

1 **Decadal Evolution of Aerosol-Mediated Ozone Responses in Eastern**
2 **China under Clean Air Actions and Carbon Neutrality Policies**

3 Yasong Li^{1,3}, Chen Li², Yaoyu Li¹, Tijian Wang^{3*}, Mengmeng Li³, Yawei Qu⁴, Hao Wu⁵, Min⁵ Xie⁶, Yanjin
4 Wang¹

5 1. *College of Environmental Economics, Henan Finance University, Zhengzhou, 450046, China*

6 2. *School of Energy and Chemical Engineering, Tianjin Renai College, Tianjin, 301636, China*

7 3. *School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China*

8 4. *College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211112, China*

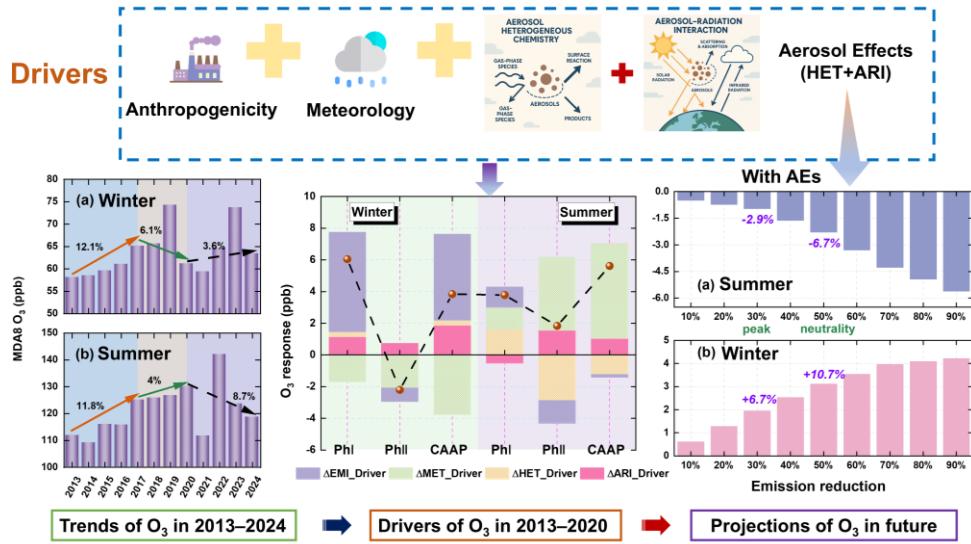
9 5. *Key Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for
10 Atmospheric Sciences, Nanjing, China*

11 6. *School of Environment, Nanjing Normal University, Nanjing 210023, China*

12 **Correspondence to:** Tijian Wang (tjwang@nju.edu.cn)

13 **Abstract:**

14 Despite substantial reductions in PM_{2.5} and other pollutants, ozone (O₃) in eastern China has increased over the past
15 decade, yet the influence of aerosol processes—including aerosol–radiation interactions (ARI) and heterogeneous chemistry
16 (HET)—on these trends remains poorly understood, particularly during Clean Air Action Plan ([CAAP](#), Phase I: 2013–2017;
17 Phase II: 2018–2020) and under carbon neutrality pathways. We applied a phase- and season-resolved WRF-Chem framework
18 with explicit ARI and HET to quantify historical and projected O₃ changes in the Yangtze River Delta (YRD), linking aerosol
19 effects with [clean air actions](#)[CAAP](#) and carbon-neutrality pathways. [We separate O₃ changes into those driven directly by](#)
20 [anthropogenic emissions and meteorological variability, and those mediated by aerosol processes through ARI and HET.](#) The
21 results revealed that anthropogenic emissions and meteorological variability respectively dominated winter and summer O₃
22 increases. Winter O₃ increases were dominated by ARI: large aerosol reductions enhanced solar radiation, temperature, and
23 photolysis, resulting in a photochemical O₃ rise (+1.14 (+0.74) ppb in Phase I (II)). [Summer O₃ was more sensitive to HET;](#)
24 [initial aerosol decreases weakened radical scavenging, promoting O₃ formation \(+1.62 ppb\), whereas the weakening of this](#)
25 [effect during Phase II reduced O₃ \(-2.86 ppb\). Summer O₃ was more sensitive to HET. In Phase I, aerosol decreases weakened](#)
26 [heterogeneous radical uptake, enhancing O₃ formation \(+1.62 ppb\). In Phase II, however, the net HET effect reversed sign \(-](#)
27 [2.86 ppb\), driven by shifts in multiple heterogeneous pathways—including changes in radical uptake, HONO and N₂O₅](#)
28 [chemistry, and aerosol liquid water—rather than radical scavenging alone.](#) Accounting for aerosol effects (AEs=ARI+HET),
29 reductions in PM_{2.5} and NO_x increased O₃, while VOCs reductions consistently lowered O₃ in both seasons. Under carbon
30 peaking and neutrality scenarios with AEs, winter O₃ increased by 6.7% and 10.7%, whereas summer O₃ decreased by 2.9%
31 and 6.7%, highlighting seasonally contrasting responses. These results underscore the necessity of explicitly accounting for
32 multi-path aerosol–O₃ interactions in both near-term air quality management and long-term climate mitigation to prevent
33 unintended trade-offs and maximize co-benefits.


