10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Alleviating interpretational ambiguity in Hydrogeology through clustering-
based analysis of transient electromagnetic and surface nuclear magnetic

resonance data

Mathias Vang', Jakob J. Larsen?, Anders Vest Christiansen’, Denys Grombacher®

'Department of Geoscience, Aarhus University

°Department of Electrical and Computer Engineering, Aarhus University
Correspondence: Mathias Vang (mva@geo.au.dk)
Abstract

Local characterization of groundwater systems is critical for managing and protecting
vulnerable resources. Geophysical methods can provide dense imaging of subsurface
parameters to delineate lithological boundaries and water tables for hydrogeological
investigation. Though, using a single geophysical method for determining lithologies can yield
erroneous interpretations as different lithologies can have similar properties. By using several
geophysical methods, it is possible to reduce this risk and better assign likely lithologies to
subsurface units. We present two case studies where transient electromagnetic (TEM) and
surface nuclear magnetic resonance (SNMR) are used in combination to delineate
hydrogeological structures. Novel spatially constrained inversion in SNMR was used to
provide horizontal consistency between soundings. Three coincident parameters, resistivity
from the TEM measurements and water content and relaxation time from the SNMR
measurements were used in a K-means clustering scheme to resolve subsurface structures.
The K-means clustering was evaluated with a silhouette index to pick the number of clusters.
After clustering, each cluster was assigned a hydrogeological description based on the distinct
features in the three parameters, e.g. a low resistivity, high water content, and high T is
assigned as saltwater saturated sand. In the first case study, the clusters enabled improved
resolution of a regional water table in an unconfined aquifer setting by the multi-geophysical
approach. The water table estimates were positively evaluated against multiple boreholes
within 500 m of coincident geophysical models. The second case study illustrates how
clustering, of SNMR and TEM models, can delineate saltwater intrusion in an island coastal
aquifer, which would not be possible with any of these methods individually. Additionally, the
clustering resolved the main shallow aquifer on the island. Our work illustrates how the
combination of geophysical data can be used to improve resolution of hydrogeological layers

and reduce interpretational bias.
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1 Introduction

Climate-resilient groundwater management hinges on the need for detailed characterization
of local groundwater systems (Dragoni & Sukhija, 2008). Historically, lithological descriptions
of wells have been used to establish geological models to forecast local groundwater behavior
and inform conceptual models of local systems (van Roosmalen et al., 2007). The high cost
associated with drilling yields geological maps that are generally based on sparse point
coverage, with long-distance interpolation, and simplicity assumptions between observations
where structures may actually be complex. To address these data sparsity issues, geophysics
can be used to delineate structures non-invasively, giving high resolution imaging of the
subsurface to complement direct borehole observations (Binley et al., 2015). Methods based
on imaging of subsurface electrical properties are used extensively in hydrological

investigations, where spatial variations in the electrical properties of the subsurface

specifically the resistivity, are used electrical-properties—specifically—theresistivity,—of-the
subsurface—are—used—to study pollution, explore groundwater resources, and delineate

saltwater interfaces, among many other applications (Binley et al., 2015). Within methods
imaging electrical properties, electromagnetic (EM) methods are widely used. They operate
inductively by creating a varying magnetic field inducing eddy-currents in the ground
(Nabighian & Macnae, 1991). The secondary magnetic field produced by the decaying eddy-
currents is measured inductively at the surface. The measurements are rapid, which leads to
high data acquisition rates that enable mapping of large areas using towed or airborne
platforms (e.g. Auken et al., 2019; Sgrensen and Auken, 2004). The EM data are translated
into 1D models of resistivities by inversion (Christiansen et al., 2006), providing valuable
insights into local (hydro-)geology. A limitation ir—of these methods is that they rely on
incensistept-ambiguous links between lithology and resistivity. An implication of this is that
local knowledge is required to link assigringithelogy-te-a-specific-electrical-resistivity-requires
lecal-knowledge-of- the-link-between-resistivity and-with the associated lithology or geological

unit (Dickinson et al., 2010). A common challenge is that different geological units have

overlapping resistivity ranges making unique identification based on resistivity alone difficult

or sometimes impossible.

Surface nuclear magnetic resonance (SNMR) provides direct sensitivity to water residing in
large pores (Hertrich et al., 2007; Legchenko et al., 2002). By transmitting an excitation pulse
oscillating at a specific frequency proportional to the Earth’s magnetic field strength, the
magnetic moment of hydrogen nuclei is shifted from its equilibrium state (Yaramanci et al.,
1999). After terminating the pulse, the buildup magnetization decays and is related to the
subsurface water quantity and pore parameters. This allows SNMR to track changes in water
content across lithological boundaries and can provide valuable information on pore sizes. A
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limitation in SNMR is the inability to distinguish unsaturated sand from clay, as both will be
seen with low WC, in the clays caused by the magnetization decaying extremely rapidly in
small pores making-it-immeasurablewhich makes the clay-bound water undetectable with the
SNMR. As such, SNMR eannet-has difficulties distinguishing unconfined aquifers from semi-

confined or confined aquifers without supplemental data, as the increase in water content
cannot be established-determined to be a saturation or a lithological transition (Behroozmand
et al., 2015), Fig. 1. However, the combined interpretation of SNMR and TEM data, sensitive
to different properties, may alleviate ambiguities in distinguishing between for instance
unsaturated sand and clays (SNMR ambiguity) or clays and saline-saltwater saturated sands
(TEM ambiguity), which is highly relevant for coastal studies of unconsolidated settings
(Costabel et al., 2017). Similarly, electrical resistivity soundings and SNMR has been used to

alleviate ambiguities in_hydrogeological investigations through a joint inversion approach
(GUnther and Miiller-Petke, 2012).

