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Abstract.  

Soil-Vegetation-Atmosphere Transfer (SVAT) models are essential tools for simulating and underploting the dynamic 10 

interactions governing water balance components within forest ecosystems. These models are widely employed to predict 

hydrological responses to environmental change, including the impacts of shifting meteorological conditions on forested 

landscapes. Despite their usefulness, the reliability of SVAT models is frequently compromised by uncertainties arising from 

incomplete or imprecise input data. These limitations often result in model assumptions that may lead to over- or 

underestimation of critical water balance components such as groundwater recharge. In order to improve the accuracy of SVAT 15 

models, observed soil moisture data are integrated to enhance parameterization processes by aligning simulated outputs with 

measured values. However, uncertainties remain regarding the selection of representative soil moisture profiles for calibration 

and the extent of measurements necessary to robustly characterize a forest plot. To address these challenges, the present study 

explores the spatial variability of soil moisture across two forested plots with contrasting soil and vegetation conditions by the 

deployment of an extensive network of soil moisture probes in 11 profiles per plot. The influence of soil moisture variability 20 

on the adjustment of model input parameters during the calibration process and its subsequent impact on the computation of 

groundwater recharge is evaluated. The findings reveal that soil moisture variability at the plot characterized by a 

heterogeneous soil was greater, both horizontally and in depth, throughout the study period. These patterns of variability are 

also mirrored in the different parameter sets obtained from the calibration of the LWF Brook90 model, based on the recorded 

soil moisture time series in each of the 11 profiles per plot. The most significant variation is observed in the infiltration and 25 

hydraulic soil parameters, whereby this is more pronounced at the plot with heterogeneous soil structure. Nevertheless, when 

examining the groundwater recharge rates calculated using the 30 best-performing parameter sets for each of the 11 profiles, 

both plots exhibited comparable temporal patterns and in particular similar variations in total volumes of groundwater recharge. 

These results suggest that model-inherent uncertainties, including parameter interactions, equifinality and dimensional 

simplifications, have a stronger impact on model outputs than uncertainties arising from variability in soil moisture caused by 30 

spatial heterogeneity of soil texture and hydraulic properties within the plot. Taking into account both sources of uncertainty, 
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the application of bootstrapping techniques demonstrated that groundwater recharge could be reliably estimated using data 

from only 6 to 7 soil profiles per plot, providing a representative picture of its spatial variability. In general, the results indicate 

that using data from only a few soil profiles is not sufficient to capture the full range of groundwater recharge dynamics.  

 35 
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1 Introduction 

Forests are vital contributors to the hydrological cycle, playing a pivotal role in aquifer recharge while safeguarding the quality 

and availability of freshwater resources (Chang, 2012). Acting as natural filtration systems, they regulate the movement of 

water from the topsoil into groundwater reservoirs. The vegetation in forests, especially trees, intercepts rainfall, consuming 40 

water by root water uptake as well as transpiration and allowing it to infiltrate slowly into the soil (Hewlett, 2003). Protecting 

and managing these forested areas is essential for maintaining sustainable groundwater replenishment in both quantity and 

quality. Furthermore, the availability of water is a critical determinant for the ecological functionality and long-term viability 

of forest ecosystems. Forests exhibit a pronounced sensitivity to variability in water supply, with significant implications for 

their growth dynamics, resilience to environmental stressors, and overall productivity (Williams et al., 2013). One of the 45 

greatest challenges facing forest ecosystems is the alteration of meteorological conditions due to climate change. Shifts in 

precipitation patterns, including reduced rainfall during the growing season and an increase in extreme weather events such as 

droughts and heavy precipitation leading to excessive surface runoff, represent critical challenges. These changes constrain 

water availability for trees and inhibit water fluxes from the unsaturated soil zone to underlying groundwater reserves 

(Meusburger et al., 2022). Consequently, significant effects on forest structure and species distribution arise, including stress 50 

reactions such as widespread tree mortality, reduced canopy cover and increased susceptibility to pests and diseases (Gebeyehu 

and Hirpo, 2019; Klesse et al., 2023; Senf et al., 2020). Given these challenges, it is essential to underplot and quantify the 

processes governing forest water balance and to estimate accurately the volume of water percolating into the ground eventually 

reaching the groundwater table to become recharge. Hereby, soil water fluxes leading to groundwater recharge are of particular 

interest due to their critical role in the hydrological cycle and their influence on subsurface dynamics and long-term water 55 

resource sustainability in forested areas.  

However, precise estimation of groundwater recharge remains inherently complex as it demands detailed insights into the 

multifaceted interactions among soil properties, vegetation characteristics, and atmospheric dynamics within forest ecosystems 

(Schmidt-Walter et al., 2020). In general, key components influencing groundwater recharge in forested landscapes include 

precipitation, interception, evaporation, surface runoff, transpiration, percolation, and soil storage capacity. The interplay of 60 

these components is regulated by an various site-specific factors, such as climatic conditions (e.g., temperature and 

precipitation patterns), forest characteristics (e.g., species composition, structural age, plot density, canopy architecture, root 

system development, and overall tree health), understory vegetation, and soil attributes (e.g., texture, type, and permeability) 

(Chang, 2006). To address these complexities, environmental monitoring in forest ecosystems seeks to quantify water fluxes 
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with precision as a basis for determining water availability for transpiration across different tree species and its contribution 65 

to groundwater recharge.  

Using Soil-Vegetation-Atmosphere Transfer (SVAT) models has been established as indispensable tools for simulating 

hydrological processes within forest ecosystems as they can effectively capture the temporal dynamics of soil moisture and 

estimate water fluxes in forest environments (Speich et al. 2020; van der Salm et al. 2007). However, their predictive accuracy 

is often constrained by limitations in the quality and availability of input data as well as by the challenges of defining 70 

appropriate initial and boundary conditions. A large number of parameters related to canopy structure, vegetation 

characteristics, root distribution patterns, and soil hydraulic properties must be defined for effective model implementation 

(Meusburger et al., 2022). Yet, many of these parameters cannot be directly derived from field observations, resulting in 

significant uncertainties in parameter estimation (Franks et al., 1997). Such uncertainties frequently can lead to over- or 

underestimations of critical hydrological components, including water available for transpiration and percolation to the 75 

groundwater, thereby reducing the SVAT model's predictive capability (Kirchner, 2006; Kuppel et al., 2018). To address this 

issue, automatic calibration techniques leveraging observed site-specific soil moisture measurements, are employed. 

