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Abstract. Atmospheric ammonia is an important chemical species for air quality and ecosystem health, and has levels that

have been either growing or stagnant in many regions, in contrast to many other pollutants that have been on the decline in

recent decades. As bottom-up emissions inventories for ammonia often have large uncertainties, inversions using ammonia

retrievals from satellite-borne instruments are an important tool for improving these emissions inventories. Bidirectional flux

models for ammonia give a unified model for emission and dry deposition and have recently been incorporated into a number5

of atmospheric chemistry models. However, there have been relatively few studies using satellite observations in inversions to

refine the parameters in bidirectional flux models. A new bidirectional flux model is introduced that is designed specifically

for use with inversion systems. This bidirectional flux model reduces the number of redundant parameters, as viewed by the

inversions, to yield a model that is both optimized for use with inversion systems and is easy to implement and maintain in

atmospheric chemistry models. Inversions using CrIS ammonia retrievals with this bidirectional flux model implemented in10

the GEM-MACH air quality forecasting model were performed. With parameters set via inversions, significant differences in

surface atmospheric ammonia concentrations between the existing unidirectional model and newer bidirectional model were

observed in many agricultural regions, varying by as much as 10 ppbv (or between 50% to 150%) in these locations. The

bidirectional flux model improved the agreement of GEM-MACH with surface observations in the important growing seasons

(spring, summer, fall), with biases decreasing between 14% and 26% as compared to the unidirectional model and decreased15

the error standard deviation between 5% to 20%, but also degraded this comparison somewhat for the winter.

1 Introduction

Atmospheric ammonia (NH3) is a concern for both air quality and ecosystems. It is a precursor for fine particulate matter

(Tsimpidi et al., 2007; Makar et al., 2009), which has been associated with cardiovascular and respiratory disease (Pope III

et al., 2002; Burnett et al., 2014). Excess ammonia deposition can lead to eutrophication and soil acidification (Fangmeier et al.,20

1994; Krupa, 2003). And while nitrogen oxides and sulfur dioxide levels have broadly declined over the last few decades, the

amount of atmospheric ammonia has in general either been stagnant or increasing (Warner et al., 2017; Van Damme et al.,

2021). Agriculture (fertilizers, livestock) comprises the most significant contribution to global ammonia emissions, followed

by natural sources (vegetation, wild animals, oceans) and biomass burning (Sutton et al., 2013).
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Bottom-up ammonia emissions inventories typically have large uncertainties and so often benefit by introducing observa-25

tional information to refine the inventory’s estimates. Ammonia’s relatively short atmospheric lifetime and the inhomogeneity

of its emissions sources result in atmospheric ammonia concentrations with a fairly inhomogeneous spatial distribution. While

precipitation-chemistry observation networks have been used in the past to constrain ammonia emissions (Gilliland et al.,

2003, 2006; Paulot et al., 2014), the inhomogeneity of the atmospheric distribution of ammonia makes constraining ammonia

emissions with surface networks challenging.30

In the last decade and a half, retrieval algorithms for atmospheric ammonia from satellite-borne instruments have success-

fully been used with instruments such as the Infrared Atmospheric Sounding Interferometer (IASI) (Clarisse et al., 2009;

Van Damme et al., 2014), the Tropospheric Emission Spectrometer (TES) (Shephard et al., 2011, 2015), the Atmospheric In-

frared Sounder (AIRS) (Warner et al., 2016), and the Cross-track Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015;

Shephard et al., 2020). While ammonia retrievals generally have larger uncertainties than in situ measurements for single ob-35

servations, their wide spatial coverage and frequent observations offers a powerful tool for constraining ammonia emissions.

Ammonia retrievals from satellite-borne instruments have been used in emissions inversion systems that combine the informa-

tion contained within the retrievals with emissions inventories to produce an updated set of emissions. Studies have included

ammonia emissions inversions using the Goddard Earth Observing System chemistry model (GEOS-Chem) with ammonia

retrievals from TES (Zhu et al., 2013; Zhang et al., 2018), IASI (Jin et al., 2023), and CrIS (Cao et al., 2020, 2022), inversions40

of IASI ammonia retrievals using the Community Multiscale Air Quality (CMAQ) Modeling System (Chen et al., 2021), as

well as inversions using CrIS ammonia retrievals with the Global Environmental Multiscale - Modelling Air quality and Chem-

istry (GEM-MACH) (Sitwell et al., 2022), LOTOS-EUROS (Van Der Graaf et al., 2022), and CHIMERE (Ding et al., 2024)

atmospheric chemistry models.

Ammonia emissions inventories are often constructed using emission factors that can be highly uncertain (Anderson et al.,45

2003) and are dependent on land-use, farming practices, soil properties, and meteorological conditions (Hafner et al., 2018;

Genedy and Ogejo, 2023). While the ammonia emissions derived from these inventories can readily be used within air quality

models, they do not explicitly incorporate the bidirectional nature of the exchange of ammonia between the surface and the at-

mosphere (Sutton et al., 1998, 2000; Nemitz et al., 2001). Instead of modeling emission and deposition separately, bidirectional

models introduce a unified framework by which chemicals are exchanged between the surface and the atmosphere, which can50

include the re-emission of deposited species. Typically, bidirectional flux models explicitly model the temperature dependence

(and often other meteorologically-dependent factors) of the ammonia surface-atmosphere exchange. The model dependence

on other factors, such as soil and plant properties, and agricultural practices, often differ greatly between different bidirectional

flux models. Bidirectional flux models can improve the temporal profile of ammonia (Cooter et al., 2010; Cao et al., 2022),

ammonium (NH+
4 ) wet deposition (Pleim et al., 2019), and the agreement with in situ (Wichink Kruit et al., 2012; Pleim et al.,55

2019) and satellite (Whaley et al., 2018) ammonia observations.

Bidirectional flux models of ammonia have been incorporated into atmospheric chemistry models in recent years, such as

CMAQ (Bash et al., 2013; Pleim et al., 2019), GEOS-Chem (Zhu et al., 2015), GEM-MACH (Whaley et al., 2018; Davis et al.,

2025), and LOTOS-EUROS (Wichink Kruit et al., 2012). However, at present, few studies have been conducted examining the
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ability of satellite ammonia retrievals to improve bidirectional flux models. In Cao et al. (2022), inversions were performed60

over Europe using CrIS ammonia retrievals with GEOS-Chem with both unidirectional and bidirectional flux schemes. Using

a 4DVar inversion method with GEOS-Chem and its adjoint model, Cao et al. (2022) jointly optimized non-fertilizer ammonia

emissions and the fertilizer application rate (while an adjoint for soil pH does exist in GEOS-Chem (Zhu et al., 2015), soil pH

was not optimized in this study).