Consider the example of an unconfined/confined system, where SNMR cannot determine
whether a transition from low to high water content marks the water table or a lithological shift
from clays to sands. TEM can address this as it would resolve the conductive clay layer if
present and delineate the lithological change to sand as seen in Figure 1Figure-+. If it was an
unconfined system, the TEM would image high resistivities in both layers while the saturation
change is tracked by SNMR. Another example involves saline intrusion, where TEM cannot

differentiate between saline-saltwater saturated sand and clay. If it is indeed a transition only

in salinity, not water content, SNMR would reveal continuous high water content across the
salinity boundary. SNMR alone would not be able to distinguish freshwater sand from salire
saltwater saturated sand, as it is only sensitive to the abundance of water and not salinity.
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Figure [14 Different hydrogeological units resolved with TEM and SNMR. In dashed boxes, only one method is
used, and the overlapping units show the ambiguities found. T2" can be implemented to further separate units.
Colors in text are not related to colorbars.

A multiple data type approach requires forming interpretations consistent with multiple
geophysical model types simultaneously, which can be achieved through manual inspection
of disparate data types. This enables one to distinguish hydrogeological layers through
combined interpretation of all data types, but requires subjective choices regarding boundary

delineation. Others have used a joint-inversion approach where layer boundaries are set using

multiple geophysical methods (Gilnther and Miiller-Petke, 2012; Behroozmand et al., 2012).

The joint approaches have the ability to delineate layer boundaries, not seen when inverted

separately. An alternative approach employs statistical correlations across separate
parameters to partition these into different clusters. One such approach is K-means clustering,
which enables the subdivision of datasets based on multiple parameters (Kodinariya &
Makwana, 2013). Different clustering approaches have also previously been applied to
geophysical data and focus primarily on single source datasets, such as large EM datasets
(Dumont et al., 2018) or large electrical resistivity datasets (Song et al., 2010). Some studies
investigate clustering on derived parameters such as clay fraction and resistivity, both linked
to EM surveys (Foged et al., 2014). Clustering across disparate data types, such as Bouguer
anomaly data and magnetic data has been shown to improve the resolution of mineral deposits
(Sun and Li, 2016). A study focused on delineating structures in urban settings by clustering

on multichannel analysis of surface waves (MASW) and electrical methods to evaluate soil
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foundation structure (Le et al., 2022) and found the K-means clustering to resolve important

structures in the shallow subsurface.

In this study, we demonstrate the benefits of combined SNMR and TEM data collection, where
K-means clustering based on coincident models in two survey areas is shown to enhance
interpretations and address ambiguities that persist if only a single data type is considered.
The first example includes mapping of the water table in an unconfined meltwater plain aquifer,
where a combined approach is used to address ambiguity as to the upper aquifer being
confined/unconfined/or semi-confined across the investigated region. A second example taken
from a small island shows how the method can delineate salt-water intrusion from clay-rich
regions through a combined interpretation. We demonstrate a workflow for handling

interpretations of SNMR and TEM simultaneously reducing possible interpretational bias.

2 Methods

2.1 Transient electromagnetic

In this study we use Transient Electromagnetics (TEM) to resolve subsurface resistivities. The
tTEM instrument (Auken et al., 2019) was used in both field areas and can resolve the
resistivity structure of the top 70m, however, here only the top 25m of the full model domain
are used in the analyses. The induced voltages recorded by the tTEM are translated to 1D
resistivity models by Spatially Constrained Inversion (SCI) using Aarhusinv (Auken et al.,
2015; Viezzoli et al., 2009). The model is discretized into 30 layers with thicknesses varying
from 1m shallowly, to 10m at depth following resolution limitations at depth. The resulting

resistivity models will be used for subsequent clustering.

2.2 Surface nuclear magnetic resonance

In this survey we use a recently developed technique for SNMR called steady-state. The
steady-state has an increased stacking rate leading to a higher signal-to-noise ratio amplitude
and a decrease in acquisition times (Grombacher et al., 2021). A set of transmit pulses,
optimized to resolve the top 25 m, was employed in both studies with the Apsu instrument with
an acquisition time of 25_min per site (Larsen et al., 2020). The resolved water content and
the relaxation parameter, T, are used in the subsequent clustering. The SNMR models are
discretized into 31 layers down to 50_m, increasing in thickness at depth from 0.5 m to 4 m.
The resistivity structure from the nearest TEM sounding is used for the inversion._Resistivity

is needed to obtain the excitation fields used for kernel calculations (Braun and Yaramanci,

2008).

One limitation in SNMR is to detect water residing in very small pores. Because of instrument

dead times associated with transmitting the excitation pulse_(on the order of 8 ms), receiving
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data immediately after pulse termination is not possible. Signals from very small pores can

therefore partially or fully decay, i.e. lose their amplitude and coherency, before the instrument

has begun recording data. As such, the magnetization from water residing in very small pores
decay prior to data recording, which prevents observation of small pore water in SNMR. As
such, SNMR water contents can be interpreted as a measure of “free” water or an effective
porosity. T," relaxation time is linked to pore sizes with low values occurring in small pores,
while large pores have large values. This can be used to differentiate high water content units

by their pore sizes.