Incorporating these site-specific observations enables refinement of input parameters, effectively reducing mismatches and 

potentially enhancing the reliability of water balance predictions. This improved parameterization facilitates a more accurate 

representation of hydrological dynamics, contributing to a better understanding of water fluxes and their interrelations within 80 

forested landscapes. 

However, soil moisture exhibits high spatial and temporal variability even within forest plots, driven by factors such as 

heterogeneities in soil texture, hydraulic properties, topographic gradients, and dynamic interactions with surface water 

systems, precipitation, and vegetation distribution (Vereecken et al., 2016; Western et al., 2004). Numerous studies have 

investigated spatial soil moisture variability (Choi et al. 2007; Fatichi et al. 2015; Mohanty et al. 2000; Ojha et al. 2014; 85 

Teuling and Troch 2005; Vereecken et al. 2008; Western et al. 1999), consistently demonstrating that that variability tends to 

increase across larger spatial scales (Famiglietti et al. 2008; Western et al. 1999). This variability poses a challenge for model 

calibration, as a parameter set calibrated to a single location often fails to capture the full range of observed soil moisture 

conditions within a study area (Beven 2006). Recognizing spatial variability in soil moisture is crucial for improving the 

predictive performance of hydrological models, particularly in the context of water balance components such as 90 

evapotranspiration and infiltration (Famiglietti and Wood 1994). Research has shown that spatial differences in soil hydraulic 

properties can lead to substantial variations in simulated water balance components, such as transpiration, runoff, and deep 

percolation (Montzka et al., 2017). However, uncertainty remains regarding the optimal quantity and selection of soil moisture 

observations necessary to adequately represent a plot for model calibration and estimation of groundwater recharge. In the 

context of forest environmental monitoring, the installation of soil moisture observation profiles is often restricted to a limited 95 

number of locations (Vorobevskii et al., 2024). This limitation is primarily attributed to the significant financial investment 

required for advanced measurement technologies, compounded by a general underestimation of the critical role of 

representative soil moisture data in deriving reliable estimations of forest water balance components.  
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Recognizing these challenges, this present study seeks to evaluate the gains of installing a larger number of soil moisture 

sensors to obtain data for model calibration. To address this, an expanded monitoring network comprising multiple soil 100 

moisture probes was established across two forest plots at different sites in Germany, each characterized by contrasting 

environmental and boundary conditions. The collected data were analysed to identify and underplot spatial and temporal soil 

moisture variability across the study areas, including differences at distinct depths and locations. The observations were further 

used for the calibration of the SVAT model LWF-BROOK90.jl to assess their influence on estimated model parameters and 

model outputs, especially on ground water recharge. By addressing uncertainties associated with soil moisture variability and 105 

model parameterization, this our analysis contributes to the ongoing discourse on the spatial resolution required for 

hydrological model calibration. The findings should emphasize the importance of balancing single versus multiple 

parameterizations to ensure representativeness in heterogeneous forest landscapes, ultimately enhancing the accuracy of 

groundwater recharge estimations in forest landscapes. 

2 Methods 110 

2.1 Study sites & data 

The research concentrated on two sites within the ICOS (Integrated Carbon Observation System) monitoring network, which 

are also part of the IPCC Network  (Intergovernmental Panel on Climate Change), selected for contrasting soil characteristics 

and their well-established infrastructure and suitability for comprehensive data collection (Table 1).  

 115 

Table 1 Characterisation of the two sites instrumented as part of the study 

 Kienhorst Tharandt 

Coordinates (-) 52°58' N / 13°39' E 50°57’N, 13°34’ E 

Elevation (m) 66 385 

Slope (°) 0 7 

Median Temperature (°C) 8.5  8.2 

Annual Precipitation (mm) 577   843  

Vegetation Pinus / Vaccinium myrtillus / Bryophyta  Picea / Larix/  Bryophyta 

Soil type *, soil texture, stone 

content 

Haplic Podzol, sand, no stones   Haplic Podzol, silt,  10 – 20%, 

partially perching properties 

Geology Glacial sediments including their 

periglacial overprints 

Periglacial sediments consisting of 

debris from rhyolite and loess 

Hydrogeology Water level upper aquifer -17 m b.g. on 

average 

Water level upper aquifer -13 m b.g. 

on average 

 

   (Kallweit and Engel, 2016), (Anchorstation Tharandter Wald - Ökomessfeld), *(IUSS Working Group (WRB), 2022)  

 

 

 120 
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2.1.1 Study site Kienhorst  

The study area is situated in the heart of the Schorfheide, the largest continuous forested region in the state of Brandenburg, 

Germany (Fig. 1A). This plot consists of a 115-year-old pines, with ground vegetation primarily composed of dwarf shrubs, 

blueberry herbs and branch mosses (Kallweit and Engel, 2016). Humus form is raw humus with an Of/Oh ratio of 6 (IUSS 

Working Group (WRB), 2022). The mineral soil consists of fine sand, and roots seem to grow deeper than 1.5 m (Fig. 1B).  125 

 

 
Figure 1 View of Kienhorst plot (A), soil characteristics of Kienhorst plot (B), view of Tharandt plot (C), soil characteristics of Tharandt 

plot (D) (photograph by Fichtner, 2023)  

2.2.2 Study site Tharandt  

The study site is situated in the heart of Tharandter Wald, a dense forest covering approximately 6000 hectares on the lower 130 

reaches of the northern slopes of the Ore Mountains (Fig. 1C). The forest is characterized by a 129-year-old spruce plot, with 

ground vegetation primarily composed of grasses and mosses (Anchorstation Tharandter Wald - Ökomessfeld). Humus form 

is raw humus overlaying a loamy mineral soil with up to 20% stone content throughout the profile (Fig. 1D). Roots seem to 

grow not deeper than 0.8 m. At different locations on the plot (approx. 35%), the subsoil > 0.5 m depth exhibits redoximorphic 

patterns indicating perching properties, which means extremely low permeability. This results in the accumulation of stagnant 135 
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water during periods of heavy rainfall, as the infiltrating precipitation encounters significant resistance, hindering its downward 

movement through the soil layers (Braeutigam, 2012). 

