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Abstract. Predicting water quality variables in lakes is critical for effective ecosystem management under climatic and human1

pressures. Dissolved organic matter (DOM) serves as an energy source for aquatic ecosystems and plays a key role in their bio-2

geochemical cycles. However, predicting DOM is challenging due to complex interactions between multiple potential drivers3

in the aquatic environment and its surrounding terrestrial landscape. This study establishes an open and scalable workflow to4

identify potential drivers and predict fluorescent DOM (fDOM) in the surface layer of lakes by exploring the use of supervised5

machine learning models, including random forest, extreme gradient boosting, light gradient boosting, catboosting, k-nearest6

neighbors, support vector regression and linear model. It was validated in two contrasting systems: one natural lake in Ireland7

with a relatively undisturbed catchment, and one reservoir in Spain with a more human-influenced catchment. A total of 248

potential drivers were obtained from global reanalysis data, and lake and river process-based modelling. Partial dependence and9

SHapley Additive exPlanations (SHAP) analises were conducted for the most influential drivers identified, with soil moisture,10

soil temperature, and Julian day being common to both study sites. The best prediction was found when using the CatBoost11

model (during hold-out testing period, Irish site: KGE > 0.69, r² > 0.51; Spanish site: KGE > 0.66, r² > 0.54). Interestingly,12

when only using drivers from globally accessible climate and soil reanalysis data, the prediction capacity was maintained13

at both sites, showcasing potential for scalability. Our findings highlight the complex interplay of environmental drivers and14

processes that govern DOM dynamics in lakes, and contribute to the modelling of carbon cycling in aquatic ecosystems.15

1 Introduction16

Lakes are an essential component of global biogeochemical cycles, sustain biodiversity, and provide critical ecosystem services,17

e.g., water supply, fishing and irrigation. However, their water quality is increasingly at risk due to climatic change and human18

pressures (Bhateria and Jain, 2016). A key water quality variable is dissolved organic matter (DOM), which influences light19

penetration, energy, oxygen dynamics and nutrient availability in any lake (Solomon et al., 2015). The dynamics of DOM20

in lakes are driven by both external processes in the terrestrial environment and internal processes. Land cover, climate, and21
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topography regulate carbon production in the catchment and carbon inputs into the lake (Li et al., 2015). In the water body, the22

quantity and quality of DOM are controlled by physical and biogeochemical mechanisms such as photodegradation, microbial23

processing and mixing dynamics, but can also be impacted by water abstraction or dam regulation (Xenopoulos et al., 2021).24

Increases in the concentrations of DOM can affect ecosystem stability and human water use (e.g., raw drinking water quality)25

by reducing oxygen levels, altering microbial communities and nutrient cycling (Lake et al., 2000). DOM is also a precursor to26

disinfection byproducts (DBPs) during water treatment, substances which have negative human health implications (Li et al.,27

2014). Understanding the dynamics of DOM in lakes is essential for water quality management, especially as climate-driven28

processes are expected to increasingly influence DOM in freshwater systems (Creed et al., 2018). Moreover, the occurrence29

of extreme events such as eutrophication, algal blooms and hypoxic events, for which levels of DOM play a key role, is also30

expected to increase (Gobler, 2020). Hence, predicting DOM in lake water can improve water quality mitigation protocols and31

support adaptive water use management strategies.32

Predicting DOM dynamics remains a challenge as it results from complex interactions in the environment, including multiple33

biogeochemical processes (Weyhenmeyer and Karlsson, 2009). Modelling tools offer an approach to simulate DOM in lake34

water. Process-based models have traditionally been used to better understand lake water quality, including DOM dynamics35

(McCullough et al., 2018). However, they require a large number of model parameters and governing equations, i.e., extensive36

parameterisation, to represent these dynamics. On the other hand, machine learning (ML) models do not rely on parameter37

calibration but instead incorporate large amounts of driver variables and data. This functionality can leverage the increasing38

amount of data being collected through satellite imagery, high frequency monitoring, and global climate and environmental39

modelling initiatives (Müller et al., 2024; Toming et al., 2020; Asadollah et al., 2025).40

ML models have emerged as potential tools for modelling complex environmental variables, including those related to41

hydrology (Nearing et al., 2021) and water quality (Hanson et al., 2020). They have been recently employed in environmental42

applications, showing good predictive capabilities due to their ability to handle high-dimensional data, and capture nonlinear43

relationships (Li et al., 2016), for a diversity of parameters in lakes such as chlorophyll-a (Chen et al., 2024), turbidity (Zhang44

et al., 2021), and nutrient concentrations (e.g., phosphorus) (Hanson et al., 2020), suggesting potential for predicting DOM45

