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Abstract. The year 2022 was extremely warm and dry in Europe, resulting in a severe hydrological drought. In Switzerland,

part of Europe’s water tower, streamflow in glacier-fed rivers could have been even more reduced if the situation had not

led simultaneously to extreme glacier melt. Here we analyze the role of glaciers during the 2022 drought for 88 glacierized

catchments by combining streamflow and meteorological observations with estimations of snow water equivalent, actual evap-

otranspiration and daily glacier storage changes. We also compared the year 2022 to earlier exceptionally warm and dry years5

(1921, 1928, 1947, 1998, 2003 and 2018) to assess if the ongoing glacier retreat has already caused a declining meltwater

supply in such extreme conditions. Results show that 60-80% of the total glacier melt in 2022 came from net mass loss (imbal-

anced melt). During summer, the increased melt could completely offset the precipitation and snowmelt deficits for catchments

with around 15% glacierization. Further downstream, the extra melt in summer alleviated water input deficits by up to 5% at

Basel (Rhine) and 70% at Porte du Scex (Rhone). However, compared to other extreme years in the past, total melt volume10

has been noticeably declining due to a strong reduction in glacier area – despite more extreme melt rates per unit glacier

area. In contrast, the relative contribution of glacier melt to streamflow stayed constant or even increased for some months,

suggesting that glacier melt remains important during droughts. Comparing 2022 to 2003-the most comparable recent extreme

summer- shows a declining glacier meltwater supply for 55% of the catchments during summer and 36% during July, despite

more intense melt, with the difference in summer/July reflecting the extremeness of the melt conditions, counterbalancing the15

reduction in glacier area. This declining meltwater supply raises concerns for future drought situations.

1 Introduction

The year 2022 was characterized by extreme weather events, such as floods, droughts and heatwaves, all around the world.

At a global level, the year was the fifth warmest year on record since 1880 (WMO, 2023). Throughout Europe, the summer

of 2022 was the hottest since 1950 (Copernicus, 2023). Although the following years, 2023 and 2024, broke some of the20

temperature records, 2022 is still characterized as most recent extreme year in (central) Europe in terms of summer temperature

in combination with a precipitation deficit. During 2022, a persistent high-pressure anomaly, centered over France, caused a
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spatially varying intensity in lack of precipitation, a series of heatwaves occurring from May until August, and drying out

soils over Europe (Faranda et al., 2023; Tripathy and Mishra, 2023). The compound drought and heatwave hit particularly

hard in Northern Italy, for which Tripathy and Mishra (2023) found a return period of 354 years. In combination with a25

large snow deficit building up during the preceding winter (Avanzi et al., 2024), the Po river in Italy experienced its worst

streamflow drought of the past two centuries (Montanari et al., 2023). At the same time, the extremely warm summer of 2022,

in combination with low snowfall in winter and several Saharan dust events darkening the snow, led to record-breaking glacier

volume losses in the European Alps (Réveillet et al., 2022; Cremona et al., 2023; Voordendag et al., 2023).

Meteorological droughts, such as in 2022, propagate through the hydrological cycle to become a hydrological drought, with30

considerably less discharge in streams and rivers and low lake and groundwater levels (Van Loon, 2015; Van Lanen et al.,

2016). In Switzerland, the drought of 2022 resulted in problems with water supply, restrictions on water use for households

and agriculture, reduction in energy production from hydropower plants, restriction of navigation on the river Rhine and some

lakes due to low water levels, and fish mortality due to high water temperatures (BAFU, 2023). During drought conditions,

catchment storage elements are important to buffer and alleviate the propagation of meteorological droughts to hydrological35

droughts (Van Lanen et al., 2013; Van Loon and Laaha, 2015; Bruno et al., 2022). In the case of the extreme year 2022, in which

snow melted away early in the year and groundwater levels were affected due to the prolonged duration of the drought, the

relevance of glaciers as a catchment storage increased, providing this buffering role during summer (Pritchard, 2019; van Tiel

et al., 2020; Ultee et al., 2022; McCarthy et al., 2022a). Even more so, glacier melt has the capacity to counterbalance some of

the precipitation-driven water deficits during heatwaves by melting more glacial ice than normally (Van Tiel et al., 2021). The40

combination of above-average glacier melt and lower streamflow contributions from other sources (rain and snow) increases

the relative contribution of glaciers to streamflow during concurrent drought and heatwaves. This makes glaciers, despite their

relatively small size at the basin-scale, important for mitigating droughts, even far downstream (Huss, 2011; Koboltschnig and

Schöner, 2011; Jost et al., 2012; van Tiel et al., 2023).

While the extra glacier melt during drought and concurrent heatwaves alleviates streamflow drought, the situation is very45

unfavorable from the glacier perspective. During such strong mass loss years, glaciers loose a significant part of their volume

of which they do not recover from during times of unprecedented climatic warming (Vincent et al., 2017; Hugonnet et al.,

2021). With ongoing climate change, there is a tendency of extremely hot and dry years to occur more often and to become

more intense (Alizadeh et al., 2020; Mishra et al., 2020; De Luca and Donat, 2023). Vargo et al. (2020) showed that due to

anthropogenic climate change extreme annual glacier mass losses are six to ten times more likely to occur for glaciers in New50

Zealand. How glaciers respond to extreme meteorological conditions depends on several factors: 1) the intensity of (lack of)

accumulation and melt conditions, 2) their balanced state with the climate, and 3) their areal extent, which determines the

volume of melt that can be generated. All of these factors are changing over time, and need to be considered to assess how

retreating glaciers affect the buffering capacity of glacier melt during droughts.

In terms of glacier retreat and water resources, often the concept of "peak water" is analyzed, which describes how glacier55

meltwater volumes first increase due to a continuing rise in temperatures, but decline thereafter (the peak) when the volume and

area of glaciers has diminished and the increased specific mass losses cannot offset the smaller glacier area anymore (Ragettli

2

https://doi.org/10.5194/egusphere-2025-404
Preprint. Discussion started: 27 March 2025
c© Author(s) 2025. CC BY 4.0 License.

review
Kommentar zu Text
As described before already, many conditions contribute to the propagation and is it might not always be meteorological conditions alone, I would recommend adding something like "can propagate and turn into/lead to hydrological droughts"

review
Kommentar zu Text
"streams, rivers, as well as low lake and gw levels"

review
Durchstreichen

review
Kommentar zu Text
better "water"

review
Kommentar zu Text
"...the relevance of glaciers as water storages to buffer the extreme drought increased significantly."

review
Kommentar zu Text
The first part sounds a little off, I suggest highlighting the increased melt in drought years compared to "normal" conditions.

review
Kommentar zu Text
"...during simultaneous droughts and heatwaves." or "...when droughts and heatwaves occur simultaneously"

review
Kommentar zu Text
"...despite a relatively small basin fraction/share..."

review
Kommentar zu Text
Actually not sure whether the sentence is really needed, as the paragraph contains already some repetitive elements imho

review
Kommentar zu Text
Again a little off, maybe: "While additional glacier melt is favorable to mitigate hydrological/streamflow droughts, the situation is highly unfavorable for glaciers" or "...the conditions are particularly detrimental/severe/harmful to/for glaciers"

review
Kommentar zu Text
"During years of exceptional mass loss,..."

review
Kommentar zu Text
No similar numbers for the Alps?

review
Kommentar zu Text
Maybe 2 sentences



et al., 2016; Frans et al., 2018; Huss and Hock, 2018; Chesnokova et al., 2020; Rets et al., 2020; Wang et al., 2023). This

trajectory often refers to smoothed time series of glacier runoff (Huss and Hock, 2018; Carnahan et al., 2019; Rounce et al.,

2020), and therefore provides only information on the general trend but not on the changing glacier meltwater volumes during60

specific extreme years. Theoretically, glacier responses during extreme years could be different from long-term mean changes

in glacier runoff, i.e. on average glacier melt volumes could be declining, while during an extreme year a new record of released

glacier melt volume could be broken. For understanding the changing compensational role of glaciers, it is therefore imperative

to focus on extreme melt years specifically and analyze how glacier melt water supplies have been changing in such years.