2.2 Soil moisture measurements 

2.2.1 Set up soil moisture monitoring network 

At the two study sites located in distinct climatic regions of Germany, extensive networks of 44 soil moisture probes were 140 

deployed. Each of the 11 soil profiles was equipped with four probes placed at depths of 10, 30, 50, and 80 cm (Fig. 2C). The 

study utilized SMT100 soil moisture probes (Truebner Company 2025), with integrated temperature measurement, operating 

based on the Time Domain Transmission (TDT) principle (Fig. 2A) (Qu et al., 2013). The specified accuracy for absolute 

measurements is 3 vol. % for soil moisture (without site-specific calibration) and between 0.2°C and 0.4°C for soil temperature.  

 145 

 
Figure 2 SMT100 Sensor (Truebner Company)(A), Datalogger TrueLog200 (Truebner Company)(B), soil profile with installed sensors 

(photograph by Fichtner, 2023) (C)  

 

The sensor provides average measurement values across its full length of 10 cm. In this study, the manufacturer's calibration 

was applied instead of site-specific calibration, as the focus was on the soil moisture dynamics rather than absolute values 150 

(Sprenger et al. 2015; Demand et al. 2019). To prevent water accumulation on the probes and ensure minimal interference with 

vertical vapor fluxes, the probes were installed horizontally with their narrow edge oriented vertically (Fig. 2C). Data was 

collected every 10 minutes using the battery-powered TrueLog200 data logger (Fig. 2B). The data loggers are configured and 

accessed via the accompanying logger software. Equipped with a GSM modem, the loggers can transmit recorded data through 

the mobile phone network.   155 

2.2.2 Selection of positioning soil moisture measurements  

To identify soil moisture variability at the study plot, the location of the 11 soil profiles per plot were installed at randomized 

locations within an area of 20 x 20 meters (Fig. 3A+B). Previous research has demonstrated that installing soil moisture sensors 
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in a minimum of 10 profiles is sufficient to capture plot-specific variability effectively (Berthelin et al., 2020). The random 

sampling approach was employed to determine the soil profile coordinates, ensuring that each location was selected with equal 160 

probability. This method was chosen to maintain the independence of data points, facilitating robust statistical analysis. 

Additionally, randomized placement across the study area helps to avoid potential systematic errors caused by unrecognized 

gradients in soil moisture distribution. This strategy ensures comprehensive coverage of the variability present in the field. 

 

 
Figure 3 Randomly distributed soil profiles (red) in the 20 x 20 m plot at Kienhorst site (A) and at Tharandt site (B), living trees = green, 165 

tree stumps = black  

2.3 Water balance model LWF BROOK90.jl 

Water balance models or Soil–vegetation–atmosphere transfer (SVAT) models are valuable tools for estimating detailed 

atmosphere–plant–soil water exchange using a 1D simplification representing of evaporation and vertical soil water movement 

processes (Olioso et al., 2005). The model LWF-BROOK90.jl, a process-based, one-dimensional SVAT model, was utilized 170 

for the analyses presented in this study. It represents a complete reimplementation of the LWF-BROOK90 model in the Julia 

programming language (Bernhard et al., 2020), building on the code from the R package LWF-BROOK90R, its Fortran source 

code, and the original BROOK90 (v4.8) implementation (Federer et al., 2003; Schmidt-Walter et al., 2020). The water flux is 

computed by numerically solving the Richards equations using the Mualem–van Genuchten hydraulic parameters and 

preferential flow (van Genuchten, 1980; Mualem, 1976) governs unsaturated and saturated water movement in soil. The model 175 

dynamically adjusts percolation rates depending on soil hydraulic conductivity and water potential gradients.  
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2.3.1 Model input and vertical discretization  

In general, the LWF-BROOK90.jl model requires as input soil hydraulic (Mualem-van Genuchten parameters, hydraulic 

conductivity) and vegetation properties (e.g., leaf area index, root depth, and stomatal resistance), time series of detailed 180 

meteorological data (precipitation, temperature, humidity, wind speed and radiation) as well as general parameters describing 

the SVAT system. These data were derived from three main sources - in situ field measurements, data provided by ICOS site 

operators and relevant literature (Supplement, Table S1).  

For an adequate representation of the vertical variability of soil water dynamics, the soil profiles were discretized into layers 

with a vertical resolution of 5 cm in the upper soil horizons (up to 30 cm) and 10 cm for deeper horizons (up to 1.7 m for 185 

Kienhorst site and 1.2 m for Tharandt site). The layer thickness was adjusted depending on expected gradients in soil hydraulic 

properties and rooting depth.  This stratification allows for a more accurate simulation of water retention, percolation, and root 

water uptake across the profile. Furthermore, it ensures that soil moisture dynamics are realistically captured at the defined 

observation depths, allowing for a consistent comparison between simulated and observed soil moisture values. 