(Herzsprung et al., 2020).46

This study introduces a workflow for predicting fluorescent DOM (fDOM) (a proxy for DOM) in lakes using a suite of47

supervised ML models driven by potential drivers either extracted from reanalysis data (climate and soil variables) or outputs48

from lake and catchment process-based models. The workflow was tested in two different study sites, one in Ireland and one49

in Spain, that represent contrasting settings for both the potential drivers and DOM dynamics. Model performance was first50

evaluated at each site using the most influential drivers to predict fDOM. Subsequently, a second simulation was performed51

using a subset of these drivers, limited to those sourced from reanalysis data, to evaluate the predictive capacity of the model in52

the context of higher scalability. The key research questions guiding this study were: (1) What are the most influential drivers of53

fDOM predictions, and how does their importance vary between two contrasting sites? (2) How accurately can supervised ML54

approaches predict lake fDOM driven by reanalysis-based data, and hydrologic and lake modelling outputs? (3) How easily55

can the workflow be reproduced and scaled to other sites?56
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Figure 1. Two contrasting freshwater ecosystems. Lough Feeagh (Ireland) and Sau Reservoir (Spain) serve as contrasting sites for eval-

uating the predictive modelling of fDOM in lakes due to their distinct environmental and climatic conditions. The former is a humic

and oligotrophic lake, dominated by a natural peatland catchment, and temperate oceanic climate, resulting in relatively higher lev-

els of DOC during the whole year with a regular seasonality; the latter is an eutrophic heavily controlled reservoir, dominated by a

highly anthropized catchment (urban wastewater effluents, intensive farming, agriculture), and a Mediterranean climate, resulting in av-

erage in lower levels of DOC but with a much greater seasonal variation. Land cover data source: CORINE Land Cover 2018 https:

//doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac

2 Materials and methods57

2.1 Study sites58

Lough Feeagh and Sau Reservoir are located in western Ireland (53° 56’ N, 9° 35’ W) and northeastern Spain (41° 58’ N, 2°59

23’ E), respectively (Fig. 1). The study sites have contrasting attributes. Feeagh (depth of 46.8 m and area of 3.95 km²) is a60

monomictic and oligotrophic lake surrounded by a relatively undisturbed landscape, while Sau (depth of 70 m and area of 5.861

km²) is an eutrophic system subjected to human activities and water abstraction. Feeagh has two primary inflows, the Black and62

the Glenamong rivers, while Sau has one, the Ter river. The catchment of Feeagh is relatively small (84 km²), with mid-range63

hills, and dominated by peatland. The catchment of Sau, in contrast, is larger (1525 km²), with a varying topography and land64

uses (Fig.1; Fig. A1).65

The dynamics of DOM in both study sites have been previously explored in Ryder et al. (2014) which identified soil temper-66

ature, river discharge and drought as important drivers in Feeagh, and in Marcé et al. (2021), which showed human activities67

were significant drivers in Sau. DOM in Feeagh is mostly driven by natural processes, while diffuse and point sources of or-68
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ganic matter and nutrients, e.g., wastewater effluents and agricultural runoff, are also important for Sau. Catchment hydrology69

is key for carbon transport into both study sites, and contributes to a distinct seasonality related to climate. Feeagh has a wet70

temperate climate, with cooler air temperatures and higher rainfall levels that occur on more than 75% of days in the year. The71

variability of carbon inputs reflects the sensitivity of a peatland-dominated landscape, which exacerbates climate-induced car-72

bon release from the catchment into the lake. In contrast, Sau has a Mediterranean climate, characterised by hot, dry summers73

and mild, wet winters, dictating water availability, thermal stratification, and organic matter fluxes in the reservoir.74

2.2 Prediction workflow75

A five-step workflow was implemented to predict fDOM at each site (Fig. 2). First, all potential drivers for fDOM were76

collected as input data for each site. Second, the ML models were trained using 85% of the available time series data (1978 out77

of 2328 fDOM measurements for Feeagh, and 653 out of 769 for Sau), while the remaining 15% (350 out of 2328 for Feeagh,78

and 116 out of 769 for Sau) future time series (hold-out period) was reserved for independent testing to evaluate performance79

and potential overfitting by comparing with the training period.80

Third, a set of drivers was selected for each site based on the variable importance extracted from the ML models, retaining81

only those drivers that exceeded an importance threshold of 5%. A partial dependence and SHAP analyses were applied to82

these specific drivers to evaluate how fDOM predictions at each site varied as a function of individually changing the selected83

input variables. Fourth, we ran simulations using (i) the drivers with a higher variable importance (> 5%), and (ii) using only84

drivers extracted from globally accessible reanalysis data, and assessed model performance using coefficient of determination85