2.3 Inversion considerations

Traditionally, 1D SNMR inversions are most commonly treated separately as limited
measurements are carried out. However, recent acquisition speed-ups enabled by steady-
state approaches have significantly enhanced spatial data density, which enables the use of
horizontal constraints linking inversions of nearby measurement sites (Grombacher et al.,
2021). One such example is the use of laterally constrained inversion (LCI) for SNMR as
proposed by Behroozmand et al. (2012) where neighboring sites in a transect can be
connected. Here, we add a dimension to the constraints using a spatially constrained inversion
(SCI) framework, not only to bind models in line, but all neighboring models. Delauney
triangulation is used to find the relevant neighbors as in Viezzoli et al. (2009). The strength of
lateral bounds is scaled by the distance between models, with a maximum strength defined
when models are closer than a threshold distance. This threshold distance is typically set to

the nominal or average distance between neighboring soundings (Vang et al., 2024).

The computational load increases immensely when implementing SCI with many layers and
parameters. To reduce the number of iterations, the SCI starting models are defined by single
site inversion results. This allows the SCI to converge within a few iterations. The TEM data

are inverted separately with an SCI for the entire survey.

2.4 Clustering

Large datasets enable statistical approaches to inform on significant hydrogeological units. In
the following examples, datasets are composed of 50 and 51 coincident SNMR/TEM
soundings where a K-means clustering is employed (Kanungo et al., 2002) on their model
parameters. The first step in this type of clustering is to select the number of clusters, K, into
which the data sets will be clustered (Kodinariya & Makwana, 2013). After selecting the
number of clusters, the algorithm makes an initial guess for the position of each cluster center
in the parameter domain. The Euclidean distance from each data point to the cluster center is
calculated, and each data point is assigned to the nearest cluster. The total distance from all

data to their assigned clusters is then iteratively minimized through updating cluster center
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locations until either a—minimum-—distancethe centroid difference between iterations varies

below a set tolerance or a maximum number of iterations is reached.

To improve clustering of datasets for parameters exhibiting different sensitivities and spanning
different ranges, normalization was used to ensure that each parameter has the same weight
in the clustering algorithm. Here, we use a Z-score for normalization, where x is either
resistivity (p), water content (WC), or relaxation parameter (T2"):

1en
Xi—p Yi=1 Xi

Xinorm = - 5 (1)

where o is the standard deviation on the cloud of parameters from the inversion, x; is the
parameter value for the /" data point and n number of data points. Following the normalization,
we use the Scikit learn package in Python for the clustering and silhouette analysis
(Pedregosa et al, 2011).

In this study, the number of clusters is chosen based on the Silhouette index, which calculates

the membership S; of each data point, i

bi—a;
max(a;,b;)

NS ,Si e [-1,1] (2)

where a;is average distance from data point j to other data points in the same assigned cluster,
biis the minimum average distance of the /" data point to all other data points in other clusters.
The resulting index, or membership score, is a measure of how well a data point is associated
with the assigned cluster. If the score of a given data point is 1 it infers that the data point is
correctly assigned, while a score of -1 indicates that the data is wrongly assigned (Kodinariya
& Makwana, 2013; Shutaywi & Kachouie-, 2021). By evaluating these results, we can qualify

the preferred number of clusters. The preferred number of clusters is chosen based on two

criteria. Firstly, the highest average silhouette index indicates that datapoints in general have

the highest membership score with the given number of clusters. Secondly, we look at each

cluster and their_silhouette index. If more than 50% of the cluster is above the average

silhouette index, the cluster is well-defined, between 30-50% the cluster is fairly-defined, and

below 30% it is poorly defined. In some cases, prior information can be used to fix the number

of clusters, such as prior geological knowledge of the area (Dumont et al.,2018).

In this study we clustered on three parameters: WC, T, and p. The two geophysical methods
used in this study have different sensitive volumes. SNMR inversion is discretized finely with
30 layers down to 50 m and the TEM has 30 layers in 120 m. To cluster on coincident values,
a projection and averaging of the TEM p models onto the SNMR discretization is used. All

TEM soundings within 60 m of an SNMR sounding are included. If there is no p model (TEM
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sounding) within 60 m, the nearest is used and mapped onto the SNMR discretization. This

allows all SNMR points to be matched and prevents a reduction in data points.
2.5 Field site description

Two field surveys were conducted in different geologies to evaluate the use of clustering as a
tool for alleviating interpretational ambiguity. Both sites were examined thoroughly with SNMR

and TEM to provide the basis for the subsequent clustering analysis.
2.5.1 Kompedal

The first field site is Kompedal, a national forest in the Central Region, Denmark. The local
geology consists of meltwater sand and glacial tills with varying clay contents. The sparse
borehole coverage finds sand shallowly, and the water table varies from 5 m to 12 m in depth.
Two geophysical surveys have been conducted here using TEM and SNMR, respectively. The
scope of the surveys was to delineate the water table on a regional scale and assess whether
the shallow aquifer can be considered unconfined or semi-confined across the region. The
TEM data were collected with the tTEM instrument (Auken et al., 2019) while driving along the
gravel roads within the forest, as seen in Figure 2Figure-2a in blue. p in the area are generally
high, above 200 Om, with some layers of lower p found at depth. There is little to no contrast
between the unsaturated and saturated part of the meltwater sand in p. The SNMR survey
consists of 50 soundings acquired over five days in June 2021, spread across the forest as
seen in Figure 2Figure-2a (Vang et al., 2023). The SNMR survey found low WC (~ 5 %) and
low T," values (~ 0.1 s) shallowly, with a sharp increase to higher WC (~ 25 %) at6 mto 10 m
depth. Layers with low WC and T." can be associated with both unsaturated sands, and clay-
rich material. The section indicated in Figure 2Figure-2a will be used to show the results of the
combined cluster analysis.

