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Abstract. Volatile organic compounds (VOCs) are key precursors of tropospheric ozone and secondary organic aerosols, a ma-
jor component of PMs 5, and several aromatic VOCs are toxic. Glyoxal is a short-lived oxidation product of many VOCs, yet
global models consistently underestimate its abundance, indicating a substantial missing source. Here, we derive improved esti-
mates of global biogenic, pyrogenic, and anthropogenic VOC emissions and new constraints on the atmospheric glyoxal budget,
based on the first joint inversion of TROPOMI formaldehyde and glyoxal columns using the adjoint of the MAGRITTEv1.2
chemical transport model. For 2021, the global NMVOC flux is estimated at 1070 Tg/yr, 19% above bottom-up estimates,
partitioned into 749 Tg from vegetation, 102 Tg from biomass burning, and 219 Tg from anthropogenic activity. Emissions of
anthropogenic glyoxal precursors are 43% higher globally when constrained by satellite data compared with inventory-based
simulations, with large underestimations in India, China, and Africa. The total glyoxal source is estimated at 100 Tg/yr, of
which 41% originates from unidentified VOCs, predominantly biogenic and concentrated in the Tropics. Likely contributors
include poorly represented formation pathway in isoprene oxidation under low-NO, conditions and an underestimated contri-
bution of monoterpenes. Validation against Pandonia Global Network, in situ, and MAX-DOAS datasets confirms improved

agreement of the satellite-constrained model relative to the model based on inventory data alone.

1 Introduction

Volatile organic compounds (VOCs) are key precursors of tropospheric ozone, a harmful air pollutant and greenhouse gas
(Chameides et al., 1988; Monks et al., 2015) and of secondary organic aerosols (SOA), a major component of PMs 5 adversely
affecting air quality and human health (Spracklen, 2011; Nault et al., 2021). In addition, some emitted VOCs themselves are
toxic, carcinogenic, or cause respiratory irritation, especially aromatic hydrocarbons originating from anthropogenic activity
such as benzene, toluene, ethylbenzene and xylenes (Lan et al., 2004; Partha et al., 2022). Thus, accurate quantification of non-
methane VOC (NMVOC) emissions is essential for tracking the effectiveness of clean air policies, and adresses a first major
limitation in understanding and regulating the formation of smog and secondary air pollution: the uncertainty in the magnitude

and distribution of surface NMVOC fluxes.
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Emission inventories are generally the starting point when seeking a global picture of the VOC emission fluxes from anthro-
pogenic activity, vegetation, and fires. Yet bottom-up inventories on their own are not sufficient, because they carry significant
uncertainties in activity data and emission factors, particularly in regions where field measurements or reporting of anthro-
pogenic and pyrogenic activity are limited (Granier et al., 2011). Ground-based measurements alone do not suffice either
because of their sparse and highly-localized nature. Large parts of the Tropics and the African continent, for example, are
observational blind spots. Observation of directly-emitted NMVOCs from space remains limited due to the low concentrations
and relatively weak spectral features of most VOCs in the spectral ranges accessible to satellite instruments. Nevertheless, sev-
eral key VOCs have been successfully retrieved, such as methanol (Razavi et al., 2011; Wells et al., 2014; Franco et al., 2024;
Wells et al., 2025), acetone (Franco et al., 2019), formic acid (Razavi et al., 2011; Chaliyakunnel et al., 2016; Franco et al.,
2018), isoprene (Fu et al., 2019; Wells et al., 2020), and ethene (Franco et al., 2022; Wells et al., 2025). While these retrievals
have demonstrated global coverage, they often rely on assumed vertical profile shapes, exhibit limited sensitivity near the sur-
face, require favorable thermal infrared conditions such as a strong surface-atmosphere thermal contrast, and have not yet been
integrated into inversion systems to constrain surface NMVOC fluxes: although these efforts provide valuable information for
characterizing the large-scale distributions of the retrieved species and bottom-up emissions employed in large-scale models,
they cannot readily offer constraints on the full range of different NMVOC species and sources. Secondary VOCs such as
formaldehyde (HCHO) and glyoxal (CHOCHO), by contrast, are short-lived oxidation products of a wide range of NMVOCs
and exhibit distinct spectral features in the UV and visible ranges, allowing for routine and reliable global retrievals (Thomas
et al., 1998; Wittrock et al., 2006). Although methane oxidation is the main source of formaldehyde at the global scale, and
particularly over oceans (Stavrakou et al., 2009a), both formaldehyde and glyoxal over continental areas are predominantly
produced by more reactive NMVOCs such as isoprene and monoterpenes over vegetated areas. Over heavily industrialized
regions, anthropogenic precursors are often dominant; especially aromatic compounds and acetylene contribute substantially
to the glyoxal budget in polluted areas (Fu et al., 2008; Stavrakou et al., 2009¢). The two compounds are also directly emitted,
but in much smaller quantities than their secondary production. Formaldehyde is directly emitted by fuel combustion pro-
cesses, biomass burning and vegetation. Glyoxal is released by fuel combustion (Qiu et al., 2020; Wang et al., 2023) and some
industrial processes (Ho et al., 2013), and biomass burning (Zarzana et al., 2017, 2018).

Formaldehyde retrievals from space have been used to constrain VOC surface emissions (Pu, 2024; Oomen et al., 2024;
Opacka et al., 2025) since the work of Palmer et al. (2003), while glyoxal has been used to that effect in combination with
formaldehyde (Cao et al., 2018; Chen et al., 2023) since the study by Stavrakou et al. (2009¢). The short atmospheric lifetimes
of these compounds (on the order of hours) and rapid formation from their parent NMVOCs make them effective tracers of
recent VOC emissions: inverse modeling frameworks, such as the adjoint of the global MAGRITTE chemical transport model
used in this work, use the satellite observations of these compounds together with detailed representations of atmospheric
chemistry and transport to identify the NMVOC emissions that best explain the observed concentrations. In this work, emis-
sions from inventories are used as a priori estimates and subsequently optimized through the inversion of formaldehyde and

glyoxal columns measured by the TROPOspheric Ozone Monitoring Instrument (TROPOMI) on board the Sentinel-5P (S5P)
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satellite. While formaldehyde provides robust constraints on isoprene and the total VOC flux, glyoxal is more selective, for
example to aromatic hydrocarbons, but has weaker signal strength.

A major limitation to our understanding of the impact of VOCs on atmospheric composition lies in the incomplete un-
derstanding of the atmospheric budget of some NMVOCs whose observed concentrations in the atmosphere are consistently
much larger than model predictions. Two important examples of severely underestimated species are formic acid (Stavravkou
et al., 2012; Millet et al., 2015) and glyoxal (Fu et al., 2008; Myriokefalitakis et al., 2008; Stavrakou et al., 2009¢c; Li et al.,
2018; Silva et al., 2018; Lerot et al., 2023). A quantification of their atmospheric abundance and a better understanding of the
distribution of their missing sources are the first steps towards an identification of the missing sources. The underestimation of
continental glyoxal abundances by models has been attributed previously to a combination of factors, including underestimated
emissions of known precursors (e.g. aromatics) and uncertainties in the glyoxal formation yields in the oxidation of NMVOC
precursors such as isoprene (Li et al., 2016). In addition, glyoxal might be formed from the oxidation of NMVOC:s that are
currently not considered in models, such as furanoid compounds (Romanias et al., 2024). In this study, following Stavrakou
et al. (2009c), the missing source of glyoxal is incorporated as the emission of an Unspecified Volatile Organic Compound
(UVOC), representing uncharacterized, but presumably biogenic, organic compounds undergoing oxidation by the OH radical,
ultimately yielding glyoxal. The assumption of biogenic origin is based on the dominance of biogenic sources in the global
NMVOC budget and on the spatial correlation between observed glyoxal columns and forest coverage Stavrakou et al. (2009c).
However, since forested regions are also frequent sites of biomass burning, a pyrogenic contribution cannot be excluded.

The use of satellite columns of formaldehyde and glyoxal together in a joint inversion directly addresses both knowledge
gaps: formaldehyde provides strong constraints on total fluxes of reactive NMVOCs, while glyoxal offers sensitivity to specific
emissions, namely those of glyoxal-producing precursors, including those not currently represented in emission inventories
and atmospheric models. Some of the the limitations outlined above are addressed in this work by recent advances in chemical
transport modeling and satellite observations. On the modelling side, the chemical mechanism has been updated to include
a more accurate representation of aromatic hydrocarbon oxidation (Bates et al., 2021), which better reproduces results from
chamber experiments. In addition, the parameterization of glyoxal uptake by aerosols has also been refined to account for
relative humidity. On the observational side, the TROPOMI instrument offers daily global coverage at much finer spatial
resolution and higher signal-to-noise ratio than its predecessors used in previous global model studies.

The manuscript is structured as follows. The observational datasets used in this work, namely the satellite data of formalde-
hyde and glyoxal acquired from TROPOMI as well as their validation, ground-based formaldehyde column data and in situ
glyoxal concentrations, are presented in detail in Sect. 2. The simulation of formaldehyde and glyoxal with the MAGRITTEv1.2
chemistry-transport model and the design of the one-species and two-species inversions are described in Sect. 3. The top-down
VOC emissions for different source categories and their evaluation through comparisons with independent observations are

thoroughly discussed in SeetSects. 4 and 5. Conclusions are drawn in Sect. 6.
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2 Observational datasets
2.1 TROPOMI formaldehyde and glyoxal column densities

TROPOMI was launched aboard the S5P satellite in October 2017. Functioning as an ultraviolet (UV), visible (VIS), near-
infrared (NIR), and short wave infrared (SWIR) spectrometer with a spectral resolution of approximately 0.5 nm in the UV-VIS
range, it operates in a low-Earth afternoon polar orbit with an equatorial overpass occurring daily around 13:30 mean local
solar time. As of August 2019, it provides nearly daily global coverage at a spatial resolution of 3.5 x 5.5 km? in the UV-VIS. It
has a 2600 km swath divided into 450 ground pixels in the UV-VIS, and produces operational Level-2 (L2) products including
vertical columns of O3, SO5, NO,, HCHO, CHOCHO, CO, and CHy, along with cloud and aerosol information (Veefkind
et al., 2012).

The retrieval is based on a three-step differential optical absorption spectroscopy (DOAS) algorithm (De Smedt et al.,
2018, 2021; Lerot et al., 2021). Firstly, as part of the calibration process, the absorption cross-sections are convolved with the
instrumental slit function. Then the convolved cross-sections are fitted to the measured optical depths within a spectral window
in the UV (for formaldehyde) or VIS range (for glyoxal) This step aims to determine the slant column densities (SCDs),
representing the trace gas concentration integrated along the slanted effective light path through the atmosphere. The fitting
procedure takes into consideration physical and instrumental effects to enhance the quality of the fit. To specifically target
CHOCHO absorption bands, a fitting window spanning from 435 to 460 nm is employed, covering its two most intense bands
(Barkley et al., 2017; Lerot et al., 2010). For HCHO, a fitting interval of 328.5 to 359 nm is used. The CHOCHO and HCHO
absorption cross-sections are obtained from, respectively, Volkamer et al. (2005) and Meller and Moortgat (2000). For the
glyoxal fit, Lerot et al. (2021) introduced two additional corrections to this step: one to minimize spectral misfitting caused by
strong absorption of NOg, and one to eliminate misfits caused by scene brightness inhomogeneities. In addition, a difficulty for
the glyoxal fit lies in its spectral interference with water vapor, which can potentially lead to an overestimation of the glyoxal
column density due to overlapping of their spectral features. This effect is particularly pronounced over oceanic regions where
water vapor is abundant, and has also been observed in monsoon seasons over land (Chan Miller et al., 2014). Lerot et al.
(2021) chose a water vapor cross-section at 293 K and 1013 hPa from the HITRAN2012 database.

Secondly, to convert the slant column densities to vertical column densities (VCDs, i.e., the concentration integrated from
the Earth surface pixel beneath the satellite up to the top of the atmosphere), one requires the air mass factors (AMFs) in
the middle of the fitting window (448 nm for CHOCHO, 340 nm for HCHO). These are obtained from a look-up table,
which contains a range of precomputed altitude-resolved AMFs calculated with the radiative transfer model VLIDORT v2.6
(Spurr, 2008) for different combinations of observational parameters, such as observation angles, surface elevation, and surface
albedo. From the table, the appropriate AMF based on the specific conditions of a TROPOMI observation is selected. The
surface albedo is obtained from the Ozone Monitoring Instrument (OMI) minimum Lambertian-equivalent reflectivity (LER)
climatology (Kleipool et al., 2008) at a spatial resolution of 0.5° x 0.5° for CHOCHO as well as for HCHO at the respective
wavelength of the AMF calculation. A priori vertical profiles at a 1° x 1° resolution are provided by the global chemical
transport MAGRITTEv1.1 (Miiller et al., 2019) for CHOCHO, and TM5-MP (Williams et al., 2017) for HCHO. Over oceans,
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the a priori CHOCHO profiles are obtained from airborne campaign measurements over the Pacific Ocean (Volkamer et al.,
2015). Only observations with a cloud fraction less than 20% for CHOCHO and less than 40% for HCHO were retained for
processing, following the product recommendations.