While many bidirectional flux schemes explicitly model the many different factors that govern the surface-atmospheric65

exchange of ammonia, such as agricultural practices and soil properties, many of the model parameters describing these factors

have large uncertainties, as is the case with the emission factors for ammonia. And although ammonia retrievals from satellite-

borne instruments can provide valuable information about this exchange, they are unlikely able to provide enough information

to constrain all the parameters of a highly detailed bidirectional flux model.

In this work, we introduce a new ammonia bidirectional flux model specifically designed for optimization via inversion70

methods using satellite retrievals. The goal of this bidirectional flux model will be to adequately describe the ammonia surface-

atmospheric exchange in the GEM-MACH model, while reducing the number of parameters that cannot be differentiated by the

satellite retrievals. Inversions that optimize model parameters that are highly degenerate with one another (i.e. when different

sets of parameter values yield the same model output) can have slower converge rates that may decrease the quality of its results.

Accordingly, our bidirectional flux model seeks to minimize the degree of degeneracy/redundancy between model parameters.75

This has the added benefit of yielding a simpler bidirectional flux model that may be easier to implement and maintain within

larger atmospheric chemistry models. The bidirectional flux model parameters are optimized using CrIS ammonia retrievals

over North America using the ensemble-variational inversion system described in Sitwell et al. (2022) and the ability of these

retrievals to constrain ammonia emission potentials and soil pH will be examined.

2 The GEM-MACH Air Quality Model80

This work focuses on developing a new ammonia bidirectional flux model for the GEM-MACH air quality model (Moran

et al., 2010; Gong et al., 2015; Pavlovic et al., 2016) that is designed with a parametrization that can easily be tuned with

inversion methods using satellite-borne ammonia observations. GEM-MACH is Environment and Climate Change Canada’s

(ECCC) operational air-quality forecasting system that is built on top of ECCC’s operational Global Environmental Multiscale

(GEM) weather forecasting model (Côté et al., 1998b, a; Girard et al., 2014). GEM-MACH adds atmospheric gas-phase,85

aqueous-phase, and heterogeneous chemistry to the GEM model, along with emission and deposition of chemical species.

GEM-MACH is run sequentially with a refresh of the meteorology every 12 hours using the analyses from ECCC’s Global

Deterministic Prediction System (Buehner et al., 2015).

Our bidirectional flux model was incorporated into version 3.1.0 of GEM-MACH. This version of GEM-MACH has 85

vertical levels that extend from the surface to 0.1 hPa and can be run with both global and limited area horizontal grids. This90

work uses the operational regional limited area horizontal grid that covers Canada, the United States, and northern Mexico

with a grid spacing of 0.09◦ on a rotated lat/lon grid (corresponding to an average grid spacing of around 10 km).

3

https://doi.org/10.5194/egusphere-2025-4034
Preprint. Discussion started: 26 September 2025
c© Author(s) 2025. CC BY 4.0 License.



The gas-phase dry deposition in GEM-MACH is based on the resistance models of Wesely (1989) and Zhang et al. (2002)

(with some modifications). In this resistance model, gaseous species can be deposited to the surface though deposition to the

ground/soil/water or to plant stomata/cuticles/other exposed plant surfaces. Particle dry deposition is implemented in GEM-95

MACH using the model of Zhang et al. (2001) and wet deposition is calculated using the scheme of Gong et al. (2006).

3 Unidirectional Flux Model

In unidirectional flux models, emission and deposition are modeled separately. In the operational setup for GEM-MACH,

(unidirectional) emissions are derived from monthly or annual emissions inventories that are translated into hourly, gridded,

speciated emissions files using the Sparse Matrix Operator Kernel Emissions (SMOKE; https://www.cmascenter.org/smoke,100

last access: 01 July 2024) processing system.

The bottom-up emissions inventories for ammonia are dominated by agricultural sources (fertilizers and livestock). The

bidirectional flux model introduced in subsequent sections will act as an alternative model for these agricultural sources. As

previously mentioned, the aim of this work is to use ammonia retrievals from satellite-borne instruments to constrain the

bidirectional flux model parameters. As ammonia emitted from forest fires may be misattributed to agricultural sources, the105

bidirectional flux and inversion model will be evaluated for the year 2016 due in part to the relatively low number of forest

fires during this year (Munoz-Alpizar et al., 2017; Earl and Simmonds, 2018).

The emissions inventory (used prior to the inversions) used in this work are from version 3.1.2 of the operational GEM-

MACH emissions data set. This set of emissions were generated using a 2013 emissions inventory for Canada (https://www.

canada.ca/en/environment-climate-change/services/pollutants/air-emissions-inventory-overview.html, last access: 14 March110

2025), a 2011-based projected 2017 inventory for the United States (https://www.epa.gov/air-emissions-modeling/2011-version-63-platform,

last access: 24 February 2025), and a 2008 inventory for Mexico (https://www.epa.gov/air-emissions-modeling/2011-version-62-platform,

last access: 24 February 2025).

4 General Framework for Bidirectional Flux Modeling

In a bidirectional flux model, both emission and deposition are described using the same model. Dry deposition, the unidirec-115

tional flux of gas from the atmosphere to the surface, is commonly modeled with resistance models that are analogous to the

resistances in electrical circuits. As these resistance models permit substances to travel in either direction, by adding emission

source terms to a deposition model, the resistance model may be used to model the transfer from the surface to the atmosphere

as well. In this case, the bidirectional flux model is comprised of (a) a resistance model that connects the atmosphere to the

surface and (b) a model of the emission sources. This section describes these two components in a general framework. Our120

specific bidirectional flux model that makes use of this framework will follow in Section 5.
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4.1 Resistance Model

The resistance model connects the top of the surface atmospheric layer with concentration χa to the surface, as seen in Figure

1. The total resistance Rt = Ra + Rb + Rc is decomposed into a series of different resistances: The aerodynamic resistance

Ra which characterizes transport through the surface layer to the quasi-laminar sublayer, the quasi-laminar resistance Rb125

that models the transport through the quasi-laminar sublayer, and finally the surface resistance Rc that models the air-surface

exchange. The surface resistance is often decomposed into different parallel pathways that characterize different modes of

atmospheric-surface transport. For this general model, we consider Nc different surface types, where each surface pathway i is

connected to a surface concentration χ
(i)
s associated with a surface resistance R

(i)
c .

Figure 1. General resistance model describing atmospheric-surface exchange.