2.5.2 Endelave

The second location is a small 13 km? island, Endelave, in Kattegat, Denmark with a maximum
elevation of 8 m. The island’s geology consists of glacial till, meltwater sands, and post-glacial
sands, while boreholes intercept Paleogene clay at depth throughout the island. Generally,
the glacial tills are found in the west part of the island, where the post-glacial sands are found
to the north. TEM and SNMR surveys shown in Figure 2Figure-2b were conducted at this more
geologically heterogeneous location to resolve possible saltwater intrusion and delineate the
shallow aquifer found in the meltwater sands and tills. The TEM seundings-data were acquired
in April 2022 and cover the majority of the island and show p below 150 Qm for the entire area

(McLachlan et al., 2025). The p resolve buried valley structures and a very conductive

basement. By TEM alone it is not possible to distinguish Paleogene clay from the saltwater
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saturated sand. The SNMR survey consists of 51 soundings over eight days in July and
October 2023 and finds high WC shallowly in the east and north part of the island, where the

west part shows low WC and T>'.

a)

® SNMR

e tTEM

@ Boreholes

— Section 1
Section 2

UTMY [km]

516
UTMX [km] UTMX [km]

Figure 22 a) The Kompedal survey area. SNMR (red) together with TEM (blue) was collected in the area. b) Map
of Endelave survey with SNMR (red) and TEM (blue). Map data: © Google Maps 2024, UTM Zone: 32N.

3 Results
3.1 Kompedal case study
3-1.1 Clustering analysis

For our combined analysis, we begin by selecting the number of clusters, K, using the

silhouette index. Figure 3Figure-3 shows results from four different clustering analyses with

two to five clusters for the Kompedal data set. Each cluster is labeled with its index and the

number of data points within each cluster. In each cluster, the silhouette indices are sorted to

give a higher index when moving up the y-axis.

sithouette-index-they-are-poory-definedWe use the distinction of well-defined, fairly-defined

and poorly-defined, subdivided as mentioned in the results section. In the two-cluster analysis

in Figure 3Figure-3a, we see that both clusters are well-defined with more than 300 members
in each_and could be a well-suited number of clusters. With three clusters (Figure 3Figure-3b),
two-cluster 1 is are-welifairly-defined, while cluster 2 is poorly defined with many data points

having a below-average silhouette index, and cluster 3 is well-defined. In the four-cluster

analysis, two clusters, cluster 1 and cluster 4, become poorly defined, as seen in Figure
3Figure-3c. Lastly, five clusters yield three peerly-poorly-defined clusters (2, 3 and 4) with only
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few data points having a high membership score. The total average silhouette scores indicated

by the grey line highlight that either two or three clusters should be used.-Given-the-sithouette
indices;eitherchoesing-two-or threeclusters-is-appropriate- Prior hydrogeological information
can be used to further qualify the choice between these (Dumont et al., 2018) and in

Kompedal, we expect three distinct hydrogeological units, unsaturated sand, saturated sand
and underlying till. The low silhouette indices in cluster 2 in Figure 3Figure-3p, is a product of

large variation within the cluster, which can be expected in glacial environments as mixing
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Figure 33 Silhouette index analysis for the Kompedal dataset. Four clustering routines were run with different
number of clusters, K, (a) two, (b) three, (c) four and (d) five. The sorted silhouette values are shown for each
cluster with the average value indicated by the grey dashed line.

Given three clusters, K-means clustering is used to partition the model parameters, WC, T2,

and p, In Figure 4Figure4a, the three model parameters are shown in a scatter plot where the

color of a point reflects the assigned cluster. The other three 2D scatter plots, Figure 4Figure
4b, ¢, and d, show the clustering results projected onto a plane that reveals correlations
between two of the three. Cluster 1 in blue, is characterized by a high WC and high T, value,
and a high p. Table 1 shows that large variation occurs within this unit in the SNMR parameters

as seen in Figure 4Figure-4b. The unit is interpreted as a sandy aquifer given its high WC,

high T2, and high p. The very high p (above 300 Qm) is a product of very coarse material and

that the TEM method can have limited sensitivity to determine resistivity above 150 Om

(Christiansen et al., 2006). The yellow cluster 2 has the largest variation in p, hence the low

average silhouette index, but generally with lower p values than the other two clusters seen in

Figure 4Figure-4c, and with a large range in WC. A layer with these signatures is consistent

with a saturated sandy till to a more clay rich till, with low p, The overlap with cluster 1 in WC

and T2 in Figure 4Figure4b is interpreted as a gradual mixing of till and sands. Cluster 3 in
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unsaturated sand, and at depth under the water table, it is intrepretedinterpreted, as a

saturated silt.
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Figure 44 Clustering results from the Kompedal survey on three parameters: WC, T2 and p. (a) all three parameters

in a scatter, (b) WC and T2, (c) p and WC, and (d) p and T2". The color of each datapoint defines the assigned

cluster; 1-blue, 2-yellow, and 3-red, and their interpreted geology seen in table 1.

Table 1: Cluster parameter bounds and interpreted geology for Kompedal.

Cluster wcC T, [s] p [Qm] Interpreted | Label
[m3/m?3] geology

1 (blue) High High High Saturated SA (Sand Aquifer)
[0.1-0.4] [0.1-0.4] [130-1000] | sand aquifer

2 (yellow) = Medium Medium Low Saturated Ti (Till)
[0.07-0.26] [0.03-0.26] | [20-300] till
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3 (red) Low Low High Unsaturated | US (Unsaturated sand)

[0.04-0.18] [0.03-0.14]  [130-900] @ sand or Si (Saturated silt)

