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Abstract. The surface microlayer (SML), the uppermost ~1 mm water layer at the air-water interface, plays a critical role in 13 

mediating Earth system processes, yet current knowledge of its composition and organic matter enrichment remains scattered 14 

across disciplines. Here, we present the first known meta-analysis of SML studies that quantitatively assesses the distributional 15 

characteristics of selected organic compounds, including organic carbon and nitrogen, amino acids, fatty acids, transparent 16 

exopolymer particles, carbohydrates, lipids and proteins, through probability density estimates, central tendency metrics and 17 

correlations analyses. Our results confirm a preferential enrichment of nitrogen-enriched, particulate organic matter in the 18 

SML, highlighting the significance of compound-specific accumulation and selective enrichment patterns. We also observe 19 

that the enrichment of a given compound may exhibit notable variability that depends on distinct internal and external 20 

conditions.  Our evaluation of enrichment factors (EFs) of various measurable compounds provides updated estimates for their 21 

typical values and ranges. While delving into the ability of EFs to reflect the partitioning of organic matter within the SML, 22 

we also critically examine their limitation in capturing trophic conditions. Based on these findings, we propose that future 23 

SML research should incorporate both absolute concentration changes and enrichment capacities in the SML, alongside their 24 

relative changes (as denoted by EFs), to more accurately interpret ecological implications. Additionally, our meta-analysis 25 

demonstrates the value of logarithmic data transformations and robust central tendency estimates, as essential tools for 26 

improving the statistical reliability, comparability, and representation of SML enrichment patterns.  27 

1 Introduction 28 

Approximately 70% of the Earth’s surface is covered by a hydrated gelatinous ‘skin’ known as the surface microlayer 29 

(hereafter referred to as ‘SML’; note that while this term is commonly used to denote the sea surface microlayer, in this study 30 
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it refers to the surface microlayer in both marine and freshwater systems), which is of a thickness of 1 – 1000 m (Astrahan et 31 

al., 2016; Hunter, 1980; Liss and Duce, 1997, 1997; Wurl et al., 2009). Situated between the surface waters of all natural water 32 

bodies and the atmosphere, this uppermost multi-component layer (Astrahan et al., 2016; Carlucci et al., 1985; Cunliffe et al., 33 

2013) creates a unique microhabitat, mainly consisting of neuston (i.e., living communities in the SML), a relatively enriched 34 

complex of organic compounds and strong physico-chemical gradients (Cunliffe et al., 2013; Dietz et al., 1976; Engel and 35 

Galgani, 2016; Hunter and Liss, 1977). The formation and the composition of the SML are governed by a number of biological, 36 

physical and chemical drivers that interact under varying complex environmental conditions and time scales. As a result, the 37 

SML dynamics play a pivotal role in a range of environmental processes such as air-water gas exchange, heat transfer across 38 

boundary layers, biogeochemical cycling, microbial interactions and distribution of pollutants (e.g., Engel et al., 2017; Frew, 39 

1997; Liss and Duce, 1997; Upstill-Goddard, 2006). Therefore, continued investigation of the compositional heterogeneity of 40 

the SML and of the processes therein is crucial to gain deeper insights into its role in ocean biogeochemistry and its potential 41 

climate interactions. 42 

 

The primary source of compounds in the SML is the underlying waters (hereafter referred to as ‘ULW’; Baastrup-Spohr and 43 

Staehr, 2009; Chen et al., 2016) from where material is transported through diffusive fluxes, rising bubbles and buoyant 44 

particles (Joux et al., 2006; Obernosterer et al., 2005). In addition, wet and dry atmospheric deposition as well as in situ 45 

production and degradation also lead to concentration changes in the SML (Astrahan et al., 2016; Kuznetsova et al., 2004; 46 

Milinković et al., 2022). Compared to the ULW, the SML is often enriched in organics (e.g., Baastrup-Spohr and Staehr, 2009; 47 

Gao et al., 2012; Gašparović et al., 2007; Liss and Duce, 1997; Marty and Saliot, 1976; Yang, 1999). Many of these compounds 48 

are surface active and are generally known as ‘surface-active-agents’ or ‘surfactants’ (Maki and Hermansson, 2020; Wurl and 49 

Holmes, 2008). Surfactants tend to adsorb at the air-water interface (Wurl et al., 2009) due to their amphiphilic nature (i.e., 50 

presence of both hydrophobic and hydrophilic structural parts; e.g., Marty and Saliot, 1976), so that they reduce surface tension 51 

and can form stable interfacial films. When the SML becomes highly concentrated in surfactants, these films transform into 52 

thick surface slicks that are visible to the naked eye (Liss and Duce, 1997). Some of the naturally occurring surfactants in the 53 

SML include fatty acids, proteins, certain polysaccharides, humic-like substances and lipids (Brinis et al., 2004; Marty and 54 

Saliot, 1976). In addition, inorganic ions, which do not preferentially adsorb at the air-water interface, can be also present in 55 

the SML due to passive upward transport (Knipping et al., 2000; Petersen et al., 2004). Furthermore, sticky microgels, like 56 

transparent exopolymer particles (TEP) that originate from bacteria and phytoplankton (Alldredge et al., 1993), are also found 57 

in the SML. Such gel-like particles can form through the coagulation of dissolved polysaccharide (Engel et al., 2004; Mari 58 

and Burd, 1998; Schartau et al., 2007), and are capable of incorporating other compounds into a cohesive matrix (Cunliffe et 59 

al., 2009; Sieburth, 1983; Wurl and Holmes, 2008), thereby enhancing the structural integrity of surface films (Cunliffe and 60 

Murrell, 2009). 61 
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Liss and Duce (1997) and Pereira et al., (2018) argue that the SML can restrict diffusive fluxes across the air-sea interface, 62 

substantially contributing to reduced rates of ocean-atmosphere gas exchange. Surfactants can impact air-sea gas exchange of 63 

greenhouse gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and dimethyl sulfide (DMS) (Frew, 1997; 64 

Upstill-Goddard, 2006). Asher (1997), from laboratory measurements, and Tsai and Liu (2003), from global ocean 65 

observations, estimate a reduction of annual net CO2 flux by ~20%  – 50% due to the presence of the SML, while Wurl et al., 66 

(2016), from in situ measurements, propose that this decrease can be ~15%. Barthelmeß et al. (2021) observed that, in a newly 67 

upwelled filament off Mauritania, surfactants can suppress CO2 gas exchange by 12%. Both lab- and field-based experiments 68 

find that natural slicks can reduce air-sea gas exchange by 50 – 60% (Goldman et al., 1988; Salter et al., 2011; Mustaffa et al., 69 

2020), causing the SML to drive an overall reduction of 19% in the CO2 fluxes, as shown by in situ observations (Mustaffa et 70 

al., 2020). Supporting earlier findings of Springer and Pigford (1970), McKenna and McGillis (2004) and Sabbaghzadeh et al. 71 

(2017), who raised concerns about the impact of the SML’s surfactants on uncertainties in air-sea gas exchange models, 72 

Mustaffa et al. (2020) further argue that conventional wind-based models miscalculate CO2 exchange up to 20% in areas with 73 

high surfactant concentrations. Moreover, Kock et al. (2012) find that, in the eastern tropical North Atlantic region, offsets 74 

between air-sea and diapycnal N2O fluxes could be explained when surfactant effects were introduced to gas exchange models. 75 

Work of Goldman et al., (1988) find that surfactants in the SML can also suppress air-sea gas exchange of oxygen (O2). 76 

Disparities in these studies emphasize the significance of accurately assessing the characteristics of the SML and its processes, 77 

as well as integrating this knowledge into climate relevant ocean-atmosphere models (Milinković et al., 2022) in order to 78 

reduce uncertainties in global gas flux estimations, particularly given that SML is seldom included in gas exchange models 79 