2.3.2 Modell calibration  190 

The objective of the calibration process was to identify inversely key soil hydraulic and vegetation-related input parameters of 

the model by using soil moisture time series recorded from March 2023 to October 2024 in the four different depths within 

the 11 soil profiles each. The input parameter values and ranges were derived from three main sources - in situ field 

measurements, data provided by ICOS site operators and relevant literature (Supplement, Table S1). To optimize the 

calibration process, a preselection of input parameters was conducted based on the results of a sensitivity analyses (Aguilar 195 

Avila, 2024). Parameters that exhibited negligible influence on model outcomes were fixed to reduce computational 

complexity (Supplement, Table S1). Finally, 17 critical input parameters on model performance were chosen for calibration 

within their predefined ranges. These parameters encompassed variables related to canopy structure, vegetation hydraulics, 

root distribution, soil physical processes and hydraulic properties; 11 of valid for the entire subsurface, six of them with 

individual variations respecting the defined discretization scheme. For calibration, 100,000 random combinations of these 17 200 

parameters were generated using the Latin Hypercube Sampling (LHS) strategy ensuring a well-distributed exploration of the 

parameter space within a feasible range of computational costs. The LWF-BROOK90.jl model was then executed for each of 

the 100,000 parameter sets. An initialization (spin-up) period of approximately three months was implemented to minimize 

the influence of initial condition uncertainties on the simulation of soil moisture and water fluxes. Model performance was 

evaluated using the Kling-Gupta Efficiency (KGE) score (Supplement, Section Statistics), as it provides a balanced assessment 205 

of correlation, bias, and variability between simulated and observed soil moisture dynamics across multiple depths (Gupta et 

al., 2009). For further analysis of water balance components, the 30 best-performing simulations according to KGE for each 

of the 11 individual profiles per plot were selected. This selection represents a compromise between model accuracy and the 

exploration of plausible model behaviour, allowing for a robust and nuanced evaluation of model uncertainty.  
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2.3.3 Model output and evaluation 210 

In addition to the various variables relevant to water dynamics and recharge processes calculated by the model, such as 

evapotranspiration (ET) and root water uptake (RWU), the primary focus of the evaluation was on groundwater recharge 

generated at daily resolution. While the other variables provided important insights into the water balance and plant–soil 

interactions, groundwater recharge was of particular interest due to its critical role in sustaining long-term water availability 

and its sensitivity to both model-inherent factors and the spatial variability of soil moisture used for calibration. To investigate 215 

this in detail, the 30 best-performing simulations for individual soil profiles, each based on its respective calibrated parameter 

set, were analysed to determine whether uncertainties arising from model structure, such as parameter interactions, equifinality, 

and dimensional simplifications, have a greater influence on model outputs than those related to spatial heterogeneity in soil 

texture and hydraulic properties within the plot. In addition, a bootstrapping procedure was performed using a two-sample 

Kolmogorov–Smirnov (KS) test (Supplement, Section Statistics) to determine the minimum number of soil profiles necessary 220 

for a representative estimation of groundwater recharge across the studied 20 × 20 m plots. The analysis was based on simulated 

groundwater recharge values produced by the LWFBrook90 model for 11 soil profiles, each yielding 30 values derived from 

calibration with observed soil moisture measurements, resulting in a total of 330 values. For varying numbers of profiles (n = 

1 to 11), random subsets of n profiles were repeatedly drawn (1000 iterations per subset size), and their aggregated value 

distributions were statistically compared to the full dataset (all 11 profiles). The KS test was employed to assess whether the 225 

distribution of the subsample significantly differed from that of the complete set.   

3 Results  

3.1 Observed soil moisture dynamics 

Initially, the visual examination of soil moisture time series across the 11 soil profiles each, measured at four depths (10, 30, 

50, and 80 cm) at the Kienhorst (Fig. 4) and Tharandt (Fig. 5) plot, revealed distinct patterns of variability.  230 
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  Figure 4 Observed soil moisture at Kienhorst plot – Layer 1, 10 cm, Layer 2, 30 cm, Layer 3, 50 cm and Layer 4, 80 cm, each line represents 

the soil moisture of one of the 11 profiles  

 

Seasonal effects were evident at both study locations across nearly all soil depths due to the fluctuating intensity and timing of 235 

precipitation events and the changing consumption of water by vegetation. However, the redistribution and consumption of 

precipitation water on its way through the unsaturated soil zone resulted in a diminished manifestation of seasonal patterns in 

the lower soil horizons. Notably, certain soil profiles at the Tharandt plot exhibited an almost uniform low moisture level 

throughout the year in the lower horizons, indicating limited seasonal variability in these depths.  

 240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5 Observed soil moisture at Tharandt plot - Layer 1, 10 cm, Layer 2, 30 cm, Layer 3, 50 cm and Layer 4, 80 cm, each line represents 

the soil moisture of one of the 11 profiles  
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Additionally, rapid and pronounced increases in soil moisture following heavy rainfall events were observed in several, but 

not all, soil profiles at the Tharandt plot. At the Kienhorst plot, the range of observed soil moisture values and the variability 245 

between individual profiles were consistently low both in dry and wet periods with evident uniformity of soil moisture across 

all depths. Soil moisture exhibited a consistent pattern across all depths, with a range of approximately 15 vol. % between 

minimum and maximum values. Conversely, the Tharandt plot was characterized by significant fluctuations in soil moisture 

content, coupled with considerable variability between individual profiles, particularly during and following heavy 

precipitation events occurring here more often. At this plot, the range between minimum and maximum moisture content 250 

reached nearly 50 vol. %, highlighting the pronounced heterogeneity of soil water dynamics. 

3.2 Model calibration  

3.2.1 Simulated soil moisture dynamics and their performance 

The calibration outcomes demonstrate strong correspondence between the temporal dynamics and magnitude of soil moisture 

changes in the simulated compared to the observed soil moisture across most profiles at both study locations over depth, which 255 

are reflected by constantly high KGE values (Fig. 6 and 7, for complete results of calibration see Supplement, Fig. S1 and S2). 

The model calibration effectively reproduced seasonal variations evident in the measured soil moisture values, including the 

response to prolonged dry periods and the rapid recovery following significant precipitation events.  

 

  

  Figure 6 Observed and simulated soil moisture exemplary for soil profile 9 at Kienhorst plot - Layer 1, 10 cm, Layer 2, 30 cm, Layer 3, 50 260 

cm and Layer 4, 80 cm  
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Minor discrepancies in the absolute values, timing of peaks and magnitudes were detected in the profiles over the depth. 