3.1.2 Spatial interpretation

The three clusters are described in Table 1 and will be referred to by their labels, which are
used in the figures to highlight their spatial extent. After assigning interpreted geologies to
each cluster, we focus on their spatial position illustrated by a cross-section (location shown
in Figure 2Figure2a). Consider section 1 in Figure 5Figure-5, where the coincident data used
in the clustering are shown as bars with colors associated with the assigned cluster. The US/Si
cluster is situated mostly in the shallow subsurface extending from the surface down to depths
of 5m to 10 m. The grey lines track selected cluster boundaries at the sounding locations. The
upper grey line in Figure 5Figure-5 tracks the bottom of the US cluster and is interpreted to be
a change from low-to-high saturation, since the US-cluster is defined by low WC and the
underlying clusters have a higher WC. The SA-cluster is found in most soundings and has a
variable thickness from 2 m to 17 m. The transition at sounding location 8, is from US to Ti-
cluster likely due to lower p in this area. A second deeper grey line tracks the transition below

the SA-cluster to the underlying Ti cluster.
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Figure 55 Clustering section from Kompedal where the partitioning of data is shown at every sounding. The grey

lines track selected cluster boundaries. See Table 1 for cluster descriptions. A is increasing in the South direction.

To evaluate possible variations within the boundaries estimated from the clustering, the profile
shown in Figure 5Figure-5 is reproduced in Figure 6Figure-6 with p values and WC and T>".
Since clustering is a discrete and often brutal partitioning of smoothly varying parameters, it is
important to return to the original parameters for evaluation. The SNMR WC are shown as
bars in Figure 6Figure-6a and both T (left part of bar) and Ta(right part of bar) are shown side
by side with the same color scale in Figure 6Figure-6b and will be referred to as T,/ T, profiles.
The grey lines from the clustering are superimposed on this section to track variations within
each cluster unit. Figure 6Figure-6a displays the first section where shallow low WC and high
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p coinciding with the US-cluster where the T-"/ T2 profiles show low values. Boreholes identify
this unit as sand near sounding location 3 and 6, which match the interpreted geology as an
unsaturated sand. The upper grey line is tracking an increase in WC from ~ 15 % to ~30 % in
Figure 6Figure-6a and from ~ below 0.1 s to above 0.15 s in T2 in Figure 6Figure-6b, while
there is no contrast in p. The lack of structure in the p indicates that_ the TEM is not sensitive

enough to track this -this-is-likely-a-saturation change, where-as a lithological change would

generally be expected to coincide with a_larger p contrast, visible in the TEM data. The

elevated T, is caused by less interaction with the grain surfaces because of increased
saturation in the sand_(Falzone and Keating, 2016). Additionally, a borehole water table

measurement coincides with this transition line at sounding location 6. The SA-cluster unit
contains a range in WC from 20 % to 30 % and in T2 from 0.15 s to 0.3 s, indicating slight
variations within the cluster. The SA-Ti transition coincides with a decrease in WC and p,
interpreted as a similar reduction in pore size, a product of an increase in fines content. The
T." found in the Ti-cluster, while quite varying, are generally lower than in the SA-cluster,

consistent with the interpretation of increasing fines content at depth, as in a till.
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Figure 66 Profile of 8 SNMR soundings (bars) and TEM profile(background). Section 1 in Fiqure 2Figure2a. (a)
SNMR WC, (b) a split bar with T2" (left) and T2 (right). Boreholes at sounding location 3 and 6 are shifted ~40 m to
avoid overlapping with the bars. Grey lines are tracking transitions between clusters in Fiqure 5Figure-5. A is

increasing in the South direction.
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To further evaluate the accuracy of the ability to track water tables by the upper cluster
transition, consider Figure 7Figure—7, where water tables from clustering are compared to
available borehole-measured water tables within 500 m of SNMR sites. The clustering water
tables are picked as the transition from the low WC US-cluster to any underlying cluster, SA
or Ti, as both have a high WC compared to the US-cluster. The red line has a slope of 1 and

the uncertainty bars are based-enequal to the inversion layer thickness at the transition depth,

as the clustering method is ternary (i.e., it has three options) and consequently, some layers
found at cluster transitions could be assigned to either cluster. We see that clustering tends to
overestimate the water table elevation in many cases. This is a product of clustering being a
brute thresholding in the parameter space. In this geology, the threshold from the clustering
occurs at slightly lower WC than those coinciding with the water table and produces too
shallow estimates. The trend, however, is similar to a slope of 1, indicating that a higher
threshold could provide a better resolution of the regional water table. Additionally, the distance
between borehole and coincident SNMR and TEM models could add uncertainty for the
comparison, but this uncertainty is expected to follow the slope of 1. The two data points with
yellow outline, far from the middle axis, stem from the north of the area where the water table

was measured in 1980, yielding some uncertainty due to possible long-term temporal or
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seasonal changes. Overall, the clustering captures the water table trend within an unconfined

aquifer at a regional scale in an automated manner.
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3.2 Endelave case study

3.2.1 Clustering analysis

As before, we start by selecting the appropriate number of clusters, through silhouette index<

analyses, shown in Figure 8, Considering we expect a more heterogeneous geology, three to

six _clusters are used in the analysis. In Figure 8, three clusters are used to partition the data,

and result in one, well-defined, one fairly-defined and one poorly-defined, cluster, whereas the

yellow has low and even negative silhouette values, indicating wrongly assigned data points.