(Cen-Lin and Tzung-May, 2013; Engel et al., 2017). 80 

 

Although the composition and the concentration of compounds within the SML are thought to be strongly correlated with those 81 

of the ULW (Basstrup-Spohr and Staehr, 2009; Chen et al., 2016; Joux et al., 2006; Kuznetsova et al., 2004), certain substances 82 

are selectively accumulated at the air-water interface, leading to a pronounced enrichment in the SML. The accumulation of 83 

these specific compounds in the SML relative to the ULW is often described by the ‘Enrichment Factor’ (hereafter referred to 84 

as ‘EF’). The EF of a compound ‘x’ is given by the following concentration ratio:  85 

 

𝐸𝐹 𝑜𝑓 𝑥 =  
 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑖𝑛 𝑆𝑀𝐿

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑖𝑛 𝑈𝐿𝑊
          (1) 86 

 

This equation proposes that when the x’s concentration in the SML is higher than that in the ULW, the corresponding EF value 87 

becomes > 1 and vice versa, as discussed in Carlson (1983) and Garabetian et al. (1993). However, Basstrup-Spohr and Staehr 88 

(2009) observed that non-slick areas in which microbial degradation processes are dominant can also demonstrate higher EF 89 

values, resembling those found in slick conditions. Kuznetsova et al. (2004) observed that organic matter (OM) dynamics in 90 

the SML can be decoupled from the composition of the ULW due to factors such as different remineralization rates and 91 
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selective adsorption (as opposed to homogenous mixing between the two compartments). Hillbricht-Ilkowska and 92 

Kostrzewska-Szlakowska (2004), in their work on lakes, suggest that eutrophic ULW conditions can lead to lower SML 93 

enrichment when the waters are concentrated by autochthonous OM (i.e., originate within the same ecosystem they are found) 94 

that show a lower affinity to the air-water interface. Hardy, (1997) mentioned that the processes leading to SML enrichment 95 

are often similar in both marine and freshwater environments. Knulst et al. (1997), Münster et al. (1998) and Södergren (1987) 96 

found that the freshwater SML tends to be more enriched with organic carbon and nitrogen, total phosphorous, ammonia and 97 

phosphate ions, while in marine environments, SML enrichment is stronger for carbohydrates, lipids, proteins and amino acids 98 

(Liss and Duce, 1997). Overall, and given the diversity of these results, it is clear that a more holistic view of the applicability 99 

of EF as a valid and meaningful indicator of SML enrichment is warranted. 100 

 

To address these objectives, we adopted a meta-analysis of SML-studies, and conducted a comprehensive analysis to (1) assess 101 

OM enrichment in the SML, (2) review existing EF estimates and (3) investigate the relevance of EF values as accurate 102 

indicators of SML enrichment. New and novel insights gained from these analyses are intended to establish a robust foundation 103 

for future modelling efforts focused on the functions of the SML and their implications for biogeochemistry and climate.  104 

2 Methodology 105 

The work presented here synthesizes findings from multiple studies on the SML and employs a quantitative meta-analysis. 106 

Such systematic reviews can provide a more precise and accurate understanding of overarching trends, even when individual 107 

studies report inconsistent results (Crocetti, 2016). Mengist et al., (2020) highlight the importance of meta-analyses by stating 108 

that “Systematic reviews with meta-analysis represent the gold standard for conducting reliable and transparent reviews of 109 

literature.” 110 

2.1 Data collection and compilation 111 

The primary dataset consists of 2055 data points, extracted from 30 peer-reviewed publications (hereafter referred to as 112 

‘reference studies’) identified through a comprehensive and systematic literature search of scholarly articles published between 113 

1967 and 2022. From these studies, data containing simultaneously collected SML and ULW concentrations (hereafter referred 114 

to as ‘[C]SML’ and ‘[C]ULW’, respectively) were extracted for twelve different observational types of organic compounds 115 

(hereafter known as ‘target compounds’): total organic carbon (TOC expressed in mg L-1), particulate organic carbon (POC in 116 

mg L-1), dissolved organic carbon (DOC in mg L-1), total organic nitrogen (TON in mg L-1), particulate organic nitrogen (PON 117 

in mg L-1), dissolved organic nitrogen (DON in mg L-1), amino acids (AA in mol L-1), fatty acids (FA in g L-1), transparent 118 

exopolymer particles (TEP in g Xeq L-1), carbohydrates (CHO in mol L-1), lipids (in mol L-1) and proteins (in mol L-1). 119 

TOC pool includes all forms of organic carbon, thus comprising both POC and DOC. Similarly, the TON pool combines both 120 

PON and DON. In general, the particulate pool constitutes a minor fraction of the total pool. The major classes of biopolymers 121 
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are proteins, CHO and lipids, with AA serving as the monomers of proteins. Depending on the elemental composition of these 122 

biopolymers, they contribute to both, the organic carbon and/or organic nitrogen pool. While the ratio of these biopolymers is 123 

higher in the particulate pool, it usually declines to only a few percent in the dissolved pool. TEP is composed of 124 

polysaccharides (i.e., CHO) with a major fraction contributing to POC, while a minor fraction exists at the interface between 125 

the dissolved and particulate phases (Verdugo et al., 2004).   126 

 

The EF values for these target compounds were systematically calculated from corresponding [C]SML – [C]ULW pairs, using Eq. 127 

(1). In this study, [C]SML, [C]ULW and EF data are collectively referred to as ‘primary data’. Auxiliary information associated 128 

with the primary data, (i.e., sampling factors and environmental variables) were also extracted when reported. They are referred 129 

to as ‘secondary data’. All the data, in general, were collected either (1) directly from the source when presented, or else (2) 130 

through digitization of graphs and plots using PlotDigitizer (https://plotdigitizer.com) and GraphClick v3.0 131 

(https://graphclick.en.softonic.com/mac) or, (3) via author correspondence when data was not available in the published 132 

materials. The resulting compiled database is herein referred to as ‘Surface Microlayer Data (SMD)’. Supplementary Table S1 133 

provides an overview of the reference studies on which SMD is based. 134 

2.2 Statistical analyses  135 

Given that the SMD ranges over several orders of magnitudes, when the dataset is handled in linear-space (i.e. in its original 136 

form), higher values dominate and overshadow the features associated with lower values (Feenstra, 2006). These potential 137 

limitations of linear scaling were reduced by transforming our primary data into their logarithmic (log10) counterparts. 138 

Hereafter, the term ‘linear’ refers to the original, untransformed data, while the term ‘log’ stands for their logarithmic 139 

equivalents. The following sections describe the subsequent analyses conducted in our work.  140 

2.2.1 Probability distributions  141 

Making inferences based on ratios such as EFs requires careful consideration, as changes in the numerator and the denominator 142 

often affect these ratios asymmetrically (Keene, 1995). In the context of this study, while reductions in [C]ULW can lead to 143 

unusually high EF values that can approach infinity (i.e., stretched towards higher values), increases in [C]ULW may produce 144 

EFs decreasing down to 0 (i.e., compressed towards lower values). This results in distributions that significantly deviate from 145 

Gaussian (i.e. normally distributed) shape. Therefore, distributional characteristics of the primary data were examined through 146 

probability distributions.  147 

 

Probability density functions (hereafter referred to as ‘PDF’) of the EF values were examined by applying non-parametric 148 