Significant deviations were observed here during periods of extreme wet conditions, especially at the Tharandt plot represented 

by lower KGE values. Specifically, while the timing of sharp increases in soil moisture following heavy rainfall events closely 265 

aligns with the observed data, the model underestimates the magnitude and the duration of these rises (Fig. 7, Profile 1, 50 and 

80 cm depth).  

 

  

  
Figure 7 Observed and simulated soil moisture exemplary for profile 1 at Tharandt plot - Layer 1, 10 cm, Layer 2, 30 cm, Layer 3, 50 cm 

and Layer 4, 80 cm 270 

 

Despite the existing deviations, the model performance demonstrates a high level of precision in replicating absolute soil 

moisture values across the 11 soil profiles and four measured depths (10, 30, 50, and 80 cm), what can be proven by consistently 

high Kling-Gupta Efficiency (KGE) scores across most profiles (Supplement, Table S2 and S3). Even for profiles with greater 

variability or complex conditions, the model maintains acceptable accuracy, with KGE values not falling below 0.01.  275 

3.2.2 Calibrated parameter combinations 

The analysis of the variation of the individual input parameters in the 11 soil profiles each based on the 30 best simulations 

derived from calibration highlights significantly greater variation in the parameters at the Tharandt plot compared to the 

Kienhorst plot (Supplement, Fig. S3 and S4). Notably, the highest variation was observed in soil hydraulic and soil process 
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parameters, such as ths (saturated volumetric water content, thr (residual volumetric water content), ksat (saturated hydraulic 280 

conductivity), idepth (soil depth until which infiltration is distributed), qffc (quickflow fraction of infiltrating water at field 

capacity), drain (multiplier to partially activate drainage) and length slope (slope length for downslope flow). Especially at the 

Tharandt plot, also a strong variation in these parameters can be observed across the discretized soil layers, whereas the 

variation over depth is less pronounced at the Kienhorst plot. Increased variation of the soil hydraulic parameters at the 

Tharandt plot can be attributed to the heterogeneous soil composition, which is characterised by alternating, poorly permeable 285 

layers, stones and underlying layers with low permeability. This heterogeneity increased the sensitivity of the plot to 

precipitation events, which is reflected in pronounced differences in soil moisture dynamics between the profiles and 

consequently also in the calibrated parameter sets. For the parameters that characterize the vegetation, there was greater 

variation for the parameters ksnvp (reduction factor to reduce snow evaporation), cvpd (vapor pressure deficit at which 

stomatal conductance is halved) and maxrootdepth (maximum root depth), although these were similarly strong at both the 290 

Kienhorst and Tharandt plot. 

 

Kienhorst Tharandt 

  

  

Figure 8 Parameter variation for the 12 parameters with the highest coefficient of variation for the Kienhorst and Tharandt plot – based on 

the mean of the 11 profiles (upper figures) and based on the 30 best simulations for soil profile 1 (lower figures) 

 295 
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For further interpretation the coefficient of variation (CV) was calculated based on the mean value of the individual parameters 

in the 11 profiles, reflecting the uncertainty arising from the different characteristics of the 11 soil profiles at the two plots 

(Fig. 8) as well as based on the individual parameters of the 30 best simulations for the single profiles, reflecting model 

uncertainty (Fig. 8). The higher CV values observed when comparing the individual parameters across the 11 soil profiles 

again highlight the greater variability in soil hydraulic and process parameters at the Tharandt plot (maximum CV 0.6 for 300 

Tharandt versus CV 0.21 for Kienhorst). This increased variation reflects the higher heterogeneity in soil characteristics at 

Tharandt compared to the more homogeneous conditions at Kienhorst. Further, the comparison of the two types of calculated 

CV allows determining whether the variability in model outcomes is driven more by differences in soil profile characteristics 

or by the uncertainty inherent in the model structure and parameterization. It becomes evident that the variation within the 30 

best simulations for the individual soil profiles exceeds the variation observed between the 11 soil profiles for most of the 305 

parameters. This effect is particularly pronounced at the Kienhorst plot. 

3.3. Influence of spatial variability and model parameter uncertainty on simulated groundwater recharge 

Besides certain similarities, clear differences in the time series of daily groundwater recharge estimates at the two plots can be 

observed (Fig. 9). The daily groundwater recharge time series revealed pronounced fluctuations throughout the study periods, 

with seasonal and vegetation-period effects distinctly evident. At both the Kienhorst and Tharandt plots, groundwater recharge 310 

predominantly occurs outside the vegetation period, between November and April, when the consumption of precipitation 

water by processes such as evaporation, root water uptake and transpiration is reduced to a minimum. 

Conversely, between April and October, these processes utilize nearly all available precipitation water, effectively limiting 

groundwater recharge during the vegetation period. A detailed examination of the simulated time series reveals that the greatest 

discrepancies between profiles, reflecting the uncertainty arising from the different characteristics of the 11 soil profiles at the 315 

sites, emerge following precipitation events occurring outside the vegetation period. During the growing season, when soil 

water fluxes are generally low due to high evapotranspiration, the time series exhibit notably similar patterns across profiles, 

indicating limited vertical percolation and groundwater recharge. Substantial differences, however, are observed in the 

magnitude and timing of groundwater recharge between the two plots. At Kienhorst, recharge is characterized by relatively 

uniform and moderate values during the non-vegetation period. Conversely, the Tharandt plot exhibits episodic and 320 

significantly more intense recharge events, predominantly following stronger precipitation. 