设置了格式: 下标

设置了格式: 字体: 10 磅

设置了格式: 字体: Times New Roman, 10 磅

设置了格式: 字体: 10 磅

34 Graphical Abstract:

35

36 **1. Introduction**

37 Over the past decade, China has made remarkable progress in improving air quality, primarily driven by stringent emission
38 control policies targeting key pollutants such as sulfur dioxide (SO_2), nitrogen oxides (NO_x), and fine particulate matter ($\text{PM}_{2.5}$).
39 Landmark initiatives—including the Air Pollution Prevention and Control Action Plan (Phase I: 2013–2017), the Three-Year
40 Blue Sky Protection Campaign (Phase II: 2018–2020), and the more recent dual-carbon strategy—have led to substantial and
41 sustained reductions in $\text{PM}_{2.5}$ across major urban agglomerations. Over the last decade, a series of landmark policy initiatives—
42 such as the Air Pollution Prevention and Control Action Plan (Phase I: 2013–2017), the Three-Year Blue Sky Protection
43 Campaign (Phase II: 2018–2020), and the subsequent dual-carbon strategy—have driven substantial and persistent declines in
44 $\text{PM}_{2.5}$ concentrations across China's major urban clusters (Geng et al., 2024; Zhai et al., 2019). However, in sharp contrast to
45 these successes, ground-level O_3 have continued to rise, particularly in economically developed regions such as Beijing-
46 Tianjin-Hebei (BTH, (Zhao et al., 2023; Dai et al., 2023)), the Yangtze River Delta (YRD, (Li et al., 2023; Hu et al., 2025)),
47 and the Pearl River Delta (PRD, (Chen et al., 2020)). For example, Yan et al. (2024) reported that the annual mean maximum
48 daily 8-hour average (MDA8) O_3 in major Chinese cities increased from $106.0 \mu\text{g m}^{-3}$ in 2013 to $131.1 \mu\text{g m}^{-3}$ in 2022, with
49 the most pronounced growth observed in the BTH and YRD regions. The emerging decoupling between $\text{PM}_{2.5}$ and O_3 trends
50 underscores the growing complexity of air pollution control in China, suggesting that conventional precursor-oriented
51 mitigation strategies may be insufficient to address secondary pollutants formed through nonlinear atmospheric processes. The
52 increasing frequency and intensity of O_3 pollution episodes not only pose serious risks to human health and ecosystems (Liu
53 et al., 2018; Li et al., 2020b) but also diminish the co-benefits of $\text{PM}_{2.5}$ mitigation. As China advances toward its dual goals of
54 high-quality development and carbon neutrality As China advances toward its goal of carbon neutrality, elucidating the
55 mechanisms behind this counterintuitive O_3 rise has become both a scientific imperative and a policy priority.