In this study, we examine the hydrological drought situation and the extreme glacier melt year of 2022. We bring together65

glaciological and hydrological observations and model-based estimates of all water balance terms and aim to attribute the

causes of the extreme glacier melt and the downstream flow deficits to their hydro-meteorological drivers. We quantify how

much glacier meltwater could compensate for the lack of rain and snowmelt in the summer 2022 and how this varies spatially

and with distance from the glaciers. To examine if the balance between increasing melt rates and ongoing glacier retreat is

turning into declining glacier meltwater volumes, we put the year 2022 into a long-term perspective and compare it with other70

extreme years in the past.

2 Study area

We consider all gauged glacierized catchments in Switzerland for which reliable data could be obtained through the federal

network, the cantonal stations and private companies (Figure 1). In total, 88 catchments are included, with sizes varying from

9 km2 to 35’877 km2 (Table S1). These catchments contain 97% of the 1400 Swiss glaciers (Linsbauer et al., 2021) and are75

sub-catchments of the four main river basins Rhine, Rhone, Po and Danube (Table 1). A small part of the alpine Rhine basin

is located outside the Swiss borders and the glaciers in this part are therefore not included in the analyses (0.3% of the glacier

area of the Rhine basin). These four main river basins experience varying climates, with the Rhone and Danube basins being

drier, and the Po basin generally wetter, compared to the Rhine basin.

Switzerland has extensive water management infrastructure, including reservoirs and water transfers, leaving only 14 catch-80

ments classified as predominantly natural. Additionally, streamflow data for 8 catchments were obtained from discharge mea-

surements at water intakes with minimal influence from management infrastructure upstream. Thus, altogether, 22 catchments

represent a natural streamflow signal.

3 Hydrological, meteorological and cryospheric data

For the glacio-hydrological characterization of 2022 and the comparison with past extremes, we assembled observations and85

model-based estimates of the various water balance terms (streamflow, precipitation, evapotranspiration, snowmelt, glacier

mass balance) and temperature data for all of the catchments at a daily resolution. Since glacier mass balance is only available
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Table 1. Characteristics of the four main studied basins in Switzerland, with the number of studied sub-catchments indicated in the last

column. The Glacierization column refers to relative glacier cover for the chosen outlets in column 2, with in brackets the range for the

sub-catchments. Glacier data refer to the Swiss Glacier Inventory 2016.

Main outlet Glacier area [km2] Glacierization [%] sub-catchments [n]

Rhine Basel 291.86 0.81 [0.10-27.67] 38

Rhone Porte du Scex 585.67 11.14 [0.45-70.01] 35

Po Bellinzona 34.76 0.16 [0.16-7.12] 8

Danube Martina 48.98 2.47 [0.05-22.34] 7

¯
0 30 6015

Kilometers

Figure 1. Map of hydrological Switzerland with the 88 studied catchments and gauging stations indicated (orange outlines and dots). The

four main river basins are indicated with a background color (Rhine blue, Rhone green, Po pink and Danube yellow). Glacier outlines

(turquoise) are from the Swiss Glacier Inventory 2016. Selected outlet stations for the main river basins (stars) and gauging stations with

streamflow data starting before 1921 (black dots) are indicated.
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for a few selected glaciers and at a seasonal resolution, a method was developed to estimate this for all individual glaciers in

Switzerland at the daily scale (Section 4.1).

For streamflow, we used a combination of gauging stations from the network of the Federal Office for the Environment90

Switzerland (FOEN) (64 stations) (Höge et al., 2023) and stations from the Cantons of Bern (4), Valais (1), Glarus (1) and

Vaud (1), as well as streamflow time-series from hydropower companies (Alpiq, Kraftwerke Mattmark AG, Forces Mortrices

de Mauvoisin and Aegina SA). These time series varied in length and quality. The catchments were classified based on time

series length and a water balance test to determine what types of analysis (e.g. investigation of glacier melt contribution to

streamflow, year-to-year comparisons, or water balance calculations; see Section 4 and Table S1) the streamflow data could95

support.

The water balance test (details on data used provided below) evaluated the ratio of measured streamflow to the total of pre-

cipitation, evaporation, and glacier storage change. Catchments were included in the analysis if the ratio deviated by less than

25%. For deviations exceeding 25%, we followed these criteria: 1) if the ratio exceeded 1 and the catchment was classified as

natural, we applied a uniform multiplication correction to the daily precipitation data, 2) if the ratio exceeded 1 and the catch-100

ment was classified as influenced, we excluded it from analyses involving precipitation estimates (assuming underestimation

of precipitation) and 3) if the ratio was below 1, the catchment was used only for relative year-to-year comparisons, as absolute

streamflow might be underestimated compared to the other water balance terms.

Catchment average daily time series of precipitation and temperature were obtained from the RhiresD (hydrological Switzer-

land) and TabsD (Switzerland) products from MeteoSwiss for the period 1961-2022 (MeteoSwiss, 2019, 2021). These are inter-105

polated gridded datasets at a resolution of approx. 1 km. Some catchments covered parts outside of the (hydrological) boundary

of Switzerland; these small areas were not taken into account for calculating catchment average values. To extend the time se-

ries further back in time (Section 4.4), we selected all Swiss meteorological stations that covered the period from 1900 until

2022. This resulted in 44 precipitation stations and 16 temperature stations (Fig. S1). The monthly and annual anomalies for

these stations were averaged to obtain a single, long-term Swiss-wide time series of precipitation and temperature anomalies.110

For evapotranspiration amounts (ET), model outputs from the distributed hydrological model PREVAH were used (Viviroli

et al., 2009; Zappa and Kan, 2007; Höge et al., 2023). This model runs in an operational setting for Switzerland and data was

available from 1981-2022. Evaporation is modelled following the Penman-Monteith scheme as detailed in (Gurtz et al., 1999)

and (Zappa and Gurtz, 2003). Catchment boundaries excluding the glacier outlines from Swiss Glacier Inventory (SGI) 2016

(Linsbauer et al., 2021) were used to extract actual daily evapotranspiration values from the gridded model outputs115

Information on snow water equivalent (SWE) was obtained from an operational snow product provided by the WSL Institute

for Snow and Avalanche Research SLF for the period 1999 to 2022. This product consists of daily SWE maps for Switzerland

and adjacent hydrological regions at a 1 km resolution. It is based on the assimilation of snow monitoring data from 349

stations into the snow model OSHD_TICL as described in Mott et al. (2023) and Magnusson et al. (2014). The SWE product is

intended to represent seasonal snow, consequently all snow remaining on September 1 of each year has been removed from the120

simulations. Because only 12 snow monitoring stations are available above 2500 m a.s.l., catchment average SWE time series

were extracted only for the non-glacierized catchment areas, equivalent to the treatment of the ET data. Snow on the glaciers
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is included in the glacier storage change data (Section 4.1). To use SWE as a proxy for snowmelt, the differences between

maximum and minimum SWE within a specific time period (e.g., a month, season or year) were calculated.

