on groundwater and stream discharge in Denmark. Vadose Zone 24 

Journal, 6(3), pp.554-571, https://doi.org/10.2136/vzj2006.0093, 2007. 25 

Vang, M., Grombacher, D., Griffiths, M.P., Liu, L. and Larsen, J.J.: High-density mapping of 26 

regional groundwater tables with steady-state surface nuclear magnetic resonance–three 27 

Danish case studies. Hydrology and Earth System Sciences, 27(16), pp.3115-3124, 28 

https://doi.org/10.5194/hess-27-3115-2023, 2023. 29 

Vang, M., Grombacher, D., Larsen, J.J. and Wison, S.: Efficient mapping of complex 30 

groundwater systems associated with braided rivers using small coil surface nuclear magnetic 31 

resonance. Geophysics, 90(3), pp. 1-45, https://doi.org/10.1190/geo2023-0765.1, 2025. 32 



34 
 

Yaramanci, U., Lange, G. and Knödel, K.: Surface NMR within a geophysical study of an 1 

aquifer at Haldensleben (Germany). Geophysical prospecting, 47(6), pp.923-943, 2 

https://doi.org/10.1046/j.1365-2478.1999.00161.x, 1999. 3 

Formatted: English (United States)