56 Extensive research has identified anthropogenic emissions and meteorological variability as the two dominant drivers of
57 observed O_3 increases (Ma et al., 2023a; Sun et al., 2019; Shao et al., 2024; Ni et al., 2024), particularly during the early stages
58 of the Clean Air Action Plan (CAAP). For instance, Dang et al. (2021) used the GEOS-Chem model to show that during the
59 summer of 2012–2017, meteorological changes accounted for 49% of the O_3 increase in the BTH region and 84% in the YRD,
60 while emission changes explained 39% and 13%, respectively. Recent efforts combining numerical modeling with machine
61 learning have further highlighted the critical roles of solar radiation and temperature, especially during the COVID-19
62 lockdown. Zhang et al. (2025) attributed approximately 94% of the summer O_3 increase in the Hangzhou Bay area from 2019
63 to 2022 to meteorological influences, noting a growing dominance of meteorological drivers over emission-related factors. In
64 addition, innovative metrics such as the O_3 -specific emission–meteorology index (EMI/ O_3) have been proposed to quantify
65 these contributions, revealing that summer O_3 increases in cities like Beijing and Shanghai were largely governed by volatile

66 organic compound (VOCs) emissions and meteorological shifts (Lu et al., 2025).

67 Beyond emissions and meteorology, aerosol effects (AEs) have emerged as important, though often overlooked, regulators
68 of surface O₃. Aerosols influence O₃ formation through two principal mechanisms: aerosol–radiation interaction (ARI), which
69 alter photolysis rates and boundary layer dynamics, and heterogeneous chemistry (HET), which removes hydroperoxy (HO₂)
70 radical and suppresses O₃ formation (Li et al., 2025; Li et al., 2024b; Li et al., 2019a; Gao et al., 2018). As aerosol loading has
71 substantially declined under clean air policies, the magnitudes and directions of these mechanisms may have shifted. For
72 instance, Yu et al. (2019) found that reductions in PM_{2.5} contributed to approximately 22% of the observed O₃ increase in the
73 YRD during 2013–2017. Yang et al. (2024) quantified a 0.81 ppb increase in summer O₃ linked to the weakening of ARI under
74 lower aerosol conditions. Our previous research demonstrated that the reduced aerosol suppression of photochemistry via ARI,
75 photolysis inhibition, and HET collectively amplified O₃ increases by 22.2%–57.3% between 2014 and 2020 (Li et al., 2024a).
76 Similarly, Liu et al. (2023a) identified weakened HET as the dominant mechanism behind O₃ increases across both phases of
77 the CAAP. Moreover, precursor–O₃ relationships are strongly modulated by background aerosol levels, further emphasizing
78 the need to assess O₃ responses under evolving aerosol conditions to ensure the effectiveness of co-control strategies.

79 Anthropogenic emissions and meteorological variability act as external drivers that directly regulate precursor concentrations,
80 atmospheric chemical regimes, and transport processes. In contrast, ARI and HET represent aerosol-mediated mechanisms that
81 reshape the photochemical environment by altering photolysis rates and radical budgets. These aerosol-driven mechanisms
82 determine the extent to which surface O₃ responds to precursor (particularly NO_x) reductions or meteorological perturbations.
83 This conceptual framework underpins our separation of O₃ changes into externally driven components and aerosol-modulated
84 components in this study.

设置了格式: 下标

设置了格式: 下标

85 Despite increasing recognition of the role of aerosols in modulating surface O₃, several critical knowledge gaps remain.
86 Most existing studies tend to isolate either ARI or HET rather than evaluate their combined and potentially synergistic effects.
87 Additionally, few investigations adopt a phase- and season-resolved framework aligned with policy implementation timelines,
88 and even fewer consider long-term projections under carbon neutrality pathways. Furthermore, the spatial heterogeneity and
89 nonlinear chemical responses of O₃ under dynamic aerosol environments remain poorly characterized, particularly in densely
90 populated and industrialized regions like the YRD. To address these gaps, this study employs an improved WRF-Chem
91 modeling framework to conduct a comprehensive, phase-, season-, and mechanism-resolved assessment of AEs in the YRD
92 from 2013 to 2024. By explicitly disentangling the effects of ARI and HET and integrating them with historical emission
93 changes, meteorological variability, and future carbon neutrality–driven mitigation scenarios, we aim to systematically
94 quantify the drivers of past O₃ trends and predict their future trajectories. Furthermore, we assessed the responses of O₃ to
95 reductions in individual precursors (PM_{2.5}, NO_x, VOCs, NH₃, and SO₂), thereby elucidating the conditions under which
96 synergistic air quality and climate co-benefits can be most effectively realized. Furthermore, we evaluate the seasonal and

97 spatial O₃ responses to the reduction of individual precursors (PM_{2.5}, NO_x, VOCs, NH₃, and SO₂), offering mechanistic insights
98 into when and where synergistic air quality–climate benefits can be effectively achieved. These findings provide a scientific
99 foundation for designing regionally tailored and seasonally adaptive O₃ control strategies aligned with China's dual goals of
100 pollution reduction and carbon neutrality. These results provide a scientific basis for the development of region-specific and
101 seasonally adaptive O₃ mitigation strategies that are consistent with China's dual objectives of air pollution control and carbon
102 neutrality.