Finally, background correction is necessary to mitigate systematic biases, such as instrumental effects or biases caused
by spectral interference between the target absorber and other absorbers, and to correct for the presence of stripes in the
SCDs derived from TROPOMI observations. To that end, observations in the Pacific Ocean, a remote and clean reference
region, served as a baseline against which the observed CHOCHO and HCHO levels in other areas were compared and
corrected (De Smedt et al., 2021; Lerot et al., 2021). At the end of the procedure, a background column is added to the
tropospheric column. For HCHO, this background value is taken from the model in the reference sector, ranging from 2 to
4 % 10'® molec. cm 2. For CHOCHO, a single offset of 0.1 x 10! molec. cm ™2 is added. Although some biases are removed
in the DOAS-based algorithm (such as those caused by stripes, scene brightness inhomogeneities, or strong NOo absorption),
it introduces systematic errors as well: SCD and spectral fitting uncertainties (e.g., absorption cross-section uncertainties and
interference with other species), AMF uncertainties (i.e., uncertainties of the input parameters in the AMF calculation and the
profile shape) and background correction uncertainties (i.e., uncertainties of the reference VCD). Lerot et al. (2021) find that
for CHOCHO VCDs, those three primary error components generally contribute nearly equally to the total systematic error.
In low-emission remote regions with background-level CHOCHO VCDs (< 0.2 x 10*® molec/cm?) however, spectral fit and
background correction uncertainties dominate. The total systematic CHOCHO VCD errors were found to lie between 30% and
70% for regions with elevated (i.e., higher-than-background-level) CHOCHO emissions (Lerot et al., 2021). The systematic
uncertainties for HCHO VCDs are reported in the Algorithm Theoretical Basis Document (ATBD) by De Smedt et al. (2018).
For HCHO, the AMF uncertainty is the main contributor to the systematic uncertainty of the final product, both in regions with
moderate HCHO VCDs (> 5 x 10'® molec/cm?) and in regions with elevated columns (> 8 x 10'5 molec/cm?). The total
systematic HCHO VCD retrieval error in regions with elevated columns (i.e., the Tropics and mid-latitudes in summer) was
estimated to be 35%, with the SCD and spectral fit uncertainties, AMF uncertainties, and background correction uncertainties
contributing respectively 15%, 30%, and 10%. In regions with low VCD magnitudes, such as mid-latitudes in wintertime, the
error can increase to 50-80%. While the retrieval uncertainty contains both a systematic and a random component, monthly

averaging causes the random component to essentially vanish.
2.2 Satellite validation and bias correction

The TROPOMI CHOCHO data was compared with long-term multi-axis differential optical spectroscopy (MAX-DOAS)
observations at a limited number of 8 sites in Asia and Europe and a ten-year near-continuous measurement record at Xianghe,
China, by Lerot et al. (2021). They found a strong correlation (0.6-0.9) between the TROPOMI and ground-based CHOCHO
columns for all stations except Bremen, Germany (0.1). A bias in the TROPOMI columns in wintertime could be responsible
for the latter. While a strong correlation was found at the two most polluted sites (MAX-DOAS columns exceeding 5 X
104 molec. cm*2) in Phimai, Thailand and Pantnagar, India, the mean biases between the TROPOMI and ground-based data

were rather high, —3.5x 10'* molec. cm ™2 in Pantnagar and —2 x 104 molec. cm ™2 in Phimai. Significant negative biases are
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not unusual for comparisons between satellite UV-VIS retrievals and MAX-DOAS data at strongly polluted sites (Verhoelst
et al., 2021; De Smedt et al., 2021), and could be partly due to spatial heterogeneity and/or vertical sensitivity differences
between the instruments. At the other six sites, biases did not exceed £0.9 x 10'* molec. cm_2, indicating an overall good
agreement between the satellite and ground-based data.

The TROPOMI HCHO data (v.02.04.00) was characterized using the ground-based Fourier-transform infrared (FTIR) mea-
surements from a larger number of 29 stations between May 2018 and November 2023 by Lambert et al. (2023) utilizing the
method by Vigouroux et al. (2020). The FTIR vertical sensitivity profile is broadly similar to that of TROPOMI, with lower
sensitivity closer to the surface, which makes FTIR especially suited for this validation. The median uncertainties of the FTIR
observations were 13% (systematic) and 0.3 x 10*° molec.cm™? (random) (Vigouroux et al., 2018). TROPOMI pixels were
selected within 20 km of each FTIR site and comparisons with FTIR data obtained within a time window of £3 hours of
the satellite overpass time were included. Only pixels with a quality assurance value higher than 0.5 were used, which is the
standard practice for TROPOMI products (De Smedt et al., 2023). This leads to about 30-40 TROPOMI-FTIR collocation
pairs per site to average, but this number can be lower in cloudy conditions (Vigouroux et al., 2020). After minimizing vertical
smoothing differences through the application of averaging kernels, a negative TROPOMI bias of —30% was found for high
emission stations, a positive bias smaller than 20% for moderate-emission stations, and one of 32% for clean stations, in agree-
ment with the reported systematic uncertainty of the product. With a robust Theil-Sen estimator, the slope and intercept of the

TROPOMI HCHO columns as a function of the FTIR columns was determined, resulting in the following bias correction:
Qpce = 1.61 x Q —1.84 x 10" molec.cm ™2, (1)

with Qpc the bias-corrected HCHO column and €2 the retrieved TROPOMI HCHO column. This bias correction is applied to
the TROPOMI HCHO columns used in this work. A similar linear relationship was reported in the recent validation of OMI
HCHO columns using FTIR column data and vertical profiles of in situ HCHO concentrations (Miiller et al., 2024).

2.3 Insitu glyoxal data

Field campaigns used for independent model evaluation in this study were carried out between 1988 (Grosjean et al., 1990) and
2018 (Liu, J. et al., 2020; Qian et al., 2019). A total of 70 in situ measurements were compiled from 37 sites across the globe,
of which 17 were rural and 20 were urban locations. The distinction is not always clear-cut, such as for a site in Montelibretti,
Italy (Possanzini et al., 2007), located in the countryside yet only 30 km away from Rome and therefore likely affected by
urban pollution.

A variety of chemical and optical collection and analysis methods were employed in the compiled campaigns. Trapping of
glyoxal on a solid sorbent and 2,4-dinitrophenylhydrazine derivatization followed by high-performance liquid chromatography
(DNPH-HPLC) was used most commonly for the measurement of glyoxal concentrations. Historically, this chemical method
has indeed been used since 1981 (Fung and Grosjean, 1981). It was used in the campaigns in references Lawson et al. (2015);
Dai et al. (2012); Yang et al. (2018); Shen et al. (2018); Qian et al. (2019); Rao et al. (2016); Chang et al. (2019); Cerqueira et al.
(2003); Possanzini et al. (2007); Borrego et al. (2000); Grosjean et al. (1996); Lee et al. (1995); Munger et al. (1995); Jing et al.
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(2001); Grosjean et al. (2002) and Grosjean et al. (1990). In the work by Moortgat et al. (2002), Miiller et al. (2005) and Ho
and Yu (2002), an O-pentafluorobenzyl hydroxylamine (PFBHA) coating was used instead of DNPH to collect the carbonyl
compounds. Liu et al. (2006) used dansylhydrazine (DNSH). Spaulding et al. (2003) implemented PFBHA derivatization
followed by gas chromatography-mass spectrometry (GCMS). leda et al. (2006) and Matsunaga et al. (2004) used an angular
denuder for collection, and gas chromatography for analysis. Optical methods used in this database include incoherent broad-
band cavity-enhanced absorption spectroscopy (IBB-CEAS) by Liu, J. et al. (2020); Min et al. (2016) and Washenfelder et al.
(2011), laser-induced phosphorescence (LIP) by Huisman et al. (2011); DiGangi et al. (2012) and Thayer et al. (2015), long-
path differential optical spectroscopy (LP-DOAS) by MacDonald et al. (2012) and Volkamer et al. (2005), and MAX-DOAS by
Hoque et al. (2018) and Sinreich et al. (2007). For MAX-DOAS measurements, column data were converted to volume mixing
ratios by the original authors Hoque et al. (2018); Sinreich et al. (2007) and used here as such. The altitude of in situ data
collection (i.e., except the MAX-DOAS measurements) varied between ground level and 90 m above ground level, depending
on the study.

In this work, the observed in situ CHOCHO concentrations are compared with the a priori and optimized concentrations
taking into account the location, altitude, time of the year and hour of the measurement. The campaign at the rural site Phimai
in Thailand (Hoque et al., 2018) differs from the others because it featured continuous measurements of both glyoxal and
formaldehyde from 2014 to 2016. Therefore, this data is used in an additional evaluation of the annual cycle of both com-
pounds. We acknowledge that the comparison with in situ campaigns has important limitations because the observations were
obtained for different years than the one studied here (2021). Additionally, due to the coarse model resolution (2° x 2.5°)
representativeness issues in the data-model comparisons could be important, especially for urban locations. We therefore focus

our comparisons on rural locations, which are expected to be more representative of the modeled grid cell concentrations.
2.4 Pandonia formaldehyde column data

The Pandonia Global Network (PGN) (https://www.pandonia-global-network.org) is a network of real-time, standardized,
calibrated ground-based instruments measuring columnar trace gas concentrations of NO2, HCHO, and Ogs, using a passive
remote sensing spectrometer system capable of performing direct sun observations (Pandora). The main strengths of PGN are
the uniform instrument design and calibration, centralized data processing, data archiving, and distribution. The number of
Pandora instruments operating continuously is steadily growing. In this work, direct-sun HCHO column data available from
35 sites for the modeled year 2021 are used for model evaluation before and after the inversion (PGN, 2021). The total number
of PGN stations is higher, but HCHO is not yet provided at all stations. All sites with 2021 data are located in the Northern
Hemisphere, with the largest density in the eastern United States. More recently, sites in the Southern Hemisphere have been
progressively added to the network. We used stations providing data in HDF5 format, selecting only columns flagged as “high
quality (assured)” and “high quality (not assured)”. Monthly averages of the observed columns were computed using days with

valid data.
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3 Methodology
3.1 Formaldehyde and glyoxal simulated using the MAGRITTEv1.2 CTM

The Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions
(MAGRITTE) is a chemical transport model (CTM) capable of calculating the atmospheric distribution of 182 chemical com-
pounds. 141 of these undergo transport processes including advection, deep convection, and mixing within the boundary layer.
The model encompasses detailed up-to-date oxidation mechanisms for isoprene and other biogenic volatile organic compounds
(BVOCs) accounting for recent mechanistic advances (Miiller et al., 2019). Photolysis rates within the model are obtained from
look-up tables calculated using the Tropospheric Ultraviolet and Visible radiative transfer model developed by Madronich and
Flocke (1998). MAGRITTEvV1.1, and the new version described in this work, MAGRITTEv1.2, adopt most parameterizations
from the IMAGES model (Miiller and Brasseur, 1995; Stavrakou et al., 2018), including the description of anthropogenic and
pyrogenic organic compound reactions (Stavrakou et al., 2009a; Bauwens et al., 2016). Calculations of chemical concentra-
tions are conducted over a o-pressure coordinate system encompassing 40 vertical layers within the troposphere and the lower
stratosphere, extending up to a pressure level of 44 hPa.