Kernel Density Estimates (hereafter referred to as ‘KDE’; Parzen, 1962; Silverman, 1986; Wegman, 1972). KDE employs a 149 

normalized weighting function – known as ‘Gaussian kernel’ – which is centered at each datapoint. The sum of these kernels 150 

produces a smooth and continuous PDF that fits the underlying data. Selection of the width of a kernel – known as ‘bandwidth’ 151 
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– is an integral part of the KDE approach, as bandwidths too small or too large lead to overfitting and underfitting of data, 152 

respectively, failing to capture the true patterns in distributions. Following this, optimal bandwidths for linear KDEs were 153 

computed based on Härdle et al. (2004). For log KDEs, a fixed optimal bandwidth was applied.  154 

 

Robustness of the KDE method decreases at low sample size. Since the SMD contains variables with sample sizes as low as 155 

16 (for proteins), a bootstrap resampling approach was adopted where 67% of the original data (i.e., 2/3 of the sample) were 156 

randomly subsampled and an individual KDE was generated at each iteration. The process was repeated 1000 times, each time 157 

with a different random subsample, generating a set of KDE. These were then averaged to produce an ensemble mean, from 158 

which the final PDFs were derived.  159 

 160 

Additionally, cumulative distribution functions (hereafter referred to as ‘CDF’) were determined for [C]SML and [C]ULW from 161 

the ensemble means of the bootstrapped KDEs. Appendix A provides further information on the KDE method.  162 

 2.2.2 Summarization, comparison and correlation estimates of distributions 163 

For describing, comparing and relating the resulting PDFs and CDFs, we used standard statistical measures. Their 164 

mathematical expressions are given in Appendix B.  165 

(1) To describe the central tendencies, mode (hereafter referred to as ‘𝑥𝑚’), median (hereafter referred to as ‘𝑥̃’), 166 

arithmetic mean (hereafter referred to as ‘𝑥𝑎̅̅ ̅’) and geometric mean (hereafter referred to as ‘𝑥𝑔̅̅ ̅’), were computed.  167 

(2) The values at 5th and 95th percentiles of each distribution (hereafter referred to as ‘upper threshold: UT’ and ‘lower 168 

threshold: LT’, respectively) were also estimated in order to determine their central 90% range (i.e., degree of spread).  169 

(3) To numerically compare the [C]SML and [C]ULW, Integrated Quadratic Distance (Hereafter known as ‘IQD’) values of 170 

their CDFs were approximated based on Eq. (B3), which measure how different the two distributions are with regard 171 

to symmetry and multimodality.  172 

(4) To investigate and quantify potential relationships between [C]SML and [C]ULW of each target compound, their linear 173 

correlation was analysed by employing both parametric Pearson and non-parametric Spearman’s tests (both methods 174 

were applied for cross-validation purposes; agreement between the two correlation coefficient values increases the 175 

confidence in the robustness of the observed relationship).  176 

3 Results 177 

Unless otherwise stated, all analyses were performed on log scale. Nevertheless, to avoid potential misinterpretation of log 178 

scales in data presentation, primarily due to their limited readability among non-expert audiences (e.g., Menge et al., 2018), 179 

all results are presented on linear scale (unless otherwise stated).  180 
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3.1 Characterizing EF distributions 181 

Figure 1 compares the KDE-derived PDFs of the EF values for the carbon-enriched (in blue) and nitrogen-enriched (in orange) 182 

organic compounds (Hereafter known as ‘PDFC’ and ‘PDFN’, respectively). PDFC was derived from EF values for TOC, DOC, 183 

POC, FA, TEP and CHO. The remaining target compounds derive PDFN. In their linear version (Figure 1(a)), both PDFs 184 

demonstrate positive skewness (i.e., right-skewness) with the two 𝑥𝑚 values being 1.10 and 1.15, respectively. Nevertheless, 185 

the peak probability density of the PDFC (i.e., the height of the PDF = ~1) is more than twice that of the PDFN (~0.4). 𝑥̃ of 186 

the two PDFs vary substantially, with PDFC and PDFN yielding values of 1.25 and 1.75, respectively. The values for 𝑥𝑎̅̅ ̅ (2.60 187 

and 5.39, respectively) and 𝑥𝑔̅̅ ̅ (1.51 and 2.34, respectively) further reflect this divergence. In contrast, their log-transformed 188 

versions (Fig. 1(b)) approximate normal distributions, with PDFC estimating the (exponentials of) 𝑥𝑚 = 1.11; 𝑥̃ = 1.24 and 𝑥𝑎̅̅ ̅ 189 

= 1.51. The PDFN yields corresponding values of 1.33, 1.76 and 2.34. Their peak probability densities also reflect that the 190 

PDFC (~2.6) is twice as high as that of PDFN (~1.5).  191 

 

Figure 1: PDFs of the EF values for carbon-enriched (blue) and nitrogen-enriched (orange) compounds. PDFs of the (a) untransformed 192 
(i.e., linear) and (b) log-transformed EF values. The solid black line indicates the KDEs derived from original data while the dashed black 193 
line represents the ensemble mean of bootstrapped KDEs. Central tendency metrics (mode [𝒙𝒎], median [𝒙̃], arithmetic mean [𝒙𝒂̅̅ ̅], geometric 194 
mean [𝒙𝒈̅̅̅̅ ]) given in panel (b) are the exponentials of the corresponding estimates on the log scale.  195 

 

We also compared EF-based PDFs (Figure 2) for dissolved (PDFD, in purple) and particulate (PDFP, in green) OM where we 196 

refer to a filter size of 0.22 μm (Gao et al., 2012). At a linear scale (Figure 2(a)), the PDFs are again right-skewed for the two 197 

clusters, with characteristics: (1) 1.20 (both PDFD and PDFP) for 𝑥𝑚; (2) 1.50 and 2.25 for 𝑥̃; (3) 4.39 and 4.41 for 𝑥𝑎̅̅ ̅ and, (4) 198 

1.91 and 2.53 for 𝑥𝑔̅̅ ̅, respectively. The peak probability density of the PDFD (~0.6) exceeds that of the PDFP (~0.3) by nearly 199 

a factor of two. The log PDFD and PDFP (Fig. 2(b)) approximate normal distributions alongside the following exponentiated 200 

central values, respectively: (1) 𝑥𝑚 = 1.20 and 1.88; (2) 𝑥̃ = 1.48 and 2.29; (3) 𝑥𝑎̅̅ ̅ = 1.91 and 2.53. Their peak probabilities 201 

compare between ~1.8 (for PDFD) and ~1.0 (for PDFP).  202 

(a) (b) 
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Figure 2: PDFs of the EF values for dissolved (purple) and particulate (green) compounds. PDFs of (a) linear and (b) log EF values. 203 
See Fig. 1 caption for details on KDEs and central tendency metrics. 204 

 

Figure 3 displays the PDFs of the EF values for the target compounds. All the distributions exhibit nearly log-normal 205 

characteristics, nevertheless they vary in their degrees of spread.  Here, only 𝑥̃ and 𝑥𝑎̅̅ ̅ values estimate the central tendency of 206 

each distribution (the rationale for this approach is discussed in section 4.2). The values of 𝑥̃ (dotted pink line) and 𝑥𝑎̅̅ ̅ (dashed 207 

pink line) are closely aligned in magnitude. According to these derived estimates, median and geometric mean EFs are largest 208 

for POC (Fig. 3(b): 𝑥̃ = 3.09;  𝑥𝑎̅̅ ̅ = 3.22) across all the target compounds, with PON (Fig. 3(e)) and DON (Fig. 3(f)) following 209 

closely, each exhibiting 𝑥̃ and  𝑥𝑎̅̅ ̅ values > 2. Although proteins (Fig. 3(l)) also show higher central tendency estimates, it 210 

should be noted that they have the smallest sample size (= 16), followed by lipids (sample size = 20). Therefore, the results of 211 

these two compounds should be interpreted with caution due to their lower statistical robustness. A comparison of threshold 212 

metrics (i.e., LT and UT; see section 2.2.2) reveals that the EF distributions for FA (Fig. 3(h)) and POC (Fig. 3(b)), exhibit the 213 

highest UT values (14.5 and 13.3, respectively) along with the greatest distributional variability. TOC (Fig. 3(a)) and TON 214 