(R²), Kling–Gupta efficiency (KGE), and root mean square error (RMSE).86

The same workflow was applied to both sites using the same data sources, allowing for comparison. Following the FAIR87

principles, all data and workflow scripts are available and fully reproducible in the following repository: https://github.com/88

danielmerbet/driver_attribution_fdom. Large language models were used in this study to optimise the codes, improve the final89

plots and, for basic proofreading of the text.90

2.3 Data91

2.3.1 Target variable (fDOM)92

Daily surface fDOM values were computed from high-frequency data (2 minutes resolution) for both sites, for Feeagh measured93

at 0.9 m depth, and for Sau an average value was calculated between the depths of 0-5 m. fDOM data were expressed as quinine94

sulfate units (QSU) for the analysis. In Feeagh, the data spanned from 1st of May 2012 to 19th of November 2019 (n = 2328),95

and for Sau from 4th of February 2017 to 2nd of March 2020 (n = 769), with some gaps. All the other data (i.e., driver data)96

used in the workflow of this study were constrained by the availability of fDOM data.97

In Feeagh, fDOM data were collected using a Seapoint UV fluorometer sensor (Seapoint Sensors Inc., Exeter, NH, USA)98

and water temperature data were measured using a Hach Environmental Hydrolab Data Sonde X5 (UK OTT Hydrometry Ltd).99

In Sau, fDOM and water temperature data were collected using a fDOM Digital Smart Sensor and Multiparameter Sonde100
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Figure 2. Workflow implemented for obtaining fDOM predictions in both study sites. The process consists of five steps: (1) Collecting input

data representing all potential drivers of fDOM, including climate data (yellow) and soil data (green) from globally accessible reanalysis

data, hydrologic model outputs (light blue), lake model outputs (blue), and other sources (light magenta). (2) Training the ML models by

splitting the training (85% of the time series) and testing (15% of the time series) periods. (3) Selecting key drivers by assessing their

contribution to node purity or gain contribution in the ML models, only drivers exceeding 5% of variable importance were retained for partial

dependence analyses. (4) Running two simulations: using only the most influential selected drivers, and from these using only globally

accessible reanalysis drivers and Julian day for ease and scalable implementation. (5) Analyzing and comparing the modelling results.

(YSI EXO sonde, Yellow Springs, OH, USA), respectively. Raw fDOM data were water temperature-corrected in both sites101

based on relationships established for each sensor (Ryder et al., 2012). Details about the fDOM corrections can be found in102

Supplementary Information and Figures A2 and A3.103

2.3.2 Driver data104

The input data for the workflow comprised 24 driving variables at each site. These were grouped into five categories: (1)105

meteorology, (2) soil, (3) process-based hydrological modelling, (4) process-based lake modelling and (5) Julian day. All input106

data variables, including their respective units and source, are displayed in Step 1 of Figure 2. Daily values of meteorology107

and soil variables were extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5108

(ERA5) dataset (Hersbach et al., Accessed on July 2025). This gridded dataset provides (pseudo) observations at a global109

scale with a spatial resolution of 0.25°. Eight meteorological variables (traditionally employed in water modelling studies) and110

soil temperature and soil moisture data at four depths (0-7 cm, 7-28 cm, 28-100 cm, and 100-255 cm) were extracted for the111

grid-cell which contained each water body.112
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Daily values of inflow discharge and inflow DOC concentration into each site were generated using the Generalised Water-113

shed Loading Functions Model (GWLF) coupled with a DOC module (GWLF-DOC). The GWLF-DOC version and calibration114

strategy applied are described in Paíz et al. (2025a). Calibration results can be found in the Supplementary Information. Daily115

values of five key lake variables (see Step 1, Fig. 2) were obtained from the General Lake Model (GLM) (Hipsey et al., 2019)116

run for both sites. Calibration strategies applied are described in Mercado-Bettín et al. (2021); Paíz et al. (2025b). Calibration117

results can be found in the Appendix. In addition, the cosine (to avoid an abrupt numerical change at every start of a year) of118

Julian day was included in the driver data inputs, given that seasonality is expected to influence DOM predictions.119

2.4 Supervised Machine Learning120

Supervised ML models have advantages and limitations for time series prediction. In addition to capturing non-linear relation-121

ships typical in aquatic systems and water quality predictions (Hollister et al., 2016; Regier et al., 2023), they provide flexibility122

to assess multiple drivers, temporal indicators, and variables external to the system (Qi, 2012; Rodriguez-Galiano et al., 2015).123

ML models do not require a fixed set of drivers to predict fDOM effectively, unlike process-based models, which typically124

rely on predefined inputs. Additionally, there is no need for parameter calibration but hyperparameter tuning, simplifying the125

modelling process. While some may argue that the lack of parameterization suggests a "black box" approach, supervised ML126

can provide insights into the potential drivers for predicting a target variable (Biau and Scornet, 2016).127