All anthropogenic emissions are sourced from the Copernicus Atmosphere Monitoring Service (CAMS) CAMS-GLOB-
ANT inventory (Granier et al., 2019) and fire emissions from the QFED (Darmenov and da Silva, 2015) with emission factors
from Andreae (2019). Biogenic emissions are obtained from the MEGANV2.1 model embedded in the MOHYCAN canopy
environment model (MEGAN-MOHYCAN) (Stavrakou et al., 2018; Miiller et al., 2008; Guenther et al., 2012; Bauwens
et al., 2018). The emissions are driven by meteorological fields from the ERA5 ECMWF meteorological reanalysis (Hersbach
et al., 2020). The spatial and temporal variability of the vegetation density is accounted for through the Leaf Area Index
(LAI) dataset obtained from MODIS Collection 6 reprocessed by Yuan et al. (2011). The effect of atmospheric CO5 levels
on biogenic isoprene emission is accounted for based on the parameterization of Possell and Hewitt (2011). For CO5 levels
of 416.4 ppm in 2021 (Lan et al., 2024), the CO, activity factor is equal to 0.90. While drought stress can also impact the
emissions, its effects are uncertain and therefore neglected in the model. Previous model evaluations against OMI data have
shown a deterioration of temporal correlation when accounting for the MEGANV2.1 soil moisture activity factor (Guenther
et al., 2006) and soil moisture fields from a meteorological reanalysis (Bauwens et al., 2018; Stavrakou et al., 2018; Opacka
et al., 2022).

In 2021, the global annual isoprene flux amounted to 433 Tg and the biogenic methanol emission flux (calculated following
Stavrakou et al. (2011)) to 137 Tg, available online at http://emissions.aeronomie.be. The global annual monoterpene flux
equaled 119 Tg. Biogenic emission of other compounds (ethanol, acetaldehyde, and acetone) are as described in Miiller et al.
(2024).

Considering that aromatic compounds are important anthropogenic precursors of glyoxal, the CTM has been updated in this
work to better represent their oxidation through the integration of a new compact mechanism developed by Bates et al. (2021).
This oxidation mechanism offers the computational tractability of a relatively minimalist implementation of only 17 species

and 44 reactions, while providing a better match with observed yields from chamber experiments than more complex mecha-
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nisms for hydrogen oxide radicals, glyoxal, and other oxygenates (Bates et al., 2021). The chemical mechanism of MAGRIT-
TEvl.1 already included the oxidation of six glyoxal precursors: isoprene (CsHg), acetylene (C2Hs), and ethene (CoHy),
and the common BTX aromatics benzene (CgHg), toluene (C7Hg) and xylenes (CgHig). The new mechanism in MAGRIT-
TEv1.2 includes the following additional aromatics: trimethylbenzene (CoH12), styrene (CgHg), ethylbenzene (CgH1g), phenol
(CgHgO), cresol (C7HgO), catechols (C¢HgO2) and methylcatechols (C7HgO3), benzaldehyde (C7HgO), (methyl-) perben-
zoic acid (C7HgO3), methylperoxybenzoylnitrate (C7H50O5N), nitrophenols and nitrocatechols (C¢HsO3N), generic C4 and
Cs intermediates (C4,H4O2 and C5HgO2). Among these species, trimethylbenzene, styrene, and ethylbenzene are directly
emitted by anthropogenic activities, and phenol, benzaldehyde, styrene, and ethylbenzene are released by fires.

A second update to the model is the revision of glyoxal reactive uptake by aerosols, following Curry et al. (2018). The
irreversible uptake of CHOCHO by aqueous aerosols was previously assumed to proceed with a uniform reactive uptake
probability, yrir = 2.9 X 1073, based on laboratory experiments conducted under atmospheric conditions (Liggio et al., 2005).
Evidence for rapid CHOCHO uptake is provided by direct measurements of gas-phase glyoxal (Volkamer et al., 2007; Ervens
and Volkamer, 2010). We adopt the parameterization of the reactive uptake coefficients of CHOCHO by different cloud and
aerosol types reported in Curry et al. (2018): the glyoxal uptake coefficient by sulfate, nitrate, or ammonium aerosols as a

function of the relative humidity (RH) is expressed as
Yru = exp(12.1 —44.5 RH 4 22.3 RH?). )

This parameterization leads to much lower uptake at high RH (ygg < 10~* for RH > 80%) than in drier conditions (e.g.,
vru = 1072 at RH = 50%). In the context of this work, it results in an overall decrease of the contribution of CHOCHO
uptake to aqueous SOA formation compared to the use of the constant uptake probability yry = 2.9 x 1073, We note that
more research is needed to better understand the influence of other parameters, like temperature, aerosol acidity and organic
content.

Table 1 summarizes the updated global annual of sources and sinks of atmospheric CHOCHO estimated in this study and in
previous modeling studies. The overall a priori budget of CHOCHO (47.5 Tg yr—1) remains consistent with previous estimates
(Stavrakou et al., 2009¢; Silva et al., 2018). The contribution of isoprene oxidation to this total is 23 Tg yr—*, slightly less than
in the IMAGESV?2 study (28 Tg yr—'), due to mechanistic differences leading to a lower overall glyoxal yield from isoprene,
as detailed in Miiller et al. (2019). The larger photochemical production of glyoxal in this work (46 Tg yr~!, as compared to
33 Tg yr~—! in Silva et al. (2018)) results from several factors, including higher molar yields of glyoxal from aromatics in the
mechanism of Bates et al. (2021) adopted in this work (~0.6 for BTX, as compared to 0.25 in Silva et al. (2018)), and higher
glyoxal yields from monoterpenes (Miiller et al., 2019).

The new parameterization of heterogeneous uptake does not cause an important change in comparison with the IMAGESv2
study, as the organic carbon and black carbon sink parameterization was left unchanged. However, the in-cloud CHOCHO sink

1

has decreased significantly, from 4.7 Tg yr~! in the work of Stavrakou et al. (2009¢) to 0.8 Tg yr—!. The direct emission of

glyoxal in this work and in the GEOS-Chem studies includes only pyrogenic emissions while Stavrakou et al. (2009¢) included
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Table 1. Global annual sources and sinks of atmospheric CHOCHO estimated in this work (average over 2021) by the a priori MAGRIT-
TEv1.2 model, as compared to the a priori budget from Stavrakou et al. (2009¢c) for the year 2005, and the results of Silva et al. (2018) for the
year 2005 as well. The sources and sinks are expressed in Tg of glyoxal per year. An aerosol uptake coefficient of 2.9 x 10~% was adopted

in Fu et al. (2008), Stavrakou et al. (2009¢) and Silva et al. (2018). Heterogeneous loss includes in-cloud uptake and aerosol uptake.

CHOCHO budget GEOS-Chem IMAGESvV2 GEOS-Chem MAGRITTEvV1.2
Tg yrf1 (Fu et al., 2008) (Stavrakou et al., 2009¢) (Silva et al., 2018) a priori (this work)
Direct emission 8 9.0 6.5 1.5
Photochemical production 37 47.0 33.0 46.0
Total Source 45 56.0 394 47.5
Photolysis 28 28.7 23.1
OH oxidation 6.5 10.0 35.7 9.1
Heterogeneous loss 6.4 12.4 9.7
Deposition 4.1 4.5 3.7 5.6
Total sink 45 56.0 394 47.5
Global burden (Gg) 15 15.8 14.3 15.3
CHOCHO lifetime (hr) 29 25 32 2.8

a 3.2 Tg yr~! anthropogenic direct emission component. The direct pyrogenic source of glyoxal in this work (1.5 Tg yr—1) is
lower than in the previous studies, due to the lower emission factors from Andreae (2019).

Finalty—to-To facilitate a direct comparison with TROPOMI monthly averaged HCHO columns, the modeled monthly
averaged columns are taken-based on daily values at the satellite overpass time (~13:30 local time), while accounting for
the number of observations and averaging kernels provided with the TROPOMI retrievals. These kernels are applied to the

modeled vertical profiles to account for the instrument’s altitude-dependent sensitivity and remove errors due to vertical profile

inconsistencies in the comparison of satellite columns with the model (Oomen et al., 2024).

The inverted emissions have uncertainties due to several factors affecting the HCHO columns, besides the magnitude of the
emissions, such as the background HCHO levels due to methane oxidation, incomplete or incorrect information regarding VOC
speciation in emission inventories, the VOC oxidation mechanisms, the deposition of oxidation intermediates, the transport
processes influencing the vertical profile of chemical compounds. and the NOx concentrations. known to influence the OH
levels as well as the yields of HCHO and CHOCHO from key VOCs including isoprene.

3.2 One-species and two-species inversion setup

The MAGRITTE chemical transport model is used in a global adjoint-based inversion framework to optimize NMVOC emis-
sions using TROPOMI observations. The emissions are iteratively refined through the minimization of a cost function .J, which

quantifies the discrepancy between modeled and observed columns, expressed as:

T(E) = 3 (D) —y) B (H(E) —y) + St B, G

NN

10



310

315

320

325

Table 2. Global emission optimizations performed in this study for the target year 2021.

Name Description

OPTHCHO One-compound inversion constrained by TROPOMI HCHO

OPTHCHOGLY | Two-compound inversion constrained by TROPOMI HCHO and CHOCHO, Tyvoc = 5days
S1 as OPTHCHOGLY, with Tuvoc = 1day

S2 as OPTHCHOGLY, with Tuvoc = 10days

with f denoting the vector of dimensionless emission parameters to be optimized, H (f) the operation of the chemical transport
model on the control variables, y the observation vector, 1" indicating the transpose, B the covariance matrix of emission
parameter errors, and E the covariance matrix of observation errors encompassing instrumental, representativeness, and model
errors. The cost function is minimized using a quasi-Newton optimization algorithm, which involves calculating its gradient
through the model’s adjoint (Miiller and Stavrakou, 2005). The convergence criterion is a reduction of the norm of the gradient
of the cost J by a factor 30. Typically, this criterion is reached after approximately 30 iterations. The observation vector y and
its model counterpart H (f) consist of monthly-averaged bias-corrected TROPOMI columns binned onto the model resolution

(2°%2.5°). The optimized monthly-averaged top-down emission flux is expressed as

m
G(tha f) = Zexp(fj)¢j (th)a 4
j=1

where ¢;(x,t) indicates the a priori spatiotemporal emission distributions for each source category j out of m categories, and
fj(x,t) are the emission parameters determined by the inversion for each category, model grid cell x, and month ¢, in a given
year. Note that the emission parameters are defined per category, i.e. the speciation within each category is unchanged by the

The target year is 2021, with the simulation commencing on July 1st of 2020, exclusively incorporating continental data.
Emissions are not optimized in grid cells for which the maximum monthly a priori emission (throughout one year) is very low,

2

namely below 10° molec. cm~2 s~!. Furthermore, only months with at least 10 valid satellite observations per model pixel are

included in the analysis.
3.2.1 Formaldehyde-constrained inversion

Table 2 summarizes the emission inversions conducted in this work. The formaldehyde-only inversion (hereafter abbreviated
as OPTHCHO) optimizes three emission categories, namely biogenic, pyrogenic, and anthropogenic VOC fluxes (see Table 3).
Biogenic fluxes are dominated by isoprene, but also include monoterpenes, ethanol, acetaldehyde and acetone. In the HCHO
inversion setup, around 111 000 emission parameters f; are inferred by the optimization: 42 000 (3500 grid cells x 12 months)

for anthropogenic fluxes, 29 000 for biomass burning fluxes, and 40 000 for biogenic fluxes.

11
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The observation covariance matrix E is assumed to be diagonal, with its diagonal elements the total (TROPOMI) observation
uncertainties. Each one is calculated as the squared sum of the retrieval uncertainty, discussed in Section 2.1, and an absolute
model uncertainty taken equal to 2 x 10*®> molec. cm~2.

The emission covariance matrix B’s diagonal elements are the squares of the relative errors, which are taken equal to 0.9,
i.e., the uncertainty factors of all emission parameters are assumed to be e*-? ~ 2.5. The off-diagonal elements of B depend
upon the spatio-temporal correlations of the errors in the fluxes. For biogenic and pyrogenic emissions, the spatial correlations
are assumed to decrease exponentially between two grid cells, with the decorrelation length set to 300 km. Anthropogenic
emission parameters within the same country are assumed to be weakly spatially correlated (coefficient of 0.1), while param-
eters for different countries are taken to be uncorrelated. The temporal correlation is assumed to be zero for biomass burning

emissions. For biogenic emissions, it is assumed to decrease linearly from 0.6 for consecutive months to 0.1 after 6 months.

For anthropogenic emissions, a similar linear decrease from 0.9 to 0.5 after 6 months is implemented.

Table 3. Emission categories optimized in the one-compound and two-compound inversions.