Considering the range of the 30 simulated time series of groundwater recharge per profile, reflecting model uncertainty, it 

becomes evident that the largest discrepancies between the individual simulations occur predominantly during periods outside 

the growing season and following heavy precipitation events (Fig. 9). Moreover, the spread between the simulations is notably 

more pronounced at the Tharandt plot compared to the Kienhorst plot. 325 
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Kienhorst Tharandt 

  

  
Figure 9 Simulated time series of daily groundwater recharge based on model parameterisation of the individual 11 profiles for Kienhorst 

and Tharandt plot - mean of the 30 best simulations per soil profile (upper figures), simulated time series of daily groundwater recharge – 330 

mean as well as minimum and maximum values of the 30 best simulations exemplary for soil profile 1 (lower figures) 

 

An analysis of cumulative groundwater recharge highlights substantial spatial variability across the 11 soil profiles at both 

plots separated for the years 2023 and 2024 (Fig. 10). At the Kienhorst plot, mean annual recharge values of the 30 best 

simulations for the 11 profiles ranged from 60 to 126 mm in 2023 and from 115 to 194 mm in 2024, while the groundwater 335 

recharge calculated using the model parameterisation based on the mean value of the 11 soil moisture time series was 77 mm 

for 2023 and 139 mm for 2024. At Tharandt, values varied between 80 and 134 mm in 2023 and between 34 and 123 mm in 

2024, the corresponding mean values amount to 119 mm for 2023 and 103 mm for 2024. 

 

 340 

 

 

 

 

 345 
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Kienhorst Tharandt 

  

  Figure 10  Calculated cumulative groundwater recharge volume ranges based on the parameter sets of the 30 best simulations for the 

individual 11 soil profiles (blue/green) as well the average value given as a number for each profile - separated for 2023 (upper figures) and 

2024 (lower figures) at Kienhorst and Tharandt plot, furthermore the calculated cumulative groundwater recharge volume ranges based on 

the parameter sets of the 30 best simulations for the mean value of the 11 soil profiles (orange), the violins display the upper bound as the 

third quartile (75th percentile), the lower bound as the first quartile (25th percentile) as well as the median, the outer edges of the violin 350 

extend to the actual minimum and maximum values of the data. 

 

The results of the performed bootstrapping procedure by using a two-sample Kolmogorov–Smirnov (KS) test indicate that 

when using a low number of soil profiles, specifically fewer than 5 profiles for the Kienhorst and Tharandt plot (Fig. 11), 

significant differences from the full dataset frequently occur. In these cases, the proportion of tests showing non-significant 355 

differences remains on a lower level, indicating that such small subsets do not adequately represent the overall groundwater 

recharge distribution. Conversely, with more than 6 profiles at both plots, over 95% of tests indicate non-significant 

differences, meeting the typical criterion for statistical significance.  
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Figure 11  Percentage of tests with not significant differences between the aggregated groundwater recharge value distributions of the chosen 360 

profiles (30 * n profiles) and the full dataset of groundwater recharge values (11 profiles * 30 = 330) for varying numbers of profiles assuming 

under the null hypothesis that the sample originates from the same distribution as the overall dataset.  

4 Discussion 

4.1  Observed soil moisture variability  

Observed soil moisture at the investigated forest plots revealed pronounced differences, both laterally across the investigated 365 

area and vertically with soil depth with larger fluctuations and absolute values at the Tharandt plot. These differences are 

primarily driven by site-specific factors like rainfall/throughfall patterns, soil hydraulics as well as subordinated by vegetation 

properties. The relatively uniform temporal and absolute progression of soil moisture observed at the Kienhorst plot reflects 

the homogeneous characteristics of its soil matrix. The sandy soil, characterized by evenly distributed pore spaces and low 

water-holding capacity over the entire soil profile, contributes to the consistent distribution of soil moisture with moderate 370 

volumetric content across all depths. In contrast, likewise to the soil moisture patterns found by Berthelin et al. (2023) the soil 

moisture dynamics at the Tharandt plot exhibit significant variability, attributable to its heterogeneous soil characteristics. This 

includes alternating layers of silty soil with variable permeability, higher stone content, and underlying geological features 

such as impermeable layers of clayey material beneath the upper soil horizons. The observations align with the findings of 

Vereecken et al. (2016), who highlighted the influence of soil texture and hydraulic properties on spatial variability in soil 375 

moisture. At Tharandt plot, accumulation of stagnant water during periods of heavy rainfall at some locations underscores the 

site's sensitivity to rainfall. This phenomenon is consistent with prior studies by Famiglietti and Wood (1994), which emphasize 

the role of reduced soil permeability and hydraulic conductivity in limiting infiltration rates and enhancing water retention 

within heterogeneous soil profiles. 

 380 
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4.2  Model calibration 

Despite the spatial heterogeneities in soil characteristics, the SVAT model, when calibrated with site-specific soil moisture 

observations, was capable of capturing the observed dynamics and variability for most profiles at both plots with acceptable 385 

precision. This indicates the model’s capacity in general to represent key hydrological processes such as infiltration, 

evapotranspiration, root water uptake, water retention and soil water redistribution under diverse conditions, what can be 

proven by sufficient KGE values for most of the observation points.  

Nevertheless, discrepancies between observed and simulated soil moisture remain, particularly in response to high-intensity 

precipitation events followed by rapid and strong increase in soil moisture. The model results tended to underestimate the rapid 390 

increase and struggles to replicate the absolute magnitude of soil moisture values. These discrepancies suggest limitations in 

the parameterization of the model for heterogeneous soil profiles and highlight inherent simplifications in the 1D modeling 

approach. This may restrict the model’s capacity to fully capture the complexities of plot-specific conditions and processes 

such as spatial soil heterogeneity and the lateral water flux between neighbouring soil compartments (McDonnell, 1990), which 

results in an unsatisfactory simulation of stagnant and groundwater-influenced plots. The importance of focussed recharge 395 

processes due to soil heterogeneities was also pointed out by Ries et al. (2015) and Berthelin et al. (2023). Yet, the generally 

high KGE performances indicate that the weaknesses of the model in representing this behaviour well did not substantially 

affect the overall realism of the simulations. In addition, we must account that the observed differences in absolute soil moisture 

values may partly stem from the measurement uncertainty that originates from the accuracy of the soil moisture sensors used 

in this study, which is ± 3 % of soil moisture (Truebner Company, 2025) and the effective uncertainty of field soil moisture 400 

measurements inherent to all soil moisture measurements (Jackisch et al., 2020). This inherent variability introduces additional 

uncertainty into the observed data, which should be taken into account when interpreting deviations between simulated and 

observed values, particularly in profiles where differences fall within this error range.  