However, due to the intrinsic autocorrelation in time series, e.g., when predicting DOM, these models tend to overfit when128

using out-of-bag samples during training. To overcome this issue, robust validation and training are required. Here, we used129

a hold-out period for validation during testing at both study sites. Prior to selecting this method, we compared it with two130

alternative validation methods using random forest: (1) 5-fold cross-validation and (2) rolling window cross-validation with131

a two-year training period, a one-year testing period, and a window shift every 90 days (see supplementary Figure A4). The132

comparison revealed that Feeagh exhibited more consistent model performance, with less overfitting between training and133

testing phases, across the different validation methods, compared to Sau. This difference is likely attributable to the limited134

amount of available data at Sau.135

Seven ML and statistical models were used to predict fDOM dynamics: Random Forest (RF) (Breiman, 2001), eXtreme136

Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), Light Gradient Boosting (LGB) (Ke et al., 2017), CatBoost (CTB)137

(Prokhorenkova et al., 2019), k-Nearest Neighbors (KNN) (Fix, 1985), Support Vector Regression (SVR) (Cortes and Vapnik,138

1995) and linear model. RF, XFBoost, LGB and CTB can directly provide the importance of the features to predict the target139

variable, hence, only these four models were used to select the most important drivers to predict fDOM. For this, the increase140

in node purity was used for RF, and the gain contribution of each feature to the model for XGB, LGB and CTB. Further,141

hyperparameter tuning was implemented in all ML models to improve accuracy and generalisation. To extract the importance142

of the drivers, implement hyperparameter tuning, and predict fDOM, multiple R packages were used: caret, randomForest,143

xgboost, lightgbm, catboost, kknn and kernlab.144
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2.5 Partial dependance plots and SHAP analysis145

To assess the influence of the most important drivers, we included partial dependence and SHapley Additive exPlanations146

(SHAP) plots, using the Random Forest and CatBoost models, respectively. The partial dependence plots illustrate the indi-147

vidual influence of each driver on fDOM predictions by varying the driver’s values across its entire range while keeping all148

other drivers constant in their average value. The SHAP plots measures how much a single driver (feature) value contributes149

to moving the prediction away from the average value, the Y-axis has the input drivers ranked by overall importance (from top150

to bottom), X-axis has the SHAP value representing the impact on model output for a single prediction, each point is a single151

data instance and the color reflects the driver value (blue = low, red = high). To implement partial dependence plots and SHAP152

analysis, the pdp package in R and the shap package in Python were used.153

3 Results154

3.1 Driver attribution155

The most influential predictors of fDOM at each site were identified from all 24 potential drivers based on the 5% threshold156

of the variable importance extracted from the RF, XGB, LGB and CTB models. This resulted in eight influential drivers being157

identified for Feeagh and five for Sau (Figure 3), four of which were common to both sites.158

The variables for the deepest soil layer were relevant for both study sites. Soil temperature and soil moisture at 100-255159

cm, were the most influential drivers for Feeagh. Similarly, for Sau, the deepest soil moisture driver was remarkably the most160

influential, while the deepest soil temperature was still important but less so than in Feeagh. Another key driver that was shared161

between Feeagh and Sau was Julian day. Lake volume was only important for Sau, while solar radiation, the amount of carbon162

entering the water body (indicated by the DOC inflow concentration) and both soil moisture and temperature at 28-100 cm163

were only influential for Feeagh.164

3.2 Partial dependency on selected drivers165

Figure 4 introduces partial dependence plots and SHAP beeswarm plots for the most influential drivers selected in Figure 3,166

enabling the assessment of the individual effect of each driver on fDOM predictions.167

Seasonal patterns in fDOM concentrations were observed in both Feeagh and Sau, with higher values in winter and lower168

in summer, as reflected in the influence of Julian day. However, the key predictors and their effects differed substantially,169

shaped by contrasting catchment and climate characteristics. In Feeagh, where precipitation is relatively high and sustained170

year-round, deep soil temperature (100–255 cm) was the dominant and potentially limiting predictor, with fDOM increasing171

with temperature up to a threshold, beyond which a drop in the water table may counteract the effect. In addition, Feeagh172

showed minimal influence of mid-depth soil temperature (28-100 cm) and solar radiation on fDOM. This temperature-fDOM173

relationship was less relevant in Sau, where deep soil temperature (100-255 cm) had less explanatory power. Instead, fDOM174
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Figure 3. Selecting influential drivers to predict fDOM. 24 drivers from various sources were used to train the four ML models that directly

provide feature importance: Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGB), CatBoost (CTB).