Inversion constrained by HCHO | Inversion constrained by HCHO and CHOCHO

Biogenic Biogenic
Biomass burning Biomass burning
Anthropogenic non-glyoxal precursors

Anthropogenic VOCs (all)
Anthropogenic glyoxal precursors (acetylene, ethene & aromatic hydrocarbons)

- Missing glyoxal source

3.2.2 Joint inversion constrained by formaldehyde and glyoxal columns

In addition to the source categories addressed by the one-species inversion described above, the simultaneous inversion of
HCHO and CHOCHO column data (hereafter abbreviated OPTHCHOGLY) also constrains the emissions of glyoxal precur-
sors. By virtue of the adjoint-based inverse modeling approach, information gained from HCHO constrains the sources of
CHOCHO, since both gases have common precursors (e.g., isoprene) and are interrelated through their chemical mechanisms
(e.g., via OH). The focus here is limited to continental regions due to the inherent difficulty in retrieving CHOCHO columns
over the oceans due to interference with liquid water absorption and because HCHO columns over oceans are mainly due to
methane oxidation (Stavrakou et al., 2009a).

In the joint inversion setup, besides the three emission categories of the formaldehyde-based inversion, two additional emis-
sion sources are optimized as summarized in Table 3 (i.e., m = 5). Firstly, the category of anthropogenic VOC:s is subdivided
into anthropogenic VOCs that are precursors of glyoxal (aromatic hydrocarbons, as well as acetylene and ethene) and anthro-
pogenic VOCs that are not (ethane, propane, propene, formaldehyde, acetaldehyde, propionaldehyde, 2-butanone, formic acid,
acetic acid, butanes and higher alkanes, higher alkenes and alkynes). Secondly, a missing biogenic glyoxal source is intro-

duced, presumed to form via photochemical oxidation (Stavrakou et al., 2009¢) of unidentified VOC precursors (UVOC) with
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a molar yield of unity, assumed to react with OH at a rate constant equal to 2.315 x 10'® cm® molec. ' s~ resulting in a
5-day-assumed-ifetime-lifetime of 5 days for [OH] = 10° molec. cm 3.

Additional inversions for the year 2021 with shorter (1 day) and longer (10 days) lifetimes are conducted as well, to assess
the sensitivity of the model to the chosen UVOC lifetime. The a priori UVOC source is assumed to be distributed according to
the MODIS leaf area index from Yuan et al. (2011) and scaled globally to 20 Tg yr~—!. The a priori anthropogenic CHOCHO
precursors are described in Section 3.1. About 190 000 emission parameters f; are computed in the joint inversion for each
year: 42 000 anthropogenic (besides glyoxal precursors), 29 000 pyrogenic, and 40 000 biogenic ones for the single-compound
inversion, and an additional 42 000 for anthropogenic glyoxal precursors and 37 000 for the UVOC source.

For glyoxal, as for the formaldehyde columns, the elements of the diagonal observation covariance matrix E are the squared
sum of the retrieval uncertainty, discussed in Section 2.1, and an absolute model uncertainty, which for glyoxal is taken equal
to 1 x 10*3 molec. cm~2.

The emission uncertainty factor in B is assumed to be € ~ 2.5 for the UVOC source, while for anthropogenic glyoxal
precursors the factor depends on the geographical region. A factor of 2.5 is used for Canada, the United States, Oceania, Japan,
and OECD (Organisation for Economic Co-operation and Development) member states in Europe. For all other regions, the
uncertainty factor is taken to be e!! ~ 3. The decorrelation length of the UVOC source is set to 300 km, like for the biogenic
and pyrogenic emissions, while its temporal error correlation is assumed to be constant at 0.3. Spatio-temporal correlations for

the anthropogenic categories are identical to those in the single-compound inversion.

4 Results
4.1 Formaldehyde columns constrained by TROPOMI data

Overall, the HCHO columns from the a priori (bottom-up) model already agree very well with the bias-corrected satellite
columns, both in terms of magnitude and spatial representation (Fig. 1). At regional scale, however, the a priori model often
exhibits significant deviations from the observations. In the Northern Hemisphere, model underestimations occur during the
local winter (Fig. 1a, c) in Southeast Asia, India and Mexico, and during the local summer (Fig. 1b, d) in Southern Europe,
the Middle East, and the entire west of North America. In Central and Western Europe, the model overestimates HCHO
columns. Over Siberia during summer, a good agreement is found, except at high latitudes (>70°), and the model successfully
reproduces the location and magnitude of a major hot spot there that can be attributed to biomass burning (Fig. 2). In West and
Central Africa, the a priori model agrees very well with the observations. In the Southern Hemisphere, in summer (Fig. 1a,
¢) overestimations are found in the semi-arid lowland Chaco Plain of South America and in the north of Australia, while
underestimations are seen in Southern Africa. During the local winter, the model performs relatively well throughout the entire
Southern Hemisphere (Fig. 1b, d).

After inversion (Fig. le, f), the aforementioned discrepancies with the a priori model are mostly eliminated, except for a

few regions with low a priori emissions, such as the west of North America and the Middle East. For instance, year-round
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Figure 1. HCHO columns averaged over December, January, February (DJF) and June, July, August (JJA) in 2021 (10*® molec.cm™?). (a,
b): TROPOMI bias-corrected columns. (c, d): Columns from a priori model. (e, f): Columns optimized through the inversion constrained by

TROPOMI HCHO columns (OPTHCHO).

model underestimations of HCHO in India and in the moist savanna of Southern Africa (DRC, Angola and Zambia) are largely

reduced, as well as the dry season mismatch in Southeast Asia.
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Isoprene

Biomass burning

Anthropogenic VOC

T 4 5 8 7 B 9 10 15 20 30 40 50 60 B0 100 020 0.30 0.40 0.50 0.70 0.80 0.90 0.95 1.05 1.10 120 1.40 2.00 2.50 3.00
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Figure 2. Emission fluxes (2021 average) from OPTHCHO study. Left panels show inventory-based global distributions of (a) isoprene, (c)
biomass burning, and (e) anthropogenic VOC emissions used in the model. Blank pixels denote fluxes below 10'° molec. cm™2 s™*. The
global a priori total flux per emission category is provided in each panel. Right panels show the ratio between the top-down (OPTHCHO-

inversion) and bottom-up emissions of (b) isoprene, (d) biomass burning, and (f) anthropogenic compounds.
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4.2 VOC emissions inferred from bias-corrected TROPOMI formaldehyde columns

The annual top-down global emission fluxes over 2021 inferred from the OPTHCHO inversion are displayed in Fig. 2 and
summarized in Table 4. The global fluxes of isoprene, biomass burning, and anthropogenic VOC emissions are moderately
increased by the inversion, by 13%, 12% and 20%, respectively, compared to the bottom-up fluxes, but the inferred changes are
significantly more pronounced at regional scale. The excellent top-down HCHO column agreement in Southern Hemisphere
Africa seen in Fig. 1 is attained thanks to the strong increase of emissions with respect to the bottom-up inventories used in
the model across all categories: 85% more isoprene, 30 % more biomass burning VOCs and 40 % more anthropogenic VOCs
(Table 4). In India, we find strong concomitant biogenic and anthropogenic flux increases with respect to the inventory (Fig. 2b,

f) which are in good consistency with OMI-derived fluxes by Miiller et al. (2024).

Table 4. Bottom-up (a priori) and top-down continental emission estimates per source category for different world regions and globally, for
the year 2021 (for the OPTHCHO and OPTHCHOGLY optimizations) or 2005-2017 (for the OMI 2005-2017 optimization by Miiller et al.
(2024)). Regions are defined in Supplementary Fig. S1. N.H.: Northern Hemisphere; S.H.: Southern Hemisphere. *In parentheses, global

emissions are given for biogenic VOCs other than isoprene.

N. America  S. America Europe N.H. Africa S.H. Africa N. Asia S. Asia Oceania Global

Isoprene, Tgyr™! (monoterpenes, ethanol, acetaldehyde, acetone)*

MEGAN-MOHYCAN (a priori) 352 142.2 8.7 94.1 45.9 11.4 39 56.6 433 (119, 22,22, 28)"
OPTHCHO (this work) 40.3 131.2 11.6 111.1 84.8 13.1 54.9 42.7 490 (140, 26, 26, 32)*
OPTHCHOGLY (this work) 452 133.3 12.4 114.0 87.1 13.8 61.8 46.2 514 (147,27, 27, 34)"
OMI 2005-2017 454 129.1 13.6 71.5 76.1 16.8 532 36.3 448

Biomass burning, Tg(VOC) yr*

QFED (a priori) 7.7 13.3 1.8 15.8 23.6 8.6 73 42 83
OPTHCHO (this work) 9.3 13.5 2.1 15.3 30.6 8.7 9.6 4.0 93
OPTHCHOGLY (this work) 9.0 14.2 2.0 18.0 34.9 8.8 11.2 42 102
OMI 2005-2017 5.4 12.5 2.3 12.7 30.2 8.6 12.4 3.7 88

Anthropogenic VOC, Tg(VOC) yr

CAMS-GLOB-ANT (a priori) 27 14.2 17.5 43.0 14.9 16.8 54.2 1.5 190
OPTHCHO (this work) 28.9 13.3 17.8 49.3 20.9 23.0 73.0 1.5 228
OPTHCHOGLY (this work) 27.4 13.3 17.6 48.0 19.0 23.3 68.3 1.6 219
OMI 2005-2017 21.6 11.5 20.3 34.8 12.8 259 59.6 1.1 188
Anthr. CHOCHO precursors (included in Anthropogenic VOC)
CAMS-GLOB-ANT (a priori) 3.3 1.9 3.6 4.0 1.5 3.6 17.4 0.3 35
OPTHCHOGLY (this work) 3.8 2.1 3.5 7.0 2.8 4.1 26.8 0.3 50

UVOC, Tg(VOC) yr™*

a priori 2.6 5.8 1.5 2.0 2.0 2.1 3.6 0.7 20
OPTHCHOGLY (this work) 55 11.1 2.1 3.8 53 2.7 8.5 1.5 41
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Significant increases of isoprene emissions as compared to the MEGAN-MOHYCAN-based model (Fig. 2a, b) are derived
in Europe and South Asia, by respectively 33% and 41%. In Oceania, the optimization induces a moderate decrease (by 25%).
Smaller isoprene emission changes are derived throughout South America. The strongest local discrepancies, amounting to a
factor of 2 to 3 locally between the bottom-up and optimized model, are observed in Turkey, India, Myanmar, Thailand, in the
western part of North America (Canada, the U.S., and Mexico), in the Russian Far East, and in the moist savanna of Southern
Africa (Angola, Zambia, Zimbabwe, Malawi, Tanzania). The pronounced increase in isoprene fluxes in Turkey are broadly
consistent with the study of Oomen et al. (2024), which relied on weekly bias-corrected TROPOMI HCHO over Europe, and
inferred an emission increment of approximately a factor of 4. In comparison, less marked but positive emission increments
(+50%) were derived based on OMI HCHO column data by Bauwens et al. (2016).

The TROPOMI-based OPTHCHO isoprene fluxes are compared with previous estimates based on bias-corrected OMI
HCHO data (2005-2017, Miiller et al. (2024)) in more detail in Fig. 3. Globally, the top-down isoprene estimates from these
two inversions are consistent in magnitude: 490 vs. 448 Tg yr~! for the TROPOMI and OMI inversions, respectively. The
spatial distributions of the isoprene emission ratios (Fig. 3b, d) are similar for the TROPOMI and OMI-constrained inversions
in most regions that featured significant emission increases with respect to their bottom-up fluxes, such as in the western part
of North America, Southern Hemisphere Africa, South Asia, and Turkey. Both inversions show little change, or even a de-
crease, in Northern Africa, the southern part of South America and Australia. Significant exceptions are Europe, North Asia
and the Eastern United States, where the OMI-constrained inversion resulted in strongly enhanced isoprene emissions with
respect to the a priori model, while no such enhancement is observed in the TROPOMI-constrained model. The reasons for
these differences are unelearbut-might-be-likely related to differences in the HCHO columns between OMI and TROPOMI,

especially at mid-latitudes. Indeed, the (bias-corrected) HCHO columns from TROPOMI (Fig. 1) are generally lower than the
corresponding OMI columns used by Miiller et al. (2024) (their Fig. 6a,d) at mid-latitudes, and more specifically over Eastern
US, Eastern China and northern Europe.