(Fig. 3(d)) show the least variability among all target compounds. While some compounds exhibit well-defined unimodal EF 215 

distributions (e.g., POC, PON), few others (e.g., TON, AA) display polymodal patterns. 216 

 

 

 

 

 

 

(a) (b) 
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3.2 Comparing SML and ULW concentrations 217 

Figure 4 presents the CDFs of the ULW (in red) and SML (in blue) concentrations for the target compounds. A CDF exhibits 218 

how probability accumulates across a range of values (in the current context, [C]SML and [C]ULW data). All CDFs (both [C]ULW 219 

and [C]SML) exhibit a characteristic sigmoidal shape: a slow initial rise (i.e., lag phase), followed by a steep rise (i.e., 220 

exponential phase), eventually reaching a plateau (i.e., stationary phase). CDFs for TOC display two distinctive plateaus 221 

indicating bimodal concentration distributions for both SML and ULW. 222 

 

 

Figure 3: PDFs of the EF values for the twelve target compounds. The lower and upper thresholds of each distribution (dashed black 223 
lines) are defined by 5th and 95th percentiles of each PDF (see section 2.2.2). The values of these thresholds, along with the central tendency 224 
metrics given in each panel, are the exponentials of the corresponding estimates in the log space. 225 

 

Additionally, despite the homogeneity in the general shape and trend of these CDFs, their corresponding IQDs (Fig. 5) reveal 226 

that the magnitudes of the offsets between [C]ULW and [C]SML distributions vary substantially across the target compounds. 227 

Lower IQD values indicate greater similarities between the CDFs, while higher values document clear distinguishability and 228 

thus also document a more robust enrichment signal. The lowest IQD is reported for the CDFs of TOC and CHO (0.005) while 229 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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that of DON yield the highest in value (0.184). In addition, lower CDFs (i.e. IQD < 0.05) are observed for lipids (0.008), DOC 230 

(0.012), TEP (0.018), AA (0.039) and TON (0.041), whereas POC (0.18) and proteins (0.15) exhibit a greater divergence (i.e. 231 

IQD > 0.15) between [C]ULW and [C]SML. The color intensity of each bar reflects the sample size (n) of each target compound 232 

(i.e., smaller the sample, lighter the color).   233 

 

 

 

Figure 4: CDFs of the ULW (red) and SML (blue) concentrations for the target compounds. The upper thresholds for [C]SML (UT; 234 
given by blue dashed lines) are defined by 95th percentiles of the corresponding CDF. The values of these thresholds are the exponentials of 235 
the corresponding estimates in the log space.  Their corresponding IQDs are given in Figure 5.  236 

 

Correlations between [C]ULW and [C]SML of the target compounds were statistically estimated using liner correlation, as 237 

presented in Figure 6. The coefficients ‘’ and ‘r’ stand for the correlation values derived from non-parametric Spearman’s 238 

and parametric Pearson correlation tests, respectively. For all target compounds, except for DON, lipids and proteins, we found 239 

strong correlations between their SML and ULW concentrations ( and r > 0.5) with robust positive relationships. Individual 240 

datapoints for TOC, DOC and CHO (Figs. 6(a), (c) and (j)) closely fall on the 1:1 reference line where [C]SML = [C]ULW (dashed 241 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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black line). In contrast, those for POC, TON, AA and FA are notably shifted towards the y-axis, suggesting higher [C]SML 242 

values relative to [C]ULW that corresponds to potentially enriched (depleted) SML (ULW) concentrations against ULW (SML) 243 

concentrations (see inset plot in Fig. 6(a)). Although TEP shows a slight enrichment in the SML, the effect is not particularly 244 

pronounced (Figure 6(i)). In addition, all the datapoints (regardless of whether they display copulation or not) were further 245 

color-coded according to their respective EFs. The results reveal an overall consistency in EFs across concentration ranges 246 

irrespective of their magnitudes. For example, in Fig. 6(c), EF values remain below 5, both when [C]ULW and [C]SML are < 0.5 247 

mg L-1 and  > 5 mg L-1. This pattern holds across nearly all the target compounds. 248 

 

 

 

 

Figure 5: IQD values quantifying the divergence between ULW and SML concentrations for each target compound. The IQD 249 
represents the squared difference between ULW- and SML-based CDFs shown in Figure 4. Higher IQD indicates greater divergence between 250 
the two distributions and vice versa. Bar color intensity corresponds with the sample sizes.  251 
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Figure 6: Linear correlation between [C]ULW and [C]SML for the target compounds. The datapoints are color-coded based on their 252 
corresponding EFs. Dashed black line indicates 1:1 line when [C]ULW (x-axis) = [C]SML (y-axis). Inset plot in panel (a) exhibits the relevant 253 
implications of the figure: Correlations above the 1:1 line correspond to selective SML enrichment and vice versa. The values of ‘’ and ‘r’ 254 
give Spearman’s and Pearson correlation coefficients, respectively.  255 

 

3.3 Investigating concentration-dependent enrichment dynamics  256 

Informed by the observations drawn from Fig. 6, Fig. 7 presents a more detailed investigation into the interrelationships among 257 

[C]SML, [C]ULW and EFs in the environment. The analysis is restricted to [C]SML values (x-axis) that exceed the 𝑥̃ (i.e., median) 258 

of their respective distributions (median is the most stable central tendency metric of a distribution. Discussed further in section 259 

4.2). These elevated [C]SML are compared against the corresponding [C]ULW (color scale) and EF (y-axis) values. The results 260 

reveal following covariation trends:   261 

(i) TOC reports a generally low range of EF values comparable at both low and high concentrations of SML and 262 

ULW (Fig. 7(a)) 263 

(a) 

(e) 

(i) 

(b) 

(f) 

(j) 

(c) 

(g) 

(k) 

(d) 

(h) 

(l) 
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(ii) DOC displays relatively consistent EF values regardless the magnitudes of [C]SML and [C]ULW (Fig. 7(c)), but 264 

also slightly points towards higher EF values in association with low [C]ULW 265 

(iii) DON presents an ascending EF gradient, positively correlated with [C]SML (Fig. 7(f)), revealing more enrichment 266 

to be well reflected in the concentrations found in the SML  267 

(iv) AA shows a similar correlation dependence to that of DON, but also reveals a much clearer trend toward higher 268 

EF values to be found at lower [C]ULW concentrations (Fig. 7(g)) 269 

 

FA (Fig. 7(h)), despite their larger sample sizes, fail to display conspicuous consistent trends in the [C]SML – [C]ULW – EF triad.  270 

 

 

Figure 7: Interdependent relationship of [C]SML values with the corresponding [C]ULW and EF values. The analysis is restricted to 271 
[C]SML values that exceed the corresponding 𝒙̃ values. The x-axes give the observed [C]SML values against their corresponding EF values on 272 
y-axes. Datapoints are color-coded based on corresponding [C]ULW values. The black arrows indicate identified enrichment patterns.  273 
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4. Discussion 274 

By employing a meta-analytical approach, our study presents the first comprehensive overview of the enrichment dynamics in 275 

the SML, based on existing literature. A quantitative assessment of the distribution of the reference studies (i.e., the studies on 276 

which the SMD is based) across key domains of SML research provides insights into the most frequently studied aspects 277 

