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Supplementary Information 
 
1) Methods 

a) Annual Weather Type Construction 
Annual Weather Types (AWTs) are constructed through a multi-step process following the 

methodology of Anderson et al. (2019) that begins with the extraction of monthly sea surface 
temperature anomalies (SSTAs) from the Nino3.4 bounding box. Hovmöller diagrams are 
constructed by taking the longitudinal average of SSTAs within the bounding box for each month 
of a boreal year (June to May). Empirical Orthogonal Function (EOF) analysis is applied to the 
Hovmöller diagrams, extracting dominant spatial modes and temporal behavior of observed ENSO 
dynamics. The three leading principal components (PCs) of the EOF analysis are clustered into six 
types (using K-means clustering) associated with canonical ENSO patterns (EP El Niño, CP El 
Niño, three transition/ neutral phases, and La Niña).  

This custom ENSO index preserves orthogonal modes of variability that are critical for 
representing ENSO diversity and complexity (Almar et al., 2023; Williams and Patricola, 2018). 
The leading EOF captures the dominant seesaw of interannual SSTA variability represented by 
traditional ENSO indices (R2>0.9 for both the ONI and Nino3.4 indices), while the second and 
third EOFs depict spatial and temporal patterns linked to shifting seasonal anomalies, and Kelvin 
wave propagation of SSTAs across the Pacific Basin, respectively (Anderson et al., 2019). By 
capturing more variance than classical ENSO indices (+19% compared to those that rely only on 
the leading EOF), this methodology is better able to represent the diversity of ENSO behavior on 
sub-seasonal to interannual scales. 
 

b) Copulas 
Multivariate gaussian copulas are used to define the joint probabilities between observed 

environmental parameters, maintaining realistic relationships between parameters while allowing 
for extrapolation of extremes (Cagigal et al., 2020; Anderson et al., 2019). Copulas are employed 
twice in the stochastic climate emulator methodology: in the simulation of new AWT principal 
components (PCs - representing ENSO behavior) and in the generation of synthetic hydrodynamic 
data (e.g., waves characteristics and storm surge).  

Each copula is associated with a particular weather type (either an AWT or a DWT), and 
within each copula, every variable is fit to an appropriate marginal distribution (e.g., generalized 
extreme value, empirical, etc.). The marginal functions are transformed into a uniform distribution 
to estimate their joint dependence structures in gaussian space (Cagigal et al., 2020). In the case 



of the 6 AWTs, a tri-variate gaussian copula is constructed using the marginal functions of the 
three leading AWT PCs. After synthetic chronologies of AWTs (timeseries of categories 1-6) are 
generated, AWT PCs are randomly sampled from the relevant gaussian copula to represent new 
sea surface temperature anomaly behavior, essentially ENSO events that are statistically plausible 
but not replicas of historical events.  

The wave and storm surge copulas are constructed for each DWT. In these copulas 
observed wave heights, periods, and storm surge data are primarily fit to a GEV distribution, while 
wave direction is defined by an empirical fit. There are a few DWTs in which the wave period is 
strongly bi-modal, so an empirical fit applied. By using GEVs as the marginal distribution for most 
of the data, the probability of extreme events is better estimated than with other types of 
distributions (e.g., normal or empirical).  

Wave parameters and storm surge are sampled for the peaks of wave hydrographs, which 
are parameterized from observed sea-state relationships to represent maximum flooding potential 
(Anderson et al., 2019). Wave height evolves hourly, following the hydrograph ramp up to and 
ramp down from peak flood potential, while other variables remain static for the hydrograph 
duration. This process of extrapolating from the peaks of hydrographs to hourly conditions can 
introduce some negative bias, particularly in the means of the wave height distributions. A bias 
correction is applied (Leung et al., 2024a) to address this, however exploring alternative methods 
of simulating the hydrodynamic variables at hourly timescale to avoid these biases is an important 
avenue of future research.  
 

c) Auto-Logistic Regression Model 
Synthetic sequences of weather types are generated via an auto-logistic regression (ALR) 

model. Auto-logistic regression enables simulation of categorical variables with non-normal 
distributions based on multiple covariates (Guanche et al., 2014). The ALR model is implemented 
in the stochastic climate emulator following the methodology presented in Anderson et al. (2019). 
The probability of a single weather type occurring for the given time period (e.g., year, day) can 
be represented with the inclusion of relevant covariates: 
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where seasonality is represented by: 
𝜋%& =	𝛽-,% + 𝛽#,% cos(𝜔𝑡) + 𝛽#,% sin(𝜔𝑡)	; 
 
the influence of different weather type covariates are included via: 
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and the influence of previous weather type states is introduced via a Markov chain, parameterized 
as: 
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For daily weather type (DWT) simulation, covariates include seasonality, the three leading annual 
weather type PCs, two intraseasonal weather type (IWT) PCs, and a Markov chain accounting for 
d previous daily weather type states.  
 
2) Results 

a) Spatial Variability of ENSO-hydrodynamic teleconnections in the Pacific Northwest 
The influence ENSO has on coastal hazard and hydrodynamic conditions is highly variable at 
global to regional scale (e.g., Vos et al., 2023; Aramburo et al., 2022). However, even within 
regions there can be significant variability due to complex interactions with local-scale processes 
and distinct behaviors caused by diverse ENSO events (e.g., Bromirski et al., 2005; Barnard et al., 
2015). Comparisons of winter hydrodynamic anomalies conditioned on ENSO phase and strength 
can highlight sub-regional variability of ENSO teleconnections in the PNW (figure 4a & SI figure 
1). While wave energy flux, water level, and wave directionality trends associated with ENSO 
phase and strength are consistent across the PNW, there is notable spatial variability within the 
region. At all three PNW sub-sites explored in figure 4a (Northern Oregon/Southern WA) and SI 
figure 1 (Northern WA and Northern CA), El Niño is associated with higher wave energy flux, 
water levels, and more southerly wave directionality. This trend is similarly shown for El Niño 
strength, while the opposite trend is seen for La Niña strength. However, across the three sub-sites 
the tails of the distributions are slightly different, as is the behavior of individual ENSO events. 
For example, all three hydrodynamic variables explored generally had longer tails at the more 
northerly sites, indicating larger ENSO-driven hydrodynamic extremes (both high and low) may 
be possible in Northern WA compared to Northern CA. Individual ENSO events can also be 
associated with very different hydrodynamic signals within the region. This can be seen in SI 
figure 1 through comparisons of the 1982-83 and 2015-16 El Niño events. In Northern WA, the 
1982-83 and 2015-16 El Niño events generated roughly equal winter wave energy flux anomalies 
(~42 W/m). However, in Northern CA, the 2015-16 event was approximately 10 W/m less 
energetic than the 1982-83 event. While both locations saw similar water level anomalies during 
the two ENSO events, wave direction approached from a much more southerly angle in Northern 
WA (~ -5° to -10°) compared to Northern CA (~ -1° to -8°). This comparison highlights that there 
is perceptible spatial variability in ENSO-coastal hazard teleconnections in the PNW, both in the 
overall probability distributions and when examining individual events. 

 



 
SI Figure 1. Mean winter (DJF) anomalies of wave energy flux (function of period and height), water level (storm 
surge + MMSL), and wave direction highlighting the alongshore variability of ENSO teleconnections. Anomalies are 
shown for (a) Northern Washington and (b) Northern California as compared to figure 4a. in the main text which 
shows Northern Oregon/ Southern Washington.  
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