Significant differences between top-down and bottom-up (QFED) biomass burning emissions (Fig. 2c, d) are found in
Southern Africa, especially over Zambia, Zimbabwe and Mozambique. This feature has been reported in previous inverse
modeling studies relying on SCIAMACHY and OMI HCHO data (Stavrakou et al., 2009b; Bauwens et al., 2016; Miiller et al.,
2024). Multiple other hotspots in Fig. 2d correlate with locations where agricultural fires are a common practice to prepare
land for the upcoming planting season. For example, over north India, the large emission increase corresponds with annual
post-monsoon crop residue burning in November (Lan et al., 2022). This results corroborates previous reporting of severe
inventory underestimations in the region (Liu, T. et al., 2020). Strong emission enhancements are also inferred in the North
China Plain, where post-harvest burning is a common practice every year in May-June. These are in good agreement with
previous estimates (Liu et al., 2015; Stavrakou et al., 2016; Lv et al., 2024). Likewise, the satellite data indicate a marked
increase of fire emissions from European Russia and Belarus associated with human-induced fires in grasslands, arable, or
abandoned lands occurring in spring and summer (McCarty et al., 2017) which are known to be underrepresented in bottom-up
inventories (Glushkov et al., 2021). Myanmar is a known biomass burning hotspot, where shrubland fires and agricultural fires

constitute roughly half of the burnt area (Biswas et al., 2015). In March, pyrogenic emissions from the optimized model are
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a. Top-down isoprene emission flux b. Optimized/a priori
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Figure 3. Modeled isoprene emission fluxes based on different satellite observations. (a): Average isoprene emission for 2021 constrained
by TROPOMI formaldehyde columns, from this work (OPTHCHO inversion). (b): Average isoprene emission for 20052017 constrained
by OMI formaldehyde columns, from Miiller et al. (2024). Right panels show the ratio between the top-down and the bottom-up derived
emissions of the (b) TROPOMI and (d) OMI inversion.

twice as large as the bottom-up estimate there. Alongside those systematically occurring fires, episodic and sometimes extreme
wildfires may occur in other regions, such as the boreal forests across Siberia (Ponomarev et al., 2023). A very large fire event
took place in eastern Siberia in July—August 2021, which released over 3 Tg(VOC) according to QFED. It caused very large
TROPOMI HCHO columns (Fig. 1) which are well represented in the bottom-up model. The emission optimization indicates
a moderate pyrogenic emission reduction, by 22% in these months, but its impact on modeled HCHO columns is more than
compensated by a concomitant increase in isoprene fluxes in the same area (+29%). Intense forest fires also occurred across the
northwestern United States in July 2021. In the states of Washington, Oregon, Idaho and Montana, the strong bottom-up model
underestimation of the HCHO columns leads to almost a threefold increase of pyrogenic emissions: from 0.43 Tg of VOC
(July) in the bottom-up model to 1.2 Tg after optimization. In western Canada, in particular British Columbia and Manitoba,

large emissions are reported by QFED (2.4 Tg VOC annually within 42-50°N and 90-125°W), but these are not significantly
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modified by the inversion (2.6 Tg) despite the large model underestimation of a priori HCHO columns in this region (Fig. 2).
The improved (though still insufficient) representation of the formaldehyde columns there, after optimization, is primarily a
result of enhanced biogenic emissions (+53% annually). Since the increase in biogenic emissions began a month earlier, in
June, well before the peak of the 2021 fire season (only ~0.05 Tg of pyrogenic VOCs were reported in June), it is unlikely that
source confounding occurred. One can therefore reliably conclude that biogenic summertime emissions, rather than pyrogenic
ones, are underestimated by the emission inventories in Canada and the northwestern U.S.

Average anthropogenic VOC emissions (Fig. 2e, f) have nearly doubled in Iran and India. These changes are discussed in

more detail in Section 4.4.
4.3 Atmospheric sources and sinks of glyoxal

The global top-down glyoxal budget is presented in Table 5. The global annual glyoxal source doubles from 48 Tg in the
inventory-based model run (without UVOC) to 100 Tg after inversion. This result is in line with the SCIAMACHY-based
inversion result for the year 2005 (Stavrakou et al., 2009¢). For a small part (12 Tg), the source enhancement is due to in-
creased emissions of known glyoxal precursors including isoprene (+19%), monoterpenes (+24%), pyrogenic VOCs (+23%)
and anthropogenic glyoxal precursors (+43%). The rest (41 Tg) is due to unidentified VOC precursors (UVOC). The top-
down emissions are discussed in more detail in Section 4.4. The glyoxal lifetime incurs little change through the optimization

(Table 5), similar to findings in Stavrakou et al. (2009c).

Table 5. Top-down (OPTHCHOGLY) global budget of atmospheric glyoxal (Tg yr~'). UVOC: unidentified VOC precursors.

_,. MAGRITTEv1.2
CHOCHO budget (Tg yr™ ")

Top-down (this work)

Direct emission 1.9
Photochemical production 98.4
from known sources 57.7
from UVOC 40.7
Total Source 100.3
Photolysis 544
OH oxidation 18.9
Heterogeneous loss 17.1
Deposition 9.9
Total sink 100.3
Global burden (Gg) 32.9
CHOCHO lifetime (h) 29

The glyoxal columns from the two-compound OPTHCHOGLY inversion are displayed in Fig. 4 and Fig. 5. TROPOMI mea-

sures high year-round glyoxal column abundances in the Tropics. In the northern and southern temperate zones, the columns
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peak during local summer. Although the a priori model reproduces relatively well the patterns of the observed glyoxal distri-
bution (Fig. 5a—d), the magnitudes are strongly underestimated. The gap is largely closed after inversion (Fig. Se, f).

After inversion, the glyoxal columns remain underestimated in many arid and semi-arid areas, including the Arabian Penin-
sula (by about a factor of 3) and, during summer, northwestern China and Inner Mongolia (locally by more than a factor of 5),
and the Western United States (by a factor of 1.5), i. e. low-emission areas according to emission inventories. In the Western
U.S., formaldehyde columns remained underestimated after inversion as well (see Section 4.1). In Northwestern China and
Inner Mongolia, the mining, combustion and processing of coal have intensified drastically since 2010, and the accuracy of the
related emissions in bottom-up inventories is relatively low (Zhu et al., 2022). Similarly, it has been found in numerous studies
that anthropogenic emission inventories do not accurately represent observations around the Red Sea and the broader Middle
East region (Osipov et al., 2022). These factors likely contribute to the lower model performance in those regions.

Fig. 5b and d show a severe underestimation of a priori glyoxal columns in summer in the extra-tropical Northern Hemi-
sphere, especially over the global boreal zone and over broadleaf and mixed zones across the U.S. and Europe. This discrepancy
is corrected after inversion (Fig. 5f, Fig. 4b, f). The effect can be seen in more detail for the broadleaf zones in the time series
in Fig. 4b and f: in the Southeast U.S. during summer, the a priori columns are half the observed values, and the difference
vanishes after optimization (Fig. 4b). Over Europe, the a priori model discrepancy is smaller in winter, while in summer, the
measured column exceeds the a priori values by about 150%, with the gap closing after inversion (Fig. 4f).

In tropical regions, the observed seasonality is relatively weak and is well captured by the model. The peak of glyoxal
concentration around September results from a combination of direct emissions from fires and photochemical production from
pyrogenic hydrocarbons (Kluge et al., 2023), as well as biogenic emissions, which are more pronounced in the dry season. The
bottom-up underestimation of the glyoxal columns by a factor of 2 year-round gives way to an excellent match in the top-down

model (Fig. 4).
4.4 Top-down VOC emissions inferred using TROPOMI formaldehyde and glyoxal columns

As compared to the formaldehyde-constrained inversion (OPTHCHO), the additional constraints provided by glyoxal obser-
vations (OPTHCHOGLY) increase the pyrogenic emissions by 10% globally, whereas isoprene and anthropogenic emissions
show small changes (within 5%) (Table 4). Most significantly affected are the pyrogenic emissions in Africa and South Asia,
where the total annual emissions are increased by circa 15% in OPTHCHOGLY relative to OPTHCHO inversion. The only
significant change in isoprene emissions occurs in North America and South Asia, which both increase by circa 12% compared
to the OPTHCHO model. For most other regions, the optimized OPTHCHOGLY emissions remain close to the OPTHCHO
results (Table 4 and Fig. 6). Although, for each of the three categories, the global total annual emissions derived in this work
(either OPTHCHO or OPTHCHOGLY) are higher than both the bottom-up estimates and the estimates by Miiller et al. (2024),
regionally, the top-down isoprene emissions derived from OMI columns by Miiller et al. (2024) are higher than those obtained
here at northern extratropical latitudes (North America, Europe and North Asia), as well as the anthropogenic VOC emis-
sions in Europe and North Asia (Table 4). Those discrepancies are likely due to differences between (bias-corrected) OMI and
TROPOMI columns.
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In every category, Indian emissions are drastically larger than in the inventories: yearly isoprene emissions are more than
doubled (from 8 to 17 Tg), pyrogenic emissions are tripled (to 3 Tg), and anthropogenic VOCs are 1.6 times larger (from 12 to
19 Tg). The latter is more in line with other recent assessments in the literature, e.g. 16 Tg for the year 2015 according to the
bottom-up inventory of Venkataraman et al. (2020) and 20 Tg in 2009 for the entire indian subcontinent in the OMI-based top-
down estimation by Chaliyakunnel et al. (2019). Due to rapid economic growth and limited regulations targeting anthropogenic
VOC sources in India (Ganguly et al., 2020), these emissions show a significant positive trend based on long-term OMI HCHO
data (Bauwens et al., 2022; Miiller et al., 2024) and are expected to have increased steadily up to 2021.

Two additional categories are optimized in the OPTHCHOGLY setup: the anthropogenic glyoxal precursors (Section 4.4.1)
and the unspecified glyoxal precursor UVOC (Section 4.4.2). The former includes all main aromatic compounds (benzene,
toluene, ethylbenzene, xylenes, trimethylbenzene, and styrene), as well as acetylene and ethene. All categories included, the
annual global VOC source is estimated in the OPTHCHOGLY study at 1070 Tg, up by 19% from the bottom-up estimation of
897 Tg.

4.4.1 Top-down emissions of anthropogenic glyoxal precursors

According to the CAMS-GLOB-ANT inventory, the main source regions of anthropogenic glyoxal precursors are the eastern
United States, Central Europe, Southeast Asia, and most significantly India and eastern China (Fig. 6j, Supplementary Fig. S2).
The top-down inversion (Fig. 6k and 61) results in a threefold emission increase in India, as well as moderate increases in
Mexico, the Middle East, Indonesia, and northern China. In a few areas in the Middle East and in northwestern China, much
higher local increases (factors of 1.5-3) are derived, even though the optimized glyoxal columns remain low compared to the
observations (Fig. 5). Cumulatively across Africa, anthropogenic glyoxal precursors are emitted at nearly twice the amount
(9.8 Tg yr—1) reported in the inventory (5.5 Tg yr—1) (see Table 4 and Fig. 61). Slight decreases with respect to the inventory
are found in North America, North Asia, and Central and South China. Globally, the emissions of anthropogenic glyoxal
precursors are estimated at 50 Tg yr—! after inversion, an increase of 43% relative to the bottom-up estimate (see Table 4).
According to the OPTHCHOGLY inversion, China emitted 6.5 Tg of anthropogenic aromatics in 2021, very close to the
bottom-up estimate (Table 6). The distribution, however, differs significantly between the bottom-up and top-down model. The
OPTHCHOGLY emission estimates exceed the a priori fluxes in the Beijing—Tianjin—Hebei (BTH) and Yangtze River Delta
urban areas but are lower in the southern urban clusters including Wuhan, Chongqing and the Pearl River Delta (Fig. 7c).
The derived source of aromatics from China is about twice lower than reported in the satellite-constrained work of Liu et al.
(2012a) for 2007 (13.4 Tg yr—1). This disparity can be attributed to differences in the satellite retrievals of SCTAMACHY
and TROPOMI and possibly to a decrease in the emissions of glyoxal precursors between 2007 and 2021: the SCTAMACHY
glyoxal columns reported by Liu et al. (2012a) were in the range (5-10) x 10** molec. cm~2 in August 2007 over Eastern China,
which is about twice higher than the TROPOMI columns in August 2021 in the same region. Spaceborne glyoxal data from
multiple missions, including OMI, GOME-2 and TROPOMI indicated slightly lower columns since 2015, compared to previous
years, possibly in response to emission regulations (Lerot et al., 2021). This decrease (of the order of 104 molec. cm~?2) does

not completely explain the very high values used in Liu et al. (2012a), which are therefore likely due to retrieval differences.
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Table 6. Anthropogenic VOC and aromatic hydrocarbon emissions in China, BTH (Beijing-Tianjin-Hebei) and YRD (Yangtze River Delta).
BU: bottom-up; TD: top-down; ant. VOCs: anthropogenic VOCs; % aromatics: percentage of aromatic hydrocarbon emissions with respect

to total anthropogenic VOC emissions.