(Supplementary Figure S1); research on the SML has increased from about 15 publications per year in the early 2000s to 278 

approximately 50 per year by 2016 (Engel et al., 2017). However, our work highlights the potential understudied areas in SML 279 

research that call for more in-depth analysis. For instance, majority of the reference studies have been conducted in oceanic 280 

and coastal regions (~76% of data) and predominantly during warmer months (~77% of data) with a significant mismatch 281 

observed for data collected under low and high wind regimes (~81% vs. 19%, respectively). In light of these research gaps, 282 

the following sections interpret the main findings revealed by our analysis and discuss their implications for understanding 283 

SML enrichment.  284 

4.1 Overarching trends in SML enrichment 285 

4.1.1 Generalized enrichment patterns 286 

Comparison of KDE-derived PDFs for the EF values of (1) carbon-enriched vs. nitrogen-enriched organic compounds (Fig. 1) 287 

and (2) dissolved vs. particulate organic compounds (Fig. 2) yield the following key implications:  288 

 

(1) All the estimated original (i.e., linear scale) PDFs (Figs. 1(a) and 2(a)) display higher probability densities for lower 289 

EF values and extended tails towards higher EF values (i.e., right-skewness), suggesting that under natural conditions, 290 

modest SML enrichment is far more common in general, while extreme enrichment events are rare.  291 

(2) Nevertheless, variation in the peak probability densities among the PDFs indicate that extreme SML enrichment 292 

events are relatively more frequent in nitrogen-enriched compounds (Fig.1: orange PDF) and particulate forms (Fig. 293 

2: green PDF), compared to carbon-enriched compounds (Fig.1: blue PDF) and dissolved forms (Fig.2: purple PDF) 294 

(3) Nitrogen-enriched compounds and particulate forms exhibit a broader EF variability (i.e., higher mode, median, mean 295 

values) compared to carbon-enriched compounds and dissolved forms with a relatively more consistent spread (i.e., 296 

lower central tendency metrics) 297 

 

These differences in peaks and central tendency metrics persist in log-transformed PDFs as well (Figs 1(b) and 2(b)). This 298 

validates that these variations are not caused by statistical artifacts but reflect real, natural variability in enrichment behavior. 299 

Overall, these findings from our meta-analysis indicate that the OM accumulation in the SML is more effective for (1) nitrogen-300 

enriched than for carbon-enriched compounds and (2) particulate than for dissolved forms. 301 
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Our findings contradict some earlier works including Baastrup-Spohr and Staehr (2009), Liss and Duce (1997), Yang (1999) 302 

who suggest that the SML is similarly enriched for both particulate and dissolved organic (and inorganic) compounds, but 303 

align with other studies that report opposing results: Dietz et al. (1976) provide evidence for enhanced accumulations of 304 

particulate matter in the SML through particle aggregation at the surface. The work further links high abundances of living 305 

bacteria in the near-surface to higher availability of POC in the SML. Studies of Carlucci et al. (1985), Henrichs and Williams, 306 

(1985), Kuznetsova et al. (2004), Kuznetsova and Lee (2002) and Reinthaler et al. (2008) report that POC and PON tend to 307 

be more enriched in the SML than DOC. Engel et al. (2017) state that the SML has been shown to be enriched in particulate 308 

organic matter, particularly in proteinaceous compounds. These disparities, highlight potential uncertainties in employing 309 

carbon-based parameterization (instead of nitrogen-based) to estimate surfactant-suppressed CO2 fluxes (e.g., Barthelmeß et 310 

al., 2021; Li et al., 2024). Overall, these overarching trends of SML enrichment underscore the importance of resolving 311 

compound-specific accumulation in the SML, while distinguishing between selective and non-selective enrichment. 312 

Cumulative probability comparison results for the [C]ULW and [C]SML (Figs. 4 and 5) and their corresponding linear correlations 313 

(Fig. 6) provide a meta-analytical perspective on how compounds are distributed and accumulated between the two 314 

compartments. Here, results concerning lipids and proteins are excluded due to apparent randomness in their distributions, 315 

potentially caused by smaller sample sizes. 316 

4.1.2 Compound-specific enrichment patterns 317 

Significant correlations between [C]ULW and [C]SML of nearly all the target compounds ( and r > 0.5) are consistent with the 318 

overall understanding that the SML's composition is linked to the availability of material in the underlying sub-surface waters 319 

(Chen et al., 2016; Joux et al., 2006; Kuznetsova et al., 2004). Contrary to this general pattern, Kuznetsova et al. (2004) 320 

suggest that certain OM fractions in the SML and ULW may show lack of correlation, potentially due to constraints such as 321 

varying mineralization rates between the two layers and surface adsorption processes. Consistent with this view, linear 322 

correlation results for DON indicate such decoupling (Fig. 6(f)), though the underlying causes remain unexplored in this study. 323 

Early studies also suggested that the variations in the SML concentrations are typically larger than those in the ULW 324 

(Reinthaler et al., 2008). In agreement, CDFs of the [C]ULW and [C]SML demonstrate faster probability accumulation for ULW 325 

than SML (Fig. 4), implying generally smaller magnitudes and lower variability in ULW concentrations compared to SML 326 

concentrations. Conversely, Carlson (1983) argues that, in certain occasions, OM variability in the SML and ULW may not 327 

significantly differ across temporal and spatial scales. The CDFs for TOC, DOC, TEP and CHO which exhibit the lowest IQD 328 

values (Fig. 5), support this but is contradicted by those of the other compounds, with higher IQD values (indicating substantial 329 

differences between the two concentrations).   330 

 

Works of Hunter and Liss (1977) and Kurata et al. (2016) discuss the selective enrichment of surfactants in the SML, mainly 331 

driven by microbial processes. Hydrophobic compounds tend to show more affinity to the surface compared to hydrophilic 332 

substances (Marty and Saliot, 1976). In agreement, our linear correlation results reveal preferential accumulation of AA (Fig. 333 
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6(g)) and FA (Fig. 6(h)), often parts of biosurfactants (e.g., lipopeptides or polypeptides), in the SML. Linear correlation results 334 

shown in Fig. 6(i) provide evidence to the view that TEP is generally enriched in the SML compared to the ULW (Cunliffe 335 

and Murrell, 2009; Cunliffe et al., 2009; Wurl and Holmes, 2008), although this enrichment is not strongly pronounced in our 336 

dataset. Additionally, the nearly overlapping CDFs for TEP in SML and ULW (Fig. 4(i)) along with its low IQD value (= 337 

0.081; Fig. 5) further suggest a surprisingly weak enrichment. However, concentration trend of TEP observed in our data 338 

closely aligns with that of CHO (Figs. 4(j) and 5), supporting the prevailing hypothesis that TEP is formed through coagulation 339 

of dissolved polysaccharides (Passow, 2000). Thornton et al. (2016) observe that TEP and dissolved polysaccharides do not 340 

always exhibit significant enrichment in the SML as anticipated. 341 

 

POC and PON correlation patterns (Figs. 6(b) and 6(e), respectively) where [C]SML significantly exceed [C]ULW, and that of 342 

DOC (Fig. 6(c)) where [C]SML is nearly equal to [C]ULW, provide strong meta-analytical evidence to earlier works that discuss 343 

the selective enrichment of POC and PON in the SML over DOC (e.g., Carlucci et al., 1992; Henrichs and Williams, 1985; 344 

Kuznetsova and Lee, 2002; Kuznetsova et al., 2004 and Reinthaler et al., 2008). Carlson (1983) suggests that the distribution 345 

of some organic fractions between the SML and the ULW may be governed by specific partitioning processes. For instance, 346 

while Chen et al. (2016) point out the significant role of the ULW in DOC and CHO accumulation in the SML, Dietz et al. 347 