This resistance model can be represented in terms of total equivalent quantities, as represented on the left side of Fig. 1,130

where the total surface resistance Rc and the equivalent total surface concentration χs are expressed in terms of the individual

surface pathways as

R−1
c =

Nc∑

i=1

(R(i)
c )−1, (1a)

χs =
Nc∑

i=1

Rc

R
(i)
c

χ(i)
s . (1b)135

Written in terms of these total quantities, the flux Ft at the top of the surface layer can be expressed as

Ft = vd(χs−χa), (2)

5

https://doi.org/10.5194/egusphere-2025-4034
Preprint. Discussion started: 26 September 2025
c© Author(s) 2025. CC BY 4.0 License.



where vd = 1/Rt is the deposition velocity. Details of the derivation of Equations (1b) and (2) can be found in Section A of

the Appendix. When χs > χa net flux is to the atmosphere and when χs < χa net flux is to the surface. For unidirectional

models where the resistance model is used only for deposition, all surface concentrations χ
(i)
s are set to zero and emissions are140

supplied separately to atmospheric chemistry models.

Lastly, it will be convenient to introduce the pathway-weighted deposition velocity v
(i)
d for surface pathway i defined as

v
(i)
d ≡ Rc

R
(i)
c

vd, (3)

so that we have vd =
∑Nc

i=1 v
(i)
d and the total flux Ft can be expressed as

Ft =
Nc∑

i=1

v
(i)
d (χ(i)

s −χa). (4)145

Note that v
(i)
d ≤ vd, which reflect that only a portion of the ammonia leaving from the ground may be emitted at top of the

surface layer as some ammonia can be (re)absorbed through other surface pathways that act as a sink.

4.2 Exchange of Ammonia Between the Atmosphere and the Surface

Under equilibrium conditions, combining Henry’s law with the aqueous dissociation equilibrium between NH3 and NH+
4

relates the gaseous ammonia concentration χ
(i)
s and aqueous ammonium concentration [NH+

4 (aq)]. This relation (at 1 atm)150

can be expressed as (Sutton et al., 1994)

χ(i)
s = Γ(i)

s

A

T
e−B/T , (5)

where Γs ≡ [NH+
4 ]/[H+] is known as the emissions potential, the gaseous ammonia concentration at equilibrium is known as

the compensation point, and A = 161,500molKL−1 and B = 10,380K are constants (Nemitz et al., 2000). As in the previous

section, the superscript (i) labels particular surface pathways.155

The relation in Eq. (5) is commonly used to model the exchange of atmospheric ammonia with the ground, which can

include exchange between soil pores and soil water, exchange with plant litter, and volatilization from fertilizers (Nemitz et al.,

2001; Massad et al., 2010), as well as the exchange between the gaseous ammonia in the sub-stomatal cavities of plants and

ammonium in the apoplastic fluid (Nemitz et al., 2000, 2001).

5 Dynamic Ammonium Pool Models160

Our aim is to develop a bidirectional flux model with a dynamic ammonium pool with parameters that can be tuned through the

inversion process. The bidirectional flux of ammonia was incorporated into CMAQ using information from the Environmental

Policy Integrated Climate (EPIC, https://epicapex.tamu.edu/epic/) agricultural ecosystem model, interfaced with the Fertilizer

Emission Scenario Tool (FEST-C, https://www.cmascen-ter.org/fest-c/), to provide the soil ammonium concentration used
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in its bidirectional flux model (Pleim et al., 2019). While EPIC contains detailed agricultural information, the amount and165

complexity of information may not be ideal for systems designed for inversions using satellite retrievals.

In contrast, the bidirectional flux model implemented in GEOS-CHEM (Zhu et al., 2015) uses a simplified model of fertilizer

application and nitrification of ammonium in soil to model the bidirectional flux of ammonia from soil. Cao et al. (2022)

demonstrated that the fertilizer application rate can be adjusted by inversion algorithms using ammonia satellite retrievals.

The bidirectional flux model introduced in this work further simplifies the model of Zhu et al. (2015) by connecting it to the170

capacitance model introduced in Sutton et al. (1998).

5.1 Ammonia Source Specification

Our bidirectional flux model for ammonia utilizes the same dry deposition resistance model in GEM-MACH that was described

in Section 2, but has nonzero values set for the source concentrations χ
(i)
s . The details of the how the source concentrations

χ
(i)
s are specified are described in this section.175

The circuit diagram for our bidirectional flux model is shown in Figure 2. The top portion of the figure shows the standard

surface resistances used in GEM-MACH, comprised of deposition pathways to plant stomata, cuticles, other plant surfaces,

and the ground, associated with resistance Rst, Rcut, Roth, and Rg, respectively.

We make the simplifying assumption that only the ground source concentration χg has a non-zero value, while the other

three surface pathways have their source concentrations set to zero so that they act only as sinks. As mentioned in Section180

4.2, the bidirectional exchange with stomata can be non-negligible. However, while in non-agricultural settings the stomatal

emissions potential can be as large or larger than the ground/soil emissions potential (Zhang et al., 2010), the ground emissions

potential for fertilized grounds can exceed these values by many orders of magnitude (Massad et al., 2010). As it is unlikely

that our satellite ammonia retrievals contain enough information to be able to differential between the stomatal and ground

ammonia emissions, and agricultural emissions are the dominant ammonia emissions source within our model domain, we set185

the stomatal emissions potential to zero to reduce the number of parameters in the bidirectional model. However, this does not

necessarily imply that there is no bidirectional ammonia exchange between the atmosphere and the other three pathways, only

that we fold all contributions to the bidirectional exchange into the ground pathway for the sake of computational simplicity.
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Figure 2. Capacitance-based bidirectional flux model for ammonia.

5.2 Capacitance Model of the Ammonium Pool

Sutton et al. (1998) included a model for the bidirectional flux of ammonia from plant stomata based on extending the190

resistance-based deposition model to include a capacitor that can store and release ammonium. Inspired by this model, we

model the ground/soil ammonium pool by a capacitor with capacitance C, as depicted in Fig. 2. The capacitor is placed in par-

allel with Np ammonium sources/sinks, where each pathway j is associated with a source concentration χ
(j)
p and a resistance

R
(j)
p , as illustrated in the bottom of Fig. 2. At this point, we do not specify the specific ammonium sources (with χ

(j)
p > 0) or

sinks (with χ
(j)
p = 0), but sources can include fertilization and livestock and while examples of sinks are nitrification in soil195

and ammonium lost due to runoff or drainage. Instead, we gather these pathways into a single equivalent source/sink with a

total resistance Rp and an equivalent concentration χp, give by

R−1
p =

Np∑

j=1

(R(j)
p )−1, (6a)