The average silhouette index is the highest found with the assigned clusters, By using four
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clusters in Figure 8b, two are well-defined, one fairly and one poorly clustered. We see less,
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negative silhouette index data here, while still maintaining a high average silhouette index, |

Further increasing the number of clusters to five reveals similar silhouette indexes but has two

fairly-defined, clusters, however the average silhouette index drops, see Figure 8c. Using six \

clusters is similar_with a_few well-defined and, fairly-defined, and with a lower average |

silhouette index. The silhouette analyses show that the number of clusters should either be \

three, _or four, as they have well-partitioned clusters, with the highest silhouette index, Prior

information from the area indicates that we have four distinct geological units: tills, sand
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aquifers, Paleogene clay, and possible saline intrusion into sand. The blue cluster in Figure 8b |
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was found to have important hydrogeological information, regardless of its low silhouette index \

and, as such, we used four clusters for further results.
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Figure 8 Silhouette index analysis for the Endelave dataset. Four clustering routines were run with different number=<

of clusters, K, (a) three, (b) four, (c) five and (d) six. The sorted silhouette values are shown for each cluster with

the average value indicated by the grey dashed line.

i —c-d)- First, the red cluster (1) is defined by quite low WC and T’ values (Figure
9Figure—8b), while the p varies from 10 Om to 120 Qm. This cluster exhibits properties
consistent with till containing varying sand content and affecting p (Figure 9Figure-8c). The
green cluster (2) has mainly high p, high WC, and medium T values in Figure 9Figure-8a.
The high WC and p are properties associated with sand-saturated sand aquifers. The yellow

cluster (3) has similar SNMR attributes to the red cluster, with low WC and T,", but has a lower
p range illustrated in Figure 9Figure-8d. This unit is interpreted to be of Paleogene clay due to
the very low p found in this cluster. The range of WC found within the yellow cluster could
indicates that layers with low to medium sand contents, but with low p are grouped here. The
last cluster, blue (4) has a distinct T2  range in Figure 9Figure-8b and a large range of WC with
p situated around 10 Qm. The WC and T,  values weuld-indicateindicate that this layer has

aquifer properties usually associated with sand, while the p indicates this as a conductive
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material. This is interpreted as saltwater saturated sand. In general, the clusters are not as
distinct within the Endelave dataset, as the glacial interaction with the deposited sediment has
caused a mixing of lithologies. This is evident from the p values where none exceed 130 Qm,
whereas the Kompedal survey consisted of p from 50 Qm to 1000 Qm. All the descriptions

and interpreted geologies are found in Table 2.

(a) (b) {Formatted: English (United States)
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Figure 98 Clustering results from the Endelave survey on WC, T2" and p. (a) all three in a scatter, (b) WC and T2, [ Formatted: English (United States)

(c) p and WC, and (d) p and T2". The color of each datapoint defines the assigned elustercluster, and their

interpreted geology, abbreviations seen in table 2.

Table 2: Cluster parameter bounds and interpreted geology for Kompedal.
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Cluster | WC [m®m3] | T, [s] p [Qm] Interpreted geology | Label

1 (red) Low-medium | High [0.02- | High Till Ti (Till)
[0.03-0.18] 0.1] [10-120]

2 (green) | High Medium High Sandy aquifer SA
[0.15-0.40] [0.04-0.13] | [15-120] (Sand aquifer)

3 Low-medium | Low Low Paleogene clay ClI (Clay)

(yellow) | [0.03-0.18] [0.02-0.1] | [1-25]

4 (blue) | Low-High High [0.07- | Low Saltwater sands Sws (Saltwater
[0.07-0.40] 0.21] [2-35] saturated sand)

3.2.2 Spatial interpretation

Following the clustering we will examine their spatial extent on Endelave. We will show the
results of two sections (Figure 2Figure-2b). to see how the clustering performs in a more
heterogenous setting. Consider first the section across the main shallow aquifer in Figure
10Figure-9a, where we see a shallow Ti-unit corresponding to either a till or unsaturated sand.
The SA-cluster unit has a thickness from 5 m to 12 m and is found below the Ti-cluster at
sounding locations 3 to 6. Sounding location 1 is located 30 m from the coast, which aligns
with the presence of the Sws-cluster. The Ti-cluster at depth is interpreted as a decrease in
pore size from an increased clay or silt content. At sounding 7, all layers are grouped as the
Ti-cluster, a sign of low SNMR parameters throughout the entire sounding location. The
deepest discretized layers at most sounding locations are grouped in the Cl-cluster, tracked

by a grey line, indicating a drop in p, as expected from the Paleogene clay.

To highlight possible saltwater intrusion, a section intersecting sounding locations at the coast
is shown. The section in Figure 10Figure-9b is quite complicated as it transects different
geological regions. We consider three main points in this section, the Sws-cluster, the SA-
cluster and the south end of the profile. In Figure 10Figure-9b we see the Sws-cluster at
sounding locations 1 to 3, defining a shallow and deep layer, while at sounding locations 6, 8
and 9 the cluster is seen shallowly at low elevations following the coast. The transition from
the Sws-cluster to the underlying clusters is tracked by a grey line at sounding locations 1 to
3. Below the grey line at sounding locations 1 and 2, the layers are grouped with the Cl-cluster
representing low p, lower T2 and WCs. It is important to note that even with combined SNMR
and TEM, it will be hard to distinguish between saltwater and freshwater clays as both will be

conductive and have a low free water content and T, signatures in SNMR.

From sounding locations 3 to 8, the SA-cluster is found with a varying thickness from 2m to
10m. This unit, interpreted as the aquifer, is outlined in grey to compare with original parameter
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values and borehole information later. At the south end of the profile, the clustering divides

layers into Cl- and Ti-clusters, associated with clay and till by their low WC and T,
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Figure 109 Clustering sections from Endelave where the partitioning of data is shown at every sounding location.
(a) Section 1 (b) Section 2 in Fiqure 2Figure-2a. The grey lines track selected cluster boundaries. A is increasing

in the Southeast direction. B is increasing in the South direction.