For the extrapolation of available glacier mass balances in space and time, all the available annual and seasonal glacier125

mass balance data (GLAMOS, 2024) were used. The surveyed glaciers are a representative sample and cover all climatological

regions of the Swiss Alps. The data refer to a fixed-date system (30 April for winter, and 30 September for annual mass

balances) and comprise 28 glaciers in total (Table S2). Only 3 time series extend back to before 1920, while 9 time series start

before 1970. The density of observations strongly increased after 2005, with 20 glaciers being measured in 2022. Geodetic

mass balances for the period 1980-2010 was available for all glaciers in Switzerland (Fischer et al., 2015). Glacier outlines130

constrained the glacier area evolution over time, and included the glacier outlines from 2016 (Linsbauer et al., 2021) and 1973

(Müller et al., 1976; Maisch, 2000; Paul, 2003).

4 Methods

4.1 Swiss-wide daily glacier storage changes

To analyze glacier mass changes and melt and assess their downstream contributions to streamflow in time and space, a new135

approach was developed. It estimates glacier mass change at the scale of all individual Swiss glaciers (1400 glaciers) at a daily

time resolution. The approach is based on a combination of in-situ measurements, remote-sensing data and modelling, and

consists of four main steps: 1) extrapolating seasonal and annual mass balance from surveyed glaciers in space for obtaining

an observation-based year-to-year variability, 2) combining these with geodetic mass balances from the comparison of digital

elevation models (DEMs) for obtaining information on long-term mass changes of all individual glaciers, 3) extracting a140

seasonal daily glacier mass balance pattern from a daily glacier mass balance model constrained with these data sets, and 4)

estimating glacier area evolution over time using area-volume scaling to convert specific mass balance into absolute glacier

mass changes, or water volumes (Fig. S2).

For step 1, the available long-term glacier-wide annual mass balance measurement series (28 in total) were converted into

a mass balance anomaly for each surveyed glacier g and year y (∆Bg,y). This was done by subtracting the mean of a glacier145

reference period, here 2011-2020 (GLAMOS, 2024; Huss et al., 2015). Taking the annual mass balance anomaly (∆B) instead

of absolute mass balance values is necessary for spatial extrapolation as glaciers are known to respond with strongly differing

mass balances to the same change in atmospheric forcing, mostly depending on their geometry (Fischer et al., 2015; Brun

et al., 2019). Long-term observations show that mass balance anomalies are more spatially homogeneous. The values ∆Bg,y

for the set of surveyed glaciers were then extrapolated to all individual glaciers contained in the SGI2016 (Linsbauer et al.,150

2021) using an inverse-distance weighting scheme. The initial search radius for an individual glacier was set to 150 km, which

was extended in steps of 10% until at least three measurements were available. The inverse-distance weighting also accounts

for the main weather divide of the Alps by attributing higher weights to series on the same side (North/South of the divide) as

the glacier to which the anomaly is extrapolated to.
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Observed winter mass balances (Bw,g,y) were extrapolated based on their actual values (instead of their anomalies) using155

the same inverse-distance weighting scheme. To reflect the differences in amounts of snow accumulation for individual glaciers

due to their characteristic location, a correction factor was applied to each extrapolated winter mass balance value. This factor

is based on the difference in median glacier elevation of the respective glacier with the surrounding glaciers. Glaciers at higher

elevations than their surroundings receive a negative correction (wind-erosion processes), while glaciers located lower than

their surrounding glaciers receive a positive correction (snow-deposition processes). The correction was set to 10% per 100 m160

elevation difference, a value that is challenging to validate due to the limited availability of observational series informing

about local-scale snow accumulation differences between neighboring glaciers.

For step 2, the extrapolated annual mass balance anomalies ∆Bg,y are superimposed onto the available geodetic mass

balance Bgeod,1980−2010 (see Section 3) to obtain a locally adjusted, absolute annual mass balance Bg,y for each individual

glacier:165

Bg,y = Bgeod−g,1980−2010 + (∆Bg,y −∆Bg,1980−2010). (1)

Here, ∆Bg,1980−2010 is the mean of the mass balance anomalies for 1980-2010, which is used to correct for the bias between

Bgeod−g,1980−2010 and the observed glacier mass balance over the period 2011-2020. This way, the extrapolated cumulative

annual mass balance for each glacier agrees with long-term observed mass change from remote sensing.

For step 3, in which we downscale the seasonal and annual glacier mass balances to the daily resolution, a distributed170

accumulation and temperature-index model was used (see e.g. Huss et al., 2015, 2021; GLAMOS, 2024). It is applied to each

of the 28 glaciers with in-situ mass balance measurements. The model computes daily mass balance on a fine spatial grid that

are then aggregated to glacier-wide cumulative time series. For each of these glaciers, model parameters are optimized to best

match all available point-based winter and annual mass balances measurements, as well as geodetic surveys of multi-annual

mass change. Next, each of the non-surveyed glaciers was assigned a simulated daily cumulative mass balance time series of175

the closest surveyed glacier. The daily cumulative time series were scaled to fit the assigned winter and annual mass balance

of steps 1 and 2 according to

Bg,d =





Bnearest,d +
(

Bw,g,y−Bw,nearest,y

∆toct−apr
× d

)
d ∈ [1,212]

Bnearest,d + (Bnearest,212−Bg,212) d ∈ [213,243]

Bg,243 +
(

Bg,y−Bnearest,y

∆tjun−aug
× d

)
d ∈ [244,335]

Bnearest,d + (Bnearest,335−Bg,335) d ∈ [336,365]

(2)

in which Bg,d is the daily cumulative mass balance at day d in m w.eq., expressed as number of days from 1st of October.

Bnearest,d is the simulated time series of daily cumulative mass balances from the closest surveyed glacier. ∆t are the number180

of days for the months indicated in subscripts.

For step, 4, we combined linear interpolation and volume-area scaling as a simple method to estimate glacier area evolution.

The glacier area is needed together with the specific glacier mass balance (Bg,y and Bg,d) to calculate glacier mass change,
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and hence the generated meltwater volumes. Between 1973 and 2016, glacier areas for each glacier were linearly interpolated

between the two respective inventories (Müller et al., 1976; Linsbauer et al., 2021). Before 1973 and after 2016, the area A of185

a glacier was computed based on its volume V by using volume-area scaling (Bahr et al., 1997):

A = (
V

c
)

1
γ , (3)

where c is a glacier-specific constant, and γ=1.8 is an exponent which was adjusted to fit the observed area changes. c was

derived for each glacier individually based on the known values for A and V for the 2016 inventory Grab et al. (2021).

For estimating glacier area during years outside the 1973-2016 window, Equation 3 was applied by computing an updated190

glacier volume (V ±∆V ) based on the extrapolated mass balance and glacier area of previous or next time step (depending on

whether the equation is used for determine an area after 2016 or before 1973) and a volume-to-mass change conversion factor

of 850 kg/m2 (Huss, 2013).

Steps 1-4 were used to derive daily time series of cumulative mass balance ( m w. eq.) and daily glacier storage changes

(m3/d w. eq.) from 1916 to 2022 for each individual glacier. Positive daily glacier storage change values represent net daily195

accumulation over the glacier, while negative values indicate net daily mass loss over the glacier. Time series from glaciers

within the same catchment were averaged (mass balance) or summed (storage change) for further analysis.