χp =
Np∑

j=1

Rp

R
(j)
p

χ(j)
p . (6b)200

We note that the expressions above for Rp and χp have the same form as Rc and χs in Eq. (1).
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The ammonium ground surface concentration at the fluid/gas boundary Qg can be expressed by Qg = h[NH+
4 ], where h is

the fluid depth. Using Eq. (5), the capacitance C = Qg/χg of the ground ammonium pool is given by

C = h
Tg

A
eB/Tg [H+], (7)

where Tg is the ground temperature.205

As the flux coming out of the capacitor can be expressed by −dQg/dt, Kirchhoff’s current law implies

dQg

dt
=

χc−χg

Rg
+

χp−χg

Rp
. (8)

Equation (8) shows that the aqueous ammonium pool evolves with time to establish an equilibrium between the canopy ammo-

nia concentration χc and the ammonium source χp. To find the time evolution of the ground emissions potential Γg, we make

the simplifying assumption that the product h[H+] is constant in time, so that dQg/dt = h[H+]dΓg/dt. After some algebra,210

which can be found in Section A of the Appendix, Eq. (8) can be written in terms of the ground emissions potential Γg as

dΓg

dt
=

1
τa

(Γa−Γg) +
1
τp

(Γp−Γg), (9)

where we have defined Γa and Γp analogously to Γs in Eq. (5) as

Γa ≡ χa
Tg

A
eB/Tg , (10a)

215

Γp ≡
χp

1 +α

Tg

A
eB/Tg . (10b)

In the equation above, α is a factor that accounts for the flow into the other surface pathways (i.e. through Rst, Rcut, and Roth)

given by

α≡ Rp

Rt

Rc

Rg

(
1− Rc

Rg

)(
Rt

Rc
− 1

)
. (11)

We have also identified the RC time constants τa and τp for the atmosphere and ammonium source, respectively, as220

τa =
Rg

Rc
RtC, (12a)

τp =
1

1 +α
RpC, (12b)

which are the time scales for the ammonium pool to reach equilibrium with the atmosphere and ammonium sources, respec-

tively. Equation (9) shows that Γg evolves in time to establish an equilibrium between the atmospheric ammonia source Γa and225

the aqueous ammonium source Γp, which is shown diagrammatically in Figure 3.
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Figure 3. Diagram showing the influence of the atmospheric ammonia potential Γa and the aqueous ammonium source Γp on the ground

emissions potential Γg.

With the prognostic equation for the ground emissions potential given by Eq. (9) and χg related to Γg by Eq. (5), the

bidirectional exchange of ammonia between the surface and atmosphere given in Eq. (4) can be computed. These equations

reference total parameters such as χp and Γp, but do not reference parameters for individual pathways (i.e. parameters with the

superscript (j)). Therefore, if we can adequately set these total parameters, then it is not necessary to determine the individual230

source/sink quantities of the ammonium pool. In our case, as the bidirectional flux model parameters will be determined through

top-down inversions that use retrievals from satellite-borne instruments that are only sensitive to these total parameters, this

yields a bidirectional flux model with minimal parameters that is tailored for use in inversion systems.

In summary, the evolution of the ground emissions potential in our bidirectional flux model is determined by the parameters

Γp and τp, which sets the ammonium source level and response timescale, respectively. Although the intention is to deal with235

these total parameters directly, we note that Γp and τp can be expressed in terms of individual pathways as

Γp =
τp

h[H+]

Np∑

j=1

F (j)
p , (13a)

τ−1
p =

Np∑

j=1

(τ (j)
p )−1, (13b)

where F
(j)
p = χ

(j)
p /R

(j)
p is the ammonium flux from pathway j and τ

(j)
p = R

(j)
p C is its associated time scale.240

5.3 Emissions Potential Parametrization

With the prognostic equation for the emissions potential derived from the capacitance model outlined in the previous section,

we now set the parameters for the ammonium pool. From Eq. (9), the model parameters that need to be set are Γp, τp, and τa.
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Γp describes the sources of ammonium to the ground and can have contributions from, for example, fertilizer application or

waste from livestock. We take Γp as a spatially-varying 2D field on the same horizontal grid as described in Section 2, allowing245

for a unique field for every month. In this work, Γp will represent agricultural sources (fertilizer/livestock), while separate

non-agricultural ammonia emissions that account for ≲ 1% of total emissions will be accounted for using the unidirectional

emissions model.

The RC constant τp is the time scale for the ground emissions potential to equilibriate to Γp. Although this time scale can

depend on temperature and soil moisture (Stange and Neue, 2009; Vira et al., 2020), we simply set this parameter to a constant250

value. In their bidirectional flux model, Massad et al. (2010) proposed using a value just under three days for the time constant

associated with the dynamics of the ground emissions potential following fertilizer application. Following Massad et al. (2010),

we set τp to a values of three days.

Using the expression for capacitance in Eq. (7), the time constant τa given in Eq. (12a) can be computed by

τa =
Rg

Rc
Rtdsθ

Tg

A
eB/Tg [H+], (14)255

where we have expressed the fluid depth h in soil pours in terms of the soil depth ds and the volumetric water content of soil θ as

h = dsθ. The resistances Rg, Rc, and Rt are given by the standard deposition resistance parametrization used in GEM-MACH

described in Section 4.1, while the soil water content θ and ground/soil temperature Tg are computed using the two-level

Interaction Soil Biosphere Atmosphere (ISBA) surface model (Noilhan and Mahfouf, 1996) that has been incorporated into

GEM-MACH. The soil depth ds is set to 2 cm, as done in Zhu et al. (2015) and Vira et al. (2020). Lastly, [H+] is parametrized260

through the ground/soil pH, which will be set as a 2D field on GEM-MACH’s horizontal grid.

In summary, the free parameters for the bidirectional flux model are the ammonium source term Γp that sets the levels of

ground ammonium and the soil pH which determines the rate at which the ammonium pool reaches equilibrium with ammonia

in the atmosphere. Figure 4 shows the values of τa as a function of pH and ground temperature (with RtRg/Rc = 300 s m−1

and θ = 0.1 chosen to represent typical values). In this figure, we can see that high values of pH and ground temperature265

result in a low capacitance and short atmosphere/ground equilibrium time scales. In this example, for a pH of 8 and a ground

temperature of 25 ◦C, τa is just under three hours, so in this case the ammonium pool will reach equilibrium with atmospheric

ammonia relatively quickly. In contrast, for a pH of 6 and a ground temperature of 10 ◦C, τa is over 100 days and so the ground

emissions potential will be relatively insensitive to sub-seasonal changes in ammonia levels.