On the other site, the analysis showed that incorporating multi-depth soil moisture observations significantly improves the 

representativeness of the simulated soil water distribution, especially in heterogeneous soil systems as in Tharandt. Multiple 405 

observation points along the soil profile allow for a more nuanced assessment of the sensitivity of individual model parameters 

at different depths by calibrating the model against a higher density of data that captures both surface and subsurface processes. 

This was also observed by Houska et al. (2014), who demonstrated that the inclusion of soil moisture data at different depths 

increases the representativeness of the simulated soil water distribution and thus increases the identifiability of model 

parameters. 410 

4.3  Variability of calibrated model parameters 

An analysis calibrated model parameter sets for both plots revealed a higher degree of variation in area and depth at the 

Tharandt plot compared to Kienhorst plot, as indicated by the coefficient of variation (Supplement, Fig. S3 and S4). This 
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reflects the greater heterogeneity in soil physical properties observed at Tharandt, whereas Kienhorst is characterized by more 

homogeneous plot conditions, and is a direct result of the spatially variable observed soil moisture dynamics found within the 415 

plots. Despite this broader range of plausible parameter combinations at Tharandt plot, the overall model performance 

remained at an acceptable level. However, a slightly reduced agreement between observed and simulated soil moisture values 

was observed compared to Kienhorst plot, suggesting a more complex interplay between parameter uncertainty and model 

behaviour in heterogeneous environments. The analysis further reveals that key soil hydraulic parameters and soil process 

parameters show a greater variation compared to vegetation parameters. This underscores their key role in soil water dynamics 420 

and highlights their contribution to overall model uncertainty. These insights are supported by the findings of Kreye and Meon 

(2016), who highlighted the significant impact of sub-scale spatial variability in soil hydraulic properties on hydrological 

process modelling. Similarly, Scharnagl et al. (2011) pointed out the value of incorporating prior knowledge of soil hydraulic 

parameters to enhance parameter identifiability in inverse modelling approaches. Complementing these perspectives, Baroni 

et al., 2010 demonstrated that uncertainties in the determination of soil hydraulic properties can substantially affect the overall 425 

performance of hydrological models.  

Furthermore, analysis of the 30 best parameter combinations for each individual soil profile revealed that model-based 

uncertainty (the variation within the 30 best-performing parameter combinations) exceeds plot-based variability (differences 

between the 11 soil profiles). This finding is particularly pronounced at the Kienhorst plot, where the limited variation in 

measured soil properties resulted in relatively minor differences in input parameterization across profiles.  430 

In contrast, the wide range of equally well-performing parameter sets for individual profiles reflects the issue of equifinality, 

where multiple parameter combinations can yield similar simulation outcomes. This suggests that, for Kienhorst plot, model 

parameter ambiguity dominates the overall uncertainty. This means that at plots with relatively uniform soil properties, where 

physical variability is limited, model-based uncertainty is the more important factor for prediction accuracy. At the Tharandt 

plot, by contrast, the difference between site-related and model-related parameter variation was less pronounced. For several 435 

parameters, both sources of uncertainty, natural spatial heterogeneity and model-based calibration uncertainty, contributed 

similarly to the overall variation. This can be attributed to the more pronounced heterogeneity in soil characteristics at 

Tharandt, which elevates the spatial component of uncertainty and thereby partially masks the effects of equifinality. In 

particular, these findings show that the dominant source of uncertainty can vary significantly depending on plot characteristics. 

At homogeneous plots, model structural uncertainty and equifinality may outweigh physical variation, while at heterogeneous 440 

sites, spatial variability in input data may dominate. Therefore, parameter selection should be guided not only by sensitivity 

analysis but also by an underploting of the plot-specific balance between model and data-driven uncertainty.  

Based on the findings, the calibration of soil hydraulic parameters should remain plot-specific, as their variability and influence 

on model outcomes is both large and highly context-dependent. Conversely, parameters with consistently low variability across 

profiles, such as many vegetation-related parameters, may be suitable for regionalization or transfer between plots, potentially 445 

improving scalability and reliability of water balance simulations.   
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4.4  Groundwater recharge estimation 

The observed differences in groundwater recharge between the Kienhorst and Tharandt plots can be attributed most to 

variations in rainfall distribution, tree species and soil texture, what is influencing infiltration rates, water retention capacities 450 

and the timing of recharge events. In addition to seasonal effects, the main differences in the time series that can be attributed 

to the different soil properties. Groundwater recharge at the Kienhorst plot is relatively uniform with moderate values reflecting 

the sandy soil texture, associated with high permeability and low field capacity, promoting continuous infiltration and a steady 

recharge response to precipitation events. Limited water retention in these soils allows for minor recharge even during the 

vegetation period, albeit at the expense of reduced water availability for plant uptake (Hillel, 2003). In contrast, the loamy and 455 

heterogeneous soil at the Tharandt plot, with higher field capacities and lower permeability, delays percolation until antecedent 

moisture conditions exceed the storage capacity of the upper soil layers. Similar to Ries et al. (2015) recharge occurred only 

in distinct pulses following heavy rainfall events. Moreover, the increased water retention at Tharandt enhanced soil water 

availability for vegetation, effectively suppressing groundwater recharge during the vegetation period (Hillel, 2003). These 

findings underscore the critical role of soil hydraulic properties, particularly conductivity and retention capacity, in regulating 460 

the temporal dynamics of groundwater recharge, consistent with observations by Vereecken et al. (2016) as well as the studies 

of Beven and Binley (1992) and Zhao et al. (2018). This is emphasizing the complexity of water fluxes in heterogeneous soil 

systems and their limiting effect on recharge efficiency.  