Average emissions (Tg yr ')

Study Method Year | Ant. VOCs  Aromatics % Arom.
China
Liu et al. (2012a), a priori BU (Zhang 2009) 2007 23 24 10
Liu et al. (2012a) TD (SCIAMACHY CHOCHO) 2007 34 13.4 39
This work, a priori BU (CAMS-GLOB-ANT) 2021 31 6.4 21
This work, OPTHCHOGLY TD (TROPOMI HCHO & CHOCHO) 2021 37 6.5 18
Beijing-Tianjin-Hebei
Lietal. (2019) BU 2015 33 1.1 33
This work, a priori BU (CAMS-GLOB-ANT) 2021 74 14 19
This work, OPTHCHOGLY TD (TROPOMI HCHO & CHOCHO) 2021 9.5 1.8 19
Yangtze River Delta
An et al. (2021) BU (local observation-based) 2017 4.9 1.2 25
This work, a priori BU (CAMS-GLOB-ANT) 2021 6.4 1.4 22
This work, OPTHCHOGLY TD (TROPOMI HCHO & CHOCHO) 2021 59 1.3 22

The Beijing-Tianjin-Hebei region (BTH) implemented numerous programs to address air pollution since 2012 (Xiao et al.,
2020). Our findings suggest that BTH emits about 30% more aromatics than in the bottom-up inventory (Table 6). The relative
contribution of aromatics to the total anthropogenic VOC emissions in BTH is similar in the bottom-up model and after
inversion (19%), but lower than in the bottom-up estimate by Li et al. (2019) for 2015 (33%). Ambient measurements near
Beijing revealed that the aromatic emission flux was significantly lower than reported in Li et al. (2019), suggesting that the
contribution of aromatics should be lower (~10%), i.e. closer to the top-down estimate in this work. A partial explanation
could be governmental regulations in the region (Simayi et al., 2022). In view of the disparities among studies (Choi et al.,
2024), it is clear that more detailed investigations are needed.

The total of anthropogenic VOC and aromatic emissions over the Yangtze River Delta (YRD) region changed little after
inversion (Table 6). Both the bottom-up and top-down estimates agree well with those from the bottom-up inventory of An
et al. (2021), based on local measurements for 2017. In terms of seasonal variation, the top-down aromatic fluxes in Shanghai
peak in July, a feature absent from the inventory (Supplementary Fig. S3). This result is consistent with the strong temporal
variation of aromatic fluxes in Shanghai, reported by Wang et al. (2020), with maxima in winter (December/January) and
summer (June/July). We observed this seasonal feature to a lesser extent in Guangzhou, but not in Beijing. The consistent

winter peaks in the CAMS-GLOB-ANT inventory likely reflect heating-related emissions that are relatively well represented,
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whereas summertime activities may be underrepresented in the inventories. Wang et al. (2020) suggest that seasonal activities
(such as outdoor painting) and the influence of meteorology on evaporation processes are key factors contributing to these
summer peaks of aromatic emissions missed in bottom-up inventories.

In the northwestern Xinjiang region of China, emission hotspots are found around Uriimgqj, as well as a particularly high flux
500 km southwest from that city, in a sparsely populated area. There, the optimization indicates that aromatic emissions are a
factor of 4 higher than the bottom-up estimate. These emissions are likely released from the large cotton textile manufacturing
industry and from raw textile dyeing wastewater (Ning et al., 2015). During the studied year, about 90% of China’s cotton was
grown in Xinjiang, or about a quarter of the world’s total (Gale and Davis, 2022). Elsewhere in China, the top-down model
suggests anthropogenic emissions of glyoxal precursors similar to or slightly lower than the inventory, e. g. in the Pearl River
Delta (PRD). The latter reflects a clear evolution since 2006-2007, when Chan Miller et al. (2016) found a very intense glyoxal
hotspot over the PRD observed by OMI, much higher compared to the rest of the industrial coast.

In India, the top-down model suggests annual top-down emissions of anthropogenic glyoxal precursors nearly three times
higher than those in the CAMS-GLOB-ANT inventory (8.2 Tg vs. 2.9 Tg). From the top-down perspective, the annual total
emissions of anthropogenic glyoxal precursors from India and China (8.1 Tg) are similar, whereas China is globally dominat-
ing the emission of anthropogenic aromatics (6.5 vs. 3.7 Tg from India). The dominance of aromatic emissions from China
follows from the VOC speciation of the inventory (Supplementary Fig. S2 and Fig. 7). In India, we see that the very large
discrepancies between the top-down and inventory emissions of glyoxal precursors are likely mainly caused by an underesti-
mation of acetylene and ethene emissions, and to a lesser extent of aromatics. The threefold flux increase from India explains
the substantial enhancement of global anthropogenic emissions of acetylene and ethene at the global scale (+57%), whereas

the global aromatic emission changes are more moderate, of the order of 20% (Table 7).

Table 7. A priori (bottom-up) and optimized (top-down) global anthropogenic emissions of glyoxal precursors derived from the OPTHCHO-
GLY inversion for 2021. Aromatic hydrocarbons are italicized. Emissions are expressed in Tg yr~*. The percentage emission increase for

each precursor is in parentheses.

Anthropogenic glyoxal precursors A priori  Top-down (this work)
acetylene (C2Hz) 2.80 4.37 (+56%)
ethene (C2Hy) 6.48 10.18 (+57%)
benzene (CgHsg) 5.65 7.88 (+39%)
toluene (C7Hs) 7.76 9.06 (+17%)
xylene (CsHio) 7.36 8.40 (+14%)
trimethylbenzene (CoHi2) 0.91 1.11 (+22%)
Other aromatics (styrene, ethylbenzene) 4.48 5.73 (+28%)

The discrepancies between bottom-up and top-down emissions might have several causes. The analysis of spaceborne in-
frared observations of ethylene suggests that the large point sources of this compound are strongly underestimated in bottom-up

inventories (Franco et al., 2022), in particular over India, northern China, the Middle East and Europe. These flaws likely con-
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cern also other VOCs, such as acetylene and aromatics. Over India, the underestimation of bottom-up emissions might be
also related to the large share of domestic emissions and informal, small-scale industries in this country (Mukim, 2015). In
comparison, Chinese industries tend to be state- or privately owned large-scale enterprises, which are more tightly regulated
and better represented in inventory activity data. Additionally, inventories are limited by the lack of activity data and emission
factors specific to Indian emission sources (Stewart et al., 2021). Emission sources particular to India include industrial sources
such as brick kilns and the processing of textiles, jute and leather; and domestic ones such as residential cooking, home use
of poorly-serviced diesel generators, and burning of solid fuel and plastic waste for heating. This is further complicated by
the ubiquity of inferior-quality coal, diesel and petrol, which impacts the chemical profile of traffic, residential and industrial
emissions (Kumar et al., 2016; Stewart et al., 2021). Hence, emission factors determined for a similar activity in a different

country might not translate well to the Indian context.
4.4.2 Unspecified glyoxal precursor emissions

The TROPOMI-constrained analysis indicates a total global annual UVOC source of 41 Tg (Table 4). In comparison, a similar
inversion study constrained by SCIAMACHY data by Stavrakou et al. (2009¢) for 2005 derived a higher UVOC source after
optimization (54 Tg yr—1), even though the total glyoxal source they obtained was similar to the one here, of 100 Tg.

The sensitivity of the model to the UVOC lifetime is shown in Fig. 8. The inferred distribution of the UVOC source is
similar across the inversions, and the global totals are respectively 34, 41 and 47 Tg yr~! when the UVOC lifetime is set to 1,
5 and 10 days. Longer UVOC lifetimes allow emitted UVOCs to move away further from the location where they were emitted
(always on land) before being oxidized into glyoxal (over land and ocean). It is therefore expected that increasing the UVOC
lifetime decreases the glyoxal production over land, thereby requiring a larger continental UVOC emission flux to close the gap
between the modeled and TROPOMI-observed glyoxal columns. The sensitivity analysis is discussed further in Section 5.2.

‘We find that circa 70% of the entire UVOC emission flux stems from the Tropics. The largest increases relative to the assumed
a priori source of 20 Tg are also derived over the Tropics, especially in South Asia (+136%) and Southern Hemisphere Africa
(+165%). Substantial increases are also found in Northern Hemisphere Africa and South America (+90%), and the UVOC
source nearly doubles in North America, primarily due to large increases over Mexico, Central America, the northwestern
United States, and western Canada (Fig. 60). This suggests a substantial underestimation of glyoxal production from biogenic
precursors, likely reflecting a combination of underestimated VOC fluxes and incomplete representation of their oxidation
chemistry in the model.

In the boreal zone, where monoterpenes dominate BVOC emissions (Guenther et al., 2012), the a priori underestimation of
glyoxal (Section 4.3) is likely linked to monoterpenes, whose emissions may be too low in the MEGAN-MOHYCAN inventory
and/or whose glyoxal yields are underestimated in the model, consistent with previous findings based on OMI glyoxal data
and the GEOS-Chem model (Silva et al., 2018). This is supported by the strong UVOC source inferred in this region (Fig. 60)
along with increased BVOC emissions in Canada and the Russian Far East (Fig. 6¢). The latter effect was already present in

the single-compound inversion and is mainly driven by TROPOMI HCHO columns (Section 4.1).
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In the broadleaf and mixed forest zone, where monoterpenes are believed to contribute little to biogenic emissions (Kaiser
et al., 2015), the glyoxal underestimation appears to result primarily from missing knowledge of glyoxal production pathways
from isoprene in the model: a strong UVOC source is inferred across the entire zone, while known biogenic emissions only
increase locally, particularly in the western United States. This pattern suggests that the isoprene flux in the inventory is roughly
correct in most areas, but the chemical pathways leading to glyoxal formation from isoprene are incompletely represented.
This confirms the notion that current knowledge of the isoprene degradation mechanism at low-NO,, remains incomplete (e. g.,
Medeiros et al., 2022; Berndt et al., 2018). Indeed, the relatively low UVOC source over China, India, eastern Brazil, and to a
lesser extent the eastern United States may indicate that glyoxal formation under high-NO,, conditions is better captured in the
model, whereas the low-NO,, glyoxal formation yield might be strongly underestimated.

Although the top-down UVOC source is likely predominantly biogenic, a part of it may be misattributed due to the co-
occurrence of biogenic emissions with biomass burning during hot and dry periods. In such conditions, elevated glyoxal
columns may result from both fire-related VOCs and enhanced BVOC emissions. The top-down UVOC source might then
be overestimated due to a poor representation of secondary glyoxal formation from pyrogenic VOCs, as indicated by the
reported occurrence of high glyoxal in aged biomass burning plumes (Alvarado et al., 2020; Kluge et al., 2023) (Fig. 6n).
The oxidation of furanoid compounds released by fires is believed to form glyoxal at significant yields (Romanias et al., 2024)
and is currently ignored in large-scale models. A part of this glyoxal production might occur several days after emission, as it
involves long-lived intermediates such as maleic anhydride (Gkatzelis et al., 2024).

As pointed out in Kluge et al. (2023), a study based on aircraft data and the EMAC model, multiple sources might contribute
to the model deficits. In particular, recent evidence that phospholipids during the death phase of algal blooms generate glyoxal
upon oxidation (Williams et al., 2024) could partly explain the high UVOC source required at the tropical coastal regions (e.g.,
Atlantic coast of South America, Indonesia, Central America). Therefore, we acknowledge that the use of a single, continental
glyoxal precursor is overly simplified and that a multitude of glyoxal precursors and formation pathways are likely at play. In
addition, it cannot be ruled out that the strong inferred UVOC source, especially in humid tropical regions, might be partly

related to the high sensitivity of glyoxal retrievals to the water vapor cross-section (Lerot et al., 2021).