If τa ≫ τp, then Γg ≈ Γp after a few multiples of τp in time. As Γp was chosen to be a 2D field that is constant within a270

month, if τa is much longer than a month, Γg will only evolve to reach equilibrium with Γp and not with the atmospheric

ammonia. In this limit, the bidirectional flux model is similar to models where the Γg values are static. Accordingly, the

dynamic nature of the ammonium pool is only evident when τa is (roughly) less than or equal to a month.

11

https://doi.org/10.5194/egusphere-2025-4034
Preprint. Discussion started: 26 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 4. Equilibrium time scale τa between atmospheric ammonia and the ground ammonium pool, as computed by Eq. (14), using param-

eter values of RtRg/Rc = 300 s m−1, θ = 0.1, and ds = 2 cm.

6 Observations

The bidirectional flux model developed in this work was formulated with the goal of tuning its parameters with inversions using275

satellite-borne retrievals. This section gives a brief description of the CrIS ammonia retrievals that are used in the inversions,

as well as the ammonia surface observations that are used for validation of the inversions results.

6.1 CrIS Ammonia Retrievals

CrIS is a Fourier transform spectrometer that measures the infrared spectrum with a swath width of ∼2200 km and a ∼14

km spatial resolution at nadir. CrIS instruments are currently aboard the Suomi National Polar-orbiting Partnership (SNPP),280

NOAA-20, and NOAA-21 satellites. As the year 2016 is used for evaluation, before NOAA-20 and NOAA-21 were launched,

all retrievals used in this study come from the instrument aboard the SNPP satellite. SNPP is in a sun-synchronous orbit with

local overpass times at approximately 01:30 and 13:30, although only day-time retrievals are used in the inversions.

Ammonia retrievals are made using version 1.6.4 of the CrIS Fast Physical Retrieval (CFPR) algorithm (Shephard and

Cady-Pereira, 2015; Shephard et al., 2020; White et al., 2023) that is based on the TES ammonia retrieval algorithm (Shephard285

et al., 2011), which minimizes the difference between observed radiances and radiances generated by a radiative transfer model

(Moncet et al., 2008). This minimization also includes an a priori regularization term, where the a priori profile is chosen as

one of three possible profiles that aim to represent ammonia profiles for background, moderate source, and high source regions.

Retrievals are made on 14 pressure levels, with the averaging kernel typically peaking in the boundary layer. Version 1.6.4 of

the CFPR algorithm also accounts for non-detects where the ammonia signal is below the detection limit of the instrument290

(White et al., 2023). Only retrievals over land with a minimum degrees of freedom of 0.1 are used in the inversions.
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6.2 Surface Observation Networks

Surface observations of ammonia from Canada’s National Air Pollution Surveillance (NAPS; https://www.canada.ca/en/environment-climate-change/

services/air-pollution/monitoring-networks-data/national-air-pollution-program.html) network and the US’s Ammonia Moni-

toring Network (AMoN; http://nadp.slh.wisc.edu/amon) are used for validation. AMoN, part of the US National Atmospheric295

Deposition Program (NADP), uses Radiello®passive diffusion samplers to measure ammonia levels over two-week periods.

The NAPS stations that measure ammonia do so using citric-acid-coated denuders that measure ammonia levels over a 24-hour

period every three or six days. The locations of the 101 AMoN stations and 12 NAPS stations, which account for 3065 and

1080 observations in total, respectively, are displayed in Figure 5.

Figure 5. Station locations for the NAPS and AMoN networks with ammonia observations available for 2016.

Validation with the surface observations is done by examining the changes in the bias, standard deviation of errors (STDE),300

the Pearson correlation coefficient (ρ), and root mean square error (RMSE), the definition of which can be found in Section B

of the Appendix. When the bias, STDE, or RMSE are expressed as a percentage, the denominator is taken as the annual mean

observation value.

7 Flux Model Inversions

The inversions used in this study use the ensemble-variational inversion system described in detail in Sitwell et al. (2022). A305

summary of this inversion method is provided in Section 7.1, followed by the specification of the ensemble used for this study

in Section 7.2.

7.1 Inversion Procedure

The goal of an inversion is to find an optimal synthesis of observational and a priori (background) model information. For our

application, the model state x is comprised of ammonia atmospheric concentrations c and bidirectional flux model parameters310
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and/or other emissions parameters β, which can be written in block form as

x =


c

β


 . (15)

The inversion algorithm seeks a change ∆β, known as the increment, that results in a change ∆c to the atmospheric ammonia

concentrations that improves the agreement with the observations y. In a variational algorithm, the inversion is performed by

minimizing a cost function J , which for our case is given by315

J =
1
2
∆βTB−1

ββ∆β +
1
2
(y−H(xb)−H∆c)TR−1(y−H(xb)−H∆c), (16)

where xb is the background state of the model and H and H are the nonlinear and linearized observation operators, respectively,

that map the model state into observation space. The first term on the right hand side of Equation (16) measures the deviation

from the background model state and is weighted by the inverse of the univariate background error covariance matrix Bββ

for the parameters β. The second term measures the deviation from the observations and is weighted by the inverse of the320

observation error covariance R.

In the inversion, uncertainties in the atmospheric ammonia concentrations are attributed entirely to uncertainties in the model

parameters β, so that ∆β and ∆c are related to each other by

∆β = BβcB−1
cc ∆c, (17)

where Bcc is the univariate background error covariance matrix for the atmospheric ammonia concentrations and Bβc is the325

error cross-covariance between β and c.

As the uncertainties on individual ammonia retrievals are relatively large (Shephard and Cady-Pereira, 2015), inversions

were performed using a month’s worth of retrievals to ensure an adequate amount of observational information was present in

each inversion. As such, the parameters β produced by each inversion are monthly-mean parameter values.

7.2 Inversion Parametrization330

The previous section described the inversion procedure in a general framework. In this section, we specify our choice of β, as

well as the background and ensemble fields used in the inversions.