The discrete boundaries from the clusters are now used in the original parameter space to
evaluate possible variations within the clusters and the estimated boundaries. In Figure
11Figure—10, we consider the main shallow aquifer found on Endelave. The grey lines from
Figure 10a-Figure- are used to delineate cluster extents and each unit is assigned a cluster
label. Shallowly, the Ti-unit coincides with low WC and a high p in Figure 11Figure10a. T,/T,
are low in this unit and boreholes reveal either till or unsaturated sand here, matching the
clustering interpretation. The upper Ti-SA grey line tracks an increase in WC at four sounding
locations and coincides with a lithological change from clay to sand in two boreholes and
coincides with a water table measurement in a separate borehole. This is interpreted as a
semi-confined system with thea water table at-coinciding with the-a lithological layer boundary

due-to-shifts-in-geolegical-depesits.. The SA unit here consists of high WC and low to medium

T," within a resistive unit. The boreholes identify this unit as sand or a mixture of sand and silt,

which explains the range of WC grouped within this unit. The lower SA/TI transition tracks a

decrease in WC, still with low to medium T, seen in Figure 11Figure—10b. The transition
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coincides with a decrease in p at sounding locations 1 and 2, and with a lithological boundary
from sand to clay in a few boreholes. Furthermore, two boreholes terminate exactly at this
interface, which could indicate that the drillers hit something harder or more clay rich,
prompting them to stop drilling. The Ti/Cl transition at depth tracks a decrease in p, which in
the deep borehole is identified as a lithological boundary from clays and sand to Paleogene
clay, agreeing with the clustering interpretations. This deep boundary is not seen in the SNMR-
parameters as the Ti and Cl-clusters are only distinguishable by their p.
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Elevation [m]

Elevation [m]
[s1ee/ &
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| | Sand . Clay/till
1 10 100 ) ,
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Figure 1140 Profile of 7 SNMR soundings (bars) and TEM p (background). Section 1 in Figure 2Figure-2b. (a)

SNMR WC (b) a split bar with T2 (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure
10Figure-9. A is increasing in the Southeast direction.

After reviewing the section through the main shallow aquifer in Figure 11Figure—10, we will
assess a second, more complex section. The grey lines from Figure will be used to delineate
the cluster units and illustrate differences within the units. Consider now Figure 12Figure—44,
where the p and SNMR parameters are shown with lines following cluster transitions. The Sws
unit is seen mainly at location 1 to 3 and is defined by high WC, very high T2  and low p. At
sounding location 8, a borehole finds sand coinciding with the Sws-cluster in agreement with
the saline-saltwater saturated sand interpretation. The high T>/T. associated with the Sws-

cluster in Figure 12Figure-11b is a product of limited compaction within the newly deposited
salinre-sand in the coastal environments. Below the Sws-unit, the grey line tracks a transition
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to lower WC and T>', but maintaining the low p, which is defined by the Cl cluster. At sounding
location 6, this transition is different with an increase in p tracking the border to the SA unit.
Low WC at sounding locations 10 and 11 coincide with clay in a local borehole for the first 15
m where all layers are grouped within the Ti or Cl-clusters. The low water content and T’
signature at these locations prevent them from being clustered with the saline—saltwater
saturated sands in Sws, highlighting the value of SNMR to distinguish these conductive units.
The gyttja layer found in the borehole coincides with a drop in_the SNMR WC due to the
increases in organic matter, decreasing the pore size, and was grouped with the Cl-cluster
(Mashhadi et al., 2024).
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Figure 1214 -Profile of 11 SNMR soundings (bars) and TEM p (background). Section 2 in Fiqure 2Figure-2b. (a)
SNMR WC (b) a split bar with T2 (left) and T2 (right). Grey lines are tracking transitions between clusters in Figure
10Figure-9. B is increasing in the South direction.

By clustering on this dataset, we have proven the ability to identify regions of possible
saltwater intrusion. Figure 13Figure—42 shows which sounding locations have layers that
cluster within the saltwater aquifer, the freshwater aquifer, that have layers of both clusters, or
only have the till and clay clusters. The saltwater cluster is observed mostly at the northern
sounding locations where the post-glacial sands are located, but also along the east coast.

The main aquifer unit, SA, is found in the east and north parts of the island, while the west
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part is dominated by the low water content clusters, shown in yellow and red. One sounding
location with both saline and freshwater clusters far from the coast, is observed in the north of
the island. The closest TEM sounding was acquired in a lowland south of this sounding, with
elevation almost at sea level, which might causehave issues with saltwater intrusion. There is
also a wetland close to this location, which might have a higher clay content with low p. If the
TEM and SNMR are not exactly coincident, some differences and anomalies in the clustering

might occur. But in general, the K-means clustering is able to map this possible saltwater

0o N o o b~ WDN

intrusion, which is a valuable asset in aquifer management.
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| 10 Figure 1312 Sounding locations where salt water or fresh water has been identified. Locations with only clay and [ Formatted: English (United States)

11 till clusters are shown with red and yellow. Map data: © Google Maps 2024, UTM Zone: 32N.
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In this study we investigated the use of clustering to combine the analysis of two geophysical

methods, SNMR and TEM. The K-means clustering was found to be able to differentiate units

into_interpretable hydrogeological layers and was consistent with manual interpretations.

Combining the datasets helped alleviate some of the ambiguities found when interpreting

based only on a single dataset, i.e., unsaturated/confined conditions in Kompedal, and

saltwater/freshwater in Endelave.

K-means clustering on geophysical models offers a simple, automated approach to identifying
lithological transitions. It allows for reproduceable boundary definitions without subjective
interpretations of the geophysical models. Discretizing smoothly varying parameters into
predefined clusters is, however, brutal and there will be variability within the unit definitions.
The ability to return to the original parameter space with cluster boundaries is crucial in

addressing subtle variations within units and can be used to evaluate cluster transitions.