4.2 Attributing extreme glacier mass loss

To attribute the extreme glacier mass change of 2022 to its causes, three aspects were analyzed: 1) the contribution of summer

and winter mass balance anomalies to annual mass balance anomalies, 2) the timing and intensity of the summer melt period,200

and 3) the ratio between balanced and imbalanced melt contributions (Fig. S2). In this attribution framework, radiation terms

were not physically analyzed, but rather its effects, such as earlier melt onset and stronger melting. For aspect 1, winter and

summer balance anomalies were calculated based on the reference period 1991-2020. For the glacier attribution analyses, mass

balance years were defined using the stratigraphic method, i.e. by identifying the period between the two successive annual

minima of the cumulative mass balance time-series. The difference between these minima represents the annual mass balance.205

Winter mass balance is defined as the difference between the first minimum and the maximum cumulative mass balance during

that year. Summer mass balance is the difference between annual and winter mass balance.

For aspect 2, we attributed the extreme melt of 2022 to differences in timing of the melt season and its intensity compared

to the reference period (1991-2020). We calculated how much of the anomalous melt occurred due to (i) an earlier onset of the

melt period, computed as the amount of melt occurring in the shifted timing of the maximum cumulative daily mass balance210

between 2022 and the mean of the reference period, (ii) more intense melting when compared to the reference summer mass

balance period, and (iii) the timing of the melt season ending, computed here as the amount of meltwater generated between

the mean end of the mass balance year in the reference period and the end of the mass balance year in 2022.

For aspect 3, the sum of all negative glacier storage changes over the mass balance year 2022 was separated into balanced

and imbalanced melt. The balanced part of the melt equals the winter accumulation on the glacier. The remaining melt is the215

imbalanced melt and causes the glaciers to lose volume with respect to the start of the year. For each glacier and extreme year
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(2022 and other years), the day when glaciers switch from balanced to imbalanced melt was extracted as the day when the

cumulative daily mass balance equaled zero, similarly as the "Glacier Loss Day" in Voordendag et al. (2023).

4.3 Attribution of streamflow responses and glacier compensation effects

For the attribution of the 2022 streamflow anomalies (∆Q), we analyzed anomalies in precipitation (∆P ), snowmelt (∆S),220

ET (∆ET ), and glacier storage change (∆G). For each of these water balance components, annual (hydrological year) and

summer (MJJA) anomalies were derived. May was included since in 2022, the month experienced high snow melt rates already.

The anomalies were generally calculated using the reference period 1991–2020. However, due to insufficient data, ∆SWE

was calculated using 1999–2020 across all catchments, while ∆Q was calculated for seven catchments using reference periods

starting between 1994 and 2012. For ∆G, the sum of all storage change values (positive and negative values) were used.225

The individual water balance anomalies were used to calculate a glacier compensation level L:

L =
∆G

−(∆P (+∆S)−∆ET )
× 100%. (4)

L is a percentage indicating to what extent the extra glacier melt (surplus) could compensate for deficits in precipitation,

snowmelt (only in summer), or increased evapotranspiration. A value of 100% means that the extra glacier meltwater could

fully compensate for the deficits in the other water balance terms, thus resulting in close to normal streamflow (∆Q = 0).230

Since the various water balance anomalies were derived from various data sources and estimation methods, the sum of all

terms does not necessarily equal zero. To include this uncertainty in the estimation of L, we calculated the uncertainty ϵ as

follows:

∆Q = ∆G + (∆P (+∆S)−∆ET ) + ϵ. (5)

Since it is not known which component causes the ϵ to deviate from zero, the term was once added to the surplus glacier melt235

component, and once to the water deficit drivers in equation 5. Depending on the sign of ϵ, it can refer to an over/underestima-

tion of (one of) the respective water balance anomalies or it could relate to water transfers from or to the catchment, affecting

∆Q. Thus, in total, we derived three estimates of L per catchment, indicating the maximum range of possible values.

4.4 Long-term perspective: past extremes

To put the year 2022 in a long-term perspective, seven years with very negative annual and summer mass balances were240

selected: 1921, 1928, 1947, 1998, 2003, 2018 and 2022. All of these years where characterized by severe droughts (Zeng

et al., 2005; Erfurt et al., 2019; Brunner et al., 2019; Hansel et al., 2022) and were compared in terms of meteorological

conditions, glacier mass balance, glacier meltwater volume, and streamflow volumes. Since only one-third of the catchments

have streamflow data covering all extreme years, an emphasis is put on the comparison between 2003 and 2022.

To gain insights into the changing glacier meltwater volumes over time, while correcting for temperature differences, a245

glacier melt sensitivity index Θg,y was defined as

Θg,y =
Mg,y

Tg,y
, (6)
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where Mg,y is the sum of all negative glacier storage changes between 1st of June and 30 September for glacier g and year y,

and Tg,y is the average temperature in Kelvin (K) (to avoid issues with close to zero values) for the mean elevation of the same

glacier and the same period. Yearly values of Θg were calculated for the period 1961-2022, corresponding to the data coverage250

of the gridded meteorological product (Section 3). To compare Θg across glaciers, time series of Θg were normalized between

0 and 1, based on the maximum and minimum values for each glacier.

5 Results

5.1 Attribution of extreme glacier melt in 2022

In 2022, all Swiss glaciers together lost a total estimated ice volume of around 3 km3, equaling 2.6 km3 of meltwater (Table 2.255

This amount is more than three times the mean glacier volume loss over 1991-2020. The glacier volume loss of 2022 equals

to around 5.9% of the total inferred volume of all Swiss glaciers in 2021 (GLAMOS, 2024). The 2022 net annual meltwater

volume loss (Ma) represents roughly 6% of the total precipitation of Switzerland in 2022 (1037 mm), while covering only

2.1% of the Swiss area. The total meltwater volume generated (net melt of 2.6 km3 + balanced melt) was around 3.6 km3,

around 28% more than the reference meltwater volume. Daily glacier storage changes were highest during July, and deviating260

most from the reference period average during May, June and July (Fig. S5).

Meltwater volumes for the different basins scale with the glacierized areas and were highest for the Rhone basin (Table 2.

In contrast, the area-weighted annual mass balance was most negative for glaciers in the Po and Danube basins, (∼ −3.5 m.

w.eq.) and least negative in the Rhine and Rhone basins (∼−3.1 m w.eq.) (Fig. S3).

The anomalous annual mass balance of 2022 (∆Ba) was primarily related to the summer mass balance anomaly (∆Bs) (Fig.265

2a). For the different glaciers, the contribution of (∆Bs) to ∆Ba varied between 55-75%. For glaciers in the Po and Danube

basins, the winter mass balance anomaly (∆Bw) contributed the highest among the basins and explained up to 45% of ∆Ba.