These included 8 climate variables, 8 soil variables, 2 outputs from hydrologic and water quality modelling, 5 outputs from lake modelling,

and the cosine of the Julian day. The most relevant drivers were identified based on their contribution to node purity or gain contribution,

with only those exceeding a 5% variable importance being selected. For both case studies, the key drivers were soil temperature at 100–255

cm, soil moisture at 28–100 cm and 100–255 cm, and Julian day. Additionally, lake surface water temperature, inflow DOC concentration,

and soil temperature at 28–100 cm were selected for Feeagh, while lake volume was selected for Sau.

dynamics in Sau, were driven primarily by soil moisture at both 28-100 cm and 100-255 cm depths, potentially depicting a175

limiting condition by water stress.176

Water availability also shaped the role of other predictors differently across the two sites. For instance, surface water tem-177

perature in Feeagh showed a clear threshold behaviour, with fDOM increasing relatively linearly beyond 6.5ºC and stabilizing178

around 7.5ºC, while in Sau, water volume acted as a surrogate for fDOM production. Lower volumes corresponded to reduced179

fDOM values, which increase and stabilize beyond 146 hm³. Interestingly, inflow DOC concentration influences Feeagh more180

than Sau, likely due to differences in hydroclimatological processes governing these relationships. These differences highlight181

how catchment water availability fundamentally alters the relative importance and behavior of fDOM drivers.182
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Figure 4. Driver influence in predicting fDOM. It presents the partial dependence plots for (a.) Lough Feeagh and (b.) Sau Reservoir based

on the random forest (RF) model, and SHAP beeswarm plots for (c.) Lough Feeagh and (d.) Sau Reservoir based on the CatBoost (CTB)

model. In Feeagh, soil temperature at the deepest layer strongly influenced fDOM predictions, while in Sau, soil moisture at the deepest layer

plays a significant role due to water availability constraints. In both cases, increases in these key drivers correspond to increases in fDOM. In

both study sites, Julian day was a relevant factor, although the influence of seasonality on fDOM predictions was more evident in Feeagh.

3.3 Predicting DOM using Supervised Machine Learning183

Table 1 presents a comparative evaluation of the seven ML and statistical models employed in this study. In Lough Feeagh,184

CatBoost (CTB) demonstrated the best overall performance with the highest R² (0.51) and KGE (0.69), and a relatively low185

RMSE (8.29). Similarly, in Sau Reservoir, CTB again has the highest R² (0.54) and KGE (0.66), and one of the lowest RMSE186

(7.11). While some models like RF and LM showed moderate performance at Feeagh, others such as SVR and XGB performed187

poorly in Sau, with SVR even having a negative KGE (-0.82), suggesting significant model bias. Overall, CatBoost (CTB)188

consistently outperformed all other models across both sites, supporting its selection for fDOM prediction using the selected189

environmental drivers.190

The results during the training phase (supplementary Table A1) confirm that most ML models, especially XGB, RF, and191

KNN, had a high performance during training. However, the performance dropped in some models (e.g., XGB at Sau Reser-192
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Table 1. Model comparison to predict fDOM using all selected drivers in both study sites. Statistic metrics (R², RMSE and KGE) were

calculated to compare the performance of the models during the testing (hold-out) period. The table support the selection of the best model

for each study site between Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGB), CatBoost (CTB),

k-Nearest Neighbors (KNN), Support Vector Regression (SVR) and linear model. Overall, the best performance was found in the CatBoost

model. Supplementary Table A1 contains the results during the training period for comparison.

Lough Feeagh Sau Reservoir

Model/Metric RF XGB LGB CTB LM KNN SVR RF XGB LGB CTB LM KNN SVR

R2 0.37 0.41 0.47 0.51 0.40 0.36 0.34 0.53 0.11 0.45 0.54 0.45 0.33 0.63

RMSE 9.04 9.27 8.22 8.29 8.52 9.85 10.54 8.24 12.4 9.98 7.11 6.58 9.23 17.05

KGE 0.55 0.52 0.63 0.69 0.55 0.12 0.30 0.55 0.21 0.33 0.66 0.31 0.43 -0.82

voir) during the testing phases, underscoring the importance of evaluating models on independent test data to assess general-193

isability and overfitting. CatBoost (CTB), again, presented a more stable performance, showing slightly lower training metrics194

(especially in Feeagh) compared with the other ML models and better generalisation when comparing with the metrics during195

testing, supporting its suitability for prediction.196

3.3.1 Model prediction using all drivers compared to a reduced set197

Figure 5 presents the fDOM prediction performance of the CatBoost model (best ML model overall) for Feeagh and Sau, using198

different input configurations. The models were trained on 85% of the time series (blue points) and tested on the remaining 15%199

using a hold-out approach (violet and green points). Two scenarios were compared: one using the most influential drivers (8200

for Feeagh, 5 for Sau), and a second using only a reduced subset of reanalysis-based and easily accessible drivers, specifically201

soil temperature, soil moisture, and Julian day.202

For both lakes, the reduced driver models showed only a modest decline in predictive performance during the testing period.203