K-means clustering applied to geophysical models is not limited to SNMR and TEM
parameters; it can also be extended to other collocated datasets with distinct sensitivities. For
example, in areas where a deep water table is expected within a sand layer, seismic methods
may be appropriate. However, because the seismic velocity of saturated sands can be similar
to that of clays or tills, incorporating collocated TEM models can help reduce interpretational
bias. Similarly, relying solely on TEM data may make it difficult to detect the water table due

to limited_sensitivity to high-to-high resistivity contrasts.

In SNMR, correlations between WC and T," may exist_(Falzone and Keating, 2016). For
example, in unsaturated sands, the low water content residing in the pores will be in close

contact with the grain surfaces, resulting in interactions leading to low T,/T,. Since water
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content is proportional to signal amplitude, in low WC environments, low signal amplitude
results in reduced confidence in-on the T," estimates. When such parameters are linked, it
might be of interest to simplify the approach by clustering on the product of water content and
T,". Thus, combining these two parameters may help reducee the influence of low-confidence
T, values in low water content environments. A similar option is to use a principal component
analysis to reduce the basis to two parameters that describe the-most _of the variance, which
in the Kompedal case would be resistivity and the product of the SNMR parameters. However,
in more complex geologies such as Endelave, a decrease in basis dimension may reduce the
ability to distinguish layers of high WC and low T." from layers with low WC and high T>".
Through examining the data’s variation and correlation, we can make infermed—qualified

decisions about whether to decrease the parameter space.

In this study, we focused on interpreting two survey areas using K-means clustering, which
proved sufficient in meaningfully partitioning data and identifying lithological boundaries. One
feature of the employed K-means clustering approach is the need to specify clusters
beforehand. In this study we based the choice of clusters on the silhouette index and prior
geological information about the area. One alternative study uses agglomerative hierarchical
clustering on SkyTEM data, which avoids selecting the number of clusters by starting with one
cluster and subdividing until each data point has its own cluster (Dumont et al., 2018). This
can alleviate some of the choices made for the silhouette index analyses and provides a better
understanding of how clusters are further subdivided. A second challenge is to attribute
uncertainties to the layer boundaries picked by the discrete K-means clustering. Here, others
use fuzzy C-means where data points are assigned a membership score and can be partial
members of more than one cluster (Paasche et al., 2007). Applying the fuzzy C-means can
give an estimate of uncertainty for the picked cluster boundaries, i.e., if a data point could be
a member of several clusters, it is less certain. This could apply to the Endelave data where

the saline intrusion cluster in places could overlap with the freshwater cluster.

Another way of exploiting collocated datasets is the use of joint inversion for layer boundary

picking. Studies identifying layers from SNMR and TEM implementing various regularization

technigues has shown promise in reducing the ambiguity found when interpreting each

separately (Behroozmand et al., 2012); Skibbe et al., 2018). These approaches focus mostly

on the collocated datasets and invert these jointly. In our study, the tTEM data is inverted

separately with the full survey of more than 23000 datasets. As such, we have the ability to

track the changes in resistivity in places where the SNMR is not present. Additionally, the

framework for using joint inversion in steady-state SNMR is not established as kernels are

calculated before the inversion, fixing the discretization. Further investigations could focus on
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implementing clustering in a joint inversion framework with a large spatial extent. This could

alleviate some of the interpretational load when dealing with large datasets.

Since clustering is performed on coincident values, we are limited by the lowest dimension
dataset, which in this case is the SNMR, e.g. on Endelave the survey consists of 51 soundings
while there are over 23000 TEM soundings in the same area. This reduction in data space
disregards large amounts of TEM data, which of course have valuable regional information,
but lack coincident SNMR parameters. Additionally, lower data quantity can lead to clusters
not representable for the area. If SNMR information could be extrapolated to the full TEM
domain through appropriate spatially variable measures, it would allow for clustering on a
much larger data set. Future research will focus on extrapolating SNMR parameters across
the full TEM domain. This would enable a subdivision of the full TEM domain based on the
coincident data clusters, and it will be possible better to delineate areas of potential saline

intrusion spatially.

As there is limited ground truthing information, the clustering has been mostly compared to

manual interpretations based on the data collected. This does not directly provide validation

of the layers seen but infers that the clustering is performing like expert interpreters would if

given a similar data set. As such this study shows the value in having clustering as the main

subdivider of lithological units instead of having manual inspection of each collocated dataset.

Given the recently enabled larger scale mapping with SNMR, a less subjective and fast

interpretation scheme is a step towards automation from data to lithology.

5 Conclusion

Through two field studies we demonstrated the automated spatial identification and separation
of hydrogeological units in large scale geophysical campaigns. Recent improvements in the
data acquisition rates of SNMR now offer data volumes sufficient to exploit clustering
approaches when combining these data with other geophysical data. K-means clustering of
complementary SNMR and TEM models is shown to provide a renless-subjective approach,
where enhanced hydrogeological interpretations can be formed by exploiting the
complementary nature of two data types. To detect lithological boundaries, they must
correspond to a contrast in geophysical properties. SNMR is shown to provide value when
discriminating clay-rich sediments from saline saturated sand conditions, a challenging task
based on only TEM models. Similarly, TEM is able to separate low-water content conditions
from clay-rich conditions, which is impossible with SNMR alone. This is key to discriminating
between unconfined and semi-confined conditions. A silhouette index-based approach,

combined with the a priori knowledge of the likely number of lithological units present, isshown
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to-be-a-robust-measure-forselecting-the-nrumber-of-clusterswas used to select the number of

clusters and found to be suitable for these datasets.

In the examples, clustering of NMR and TEM data provides a more complete characterization

of local hydrogeological conditions than what can be achieved by each data set separately.
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