The anomalous summer mass balance and the generated summer melt volume could be attributed for 15-20% to the early

onset of the ablation period and for 75-85% to the more intense melt over the summer period, with similar contributions of

these two aspects across the glaciers in the different basins (Fig. 2b). The day of maximum cumulative daily mass balance270

(stratigraphic winter mass balance), was reached 1-3 weeks earlier in 2022 than in the reference period (not shown). The

ablation season ended for approximately half of the glaciers (661/1400) not later than during the reference period. For the other

glaciers, the melt season of 2022 ended 1-4 weeks later than during the reference period. Compared to the other two processes,

the prolongation of the ablation season into autumn contributed only marginally to the extra glacier melt in 2022 for some

glaciers in the Rhine and Danube basins.275

Due to the limited snow accumulation, most of the total glacier melt in 2022 was imbalanced. For glaciers in the Danube

and Po basins, 74-80% of the melt was imbalanced (Fig. 2c), which was higher than in the Rhine and Rhone basin, where

the imbalanced melt ranged from 64% to 77%. Melt turned from balanced to imbalanced conditions between mid-June and

mid-July. This point was reached slightly earlier for glaciers in the Danube and Po basins and some glaciers in the Rhone basin,
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Table 2. Glacier meltwater volumes and mass balances for 2022 and the reference period (1991-2020). M refers to meltwater volumes,

whereas B refers to glacier-wide mean specific mass balance. a refers to net annual, s to summer, w to winter and t to total. CH/Basin refers

to Swiss-wide/Basin average or sum. The numbers refer to the mass balance year corresponding to the hydrological year; used in most of the

comparisons and analyses. Table S3 shows the results for the stratigraphic mass balance, used in the glacier attribution analyses.

2022 Ref.

Ma [km3] CH 2.58 0.82

Rhine 0.73 0.26

Rhone 1.62 0.46

Po 0.09 0.04

Danube 0.13 0.05

Mt [km3] CH 3.60 2.82

Rhine 1.11 0.94

Rhone 2.20 1.59

Po 0.12 0.12

Danube 0.17 0.17

Ba [m] CH –3.1 –0.8

Bw [m] CH +1.0 +1.2

Bs [m] CH –4.1 –2.0

Rhine        Rhone        Po          Danube Rhine       Rhone          Po        Danube   Rhine       Rhone        Po         Danube

Early melt
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Figure 2. Attribution of extreme glacier volume change in 2022 to its mass balance components for all Swiss glaciers. a) Contribution of

summer (∆Bs) and winter mass balances (∆Bw) anomalies to the annual mass balance anomaly ∆Ba, b) Contributions of the early onset of

the melt season, late ending of the melt season and the intensity of the melt season to ∆Bs. c) Partitioning of total glacier meltwater volume

into balanced and imbalanced melt. Each box-plot includes all glaciers in the respective main river basin.

followed by the majority of the glaciers in the Rhone and the Rhine basin (not shown). During the reference period the same280

point would occur for most glaciers in the first half of August. This is approximately 40 to 60 days later than in 2022.
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5.2 Attribution of 2022 streamflow anomalies

During 2022, the downstream reaches of the main river basins were severely affected by the dry and hot conditions (Fig.

S4), resulting in a hydrological drought. For most catchments, streamflow showed large deficits, ranging from −60 up to

−600 mm for the annual scale (variable "Q" in Fig. 3 and Fig. S4). The largest absolute deficits were reached for catchments285

in the Po, Rhone and Rhine basins with glacierization <5%. Over the summer, absolute streamflow deficits were smaller,

while streamflow surpluses in highly glacierized catchments were larger, compared to the annual streamflow anomalies. The

streamflow anomalies changed sign with increasing level of glacierization in the Rhine and Rhone basins, in which catchments

span the full range of glacierization (Fig. 3).

Besides streamflow, the largest anomalies came from the precipitation and the glacier net storage change (variable "P" and290

"G" in Fig. 3), but with opposite signs. For snowmelt (variable "S" in Fig. 3), only the non-glacierized area was considered

and therefore the absolute anomalies are smaller, especially for catchments with high glacierization. During summer, the lack

of precipitation (rainfall) and the snowmelt deficit of the non-glacierized area contributed approximately equally to the water

deficit for most catchments. The surplus glacier net storage change counterbalanced the deficits in rainfall and snowmelt. The

glacier net storage change anomalies were larger at the annual scale than for the summer, especially in the Rhone and Danube295

basin, which is opposite to the total glacier net storage change value (not the anomaly), which is larger in summer (mostly

ablation) than over the year (net effect of accumulation and ablation). The lack of snow, in addition to the high melt, caused

these larger anomalies at the annual scale than for the summer. The net glacier storage change anomalies (surpluses) increase

with increasing glacierization. The smallest water balance anomaly is the evapotranspiration anomaly (variable "ET" in Fig.

3). For catchments in the Rhone basin the ET anomaly was even negative, indicating a water-limited situation in this part of300

Switzerland. Largest evapotranspiration anomalies were found in the Danube basin.

5.3 Glacier compensation effects and contributions to streamflow

The large glacier melt anomalies of 2022 could (partly) compensate for the lack of precipitation and snowmelt, as well as for

the extra evapotranspiration. The degree of this compensation depends on the level of glacierization (Fig. 4). At the annual

scale, in catchments with around 25% glacierization the extra glacier melt could fully compensate the deficits in the other305

water balance terms (L =100%), while in summer this full compensation already occurs for catchments with 15-20% glacier

coverage (Fig. 4). For catchments with higher glacierizations, resulting in L > 100%, the excess glacier melt overcompensated

the negative anomalies in precipitation, snowmelt and evapotranspiration, leading to positive anomalies in streamflow. A 50%

compensation of the water deficits occurred for catchments with a glacierization of 15-20% (10-15%) at the annual (summer)

level. Even for catchments with only a few percent glacier cover (1-5%), the extra glacier melt could still alleviate the impact of310

the deficits by around 10%. The addition of the water balance anomaly rest term ϵ (difference between the ∆Q and the sum of

∆P , ∆S,∆ET and ∆G) leads mostly to a higher compensation level for catchments with low glacierization, and vice versa.

The anomalous glacier melt in combination with the precipitation deficits of 2022 resulted in much higher relative glacier

melt contributions to streamflow compared to the reference period (Fig. 5a-c). At the annual scale, imbalanced glacier melt
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Figure 3. Water balance anomalies in 2022 specified for catchments with different glacierization. Within each of the four main basins,

anomalies are shown for: (1) total catchment precipitation P , 2) snowmelt S from non-glacierized catchment areas, (S is part of P at the

annual scale), 3) Evapotranspiration ET , 4) Glacier storage change G (net storage change over the year or summer) and 5) streamflow Q).

Anomalies are aggregated by catchment glacierization classes (indicated below the variable G). n is the number of catchments within each

glacierization class. The filled bars indicate the annual anomalies (Oct-Sep) while the dashed bars show the summer anomalies (May-Aug).

Whiskers show the range for summer anomalies. All variables are expressed in mm with respect to the entire catchment.

contributed between a few percent up to 60-80% of annual streamflow volumes (Fig. 5a). This imbalanced glacier melt is the315

part of the water supply that would be lost when glaciers have disappeared.

In summer, relative contributions of glacier melt were even higher, up to almost 100% of the summer streamflow for some

catchments (Figure 5c). In particular, summer glacier melt contributions are disproportionally higher per unit of glacier cover

for catchments with <10% glacierization (Fig. S7).