(1976) observe fairly consistent abundances for these compounds between the two layers. Our experiments also show strong 348 

1:1 correlation for DOC (Fig. 6(c)) and CHO (Fig. 6(j)), suggesting an absence of preferential affinity towards the SML (unlike 349 

surfactants), which further indicates that their enrichment is predominantly controlled by the ULW. Although CHO, AA and 350 

FA are identified to be the key constituents of the organic carbon pool (Hedges et al., 1994), our correlation results reveal that 351 

their partitioning between the SML and the ULW and, their eventual enrichment patterns, may not be consistent (Figure 6).  352 

4.1.3 Influencing factors and current uncertainties 353 

Baier et al. (1974), Hunter and Liss (1981) and MacIntyre (1974) argue that the compositional diversity of the SML prevents 354 

single compounds from fully representing the dissolved OM class, which further emphasizes the importance of assessing 355 

compound-specific accumulation in the SML. Such investigations could shed light on selective and non-selective enrichment 356 

dynamics of OM. An analysis of EF-based PDFs for various AA fractions (Figure 8(a)) – Total AA (TAA), Dissolved Free 357 

AA (DFAA), Dissolved Combined AA (DCAA) and Particulate AA (PAA) – revealed notable heterogeneity within this 358 

compound class, reflecting the chemical diversity and complexity of OM enrichment in the SML. Additionally, consistent with 359 

previous studies that investigated the influence on environmental drivers on the enrichment dynamics in the SML (e.g., Asher, 360 

1997; Barthelmeß et al., 2021; Knulst et al., 1997; Kuznetsova et al., 2004; Liu and Dickhut, 1998; Obernosterer et al., 2008; 361 

Reinthaler et al., 2008; Tsai and Liu, 2003), our analysis demonstrates that factors such as sampling location (for DOC), 362 

sampling season (for CHO) and sampling method (for DOC)  (Figs. 8(b) – (d)) play key roles in modulating the enrichment 363 

variability of the OM (it should be noted that these specific target compounds are chosen as representative examples because 364 

they span all subcategories of secondary data considered in the study (see Supplementary Table S1), and therefore enable a 365 
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more robust comparison among different settings). Moreover, bimodal CDFs of TOC for the SML and ULW concentrations 366 

(Fig. 4(a)) along with the distinct separation of three data clusters in their correlation patterns (Fig. 6(a)), further highlight the 367 

significant role of external environmental factors in shaping SML composition. The origins of TOC data used in this study 368 

illustrates this variability: Data from (1) a heavily polluted urban lake (concentration range: 12 – 16 mg L-1; Baastrup-Spohr 369 

and Staehr, 2009), (2) a forested lake (concentration range: 3 – 5 mg L-1; Baastrup-Spohr and Staehr, 2009), (3) the Arctic 370 

Ocean (concentration range: 1 – 3 mg L-1; Gao et al., 2012) and (4) an upwelling filament (concentration range: 3 – 4 mg L-1; 371 

Barthelmeß et al., 2021).  372 

 

The influence on wind speed on SML enrichment remains ambiguous; our comparison of EF values under calm (< 6.6 ms-1; 373 

Reinthaler et al., 2008) and rough (> 6.6 ms-1)  wind conditions yield inconclusive results (Supplementary Figure S2) with 374 

wind speed appearing to have little/no effect on the SML enrichment (e.g., Basstrup-Spohr and Staehr, 2009 and Sabbaghzadeh 375 

et al., 2017) or with enrichment persisting even under rough sea conditions (e.g., Kuznetsova et al., 2004; Reinthaler et al., 376 

2008), opposing the general understanding that turbulent conditions may reduce the concentration in the SML (e.g., Carlson, 377 

1983). Nevertheless, it is important to note that imbalanced sampling efforts among these categories, (Supplementary Figure 378 

S1), specially with regards to wind speed (Supplementary Figure S2; see the sample sizes), may compromise the robustness 379 

and validity of these findings. 380 
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Figure 8: Factor-specific enrichment variability in the SML. PDFs illustrating varying enrichment patterns for (a) AA across chemical 381 
forms, (b) DOC across sampling locations, (c) CHO across sampling seasons and (d) DOC across sampling methods. ‘n’ gives the sample 382 
size of each category. Supplementary Table S1 summarizes different sampling locations, sampling seasons and sampling methods observed 383 
for the investigated target compounds.  384 

 

Another major source of uncertainty arises from the variability in sampling depths of the ULW (Supplementary Table S1), 385 

which can affect the comparability of different data across multiple studies that would eventually introduce bias into the 386 

interpretation of overarching trends. Additional biases which are beyond the scope of this study include the potential influence 387 

of diurnal cycles (López-Puertas et al., 2025); OM can be rapidly removed from the SML through photochemical degradation 388 

(Obernosterer et al., 2008) and also be affected by reduced bacterial metabolism due to solar radiation (Dietz et al., 1976). 389 

Therefore, taken together, our meta-data analysis suggests that, investigating SML enrichment without accounting for these 390 

influencing factors may mask true enrichment patterns, limiting the ability to derive meaningful insights. In light of these 391 

considerations, our work highlights the need for conducting species-specific and condition-dependent analyses in future SML 392 

research that also focus on subsequent environmental parameters, as also proposed by Pereira et al. (2018). 393 

(a) (b) 

(c) (d) 
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4.2 Scale-related biases in EF estimates 394 

Accurate data interpretation is essential to gain precise insights and arrive at substantiated conclusions (Isles, 2020; Menge et 395 

al., 2018). This is particularly true for meta-analyses involving continuous environmental data where values may vary by 396 

several orders of magnitude (e.g., Vitousek, 2004). In our study, when the PDFC vs. PDFN (Fig. 1) and PDFD vs. PDFP (Fig. 397 

2) are evaluated on a linear scale (panels (a)), they exhibit right-skewness, whereas their log-transformed versions approximate 398 

normal distributions (panels (b)). Comparisons between highly skewed distributions raise uncertainties as their offsets are 399 

often dominated by extreme values/outliers. In contrast, when log transformation is applied, the distributions tend to exhibit 400 

more symmetric, normalized patterns which enable direct comparisons in shape and spread across different categories (Zuur 401 

et al., 2007). Therefore the normality assumption for EF is inappropriate and the computation of an arithmetic mean, a 402 

conventional practice adopted in many earlier works (e.g., Gašparović et al., 2007; Gao et al., 2012; Kuznetsova et al., 2005; 403 

Williams et al., 1986; Wurl and Homes, 2008; Wurl et al., 2009), can be misleading, likely providing a biased general picture 404 

of OM enrichment in the SML.  405 

 

The here constructed PDFs given in Figures 1 and 2 reveal that both mode (𝑥𝑚; shown by solid straight lines) and arithmetic 406 

mean (𝑥𝑎̅̅ ̅; shown by dashed straight lines) differ between the two scales: The mode reflects the peak of a distribution and is 407 

sensitive to the shape of its respective density curve. It varies depending on whether a dataset is in ‘skewed’ linear space or 408 

‘normalized’ log space and becomes ambiguous in polymodal distributions (regardless of the scale: e.g. Fig. 3). As a 409 

consequence, the mode in general provides an unreliable measure of central tendency. While the linear-arithmetic mean, which 410 

is influenced by outliers, result in biases that exaggerate the corresponding central tendency, the log-arithmetic mean prevents 411 

the extreme values from being dominant through balanced averaging and hence provides a reliable estimation of central 412 

tendency. Nevertheless, geometric mean in linear space (𝑥𝑔̅̅ ̅ ; straight lines with alternating dots and dashes) is a meaningful 413 

measure given that it is equivalent to the exponential of the arithmetic mean in logarithmic space (See Eqs. (B1) and (B2)). 414 