For example, in Feeagh, the model using all influential drivers achieved R² = 0.51 and KGE = 0.69, while the reduced model204

still attained R² = 0.48 and KGE = 0.67. Similarly, in Sau, the full model scored R² = 0.54 and KGE = 0.66, whereas the reduced205

model maintained a comparable R² = 0.50 and KGE = 0.65. Although the training performance was higher in Sau compared206

with the testing performance, indicating potential overfitting, the CatBoost model provided informative and generalisable207

predictions in both study sites.208
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Figure 5. fDOM predictions obtained from the CatBoost model using different driver sets. Here the training (blue, 85% of the time series)

and testing (violet or green, 15% of the time series) periods are shown. The training and testing periods are completely independent and

follow the hold-out period method, and model performance metrics (R², KGE, and RMSE) are calculated for both periods. a. Training and

testing results for Feeagh: using the 8 most influential drivers (violet) and using only easily accessible and reanalysis data (soil temperature,

soil moisture and Julian day) from those influential drivers (green); b. Training and testing results for Sau: using the 5 most influential drivers

(violet) and using only easily accessible and reanalysis data (soil temperature, soil moisture and Julian day) from those influential drivers

(green).
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4 Discussion209

4.1 Driver attribution in contrasting conditions210

The most influential drivers for fDOM identified for each site suggest potential carbon-producing processes that drive DOM211

dynamics in each lake. Interestingly, the most influential drivers were related to temperature and moisture at the deepest212

soil layers, indicating a common relevance for carbon inputs from terrestrial processes in both catchments. The Irish site is213

dominated by peat, a highly organic soil known to be sensitive to temperature-induced carbon release, especially as temperature214

levels rise. This is supported by the relation of soil temperatures with fDOM at this site (Ryder et al., 2014). In contrast, water215

availability constraints are much more pronounced in drier soils such as those of the Spanish site, as is validated by the partial216

dependence relationship of soil moisture with fDOM (Šimek et al., 2011). A plausible explanation is that, in Sau, increased soil217

moisture could boost biological activity, enhancing fDOM production, while in Feeagh, soil moisture showed a bell-shaped218

relationship, suggesting a more nuanced interplay between oxygen availability and microbial processes (Fig 4).219

DOM dynamics are driven by physical and biogeochemical processes in the soil that are sensitive to changes in temperature220

and moisture, e.g., microbial processes that break down organic matter (Kalbitz et al., 2000). The fact that the deepest layers221

of the soil were more important in the model for both sites than those shallower could be linked to potential carbon attenuation222

processes, such as soil organic matter decomposition and retention in the soil, including sorption processes (Dubeux et al.,223

2024; Rumpel and Kögel-Knabner, 2011). In any case, the production of carbon in the catchment that eventually ends up in224

the lake requires concurrent downstream transport, governed by rainfall events.225

Climate and topography (see supplementary Fig. A1) dictate the flushing of accumulated DOM during rainfall events, but226

also can influence sustained baseflow DOM contributions. In Feeagh, carbon exports from the catchment have been observed227

regularly throughout the entire annual cycle, with a seasonal variability (Doyle et al., 2019). In contrast, DOM in Sau accu-228

mulates primarily during the summer and is mainly flushed out via surface runoff during the wetter winter months (Marcé229

et al., 2021). These patterns are supported by the relationship between inflow DOC concentration and fDOM at both sites (Fig.230

4), which shows a slight increase in predicted fDOM under lower carbon input conditions. Thus, inflow DOC concentration231

could reflect discharge pulses and dilution effects driven by precipitation (Jennings et al., 2020), following the characteristic232

seasonality of each site.233

Seasonality plays a crucial role in fDOM predictions, as evidenced by the relationship of the Julian day driver with DOM234

dynamics at both sites (Fig. 4). At the Irish site, DOM seasonality is primarily shaped by natural environmental processes,235

whereas in the Spanish site, human influence plays a much greater role. This distinction helps explain why surface lake water236

temperature and solar radiation, two variables typically linked to strong seasonal patterns, were important only for Feeagh,237

while reservoir volume was significant only for Sau (Fig. 3 and 4). Volume and soil variables produce a similar effect on fDOM238

as Julian day at Sau, given that higher volumes closer to the winter season can lead to higher fDOM values. Incorporating Julian239

day into the workflow offers a simple yet effective way to represent seasonality, potentially replacing seasonal variables (e.g.,240

air temperature) (see the correlation matrix of all drivers in supplementary Fig. A5). This proves that the use of machine241

learning approaches opens up opportunities to assess diverse drivers under contrasting conditions.242
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Improving the accuracy of DOM predictions in lakes can enhance efforts to reduce further water quality deterioration and243

support lake management. This study demonstrated a feasible approach for simulating daily fDOM in two contrasting lakes,244

especially when using the Catboost model given its good generalisability. The performance metrics (Fig. 5) obtained at each245

site for the different model simulations lie in a similar or better range than comparable studies that modelled carbon dynamics246

in lakes (e.g., Harkort and Duan, 2023; Liu et al., 2021; Zhang et al., 2021, 2024). It is important to be aware, however,247

that previous studies are based on different frameworks. These include variations in the machine learning algorithms used,248

the target variable for quantifying carbon dynamics, with most studies having focused on DOC, whereas fDOM is the target249

variable here, as well as differences in input driver data and site-specific conditions.250