The relation between glacier melt contribution to streamflow and level of glacierization is exponential, showing a steep320

increase in melt contributions for catchments with 0–20% glacierization, which diminishes for catchments with more than

20% glacierization.
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5.4 Extreme melt of 2022 in a long-term perspective

2022 was a record year regarding annual and summer glacier specific mass balance (Table 3, columns 2-3) in the >100-year

series of observation-based glacier mass balances for Switzerland. At the Swiss scale, only 1947 comes close to the extreme325

of 2022 in terms of annual glacier mass balance. In terms of meltwater volumes, the ranking of extreme years shifts, with 2022

no longer being the most extreme year (Table 3, columns 5-6). Between 1921 and 2022, the area of Swiss glaciers changed

considerably, with an estimated area loss of 42%. Thus, the larger glacierized areas in the extreme years 1921, 1928 and 1947

resulted in substantially higher glacier meltwater volumes than in 1998, 2003, 2018 and 2022, especially in terms of total

meltwater volumes, as opposed to net meltwater (mass loss) volumes.330

Zooming in to the more recent extreme years (1998, 2003, 2018 and 2022), 2003 and 2022 were most extreme in terms of

summer glacier mass balances and meltwater volumes. In terms of winter mass balance, 2003 and 2018 were more similar,

with more snow accumulation than in 1998 and 2022. From all these recent years, 2022 had the highest net volume loss (Ma).

However, the total glacier melt volume (sum of all daily negative storage changes) in 2022 was smaller than in 2003, despite

higher specific melt (Mt, Table 3). This shows that the ongoing glacier retreat (21% reduction in glacier area between 2003-335

2022) dominated the difference in meltwater volume responses to the extreme years of 2003 and 2022 at the Swiss-wide scale

and for the four large basins, which has important hydrological implications for summer water supply (Fig. 6 rows 2-3).

In terms of streamflow, the lowest flows of 2022 had never been that low at the outlets of the four basins, but for the Rhone

basin (Table 3, columns 7-10). Compared to 1928, 1947, 2003 and 2018, the lowest flows of 2022 occurred earlier in the

year, already in the second half of August for the Rhine, Po and Danube basins. Overall, annual and June, July and August340

streamflow were lowest in 2022 compared to the other extreme years, especially when focusing on the years 1998, 2003 and

2018 (Fig. 6, rows 4-7).

Despite strong negative precipitation anomalies in July of 1921 and 1928, comparable to the ones in July 2018 and 2022,

these months had among the highest flows of the extreme years. This may be explained by 1) the high glacier meltwater volume

contributions and 2) the absence of reservoir effects for these early extreme years. The only headwater catchment with long-345

term data and without reservoirs is located in the Rhine basin. Here, 2022 had the lowest annual and August streamflow (Fig.

6, row 4). For July, 2022 resulted in higher flows compared to 2018, possibly related to the high July melt volumes, leading to

stronger compensation effects.

Relative glacier meltwater contributions to streamflow were among the highest in 2022, in particular in comparison to the

more recent extreme years (Figure 6, rows 4-7). For catchments in the Po and Danube basins, where glacier meltwater volumes350

were smaller in 2022, the constant or increasing relative contributions highlight the continued importance of glaciers during

droughts, even as overall meltwater volumes decline. Relative glacier meltwater contributions to streamflow peaked in July

2022, with a few percent at the outlets of the Po and Danube basins, and around 30% for the Rhine at Basel, and close to 100%

for the Rhone at Porte du Scex. These contributions strongly diminished at the annual scale, but are still substantial for the

Rhone basin (40%).355
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Figure 6. Comparison of meteorological, glaciological and hydrological conditions for glacio-hydrological extreme years (1921, 1928,

1947, 1998, 2003, 2018, 2022). The columns indicate different aggregation periods: annual and monthly (June, July, August), while the

rows indicate different variables: temperature and precipitation anomalies (row 1), glacier specific mass balance (row 2), glacier meltwater

volumes (row 3), streamflow (row 4-7), relative glacier meltwater contributions to streamflow (row 4-7). In each panel, the columns refer to

the different extreme years. Note the double y-axes for row 3-7. The right y-axes in row 3 refers to the basin volumes, whereas the left y-axis

refers to the Swiss-wide volumes.
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Table 3. Glaciological and hydrological characteristics of selected extreme years, referring to the hydrological year (Oct-Sep). Ag is the

glacier area, Ba, Bw and Bs the annual, winter and summer mass balances (m w.eq.), respectively, for the fixed system. Ma is the corre-

sponding net meltwater volume and Mt the total meltwater volume (km3 w. eq.), taken as the sum of all daily negative storage changes. The

last four columns indicate the 7-day average lowest flow at the outlet of the four main basins (Fig. 1), with in brackets the date of occurrence

and the rank for that day (rx).

Ag Ba Bw Bs Ma Mt Rhine Rhone Po Danube

[km2] [m] [m] [m] [km3] [km3] [m3s−1] [m3s−1] [m3s−1] [m3s−1]

1921 1430 –2.4 0.4 –2.8 –3.43 –5.28 514 (1-5 r1) 49 (3-5 r1) 34 (1-5 r7) 21 (4-5 r5)

1928 1435 –2.1 1.3 –3.4 –3.01 –5.58 674 (29-9 r43) 101 (24-5 r2) 34 (30-9 r22) 42 (30-9 r62)

1947 1347 –2.9 1.0 –3.9 –3.91 –5.96 489 (30-9 r2) 167 (30-9 r74) 26 (20-9 r7) 41 (8-9 r10)

1998 1092 –1.6 0.9 –2.6 –1.75 –3.47 669 (19-8 r1) 102 (3-5 r26) 31 (30-8 r7) 33 (21-9 r12)

2003 1053 –2.1 1.4 –3.5 –2.21 –4.09 431 (24-9 r1) 149 (30-9 r54) 21 (18-9 r1) 24 (14-9 r1)

2018 907 –1.4 1.6 –3.0 –1.27 –3.15 522 (20-9 r3) 173 (9-9 r22) 23 (29-9 r4) 25 (30-9 r5)

2022 827 –3.1 1.0 –4.1 –2.56 –3.60 446 (14-8 r1) 118 (24-9 r10) 18 (28-8 r1) 24 (2-9 r1)

To closely analyze the possible decline of glacier meltwater supply (i.e. the declining phase of glacier peak water) during

extreme years and its downstream consequences in a catchment-by-catchment comparison, we isolated a period during which

2022 was more extreme in terms of melt conditions than in one of the other recent extreme years, which was in July. We

compared this with July 2003, as the more than 20 year difference between these extremes allows for analyzing the impact of

glacier retreat. In July 2022, positive degree day sums and the specific glacier mass balance were higher/more negative than360

in 2003 for almost all catchments ("T" and "B" in Fig. 7). However, only in most of the Rhone basin and parts of the Rhine

basin (the western part, Aare sub-basin), this led to higher glacier meltwater volumes (48/76 catchments) ("G" in Fig. 7). Even

though meltwater volumes were higher here, not everywhere this led also to higher streamflow volumes ("Q" in Fig. 7). Only

in 16/76 catchments streamflow was higher in July 2022 than in 2003, and for three of those (two in Po basin and one in Rhine

basin) that did not relate to higher glacier meltwater volumes. In all the other catchments, the higher meltwater volumes could365

not compensate for the higher precipitation deficits and less snowmelt ("S") in 2022 compared to 2003 and thus resulted in

less streamflow. Alternatively, for catchments downstream of reservoirs and dams, more water may have been stored in the

reservoirs in 2022 than in 2003.