Median (𝑥̃; dotted straight lines), on the other hand, remains relatively consistent across both scales as it is a rank-based 415 

measure of central tendency that is unaffected by the magnitude of outliers. Accordingly, we suggest that future SML 416 

enrichment studies employ a logarithmic scale for data analyses, and adopt either geometric mean and/or median on linear 417 

scale or arithmetic mean and/or median on logarithmic scale for reliable trend analysis. 418 

 

Based on these new insights on scale transformations and central tendency metric considerations, we have redefined the typical 419 

EF values of the studied target compounds and their degrees of spread from a meta-analytical perspective, from the estimated  420 

𝑥̃,  𝑥𝑎̅̅ ̅ and thresholds (i.e. UT and LT) of their PDFs (Fig. 3). To re-establish these EF ranges as generally observed estimates 421 

under common conditions, ‘the box plot method’ (introduced by Tukey, 1977) was applied to the data to detect and remove 422 

potentially extreme EF values that rarely occur in nature. This method considers the values at 25 th and 75th percentiles (also 423 

known as ‘Q1’ and ‘Q3’, respectively) of each distribution and computes a statistical estimate – Interquartile Range (also known 424 
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as ‘IQR) – by the difference between Q3 and Q1 (i.e., 𝐼𝑄𝑅 =  𝑄3  −  𝑄1 ). If a datapoint falls outsides the range of 𝑄3  +425 

 𝐼𝑄𝑅 ×  1.5 (also known as ‘upper bound’) and 𝑄1 −  𝐼𝑄𝑅 ×  1.5 (also known as ‘lower bound’), it is considered atypical and 426 

therefore excluded from the analysis. This outlier detection approach is widely used across a broad range of research (e.g., 427 

Barbato et al., 2011; Carling, 2000; Hoaglin et al., 1986). 428 

4.3 Role of EF in reflecting SML enrichment 429 

While the metric of EF offers a convenient way to assess the accumulation trends in the SML and therefore serves as the basis 430 

for many established insights and inferences in existing SML research (see Introduction), its ability to accurately and robustly 431 

express the ‘true’ enrichment nature of the SML has constantly been a question of interest (e.g., Basstrup-Spohr and Staehr, 432 

2009; Hillbricht-Ilkowska & Kostrzewska-Szlakowska, 2004; Knulst et al., 1997; Kuznetsova et al., 2004; Liss and Duce, 433 

1997; Münster et al., 1998; Södergren, 1987). The EF is a ratio that expresses the ‘relative’ changes in [C]SML with respect to 434 

[C]ULW (Eq. (1)), and hence is sensitive to the variations in either layer. Ideally, to effectively reflect conditions of growing 435 

SML enrichment, EF values should gradually rise in response to increasing [C]SML and decreasing [C]ULW, which can be visibly 436 

observed for DON (Fig. 7(f)), AA (Fig. 7(g)) and CHO (Fig. 7(j)). Nevertheless, our meta-analysis highlights several 437 

inconsistencies that challenge the relevance of the EF values as indicators of ‘true’ SML enrichment. For instance, on the one 438 

hand similar EF values can be observed for both oligotrophic and eutrophic environments (referring to the EFs of TOC: Fig. 439 

7(a)), which limits the ability to distinguish the differences in their trophic status, despite them being conspicuous in TOC’s 440 

absolute concentration range (bimodal CDFs; Fig. 4(a)). On the other hand, high (low) EF values may occur under oligotrophic 441 

(eutrophic) conditions leading to over- (under-) estimation of ecological setting (Fig. 7(g)). Furthermore, symmetrical changes 442 

in SML and ULW yield near-constant EF values across a wide range of concentrations (Fig. 7(c)), which could cause 443 

misinterpretations in key ecosystem shifts. We have also observed consistent EF values, even when SML and ULW 444 

concentrations vary over several orders of magnitudes (Figs. 6(g) – (j)), which further raise concerns over the metric’s 445 

robustness. Therefore, although widely used, EF values should be interpreted with caution and, combined with additional 446 

parameters that provide more accurate information about the true enrichment behaviour of the SML.  447 

 

A complementary parameter would be the typical upper limit of a [C]SML distribution which may reflect the maximum 448 

concentration capacity of the SML. Such a measure can serve as a robust concentration estimate of such maximum capacity if 449 

approximated from a meta-data derived distribution that includes observations across all diverse environmental conditions. 450 

Table 1 summarizes the upper [C]SML threshold estimates (i.e., UT; at 95th percentile) for the target compounds, based on their 451 

CDFs (Fig. 4). Although the robustness of these values largely depends on the quality and the scope of the underlying metadata, 452 

our bootstrapping approach addresses these potential limitations. Nevertheless, we acknowledge that these estimates remain 453 

data-constrained and therefore can improve with the inclusion of more comprehensive, high-resolution datasets across diverse 454 

environmental conditions. Measured concentrations beyond these thresholds within the SML must be regarded as exceptionally 455 

https://doi.org/10.5194/egusphere-2025-4050
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

high and should therefore find special attention, in particular with regard to the associated biogeochemical, oceanographic and 456 

weather conditions.      457 

 

Table 1: A summary of estimated UT values (upper threshold; concentration at 95th percentile) for [C]SML distributions of the target 458 
compounds. This metric represents the maximum accumulation capacity of a certain compound in the SML. The values are rounded to the 459 
nearest whole number.   460 

 

 

Considering absolute changes in the SML concentrations (rather than relative changes) – calculated as the magnitude difference 461 

between corresponding SML and ULW concentrations (i.e., [𝐶]𝑆𝑀𝐿 − [𝐶]𝑈𝐿𝑊) – provides complementary insights into the 462 

SML’s enrichment dynamics. When this metric is compared against the EF values for DOC data where EF > 𝑥̃ (= 1.2), resulting 463 

Spearman’s correlation coefficients () reveal a stronger relationship (Figure 9(c) ;  = 0.32) relative to EF vs. [C]SML (Figure 464 

9(a) ;  = 0.08) and EF vs. [C]ULW (Figure 9(c) ;  = -0.12) correlations. This implies that although the EFs may have a limited 465 

capacity to represent the absolute concentrations of either SML or ULW, they are more responsive to the absolute concentration 466 

‘changes’ in the two compartments. This analysis reveals that although ‘enrichment factor’ obscures accurately interpreting 467 

the trophic status or the actual enrichment in the SML, it may still hold value as a proxy that reflects the degree of partitioning 468 

between the surface microlayer and underlying waters. 469 

 

Furthermore, normalization of [𝐶]𝑆𝑀𝐿 −  [𝐶]𝑈𝐿𝑊  metric to corresponding [C]SML values (i.e., ([𝐶]𝑆𝑀𝐿 − [𝐶]𝑈𝐿𝑊) [𝐶]𝑆𝑀𝐿⁄ ) 470 

ultimately yields an EF-based metric: 1 − 
1

𝐸𝐹
. This expresses how much of the SML concentration is above the ULW baseline. 471 

Unlike conventional EF values,  1 −  
1

𝐸𝐹
  only ranges between 0 and 1. It rescales compound-specific variability in EF and is 472 

therefore better suited for comparison across all the different observational types; normalization of EF onto a common scale 473 

allows direct evaluations without bias from different units, magnitudes or concentration ranges. This better captures true trends, 474 

rather than artifacts/effects of scale, while enhancing visualization and communication of results. In addition, when compared 475 

against the absolute changes, this metric exhibits stronger correlation (( = 0.52; Fig. 9(d)), likely due to increased robustness 476 

to concentration variability obtained through its scale-dependent nature. As a result, when incorporated into modelling efforts, 477 

the normalized EF metric can offer distinct advantages such as integration of heterogenous datasets, consistent 478 

parameterization, easier comparisons of model predictions and robust sensitivity analyses. Together, these benefits contribute 479 

to more reliable and generalizable models of SML processes.  480 
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Figure 9: Correlations between EF and (a) [C]SML, (b) [C]ULW, (c) [C]SML – [C]ULW and, (d) correlation between 1 – 1/EF and [C]SML 481 
– [C]ULW. These plots were generated for DOC data, in order to investigate the observed lack of correlation among EF – [C]SML – [C]ULW, 482 
as shown by Fig. 7(c).  483 