In Section 5.3, the parameters Γp and pHg were set as 2D horizontal fields and will be the fields optimized in our inversions,

so that β = {Γp,pHg}. The values for Γp and pHg can then be used in Eqs. (9) and (14) to determine the ground emissions

potential Γg.335

The background (a priori) values for the soil pH were chosen so that the corresponding background value for the time

constant τa is much longer than a month, which is equivalent to taking the emissions potentials as static as the background

case. Soil pH values from the World Soil Information Service (WoSIS) (Batjes et al., 2020) generally falling between 4 and 9

(see Figure S1 of the Supplement). As the mode of this distribution falls near a pH value of 5, which results in values of τa

longer than a month, a uniform background value of 5 was set for the soil pH. The background values for Γp were set to the340

values that yield the inventory-derived monthly mean emissions described in Section 3.
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The background error covariances are specified using an ensemble of 80 members. The procedure for perturbing the Γp

field is nearly identical to that described in Sitwell et al. (2022), where for each ensemble member, a perturbation to Γp was

drawn from a homogenous and isotropic normal distribution that has a correlation half-width at half-maximum of 40 km. The

standard deviation of the distribution was set at 50% of the background values, with a minimum equivalent to 0.26 kg ha−1345

month−1 to ensure all locations have a non-negligible standard deviation value. The ensemble perturbations to the ground pH

were constructed in a similar manner, but its distribution had a standard deviation of 3. A minimum value of 1.5 and maximum

value of 8.5 was imposed on the ground pH ensemble to limit the number of pH values far outside of the range of pH values

found in the WoSIS database. While the chosen distribution of ground pH for the ensemble results in more pH values below

5 as compared to the WoSIS database, as all pH values below 5 yield very large values for τa, these values should only be350

interpreted as indicating a static emissions potential (and not necessarily to be interpreted as physical values).

8 Results

8.1 Inversion Results

The inversion increments for Γp and pHg are shown in panels (a) and (b) of Figure 6, respectively. The increments for Γp

are positive in most locations and times, with some exceptions. For March to June, many areas on the East coast and midwest355

US have background values for Γp on the order of 103 to 104 increase to ∼ 2× 104− 3× 104 in the inversions (see Figure

S2 of the Supplement for plots of the background and analysis of Γp). The largest increments for Γp occur in April, where

increases of up to 2×104−4×104 are seen in a number of locations (Iowa, Pennsylvania, North Carolina, Southern Ontario),

which represent increases of more than 100% as compared to background values. For the handful of locations where the

inversions significantly decrease Γp, such as North Carolina in July, Canadian prairies in September and October, and Northern360

Iowa/Southern Minnesota in November, the inversion decrease Γp by up to 2× 104, representing decreases of up to 60%

compared to background values.

The largest increments for pHg occur in the central US and Canada for April to June, where the increment reaches values

of 3.5, resulting in total pHg values of 8.5. Although the increments for pHg are generally more concentrated in the middle of

North America as compared to the increments for ∆Γp, large pHg increments do occur along the East coast of North America365

and in California’s Central Valley in the spring and summer. The pHg increment are also generally more spread out spatially

and smoother as compared to the ∆Γp increments.
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Figure 6. Bidirectional flux model inversions. Panel (a) shows the increments to ammonium potential source term Γp, while panel (b) shows

soil pH increments.

8.2 Effect of Inversions on the Flux Model and Emissions

With the inversions described in the previous sections, GEM-MACH was run with the revised parameters for the bidirectional

flux model, as well as with the unidirectional flux models for comparison. For the unidirectional flux run, emissions are set so370
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that their monthly-means are equal to those in the bidirectional flux run (instead of the inventory values to have the benefit of

the inversions), but its intramonthly emissions time profiles are set using the unidirectional scheme as described in Section 3.

The monthly mean values for the ammonia ground emissions potential Γg and the time constant τa from the GEM-MACH

using the inversion-derived bidirectional flux parameters are shown in Figure 7. The values displayed in this figure are the

weighted mean over the 15 different land-use categories in the model. Regions with significant agriculture and consequently375

ammonia emissions, such as California’s Central Valley, the Canadian prairies, the midwestern US, and North Carolina, can

have ground emissions potential values ranging from 104 to 5×104. Ground emission potential values vary greatly with ground

condition, vegetation type, and (if applied) fertilizer type and time since application. Reported ground emission potential values

for fertilized ground range between 103 and 106 (Massad et al., 2010), placing the higher end of the inversion values for Γg

roughly at the midpoint of this range (in terms of the order of magnitude).380

We expect the atmospheric ammonia concentrations to have a non-negligible influence on the emissions potential when

τa ≲ τp. From Fig. 7b, we can see that the inversions place τa at or below τp = 3 days for large swaths of the central US for

April to June, as well as some smaller regions within the model domain. In these regions, the emissions potential will equilibrate

with the atmospheric ammonia concentrations within hours to days, while the regions with τa ≫ 3 days will have emissions

potentials that are approximately static within each month and will be relatively insensitive to the atmospheric ammonia levels.385
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Figure 7. Monthly mean values for (a) the ammonia ground emissions potential Γg and (b) the time constant τa from the bidirectional flux

model with parameters set from the inversions. Values are the weighted mean over land-use categories.

The changes in the monthly mean ammonia emissions when GEM-MACH is run with the bidirectional flux model with

Γp and pHg set from the inversions as compared to using their background values are displayed in Figure 8. Changes in the

emissions are most significant from March to October. Emissions increases exceeding 5 kg ha−1 can be seen in the Central
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Valley, the American midwest, and northern Texas, which represent increases of over 80% as compared to the case without

inversions (see Figure S3 in the Supplement for plots of the monthly mean emissions with and without the inversions). Although390

overall the inversions increase emissions, significant decreases can be seen in some regions, such as a decrease of 2.6 kg ha−1

in North Dakota in September (∼ 60% decrease) and a decrease of 4.5 kg ha−1 (∼ 96% decrease) in southern California in

April.

Many of the regions where the inversions give large changes to Γp results in significant changes in emissions, but there are

few regions where this is not the case, most notably for the significant increase to Γp in Alberta and Saskatchewan in January395

(seen in Fig. 6a) that do not produce sizable changes in the ammonia emissions (shown in Fig. 8). This is primarily due to

the strong temperature dependence of χs, as seen in Eq. (5), so that the same value of Γg may result in significantly fewer

emissions in the winter as compared to the warmer seasons.
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Figure 8. Changes in the monthly mean ammonia emissions from the bidirectional flux model using parameters Γp and pHg from inversions

as compared to using their (inventory-derived) background values.

Figure 9 shows the total emissions over the continental United States and Canada from the inversions along with inventory

emissions for comparison. In the winter months, when ammonia emissions are low, the emissions from the inversions are close400

to the inventory emissions. For April to September, the total emissions from the inversions increase between 9% and 61% in
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Canada and between 9% to 41% in the continental United States, with the largest total increases occurring in April for the

continental United States and in May for Canada, which is generally the starting of the crop growing season when fertilizer is

applied to fields.

Figure 9. Total ammonia emissions for the continental United States (USA; solid lines) and Canada (CAN; dashed lines) from the inversions

(red curves) and the emissions inventory (blue curves).