Over the summer period (MJJA), only 20/76 catchments showed higher glacier meltwater volumes in 2022 than in 2003,

despite more negative glacier mass balances for most of the catchments (62/76) (Fig. S8). In the remaining catchments (located370

in the eastern part of Switzerland), 2003 was more extreme in terms of glacier melt conditions than 2022. Streamflow was

lower in summer 2022 than in summer 2003 almost everywhere, despite higher precipitation in 2022 for around half of the

catchments, underscoring the important role of snowmelt for streamflow. The combination of higher glacier meltwater volumes

and lower streamflow in 2022 compared to 2003 led to overall higher relative glacier melt contributions to streamflow (Fig. 5).
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Figure 7. Comparison of glacio-hydrological variables in July between 2003 and 2022 at the catchment scale (76 catchments). Closed pie

parts indicate that a given variable was higher (more (melt) water or warmer) in 2022 than in 2003, and vice versa for the open pie parts. T

refers to the positive degree day sum, S to the change in SWE over July as proxy for snowmelt, G to the glacier meltwater volume, B the

specific glacier melt rate (mass balance), and ET, P, and Q refer to the sum of evapotranspiration, precipitation and streamflow, respectively.

Plots for June, August and summer (MJJA) can be found in the SI.

The spatially aggregated (catchment/basin) results indicate that glacier melt volumes are declining overall and for specific375

basins and catchments, despite stronger glacier melt rates (Table 3, Fig. 6 and Fig. S8). However, the various comparisons

also show that for individual months or individual catchments, melt volumes in 2022 were still high in comparison to recent

extreme years. To analyze the causes of this spatial variability, we analyzed the changing sensitivity (Θ) for all glaciers over

1961-2022 (Fig. 8). Years with common high Θ across all glaciers, 1983, 1991 and 2003, corresponded to years with more

negative summer mass balances than the reference period average. After 2003, most glaciers smaller than 0.1 km2 did not380

show a high Θ value anymore, also not in 2022. For larger glaciers, especially >10,km2 2022 still had a high sensitivity, thus

responding to the high temperatures with high meltwater volumes.

Thus, large glaciers still responded with large melt volumes to the extreme meteorological conditions of 2022. Overall,

around 40%/30% of the glaciers had larger annual net/total meltwater volumes in 2022 than in 2003. For the glaciers larger

than 10 km2 almost all glaciers had in 2022 higher net meltwater volumes losses, whereas this was only the case for 1/3 of385
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Figure 8. Time series of glacier melt sensitivity (Θ) for each glacier and the period 1961-2022, sorted by glacier area (a). panel b shows

the evolution of the total glacier area in Switzerland over time, with in gray the period covered by the sensitivity metric of panel a. Panels

c-e show examples of individual glaciers with Θ in black and temperature in red, with Sulzli glacier located in the eastern part of the Rhine

basin, Vouasson glacier in the southern part of the Rhone basin and Aletsch in the northeastern part of the Rhone basin
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the large glaciers for the total meltwater volume. For glaciers between 1-10 km2, 75%/30% had higher net/total meltwater

volumes, which further reduced to 45%/30% and 15%/2% for glacier size classes 0.1-1 km2 and 0.05-0.1 km2, respectively.

6 Discussion

6.1 The changing importance of glacier melt during drought

The analyses have shown that glaciers played a crucial role in sustaining downstream water supply during the extreme warm390

and dry year of 2022 in Switzerland. This confirms findings of earlier studies, showing for example that the imbalanced melt

contribution of glaciers was relevant for reservoir filling during the Megadrought in Chile (McCarthy et al., 2022a), or that

the importance of glacier melt contribution during droughts diminishes downstream in a non-linear way (Huss, 2011; Mas-

trotheodoros et al., 2020). Despite modest annual glacier melt contributions at downstream locations (for example at Basel we

estimated 0.7% annually, 4.4% in summer), glacier melt becomes of notable importance on shorter timescales (Stahl et al.,395

2016; van Tiel et al., 2023), with contributions up to 20% in July and August 2022 at Basel (Figure 6). The analyses conducted

here allowed us to quantify for the first time the compensation role of glaciers at a regional scale based on observations, pro-

viding insights how much glacier meltwater surpluses can counterbalance water deficits due to a lack of rainfall and snowmelt

and increased evapotranspiration.

Although glacier melt was still of high importance in 2022 in Switzerland, the role of glaciers during drought is inevitably400

diminishing due to ongoing atmospheric warming and resulting glacier retreat (Zemp et al., 2015; Hugonnet et al., 2021). The

results show declining meltwater volumes, particularly for small glaciers (Fig. 8, with clear spatial patterns at the catchment

scale (Fig. 6 and 7). The various comparisons have shown that it is important to make the distinction between net annual

meltwater volumes (mass losses) and total meltwater volumes when investigating a "decreasing glacier meltwater supply".

While the net mass losses were higher in 2022 than in other recent extreme years, total melt water volumes were lower. This405

suggests that the reduction in glacier area has become more dominant than the increase in melt rates. The analyses here focused

on specific extreme years, but fit in with longer-term trends (Fig. 9). Apart from the Rhone basin, all basins show a declining

trend after 1980 for the total meltwater supply. For the Rhone basin, the lower meltwater volumes of 2022 than in 2003 may be a

pre-cursor of a declining trend in the next years. The net meltwater volumes still show generally increasing trends in all basins,

especially due to the record breaking 2022 year (Fig. 9). The total meltwater volumes are most relevant in a drought buffering410

context, as it is the meltwater supply of glaciers that drives this role and compensates for the lack of snow accumulation and

precipitation during drought. We therefore chose this variable to analyze the change of meltwater supply during extreme years.

While the focus is on the changing glacier meltwater supply, we have shown that for the role of glaciers during droughts, it

is important to look at other hydrological processes too, notably streamflow dynamics and relative melt contributions. Together

(glacier melt and the resulting streamflow) ultimately determine when and how the importance of glaciers during droughts is415

going to significantly diminish.

Overall, we took here an "extreme year and drought" perspective to analyze the process of changing glacier meltwater supply,

to focus on those years where glacier melt is most important downstream. Although this approach circumvents the question
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Vertical dashed lines indicate the selected extreme years.

of which inter-annual variability needs to be smoothed out in a peak water analyses (e.g. Huss and Hock, 2018) (Fig. 9), the

comparability of the different extreme years is still challenging. To circumvent the comparability issue, Θ was introduced,420

which normalized the meltwater volumes to average summer temperatures. However, a changing Θ may not only relate to

decreases in glacier area, but also to changes in glacier surface albedo, due to changing snow cover duration or the deposition

and accumulation of dust at the surface (e.g. Gabbi et al., 2015). For example, 2022 was characterized by several Saharan

dust events, accelerating the snowmelt on- and off the glacierized areas (Réveillet et al., 2022; Abegg and Mayer, 2023).

Furthermore, also the thickening of supra-glacial debris (McCarthy et al., 2022b) or changes in shortwave radiation (e.g.425

Huss et al., 2009) is impacting the relation between air temperature and melt rates. Quantifying the effect of these additional

processes would require detailed follow-up studies including energy balance modelling.
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6.2 Uncertainty in water balance components

The study combined several data sources and approaches to estimate all terms of the catchment water balance. Because of this

combination, the various terms are not necessarily consistent with each other, highlighting the challenges of obtaining data in430

high mountain terrain or over large regions where water management strategies play a significant role.

For precipitation, there is is general tendency of underestimating it at high elevations, due to the lack of meteorological

stations there (Immerzeel et al., 2014), for example Gugerli et al. (2020) showed that precipitation on a few selected Swiss

glaciers needed a correction factor between 2.2-3.7 to match on glacier SWE measurements. In this study, 52 catchments

showed a possible precipitation under-catch, which could be corrected with a multiplication factor for only 7 catchments. For435

the other influenced catchments, any applied correction to close the water balance may rather "correct" the human influence af-

fects instead of the precipitation. SWE, here used as a potential for snowmelt, experiences similar uncertainties as precipitation.