Regarding to groundwater recharge quantities, the results fall within the range of values reported in the literature for both plots, 

suggesting annual recharge rates of approximately 80–150 mm for Tharandt (Goldberg and Bernhofer, 2007) and around 465 

100 mm for Kienhorst (Birner et al., 2015), what supports the plausibility of the model outcomes. Despite a more heterogeneous 

soil and a greater variability in parameterisation at the Tharandt plot, the variability of cumulated groundwater recharge 

between the different soil profiles at the more homogeneous Kienhorst plot is not substantially lower. This indicates that neither 

site heterogeneity nor the range of input parameters alone fully explains the variation in recharge estimates. Rather, other 

factors, such as model structure, process representation and calibration uncertainty, appear to play a decisive role in shaping 470 

recharge variability at the catchment scale. This observation is consistent with findings by Maxwell and Condon (2016), who 

emphasised the complex interplay between soil water fluxes, landscape features and recharge processes as well as stressed that 

heterogeneity does not always lead to higher variability in groundwater recharge results. It further supports the notion that 

model behaviour can be dominated by structural and parametric uncertainty rather than physical input variability alone. A key 

contributor to this phenomenon is the concept of equifinality, as extensively discussed by Beven and Freer (2001) and Beven 475 

(2006). While the model is able to reproduce the observed soil moisture dynamics with reasonable accuracy using different 

parameter sets, the existence of multiple parameter sets with comparable performance indicates a high degree of parameter 

non-uniqueness. This not only increases predictive uncertainty, but also suggests that the model structure, particularly in its 

one-dimensional form, may not fully capture the spatially distributed and lateral processes that influence soil water movement 

leading to uncertainties in groundwater recharge estimation.  480 
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The results further show that the calculated groundwater recharge based on the parameter sets of the 30 best simulations for 

the mean value of the 11 soil profiles at the Kienhorst plot represents the range of groundwater recharge of the individual 11 

profiles quite well. This averaging over serval soil moisture profiles in a forest was also proven to be useful by Berthelin et al. 

(2023). It suggests that, in homogeneous settings, using averaged values may provide a reasonably accurate estimate. For the 

Tharandt plot, the value of groundwater recharge determined in this way is closer to the maximum groundwater recharge 485 

determined for the individual 11 soil profiles. In this case, it would lead to an overestimation of the actual groundwater 

recharge. This highlights the importance of a differentiated consideration of plot-specific soil profiles and moisture 

distributions in modelling, in order to ensure realistic results. Solely relying on mean values cannot always adequately capture 

the system's heterogeneity and poses the risk of systematic biases in the water balance.  

Hence, in order to cope with uncertainties in obtaining representative recharge estimates, it is advisable to define an adequate 490 

number of soil profiles equipped with soil moisture sensors that serve as critical calibration points. The performed 

bootstrapping (Fig. 11) indicated that below 6 randomly chosen profiles, spatial variability can still bias the representativeness 

of recharge estimates while selecting more than 6 profiles, the parameter uncertainty is the most prominent source of 

variability. The results demonstrate that, regardless of site-specific characteristics, the use of at least six soil profiles is 

recommended to reliably capture the spatial distribution of groundwater recharge at the 20 × 20 m plot scale with a confidence 495 

level of 95% when using the LWFBrook90 model calibrated with soil moisture data. Nevertheless, the analysis also indicates 

that even when only a single soil profile is used, groundwater recharge can still be estimated with moderate confidence in 

approximately 50% of all test iterations. In other words, in half of the cases, the groundwater recharge derived from one soil 

profile matches the overall spatial distribution across the study area. In conclusion, a targeted approach using six well-

instrumented soil profiles provides a robust, efficient, and practical methodology for groundwater recharge estimation using 500 

LWFBrook90, balancing model reliability with fieldwork feasibility. 

5 Conclusions 

The findings of the investigation underscore the critical need for a sufficiently dense and vertically resolved network of soil 

moisture measurements to ensure robust model calibration and to constrain predictive uncertainty for estimating important 

water balance components like groundwater recharge with a SVAT model. The use of mean values derived from a limited 505 

number of measurement profiles for calibration can mask extremes in soil moisture variability, leading to systematic over- or 

underestimations, both in homogenous and heterogeneous environments. The results of the study clearly advocate for an 

increased spatial coverage of soil moisture observations and modelling of groundwater recharge based on that across the 

analysed area, ideally, at least 6 soil profiles. Such a denser observation network would enable to cover the influence of soil 

moisture variability as well as model structure and equifinality on groundwater recharge estimates. Even in areas with low 510 

observed spatial variability of soil moisture, model-based uncertainty, resulting from multiple parameter combinations yielding 
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similarly plausible outputs, can dominate simulation outcomes. This underlines the importance of explicitly addressing 

equifinality and parameter non-uniqueness in model calibration procedures.  

Incorporating isotopic signatures of precipitation and soil water, in addition to soil moisture data, during calibration could be 

an opportunity to reduce the negative impact of effects such as equifinality on the calibration process and the subsequent 515 

estimation of groundwater recharge. Several studies have demonstrated that the complementary use of stable isotope 

measurements (δ¹⁸O, δ²H) in precipitation, along with a comparison to the isotopic signatures in soil water, has proven to be 

particularly effective in narrowing down parameter uncertainty (Sprenger et al., 2015). By combining isotopic data with soil 

moisture information, a multidimensional calibration process is enabled, allowing for a more precise identification of 

parameters that govern key water transport and storage processes within the soil. Furthermore, the results obtained for 520 

evapotranspiration and root water uptake, which significantly influence the estimation of groundwater recharge, can be 

validated through comparison with measured sap flow data. This validation step not only serves to verify the model's 

performance but also aids in further reducing the uncertainty in groundwater recharge estimates, thereby providing a promising 

direction for improving the overall reliability of future SVAT model applications. 

Code and data availability 525 

The source code of the LWF-BROOK90.jl model can be downloaded from https://github.com/fabern/LWFBrook90.jl 

(Bernhardt, 2020). The complete model spatial input data, the meteorological data and monitoring data used in this study can 

be obtained upon request. 
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