5 Model evaluation
5.1 Evaluation of modeled formaldehyde columns against PGN data

The PGN measurement sites shown in Fig. 9 are listed with their coordinates in Table 8. The PGN HCHO columns (PGN,
2021) are compared with TROPOMI and model columns in Fig. 10. The 2021 averages of the observed and modeled columns
are listed in Table 8. The left panel of Figure 10 displays a comparison of the bias-corrected (Eq. 1) TROPOMI and PGN
HCHO columns for every measurement station and every month (where data was available) in 2021. The slope is almost equal
to unity (1.03) but a slight offset is derived, with TROPOMI columns being on average circa 10'® molec. cm~2 lower than
the PGN data. We note, however, that the TROPOMI columns are averaged over the 2° x 2.5° grid cell in which the station is

located, whereas the PGN data represent localized measurements, often within an urban area. Furthermore, even though only
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PGN measurements taken within three hours of the TROPOMI overpass time were selected, the sampled days generally differ
between TROPOMI and PGN. Taking these limitations into account, the good overall agreement between the ground-based
and satellite data does seem to support the validity of the bias correction applied to TROPOMI columns based on FTIR data.
The comparison between PGN and modeled columns (a priori and optimized) is shown in the right panel of Fig. 10. Here,
the modeled data are sampled at the PGN observation times. Similar to the comparison with TROPOMI, we find that the
model columns are lower than PGN columns on average. The increased VOC emissions and HCHO columns after inversion
(OPTHCHOGLY) result in a better match with the PGN data relative to the a priori, with the mean bias decreasing from
approximately 30% to 20%.

At the large majority of locations (26 out of 35), the optimization improves the agreement between modeled and PGN
columns, as expressed by the average absolute deviations listed in Table 8. The average observed HCHO column across all sta-
tions listed in Table 8 is 10-10*® molec. cm~2, while the averages from the a priori and optimized model are 7.3-10'® molec. cm ™~
and 7.7-10'® molec. cm—2. At 5 locations (Bayonne, Bremen, Charles City, Cape Elizabeth, Chapel Hill and La Porte), the
a priori model already closely matched the PGN data with an average difference less than 10'° molec. cm~2. At the Asian
sites of Beijing, Busan and Seoul, the a priori model underprediction of approximately 30% is reduced to 20% after inversion.
An exception is the Incheon station, where the observed high column densities (20-10® molec. cm™~2) are poorly represented
in both the a priori (12-10'® molec. cm~?2) and the optimized model (13-10'® molec. cm™2). Similarly for Tsukuba, located
50 km to the northwest of Tokyo, only a small improvement is found after optimization with the model remaining too low
compared to the observation. At the European sites of Helsinki and Athens, the optimized model is unable to bridge the large
model underestimation (43% and 60%, respectively). This poor performance is most likely due to the coarse resolution in this
study (2° x 2.5°), since a high-resolution inversion (at 0.5° x 0.5°) over Europe constrained by TROPOMI HCHO columns
derived a strong increase of isoprene emissions in Southern Europe in order to match the satellite observations (Oomen et al.,
2024).

Across the 14 locations in the East Coast states of the U.S., the mean PGN column (9.7-10'® molec. cm™2) is in good
agreement with the a priori average (8.1-10'® molec. cm~2) and the optimization brings about only small improvements
(8.3-10'® molec. cm ™2, Table 8). At 9 of those sites (Bayonne, Bristol, Charles City, Chapel Hill, Londonderry, Manhattan
New York, New Brunswick, Philadelphia, and Wallops Island) the a priori model already agreed well with the PGN data
and continued to improve after optimization, while at Cambridge, New Haven, Pittsburgh, Washington, and Cape Elizabeth,
the optimization results in minimal or no improvement. Elsewhere in the U.S., the a priori model underestimates observed
columns by about 40% at Houston and Boulder, 60% at Wrightwood, 19% at Mountain View, and achieves an excellent
match at Fairbanks. The model performance after optimization is moderately improved at Houston (35%), Boulder (27%) and
Wrightwood (54%), while the top-down model bias is close to zero at Mountain View. The PGN abundances at Altzomoni and
Mexico City are much higher than the a priori model estimates and while the optimized abundances increase by about 25%
after optimization, they remain much lower than the observed levels. Both of these locations are difficult to capture with the
model, however, due to orographic effects (e.g., Altzomoni is located 4.2 km above sea level) and to intense urban emissions

causing strong heterogeneity of HCHO columns around Mexico City.
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Table 8. Observed HCHO columns (10'® molec. cm™2) from PGN stations, and corresponding values from a priori and optimized
(OPTHCHOGLY) model. Ind.: index in Fig. 9; Country: ISO country code; Lat.: latitude (°N); Long.: longitude (°E); Obs.: observed
column; A priori: a priori model; Optimized: optimized model; A,y and Agpt: average absolute deviation A calculated as the difference
(HCHO model — HCHO,y,s) for resp. the a priori and optimized model (10'® molec. cm™2). NCAR: National Center for Atmospheric

Research; NIES: National Institute for Environmental Studies.

Ind. Site Country Lat. Long. Month Obs. Apriori Optimized A,, Agps
1 Altzomoni MEX 19.12 261.35 1-6, 12 6.9 2.5 3.1 -4.4 -3.8
2 Athens GRC 37.99 2377 1-12 14.3 54 5.7 -8.9 -8.6
3 Bayonne USA 40.67 285.87 3-12 9.6 8.8 8.9 -0.8 -0.7
4 Beijing CHN 40.01 116.38 7-12 12.1 8.2 94 -3.9 2.7
5 NCAR, Boulder USA 40.04 254.76 8-12 6.6 4.0 4.8 -2.6 -1.8
6 Bremen DEU 53.08 8.81 5-11 7.4 6.7 6.4 -0.7 -1.0
7 Bristol USA 40.11 285.12 3-12 9.7 8.6 8.8 -1.1 -0.9
8 Busan KOR 3524  129.08 3-12 12.5 8.7 9.6 -3.8 -2.9
9 Cambridge USA 42,38 288.89 2-12 10.9 6.3 6.3 -4.6 -4.6
10 Cape Elizabeth USA 43.56 289.79 6-8,10-12 74 8.4 8.5 1.0 1.1
11 Charles City USA 37.33 282.79 1-5 4.6 4.9 4.9 0.3 0.3
12 Chapel Hill USA 35.97 280.91 3-4, 6-8 11.7 10.6 10.7 -1.1 -1.0
13 Fairbanks USA 64.86 212.15 4-9 3.2 3.1 3.1 -0.1 -0.1
14 Helsinki FIN 60.20 2496 6-11 8.5 4.9 4.8 -3.6 -3.7
15  Houston USA 29.72 264.66 7-12 16.1 10.0 10.5 -6.1 -5.6
16  Incheon KOR 37.57 126.64 5-9 19.6 11.9 13.0 -1.7 -6.6
17  LaPorte USA 29.67 264.93 5-12 13.9 9.6 10.1 -4.3 -3.8
18  Londonderry USA 42.86 288.62 4-12 6.7 7.1 7.1 04 0.4
19 Manhattan, Kansas USA 39.10 263.39 3-7 10.8 7.4 7.8 -3.4 -3.0
20 Mexico City MEX 19.33  260.82 2-12 14.8 8.1 10.3 -6.7 -4.5
21 Manhattan, New York USA 40.81 286.05 3-5,7-11 10.5 8.9 9.0 -1.6 -1.5
22 Mountain View USA 3742 23794 1-12 8.0 6.5 7.8 -1.5 -0.2
23 New Brunswick USA 40.46  285.57 1,5-12 11.1 9.0 9.2 2.1 -1.9
24  New Haven USA 41.30 287.10 1-12 11.0 8.1 8.3 -2.9 2.7
25  Philadelphia USA 39.99 284.92 4-12 11.4 9.7 10.2 -1.7 -1.2
26 Pittsburgh USA 4047 280.04 9-12 8.3 6.0 6.0 2.3 2.3
27 Seosan KOR 36.78 12649 1-6, 10-12 7.1 6.0 6.5 -1.1 -0.6
28  Seoul KOR 37.56  126.93 1-12 10.3 7.7 8.4 -2.6 -1.9
29 Tel Aviv ISR 32.11 34.81 6-12 8.2 5.8 6.2 2.4 -2.0
30  NIES, Tsukuba JPN 36.05 140.12 8-12 9.2 6.4 6.6 -2.8 -2.6
31  Tsukuba JPN 36.07 140.12 5-12 11.1 7.0 7.2 -4.1 -3.9
32 Wallops Island USA 37.84 284.52 6-12 10.9 9.5 10.0 -1.4 -0.9
33 Washington USA 38.92  282.99 1-12 11.7 7.7 8.0 -4.0 -3.7
34 Wrightwood USA 3438 24232  1-8,10-12 6.1 2.5 2.8 -3.6 -3.3
35  Yokosuka JPN 3532 139.65 1-12 9.2 8.2 8.4 -1.0 -0.8
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5.2 Evaluation of modeled glyoxal concentrations against in situ data

The comparisons between the model and in situ data were performed by linear interpolation of the gridded model values, while
taking into account the month and hourly range of the measurements. Out of 25 rural sites (Fig. 11, Supplementary Table S1),
the agreement between model and observations improves after optimization in 16 cases, as can be seen in Fig. 12. For most
campaigns carried out in temperate forests (Central Rocky Mountains, Pinnacles, Goldlauter, Pabstthum, Wangdu, Tomakomai,
Moshiri and Cape Grim) the a priori glyoxal estimates already matched in situ observations reasonably well (with differences
of less than 16 ppt), and the TROPOMI-constrained inversion further improves the agreement (to differences less than 8 ppt).
The observations in the Sierra Nevada Mountains across different years are, on average, in relatively good agreement with the
model (within 30%), but show a large variability (almost factor of 2). At the temperate site in the Yangtze River Delta, the high
observed glyoxal level stemmed from crop residue burning (Liu, J. et al., 2020) at the time of measurement, and can therefore
not be replicated by the model for a different year (here 2021).

At the tropical rainforest sites, the in situ observations vary widely, resulting in a poor model match: in Manacapuru, a
semi-rural city in the Amazon rainforest located 80 km away from the Amazonas capital Manaus, observed glyoxal levels are
of the order of 0.01 ppb, significantly lower than the a priori estimate of 0.05 ppb, while in the pristine Borneo rainforest,
the observed concentrations average almost 30 times higher, significantly higher than the a priori estimate. The TROPOMI-
constrained optimization results in an increased glyoxal concentration at all rainforest sites. In general, levels of glyoxal would
be expected to be elevated in these areas due to the strong biogenic emissions of isoprene and monoterpenes.

In Tabua, Portugal, the high (150 ppt) observed glyoxal concentrations—as opposed to the moderate ones in Anadia—can be
explained by the Tabua site’s location, surrounded by large Eucalyptus globulus plantations. This species is known to strongly
emit isoprene and monoterpenes, as confirmed by the measurements at the site (Cerqueira et al., 2003). Neither the a priori
nor the OPTHCHOGLY model can resolve these elevated levels. In Georgia, U.S., the very low glyoxal levels in the July-
August campaign cannot be replicated by the models. The nearly five times higher levels in the June campaign at the same
site are closer to those resulting from the optimized model. Finally, at San Nicholas Island, the very high (100 ppt) glyoxal
concentration measured was due to a severe smog event during the measurements (Grosjean et al., 1996) and is evidently not
replicated by the 2021 model results.

Overall, across the rural sites, the mean glyoxal concentration inferred by the OPTHCHOGLY inversion (37 ppt) is in
excellent agreement with the observations (36 ppt), and is on average 60% higher than the bottom-up model average (23 ppt).
A very similar result is obtained when assuming a shorter UVOC lifetime (1 day, S1 sensitivity inversion), whereas the modeled
average glyoxal concentration after inversion is circa 30% higher than the observation when assuming a long UVOC lifetime
(10 days). At urban locations, the mean observed level (381 ppt) is about 10 times higher than typical rural values, and cannot
be replicated by the inversions. As shown in Supplementary Table S2 and Fig. S4, the urban measurements strongly fluctuate
with time and location, and therefore, as opposed to the rural measurements, have limited representativeness for the coarse
model grid used in this work. For example, glyoxal levels in Salvador, Brazil (index 52 and 53 in Supplementary Table S2)

were measured only one hour apart during the morning rush hour, but differ by more than a factor of 10.
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5.3 Evaluation of modeled formaldehyde and glyoxal columns against long-term MAX-DOAS data at Phimai

At the rural site of Phimai, central Thailand (15.18°N, 102.56°E), continuous measurements of formaldehyde and glyoxal
were obtained using the MAX-DOAS technique from October 2014 to October 2016 (Hoque et al., 2018) allowing for a
comparison with the model throughout an entire year (Fig. 13). The climate in Phimai has two pronounced seasons: the dry
season from January to April, and the wet season from June to September. Biomass burning is common during the dry season,
and in combination with high biogenic emission fluxes, it leads to the enhanced formaldehyde (7 ppb) and glyoxal (0.2 ppb)
levels in March, whereas the monthly mean mixing ratios during the wet season were 2 ppb and 0.1 ppb, respectively. The
optimization improves the model performance at this site significantly, with the mean percentage bias between the model and
the MAX-DOAS observation having decreased for both compounds, and the Pearson correlation coefficient having increased
from 0.52 to 0.84 for formaldehyde and from 0.22 to 0.71 for glyoxal (Fig. 13a, ¢). The MAX-DOAS observations indicate
dry season formaldehyde and glyoxal concentration levels about twice as high as in the wet season. While that ratio was close
to unity in the inventory-based model (reflecting the low seasonal variability in Fig. 13a), the seasonality is more marked after
optimization, in good agreement with the MAX-DOAS data. The comparison between TROPOMI and modeled data at the
same location shows excellent top-down agreement, with a decrease of the mean percentage bias between the model and the
TROPOMI observation after optimization from -20% to -5% for formaldehyde and from -21% to 0% for glyoxal (Fig. 13b, d).
The seasonal variation of the MAX-DOAS measurements is very well captured by the TROPOMI observations and reproduced
by the optimized (OPTHCHOGLY) model.