4.2 Scalability251

Our results suggest high potential for scalability, as predictive performance remained consistent across different driver sets252

even for two contrasting study sites, and performed good using only reanalysis data that is globally available and Julian day253

(Fig. 5). Importantly, this consistency remained even when specific highly-influential drivers were removed from the driver set.254

For instance, in Sau, where human intervention makes future reservoir outflows difficult to predict, avoiding reliance on water255

volume as a driver proved advantageous, as its removal from the set of drivers maintained model performance, despite being256

identified as an influential variable. It is likely that soil moisture at the deepest layer (see supplementary Fig. A5), a variable257

that showed a behavior similar to that of volume (Fig. 4), may have contributed to maintain the predictive performance when258

volume is removed from the driver set. In addition, for Feeagh, the predictive capacity was also maintained when using only259

meteorological and soil drivers. This demonstrates that a large driver dataset, such as the 24-variable set used in this study,260

would not be necessary to produce an accurate prediction when modelling fDOM using supervised machine learning.261

4.3 Limitations and future research262

Our approach offers the opportunity to validate and deploy a workflow capable of delivering daily DOM predictions in both263

undisturbed and anthropized sites, even when only limited data on input drivers are available, while at the same time providing264

insights into the dominant drivers. However, a site-specific model validation, including identification of appropriate training265

and testing periods, hyperparameter tuning for each specific study site and assessment of overfitting is essential. In terms of266

driver attribution, it is of note that the relationships identified using machine learning may not always be related at a process267

level (Sullivan, 2022). In our case, however, many of these same drivers had already been identified for river DOC levels in268

the Feeagh catchment (e.g., Doyle et al., 2019; Ryder et al., 2014). While the workflow can be easily replicated, fDOM data or269

data for another proxy for DOM are required. It is of note that such proxies of DOM are increasingly being incorporated into270

water quality monitoring programmes, an aspect that is convenient for testing workflows such as the one described (Downing271

et al., 2012).272

The workflow presented here is not recommended for climate change studies, as the drivers of DOM variability can signifi-273

cantly change under entirely new and unrecorded climatic conditions. Consequently, supervised machine learning may fail to274

capture the signal from the time series. Moreover, the method’s reliance on historical patterns limits its ability to extrapolate275
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beyond the range of observed environmental conditions (Mi et al., 2024). Future research could expand the application of276

this framework to a broader range of lakes, integrate additional drivers such as remote sensing-derived terrestrial and aquatic277

quantity and quality parameters (Duan et al., 2025).278

5 Conclusions279

By identifying the key environmental drivers of lake dissolved organic matter (DOM) dynamics, this study presents an open,280

robust and scalable workflow for daily DOM prediction using different ML algorithms. Validated in two hydroclimatic con-281

trasting sites in Ireland (Lough Feeagh) and Spain (Sau Reservoir), the approach revealed that deep soil temperature is the282

dominant driver in the peat-rich, temperate Irish catchment, whereas deep soil moisture plays a more critical role in the drier,283

Mediterranean setting of the Spanish site. These primary drivers are further shaped by hydrological processes, seasonal vari-284

ability, and human activities.285

The workflow showed good predictive performance even when based solely on globally available reanalysis data, supporting286

its potential applicability to other freshwater systems worldwide. In addition to expanding the set of approaches available for287

lake DOM prediction, the workflow offers transparent driver attribution, contributing valuable insights into the natural and288

anthropogenic processes governing carbon cycling in aquatic ecosystems.289

Code and data availability. All data and codes used in this study are available in this repository: https://github.com/danielmerbet/driver_290

attribution_fdom. A full and detailed README file and DOI link will be provided after the review process.291

Appendix A: Supplementary information292

Topography of Feeagh and Sau catchments293

Figure A1 contains the elevation range for the two contrasting freshwater ecosystems: Lough Feeagh and Sau Reservoir.294
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Figure A1. Elevation range for the two contrasting freshwater ecosystems: Lough Feeagh and Sau Reservoir.
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Figure A2. fDOM relation with temperature with a sample of 300 QSU provided by the manufacturer of the fDOM sensor in Sau.

fDOM correction for both study sites295

In Feeagh, fDOM data was corrected for the temperature quenching effect in previous scientific studies (Doyle et al., 2019;296

Ryder et al., 2012).297

In Sau, the fDOM data were corrected for the temperature quenching effect, following a test provided by the fDOM sensor298

manufacturer, where they use a 300 QSU sample of water and change the temperature to get the effect of temperature in the299

measurement,results can be found in Figure A2.300
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Figure A3. Uncorrected (blue) and corrected (red) fDOM data for Sau.