5. Conclusion 484 

The here presented extensive data collection of [C]SML and [C]ULW measurements of various observational types of organic 485 

matter compounds is unique. Although the physical and biogeochemical properties of the SML have been studied in detail 486 

across diverse disciplines of aquatic science, to our knowledge, this study is the first to adopt a meta-analytical approach to 487 

bridge between insights of individual findings documented in the literature. Our quantitative assessment on the distributional 488 

characteristics of 12 organic compounds in the SML yielded statistically robust results owing to the use of the KDE method 489 

as the primary analytical technique, which enabled a coherent comparison of multivariate data.  490 

 

Our results indicate that nitrogen-rich compounds and particulate OM tend to be more enriched in the SML compared to 491 

carbon-rich compounds and dissolved OM. These findings underscore the need for future SML research to focus on the species-492 

specific chemistry of OM, specifically surfactants, along with the variability of external influencing factors, in order to better 493 

(a) (b) 

(c) (d) 
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understand and approximate their role in global gas flux estimates. Informed by this, we explore EF values by re-evaluating 494 

the typical ranges, previously defined in individual studies, through a meta-analytical perspective. Our assessment also inquired 495 

into the suitability of EF values as indicators of true SML enrichment and suggests that, while the EF, which expresses relative 496 

changes in the SML compared to the ULW, can reflect the partition variability between the two layers, it falls short in capturing 497 

trophic variability. The latter plays a crucial role in determining ecosystem structure. In light of the foregoing, we propose that 498 

EF estimates be complemented with additional parameters such as the absolute concentration differences between the SML 499 

and the ULW and the maximum concentration capacities within the SML, to provide a more in-depth understanding of 500 

enrichment dynamics.  501 

 

In addition to the primary outcomes, a noteworthy secondary insight from this study is the importance of selecting an 502 

appropriate data transformation scale (i.e. linear or logarithmic) and a robust measure of central tendency (i.e. mode, median, 503 

arithmetic mean or geometric mean) to ensure accurate data representation and reliable inference in future SML research. Our 504 

analysis provides strong evidence for the following advantages of transforming data into logarithmic scale: (1) it facilitates 505 

meaningful ratio comparisons such as the EF by converting multiplicative relationships into additive ones; (2) it better reflects 506 

the log-normality characteristics of the dependencies between [C]SML and [C]ULW, which improves statistical model 507 

performance; (3) it was shown to promote homoscedasticity and (4) it enhances robustness, accuracy and interpretability of 508 

central tendency metrics. 509 

Appendix A: KDE method – additional information  510 

Although the most basic non-parametric method to derive a probability distribution is histograms, they present two key 511 

limitations for comparative studies: (1) unequal sample sizes across comparative groups restrict the use of uniform binning 512 

and, (2) imposing uniform bin sizes potentially mask important distributional characteristics. In contrast, KDE circumvents 513 

these issues by accounting a datapoint’s exact value rather than assigning it to a particular bin of a certain width. This describes 514 

the true underlying distribution of the data and allows more consistent and detailed comparisons of distributions. In this 515 

analysis, we use Gaussian kernels – smooth, bell-shaped functions based on normal distribution – that weight observations 516 

based on their distance. Chen (2017) and the references therein provide a comprehensive review of the KDE and its recent 517 

advances.   518 

 

In Gaussian kernels, bandwidth is analogous to standard deviation. In this study, the bandwidths for the linear KDEs were 519 

computed based on an approach that includes a bias-variance trade-off. Briefly, the bias-variance trade-off represents kernels 520 

that have a bandwidth that avoids too much variance in the estimates (i.e., bandwidths are not too small) while it does not 521 

introduce too much bias for ranges that actually exhibit no data points (i.e., bandwidths are not too large). Calculations of 522 

optimal bandwidth applied herein and an example of a bias-variance trade-off are described in Schartau et al., (2010). 523 
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Nevertheless, in log-space, unlike in linear-space, data are more evenly distributed and hence fixed bandwidths avoid over-524 

smoothing of low values and under-smoothing of high values.  525 

 

The selection of an optimal bandwidth for KDEs is influenced by sample size; smaller sample sizes lead to sparse and noisy 526 

distributions which require more smoothing and therefore larger bandwidths. Excessively large bandwidths can result in 527 

underfitting. In contrast, larger sample sizes may allow excessively smaller bandwidths that can lead to overfitting. Bootstrap 528 

resampling addresses these potential uncertainties in our analysis and, ensures the robustness and precision of the estimated 529 

density distributions. Deviations between the bootstrapped KDEs and their ensemble mean were found to approximate a 530 

normal distribution (consistent with Central Limit Theorem). Therefore, these ensemble means can be regarded as reliable 531 

representations of the underlying data, supporting valid comparisons of probability distributions across different groups or 532 

clusters.  533 

Appendix B: Mathematical expressions of distributional characteristics  534 

If a dataset contains values of ‘𝑥𝑖’ with a sample size of ‘𝑛’,  mode (𝑥𝑚) is the most frequently occurring value in the dataset 535 

and therefore, the point where a PDF reaches its highest density. A distribution appears to be the most concentrated at 𝑥𝑚. 536 

Median (𝑥̃) returns the value at the 50th percentile of an ascending dataset. It divides the area under a PDF into two equal 537 

halves. The arithmetic mean (𝑥𝑎̅̅ ̅), is the average of a distribution, given by the following equation:  538 

Σ𝑖=1
𝑛 =

𝑥𝑖

𝑛
            (B1) 539 

𝑥𝑎̅̅ ̅ gives the point where weighted sum of a PDF is balanced. However, in the case of datasets that range over several orders 540 

of magnitudes, the geometric mean (hereafter referred to as ‘𝑥𝑔̅̅ ̅’) is the more preferred central tendency estimate, as it accounts 541 

for the relative proportions of values (as opposed to their absolute magnitudes as is the case in  𝑥𝑎̅̅ ̅) and hence, is less sensitive 542 

to outliers. 𝑥𝑔̅̅ ̅ is calculated by the following equation: 543 

(Π𝑖=1
𝑛 𝑥𝑖)

1
𝑛             (B2) 544 

𝑥𝑔̅̅ ̅ of a linear distribution is mathematically equal to the exponentiated  𝑥𝑎̅̅ ̅ of the log-transformed version of the same 545 

distribution.  546 

 

In addition, the following equation, which accounts for the squared differences across all the datapoints of the corresponding 547 

CDFs, estimates the discrete form of the integrated quadratic distance (IQD, explained in section 2.2.2), with 𝛥𝑥𝑖 =  𝑥𝑖 − 𝑥𝑖−1:  548 

𝐼𝑄𝐷 = ∑ ((𝐶𝐷𝐹[𝐶]𝑆𝑀𝐿 (𝑥𝑖)
− 𝐶𝐷𝐹[𝐶]𝑈𝐿𝑊 (𝑥𝑖)

)
2

×  Δ𝑥𝑖)𝑛
𝑖=1        (B3) 549 

A higher IQD value implies that the divergence is greater and therefore the corresponding CDFs are more different.  550 
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