8.3 Differences In Ammonia Concentrations Between Flux Models405

We now turn our attention to comparing the resulting atmospheric ammonia concentrations from the unidirectional and bidi-

rectional flux models. For the remainder of this section, all results presented for both the unidirectional and bidirectional flux

models use inversion-derived parameters (as opposed to inventory-derived parameters).

Figure 10 shows the root mean square differences in ammonia surface concentrations between the unidirectional and bidi-

rectional flux model runs. Significant differences between the flux schemes are seen in the midwestern US, the Central Valley,410

the Eastern seaboard, and Canadian Prairies during the spring, summer, and fall. A number of regions have large root mean

square difference on the order of 10 ppbv. The monthly mean ammonia surface concentrations for the unidirectional model

generally varies between 0.5 and 30 ppbv (see Figure S4 of the Supplement). The root mean square differences between flux

models exceeds 50% in many regions and can range from 100% to 150% in the Central Valley during the spring (in comparison

to the monthly mean unidirectional values).415
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Figure 10. Root mean square differences in ammonia surface concentrations between the unidirectional and bidirectional flux models, both

of which use inversion-derived parameters.
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8.4 Comparison with Surface Observations

The previous section examined the differences in surface concentrations between the unidirectional and bidirectional flux

models using parameters set via inversions. We now compare these model results with the ammonia surface observations

described in Section 6.2.

Figure 11 shows the differences in RMSE values for surface ammonia observations from AMoN and NAPS stations for the420

unidirectional and bidirectional flux model runs, taken over all months in 2016. Red markers indicate that the RMSE for the

bidirectional run is smaller than for the unidirectional run and blue markers indicate larger RMSE values for bidirectional run.

Statistically significant/insignificant differences at a confidence level of 1σ ≈ 68.2% are denoted by circular/square markers

in this figure. Out of the 113 stations in the combined AMoN and NAPS dataset, 28 stations show a statistically significant

improvement in the RMSE for the bidirectional run, most of which are on the East coast or American midwest. Four stations425

show statistically significant increases in RMSE from using the bidirectional flux model. The median station RMSE for the

unidrectional run of 38% decreases to 32% for the bidirectional run. The statistically significant changes in RMSE range from

decreases of 82% to increases of 31%.

Figure 11. Difference in RMSE values between the unidirectional (RMSEunidi) and bidirectional (RMSEbidi) flux models for surface

ammonia observations from AMoN and NAPS stations for 2016. Both flux models use inversion-derived parameters. Differences that are

statistically significant/insignificant at the 1σ confidence level are shown with a circular/square markers.

The changes in bias, error standard deviation, correlation, and root mean square error between the unidirectional and bidirec-

tional runs for the AMoN and NAPS ammonia surface observations are illustrated in Figure 12. Red upward-pointing triangles430
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indicate an improvement in the statistic (a reduction for bias, STDE, and RMSE, an increase for ρ) for the bidirectional flux

model as compared to the unidirectional flux model. Blue downward-pointing arrows indicate a degradation in the statistic (an

increase for bias, STDE, and RMSE, a decrease for ρ) for the bidirectional flux model run as compared to the unidrectional flux

model. Filled triangles indicate that the change in the statistic is statistically significant at the 1σ confidence level. Statistics

are compiled for each month individually as well as for the whole year. These statistics can be found in full in Tables S1 and435

S2 of the Supplement.

For AMoN, the top panel of Fig. 12 shows that the bias decreases for March to July and for September and October for

the bidirectional model run as compared to unidirectional model. In these months, the bias for the unidirectional model, which

ranges from 13% to 50% (see Table S1 of the Supplement for all values and uncertainties), decreases between 14% and 26% for

the bidirectional run. A statistically significant degradation of the bias is seen for January, February, August, and November.440

The bias taken over the whole year is reduced by 1.4%. The unidirectional model has error standard deviations that range

from 53% to 193%, which are reduced in the bidirectional run for March to November (second row from the top in Fig. 12),

with the reductions ranging from 5% to 20%, and is reduced by 11% over the year. While the bidirectional run degradates

the error standard deviations in January, February and December, these changes are not statistically significant (as indicated

by the unfilled triangles). Some improvements to the correlation ρ can be seen for AMoN (third row from the top in Fig. 12),445

increasing from 0.62 for the unidirectional model to 0.64 for bidirectional model over the year. The RMSE for the bidirectional

model is smaller than for unidirectional model for March to November (although the improvement is not statistically significant

for November), and over the whole year the bidirectional model reduces the RMSE value by 11% (90% reduced from 101%)

as compared to the unidirectional model.

The bidirectional model improves nearly every statistic for AMoN over the spring, summer, and fall months, as well as over450

the whole year, but degrades the statistics somewhat in the winter months. This difference in performance during the winter

as compared to the rest of the year may be due to the quality of the model’s surface temperature (as described in Section 2),

which for the continental US in 2016 performs worse in the winter than for the rest of the year.

In contrast to AMoN, few differences in the statistics for the NAPS observations between the unidirectional and bidirectional

models are statistically significant, as seen in the bottom panel of Fig. 12. The STDE, ρ, and RMSE values for the bidirectional455

model in June are better than for the unidirectional model, while opposite is true for ρ in March and May, but otherwise the

statistics for the different flux models are not significantly different from one another. As seen in Fig. 11, most of the stations

that show improvement from using the bidirectional flux model are concentrated in the mid-to-estern US, where there are

stations for AMoN but not NAPS. Overall, the bidirectional flux model improves the agreement of the GEM-MACH model

with the ammonia surface observations in the spring, summer, and fall, while degrading the model performance somewhat in460

the winter.
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Figure 12. Changes in validation statistics with respect to AMoN (top) and NAPS (bottom) ammonia observations for the bidirectional

flux model run as compared to the unidirectional model. Both flux models use inversion-derived parameters. Red upward-pointing triangles

indicate an improvement in the statistic (a reduction for bias, STDE, and RMSE, an increase for ρ) for the bidirectional model as compared

to the unidirectional model, while blue downward-pointing arrows indicate a degradation in the statistic (an increase for bias, STDE, and

RMSE, a decrease for ρ). The size of the triangle indicates the magnitude of the change in the statistic, where the percentages in the legend

are in reference to the observation mean for the bias, STDE, and RMSE, and for ρ is in reference to a value of one (e.g. a change of +5% for

ρ indicates that ρ increased by 0.05). Filled triangles indicate that the change in the statistic is statistically significant at the 1σ confidence

level. ‘all’ in the x-axis refers to the whole year of 2016.