Moreover, by taking changes in SWE as proxy for snowmelt available to streamflow, we neglect sublimation processes and

recharge processes to deep groundwater. Evapotranspiration is difficult to measure over large areas and was therefore derived

from model simulations. There is only very little information on ET amounts at high elevations, and studies have shown high440

spatial variability especially under drought conditions (Mastrotheodoros et al., 2020).

The non-closing water balance issues could also arise from the glacier storage change estimations. Although the extrapola-

tion procedure was carefully designed and improved in comparison to previous estimates (Huss, 2012; Cremona et al., 2023),

the large variability in glacier geometries, the terrain surrounding glaciers, and local conditions make the extrapolation of mea-

surements on only a few glaciers to 1400 glaciers a challenging task. In particular, there is limited information on the spatial445

variability of accumulation and ablation processes. In addition, the evolution of the glacier area over time is a crucial element

for determining the meltwater volumes, but also here only sparse observations in time exist. Whereas model simulations may

include more local information than the presented extrapolation procedure, model parameters still need to be calibrated on the

sparse measurements and transferred to unobserved glaciers.

Last, the measured streamflow data is a source of uncertainty too. Although the relative dense network of gauges with long-450

term observations in a mountain setting is rather unique, many of the observations are influenced by water transfers or lake

regulations. Without knowing the details of such regulations, these influences on the analyses can only implicitly be taken into

account, for example by providing a range of compensation levels in Fig. 4 that include the possibility of water being im- or

exported to/from the catchment. The role of human influences, in particular during extreme years such as 2022, on streamflow

dynamics downstream of reservoirs in relation to glacier melt processes should be an avenue of future research (Brunner,455

2021).

6.3 Outlook to future extreme years

The comparison of the year 2022 with other extreme melt years in the (recent) past showed both declines (2022-2003) and

increases (e.g. 2022-2018) in the amount of meltwater that glaciers can generate to sustain downstream dry conditions. The

direction of change depends both on the difference in extremeness (the specific glacier mass balance or melt rate) and the460
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change in glacier area between two extreme years. When comparing 2022 to 2018, glacier area changes were relatively minor

due to the short interval. However the higher melt rates of 2022 allowed for higher meltwater volumes. When comparing 2022

to the most recent year with exceptional high meltwater volumes (2003), almost all glaciers (950/1400) showed total meltwater

volumes that could not reach the volumes anymore that were generated in 2003, despite mostly stronger melt rates. This change

in balance between increased melt rates and glacier retreat was reached more widespread for the summer than for July (Fig. 7465

and Fig. S8). Due to the stronger melt anomaly of July 2022 compared to July 2003, the melt was better able to offset the effect

of strongly reduced glacier area. How future extreme years may evolve thus depends on the extremeness of future conditions

and the timing, determining the interval for glacier area changes.

At the same time, comparing the glacier meltwater volumes with downstream water deficits, shows that these processes

are in a delicate balance with each other. Similar processes, such as a lack of snow in winter, result both in increased glacier470

melt volumes (i.e. more to compensate with), but also stronger deficits in the non-glacierized parts of catchments (i.e. more

to compensate for). With retreating glaciers this balance is shifting, with deficits increasingly becoming more dominant over

glacier melt surpluses. Thus, for understanding the future role of glaciers as drought buffers, not only the absolute meltwater

volumes are relevant, but also the changes in the other hydrological components. To better understand how future extreme

meteorological conditions and consequent droughts may evolve, insights could be gained from large ensemble datasets of475

future climates Van der Wiel et al. (2019); Maher et al. (2021). Such scenarios, however, are still only available at rather coarse

resolution. Still they could be used to force a glacio-hydrological model with updated future glacier geometries to analyze the

balance between high glacier melt rates, glacier retreat and precipitation deficits on streamflow.

7 Conclusions

This study analyzed the role of glaciers during the drought year 2022 in Switzerland. We estimated daily glacier storage480

changes for all glaciers in Switzerland and brought it together with hydro-climatological data from 88 glacierized catchments.

The findings highlight the critical role of glacier melt in mitigating water shortages during extreme dry and hot years.

In 2022, the glacier melt season began about two weeks earlier than usual, driven by snow deficits in winter and record-high

temperatures in May. By mid-June, glaciers started melting in an imbalanced way, summing up to 80% of all melt that was

unsustainable. The extra glacier melt that was generated over the warm and dry summer, particularly in July, could fully com-485

pensate the precipitation deficits at a catchment glacierization level of 15% and at least half of the deficit for catchments with a

glacierization of 10%. These catchments are mostly located in the upstream parts of the Rhone, Danube and the Rhine basins.

For catchments with smaller glacieriziation, annual and summer streamflow were strongly below average. The streamflow

deficits were mostly driven by precipitation deficits, rather than increased evapotranspiration. For the summer period (MJJA)

we estimated the lack of rainfall and the lack of snowmelt in the non-glacierized area to contribute to the overall water deficit490

with a similar magnitude.

While 2022 showed the highest relative glacier melt contributions to streamflow when comparing to other extremes (1921,

1928, 1947, 1998, 2003, 2018), the compensation and buffering role of glaciers is weakening as glaciers further retreat. A
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comparison with 2003, the most similar recent extreme year, shows that while 2022 had the most negative specific glacier mass

balance (annual and summer), 2003 provided more total meltwater volume, due to a loss of glacier area between 2022-2003495

of approximately 200 km2. Only 25% of the catchments still experienced higher meltwater volumes in the summer of 2022

than in 2003, a number that increased to 60% for July 2022 because of the more extreme melt rates in that particular month.

Around half of the catchments showed declining meltwater volumes during summer, despite more extreme melt rates, for the

2022-2003 comparison.

Sensitivity analysis indicates that only the largest glaciers (>10 km2) and about half of medium-sized glaciers (1–10 km2)500

remain highly responsive to temperature increases and extremes. Altogether, the results indicate that for most smaller Swiss

glaciers and around half of the catchments, meltwater contributions during droughts have started to decline. However, these

results need to be confirmed in a longer-term future perspective including all years, not only extreme years. Despite these

declines, the relative importance of glacier melt in streamflow has not diminished significantly and even increased, underscoring

the ongoing, though diminishing, role of glaciers in buffering drought impacts.505

The findings show the importance of analyzing extreme years from a holistic glacio-hydrological perspective for aiding

conclusions on the declining glacier meltwater supply with ongoing glacier retreat. Furthermore, the findings underline the

need to adapt future water management strategies to account for reduced meltwater availability in the future, in particular

during droughts.

8 Data availability510

Meteorological data are available through MeteoSwiss and through IDAweb (https://www.meteoswiss.admin.ch/services-and-

publications/service/weather-and-climate-products/data-portal-for-teaching-and-research.html). FOEN streamflow data is avail-

able through https://www.hydrodaten.admin.ch/en/seen-und-fluesse/messstationen-zustand. The evapotranspiration data is avail-

able from Höge et al. (2023). Snow water equivalent data can be obtained through the institute of Snow and Avalanche Research

(SLF) Davos. Glaciological data is available through GLAMOS. The daily glacier storage data for all glaciers in Switzerland515

will be made available in an online repository upon publication.
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