Then, fDOM data in Sau was corrected following this linear regression and surface water temperature on the lake. Figure301

A3 presents the uncorrected values in blue and corrected values in red (8 negative values were removed from the total sample302

of 777)303
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Hydrologic Modelling304

Daily time series of inflow discharge and inflow DOC concentration into each site were generated using the Generalised Wa-305

tershed Loading Functions Model (GWLF) coupled with a DOC module (GWLF-DOC). This model simulates catchment306

hydrology (water balance and water distribution among the different hydrological pathways) and DOC dynamics (DOC pro-307

duction and DOC washout) in a daily time step. The model input requirements include daily time series of two meteorological308

variables: total precipitation and air temperature; as well as land cover, land use, and soil characterisation.309

GWLF-DOC was applied to Feeagh based on previous model applications in the Irish catchment (Paíz et al., 2025a), for310

which measured discharge data were used to calibrate and validate the hydrology (2013-2018 and 2019-2023, respectively),311

and DOC concentration data were used to calibrate the DOC module (2016-2023). In Sau, observed inflow discharge data312

were used to calibrate and validate the hydrology (2008-2011 and 2011-2024, respectively), and measured DOC concentration313

data were used to calibrate and validate the DOC module (2008-2014 and 2016-2018, respectively) using the same calibration314

strategy than for the Irish site. Calibration results were satisfactory for both hydrology (Feeagh: R² = 0.64 and NSE = 0.64;315

Sau: R² = 0.66 and NSE = 0.66;) and DOC (Feeagh: R² = 0.45 and NSE = 0.47; Sau: R² = 0.44 and NSE = 0.40). Similarly,316

validation results were satisfactory for both hydrology (Feeagh: R² = 0.60 and NSE = 0.60; Sau: R² = 0.42 and NSE = 0.42)317

and DOC in the case of Sau (R² = 0.50 and NSE = 0.46).318

Lake Modelling319

Daily time series of 5 key lake variables (see Fig. 2) were obtained from the General Lake Model (GLM) run for each site. GLM320

is an open-source, one-dimensional hydrodynamic model designed to simulate the vertical stratification and water balance of321

lakes and reservoirs. It calculates vertical profiles of temperature, and density by accounting for factors such as inflows and322

outflows, mixing processes, and surface heating and cooling (Hipsey et al., 2019). GLM was calibrated and validated by323

evaluating the fit of modelled water temperature against measured water temperature profile data in Feeagh (2010-2015 and324

2016-2017, respectively) and Sau (1997-2007 and 2008-2018, respectively). The calibration strategy was based on previous325

lake modelling deployments at each site (Mercado-Bettín et al., 2021; Paíz et al., 2025a). Model performance was satisfactory326

for both sites.327

Comparison of validation methods using Random Forest328

To pick the most suitable validation method, we implemented hold-out period method used in the main manuscript, k-fold329

cross-validation method using k=5, and rolling window cross-validation using training size of two year, testing size of one330

year, and a shift window every 90 days. Results are shown in Figure A4.331
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Figure A4. Comparison of validation methods using random forest for both study sites: hold-out period method used in the main manuscript,

k-fold cross-validation method using k=5, and rolling window cross-validation using training size of two year, testing size of one year, and a

shift window every 90 days. For this method, in the case of Sau Reservoir it is not possible to get a clear analysis due to the limited data.
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Correlation matrix of all drivers and fDOM for Feeagh and Sau.332

Correlation matrix of all drivers is presented in Figure A5.

Figure A5. Correlation matrix of all drivers and fDOM for Feeagh and Sau.

333
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Model comparison during training to predict fDOM using all selected drivers in both study sites334

Resulting metrics during training period for all models are shown in Table A1.335

Table A1. Model comparison during training to predict fDOM using all selected drivers in both study sites. Statistic metrics (R², RMSE

and KGE) were calculated to compare the performance of the models Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light

Gradient Boosting (LGB), Catboosting (CTB), k-Nearest Neighbors (KNN), Support Vector Regression (SVR) and linear model during

training period.

Lough Feeagh Sau Reservoir

Model/Metric RF XGB LGB CTB LM KNN SVR RF XGB LGB CTB LM KNN SVR

R2 0.99 1.00 0.88 0.71 0.22 0.99 0.89 0.99 1.00 0.98 0.99 0.67 0.98 0.98

RMSE 0.97 0.40 3.35 5.19 7.87 0.92 2.95 0.81 0.11 1.48 0.72 5.43 1.17 1.38

KGE 0.95 0.99 0.79 0.59 0.25 0.98 0.90 0.97 1.00 0.97 0.99 0.75 0.99 0.98
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