9 Conclusions

Atmospheric ammonia plays a central role in particulate matter formation and its deposition to the surface can have detrimental

effects on the health of an ecosystem. As ammonia levels have stayed the same or increased in many regions, in contrast to

many other pollutants in the atmosphere with declining trends, ammonia has emerged as a pollutant of concern in recent465

decades. Bottom-up inventories of ammonia emissions, which are primarily from agricultural sources, are often used in air

quality forecasting models, but generally have large uncertainties. Recently, there has been an effort to use ammonia retrievals

from satellite-borne instruments to improve ammonia emissions inventories. This is most often done by using these retrievals

in an emissions inversion systems that combines the inventory emissions with the satellite information.

25

https://doi.org/10.5194/egusphere-2025-4034
Preprint. Discussion started: 26 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Bidirectional flux models offer a unified scheme for emission and deposition of ammonia that most often have an explicit470

dependence on local conditions, most notably temperature. While bidirectional flux models have been included in a number

of atmospheric chemistry models in the last decade, there have been relatively few studies looking into the ability of ammonia

retrievals to constrain the bidirectional flux model parameters.

A novel bidirectional flux model is introduced in this work that was developed for use with inversion systems. This model

describes the bidirectional exchange of atmospheric ammonia with the surface, which has an emission potential that evolves475

in time according to this exchange. The bidirectional flux model is parametrized as to be able to describe this bidirectional

exchange while reducing the number of model parameters that satellite retrievals cannot differentiate between. This improves

convergence within inversion algorithms and yields a model that is relatively easy to implement and maintain in atmospheric

chemistry models.

Inversions using CrIS ammonia retrievals were performed to tune the values for the ammonium source potential and the480

ground pH in the bidirectional flux model implemented in the GEM-MACH air quality model. In areas with significant agri-

culture, the inversions yielded ground emissions potentials in the range of 104 to 5×104. From the inversions, the values for the

time constant for equilibration between the atmosphere and the ground ammonium pool were below a week for large regions in

the midwestern and sourthern US in the spring and summer. In these regions, the ground ammonium concentration can change

rapidly in response to atmospheric ammonia levels. The inversions increase ammonia emissions in most regions within the485

model domain, with some regions nearly doubling their emissions, although significant emissions decreases are seen in some

regions for certain months. Overall monthly ammonia emissions in Canada and the continental US are increased between 9%

and 61% in the spring/summer/fall.

Unidirectional and bidirectional ammonia flux models with parameters determined via inversions were compared with one

another. Significant differences in ammonia emissions between unidirectional and bidirectional models were seen in locations490

with large agricultural industries, such as California’s Central Valley, North Carolina, and the Canadian Prairies. In these

regions, ammonia surface concentrations can vary on the order of 10 ppbv, corresponding to a variation of 50% to 150%.

When compared to surface observations, the bidirectional flux model improves the agreement between the surface ammonia

field from GEM-MACH and observations from the AMoN network as compared to the unidirectional model in the spring,

summer, and fall, although worsens the agreement somewhat in the winter. In the spring/summer/fall months, the bidirectional495

model decreased the bias with AMoN observations between 14% and 26% as compared to the unidirectional model, and

decreased the error standard deviation between 5% to 20%. The stations with the most significant improvement were in the

American midwest and near the North American east coast. Few statistically significant changes between unidirectional and

bidirectional models were observed in the NAPS network due to the number and placement of these stations.

Code and data availability. GEM-MACH version 3.1.0a.2 is available on Zenodo under GEM-MACH (2025). The CrIS ammonia CFPR re-500

trievals created by ECCC [Open Government Licence - Canada] are currently publicly available at https://hpfx.collab.science.gc.ca/~mas001/

satellite_ext/cris/.
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Appendix A: Details of the Capacitance Model

This section contains details of the derivations in Sections 4.1 and 5.2. The flux Ft at the top of the surface layer is given by

Ft =
χc−χa

Ra + Rb
=

Nc∑

i=1

χ
(i)
s −χc

R
(i)
c

=
χs−χc

Rc
, (A1)505

where the second equality follows from using Kirchhoff’s first law at the junction χc and the third equality follows from

the definitions of Rc and χs in Eqs. (1a) and (1b), respectively. Using the expression above, we can solve for the canopy

compensation point χc as

χc =
Rc

Rt
χa +

(
1− Rc

Rt

)
χs. (A2)

Substituting Equation (A2) back into Equation (A1) then gives Eq. (2).510

Now using Eqs. (A2) and (1b) in Eq. (8) yields

dQg

dt
=

1
Rt

Rc

Rg

[
χa +

(
Rt

Rg
− Rc

Rg
− Rt

Rc

)
χg

]
+

χp−χg

Rp

=
1
Rt

Rc

Rg

[
χa−χg +

(
1− Rc

Rg
+

Rt

Rg
− Rt

Rc

)
χg

]
+

χp−χg

Rp

=
1
Rt

Rc

Rg
(χa−χg) +

1
Rt

Rc

Rg

(
1− Rc

Rg

)(
1− Rt

Rc

)
χg +

χp−χg

Rp

=
1
Rt

Rc

Rg
(χa−χg) +

1 +α

Rp

(
χp

1 +α
−χg

)
, (A3)

where α is defined in Eq. (11). Using Qg = Γgh[H+] and assuming h[H+] is constant in time then gives

dΓg

dt
=

1
Rt

Rc

Rg

χa−χg

h[H+]
+

1 +α

Rp

χp
1+α −χg

h[H+]

=
1

RtC

Rc

Rg
(Γa−Γg) +

1 +α

RpC
(Γp−Γg), (A4)

where we have used Eqs. (5), (7), and (10) in the last line. Using the RC time constants in Eq. (12) in the equation above then515

yields the prognostic equation for Γg given in Eq. (9).

Appendix B: Statistics Used for Comparisons to Surface Observations

When comparing GEM-MACH model results to surface observations, the bias, standard deviation of errors (STDE), root mean

square error (RMSE), and Pearson correlation coefficient (ρ) between the surface observations and model are defined as

bias = M̄− Ō, (B1a)520

STDE =

√√√√ 1
N− 1

N∑

i

(Mi− M̄−Oi + Ō)2, (B1b)
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RMSE =

√√√√ 1
N

N∑

i

(Mi−Oi)2, (B1c)

525

ρ =
∑N

i (Mi− M̄)(Oi− Ō)√∑N
i (Mi− M̄)2

√∑N
i (Oi− Ō)2

, (B1d)

Ō =
1
N

N∑

i

Oi, (B1e)

M̄ =
1
N

N∑

i

Mi, (B1f)530

where Oi is the ith observation out of N observations and Mi is its corresponding GEM-MACH model value. When the bias,

STDE, or RMSE are given as a percentage, the denominator is the annual mean observation value.
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