6 Conclusions

We performed a global top-down inversion of continental NMVOC emissions for 2021 constrained by glyoxal and formalde-
hyde columns from the spaceborne TROPOMI instrument. The inversion is realized using the adjoint of the MAGRITTEv1.2
model, which was updated to include detailed aromatic chemistry and up-to-date parameterization of glyoxal uptake onto
aerosols. This study represents the first joint inversion using both tracers from TROPOMI, allowing better constraints on VOC
sources than were possible with earlier, lower resolution satellite data. In addition, the joint inversion enables improved con-
straints on the longstanding issue of missing glyoxal sources in global atmospheric chemistry models. The total amount of
NMVOCs emitted from land into the atmosphere in 2021 is estimated in this study at 1070 Tg and composed of 749 Tg from
vegetation, 102 Tg from biomass burning (wildfires, land clearing, and agricultural and controlled burns), and 219 Tg from
human activity (domestic, industrial, agricultural, energy production and transport). This estimate is by 19% higher than the
bottom-up inventories used in this work. Two emission inversions were conducted. The first one, constrained by atmospheric
formaldehyde alone, provides robust constraints on the total VOC flux (especially isoprene), because the yield of formalde-
hyde from the oxidation of major NMVOC:s is relatively well known. The formaldehyde-and-glyoxal constrained inversion
allows the further partitioning of anthropogenic emissions into glyoxal and non-glyoxal precursors; furthermore, it addresses

the quantification of the missing source of glyoxal.
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The inversions also reveal significant regional and sectoral discrepancies between the bottom-up and top-down emissions.
Relative to the MEGAN-based a priori inventory, isoprene emissions from the two-compound inversion are enhanced by as
much as 90%, 58%, 42% and 28%, respectively, over Northern Hemisphere Africa, South Asia, Europe and North America.
Large increases (locally up to a factor of 3) are also inferred other regions, notably the western half of North America. Emission
decreases are derived over Australia (by 18%) and large parts of South America. The results are broadly consistent with a recent
inversion study based on (bias-corrected) OMI HCHO data, to the notable exception of middle and high latitudes.

Fire emissions in Southern Hemisphere Africa and South Asia are enhanced by about 50% relative to the QFED inventory,
with India reaching 3 Tg yr—!, three times the bottom-up value. Large mismatches over Zambia, Zimbabwe, and Mozambique
appear consistent with earlier studies. Other regions with large differences coincide with places where agricultural burning is
common practice, showing that these remain poorly captured in inventories. In the northwestern United States, emissions from
July 2021 wildfires are increased by nearly a factor of three, while Siberian fire emissions are well represented by the inventory.

Anthropogenic VOC emissions in the United States, Russia, and Europe remain mostly unaffected by the emission optimiza-
tion. In contrast, large emission increases are derived over Iran (factor of ~2) and over India (~1.6), where optimized emissions
reach 19 Tg in 2021. After inversion, global emissions of anthropogenic glyoxal precursors (acetylene, ethene, and aromatic
hydrocarbons) are estimated at 50 Tg yr—!, 43% higher than the bottom-up total from the CAMS-GLOB-ANT inventory.
Global acetylene (4.4 Tg yr—!) and ethene (10.2 Tg yr—!) emissions are both about 60% higher than in the a priori, whereas
benzene emissions (7.9 Tg yr—1) are ~40% higher. India is identified as the top global emitter of acetylene and ethene, while
also emitting large amounts of aromatics. Although recently introduced air quality regulations may improve activity reporting
in India, reliable emission estimation also requires the development of emission factors tailored to the Indian context.

China emerges as the largest emitter of aromatic hydrocarbons: 6.5 Tg in 2021, out of which 1.8 Tg in Beijing-Tianjin-Hebei
alone, ~30% more than reported in CAMS-GLOB-ANT. Anthropogenic emissions from Mexico, the Middle East, Indonesia,
and parts of Africa are also substantially enhanced; for example, inferred aromatic emissions from Africa are 1.6 times higher

1'vs 2.9 Tg yr=1). Given the health concerns of exposure to aromatics, for example the

than inventory values (4.7 Tg yr—
estimate by Partha et al. (2022) that more than half a million preterm births per year are attributable to aromatic hydrocarbon
exposure in China and India, it is important to improve the accuracy of these emission estimates.

Based on the joint inversion of TROPOMI formaldehyde and glyoxal columns, we estimate that 41% of the global glyoxal
source cannot be explained by currently known VOC emissions and chemical mechanisms. The inversion yields a total glyoxal
source of ca. 100 Tg yr~!, of which 58 Tg is attributed to the photochemical production from known VOC sources, and 41 Tg
from unidentified VOCs (UVOCs). The missing source appears predominantly biogenic, with 70% originating in the Tropics.
Given the dominance of isoprene in the global VOC budget, a large part of the missing glyoxal source over broadleaved and
mixed forests likely reflects underrepresented or missing chemical pathways of glyoxal formation from isoprene, especially
under low-NO,, conditions. The low magnitude of the inferred missing source over China, India and the eastern U.S. suggests
that glyoxal formation from isoprene is well represented in the model at higher NO,, levels. In the boreal zone, both an under-

estimation of monoterpene emissions in the MEGAN inventory and an underestimation of glyoxal yields from monoterpenes

in the model chemistry might additionally contribute to the discrepancy. Beyond the results of this study, other potential con-
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tributors to the glyoxal budget have been suggested. Secondary production from furanoids during fire events may play a role
(Romanias et al., 2024), pointing to the need for their future inclusion in chemical transport models. Similarly, marine gly-
oxal sources could be relevant in coastal regions, although the contribution of algae as precursors remains poorly understood
(Williams et al., 2024).

The modeled formaldehyde and glyoxal columns after inversion show good agreement in both magnitude and seasonality
with the TROPOMI observations, with very few exceptions. Evaluation against independent datasets confirms the robustness of
the inversion. More specifically, comparison with Pandonia Global Network column data further validates the (bias-corrected)
HCHO TROPOMI dataset and shows a substantial reduction of the mean model bias (from 30% to 20%) and improved statistics
at the majority of stations. In addition, model comparison with in situ glyoxal concentrations shows significantly improved
agreement at rural stations: the mean glyoxal concentration after the inversion closely matches the observations, whereas the
bottom-up model average was ~40% too low. Finally, comparison with a one-year MAX-DOAS dataset at a tropical rural site
in Thailand also shows substantial improvements in both absolute concentrations and seasonality, for formaldehyde as well as

for glyoxal, giving credence to the emission updates in this region strongly influenced by biogenic precursors.

Data availability. The global top-down VOC emission fluxes for five categories, constrained by TROPOMI formaldehyde and glyoxal ob-
servations, are available at https://doi.org/10.18758/52E4U9EN (last accessed: 20 August 2025). (Sfendla et al., 2025). The Copernicus
Sentinel-5P TROPOMI Level 2 Formaldehyde Total Column products (v2) can be found at https://doi.org/10.5270/S5P-vg1i7t0, and the
TROPOMI glyoxal tropospheric columns (v4) at https://doi.org/10.18758/71021069. The MEGAN-MOHYCAN isoprene inventory is avail-
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Figure 4. Monthly mean formaldehyde (left) and glyoxal (right) columns simulated with MAGRITTEv1.2 and observed by TROPOMI (blue
diamonds) for 2021. The regions are defined as bounding boxes with coordinates given in each subfigure and shown on Supplementary
Fig. S1. Error bars correspond to the errors used in the inversion (cf. Section 3.2). Black solid lines correspond to the a priori simulation, red
to the optimized columns of the OPTHCHOGLY inversion. The optimized HCHO columns from the OPTHCHO inversion (not shown) are
very similar to the OPTHCHOGLY results. Units are 10" molec. cm ™2 for HCHO, 10** molec. cm™2 for CHOCHO.
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Figure 5. CHOCHO columns averaged over December, January, February (DJF) and June, July, August (JJA) in 2021 (10** molec.cm™2).
(a, b): TROPOMI columns. (¢, d): Model columns with a priori (bottom-up) emissions, without the UVOC a priori emissions. (e, f): Model
columns optimized through the top-down inversion constrained by TROPOMI HCHO and CHOCHO columns (OPTHCHOGLY).
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Figure 6. Global distributions of bottom-up emissions (left) and top-down emissions (middle) from the OPTHCHOGLY inversion over 2021,
for isoprene (a, b), biomass burning VOCs (d, e), anthropogenic VOCs non-glyoxal precursors (g, h), anthropogenic glyoxal precursors (j,
k), and the UVOC glyoxal precursor (m, n). The global total flux per emission category for 2021 is given inset. Right panels show the ratio

of the top-down by the a priori emissions.
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Figure 7. Distributions of anthropogenic bottom-up (a, d, g) and top-down (b, e, h) emissions of acetylene, ethene and aromatic hydrocarbons
in India, China and South Asia averaged over 2021. The bottom-up emissions are based on CAMS inventory data. The top-down emissions
are derived by the OPTHCHOGLY inversion constrained by HCHO and CHOCHO data. The absolute difference between the top-down

and bottom-up model is given in ¢, f, and i.
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Figure 8. Global annual distribution of the top-down source of the unspecified glyoxal precursor (UVOC) (a) for an assumed UVOC lifetime
of 1 day (inversion S1), (b) 5 days (OPTHCHOGLY inversion) and (c) 10 days (S2). The global annual flux is provided in each panel.
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Figure 9. Location of PGN HCHO measurement sites used for independent model evaluation. Each index corresponds to a site in Table 8.
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Figure 10. Scatter plot of monthly TROPOMI HCHO columns (left) and modeled (a priori and OPTHCHOGLY inversion) HCHO columns
(right) versus ground-based PGN HCHO columns for 2021. The data have been spatially collocated and are monthly averaged. The linear
TROPOMI fit is shown in light blue, and its 1-o uncertainties are depicted by the light blue-shaded area. Similarly, the a priori and optimized

models (and their fit and uncertainties) are shown in blue and red, respectively.
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Figure 11. Location of in situ CHOCHO measurement sites (rural in blue, urban in black) used for model evaluation. Each index corresponds

to (part of) a campaign in Fig. 12, Supplementary Fig. S4, and Supplementary Tables S1 and S2.
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Figure 12. Observed CHOCHO mixing ratios (pptv) from in situ measurement campaigns at 17 rural sites (between 1990 and 2018), and
corresponding values from a priori and optimized (OPTHCHOGLY) model. Numbering corresponds to the detailed entries in Supplementary
Table S1 and the locations on the map in Fig. 11. G.M.: geometric mean. Different bars for the Sierra Nevada Mountains campaign correspond
to measurements in different years. At Tomakomai, measurements were performed at 22 m and 38 m above ground level. Some subsets of

the observations are listed for different times of the month: *late October, Qearly October, *mid-October.
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Figure 13. Monthly averaged formaldehyde (a, b) and glyoxal (c, d) levels at Phimai, Thailand. Panels (a, c): MAX-DOAS observations for
the 0—1 km layer obtained from October 2014 to October 2016 by Hoque et al. (2018) are shown in blue, the a priori and optimized model
for 2021 in black and red, respectively. Error bars represent the total observation error (including random, systematic and bias in elevation
angle) of 30% for formaldehyde and 20% for glyoxal. Panels (b, d): TROPOMI formaldehyde (b) and glyoxal (d) columns in 2021 are
shown in blue; error bars represent the total observation error (Section 3.2.1 and Section 3.2.2). The a priori and optimized (OPTHCHOGLY

inversion) formaldehyde and glyoxal columns for the site in 2021 are in black and red, respectively. Insets: avg = yearly average; r = Pearson

correlation coefficient between model and observation.
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