103 **2. Methodology**

104 **2.1 Model and dataset**

105 This study employed an enhanced version of the Weather Research and Forecasting model coupled with Chemistry (WRF–
106 Chem, version 3.7.1, To diagnose the mechanisms governing surface O₃ variability over eastern China under the Clean Air
107 Action Plan (CAAP), we applied an improved configuration of the Weather Research and Forecasting model coupled with
108 Chemistry (WRF-Chem, version 3.7.1, (Grell et al., 2005)), to investigate the drivers of surface O₃ variability over eastern
109 China during two key phases of the CAAP (Phase I and Phase II). In addition to examining the roles of anthropogenic emission
110 changes and meteorological variability, particular emphasis was placed on quantifying the impacts of two critical aerosol–
111 related processes (ARI and HET) on long-term O₃ trends. Furthermore, we explored the O₃ responses to precursor emission
112 reductions and assessed the implications of future carbon neutrality–driven emission scenarios on surface O₃ under the
113 influence of AEs (ARI+HET). As an extension of our previous modeling work, the WRF-Chem configuration followed the
114 setup established in earlier studies. The analysis focused on two major implementation stages of the CAAP (Phase I and Phase
115 II), with the objective of disentangling the relative contributions of emission controls, meteorological variability, and aerosol–
116 mediated processes to long-term O₃ changes. Particular attention was devoted to two key aerosol effects (ARI and HET) and
117 their roles in modulating O₃ trends. In addition, sensitivity experiments were conducted to quantify O₃ responses to precursor
118 emission reductions, and to evaluate future surface O₃ behavior under carbon neutrality–oriented emission pathways while
119 explicitly accounting for combined aerosol effects (ARI + HET). Building upon our previous modeling framework, the WRF–
120 Chem setup largely followed configurations documented in earlier studies (Li et al., 2024a; Li et al., 2024b), with targeted
121 enhancements to address the objectives of this work. A three-tier nested domain system was implemented, encompassing East
122 Asia as the outermost domain, eastern China as the intermediate domain, and the YRD as the innermost domain (Figure S1).
123 A three-level nested domain structure was adopted, covering East Asia (outer domain), eastern China (middle domain), and
124 the YRD (innermost domain), as illustrated in Figure S1. Meteorological initial and boundary conditions were obtained from
125 the National Centers for Environmental Prediction Final (NCEP FNL) reanalysis data, with a horizontal resolution of 1° × 1°.
126 Anthropogenic emissions were derived from the Multi-resolution Emission Inventory for China (MEIC v1.4), developed by

127 Tsinghua University, which provides gridded emissions of major air pollutants at a resolution of $0.25^\circ \times 0.25^\circ$. Biogenic
128 emissions were generated online using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006).
129 Numerical simulations were performed for January and July to characterize representative winter and summer conditions,
130 respectively. Each seasonal simulation covered a five-week period (December 29 to February 1 for winter, and June 28 to
131 August 1 for summer), with the initial three days excluded to allow for model spin-up and chemical equilibration. Beyond the
132 seasonal analyses, the decadal evolution of maximum daily 8-hour average (MDA8) O_3 over the YRD during 2013–2024 was
133 systematically examined for both seasons. Detailed information about the spatial distribution and technical characteristics of
134 the monitoring stations and model configuration have been reported in our previous studies (Li et al., 2024a).

135 Model simulations were conducted for January and July to represent typical winter and summer conditions, respectively.
136 The simulation periods extended from December 29 to February 1 for winter and from June 28 to August 1 for summer, with
137 the first three days discarded as spin-up for chemical initialization. In addition to seasonal simulations, we evaluated the
138 decadal evolution of MDA8 O_3 in the YRD from 2013 to 2024 for both seasons. Observed hourly surface O_3 data were obtained
139 from China's national air quality monitoring network, maintained by the Ministry of Ecology and Environment (MEE). The
140 spatial distribution and technical specifications of the monitoring sites are detailed in our previous publications.

141 2.2 Aerosol effects enhancement

142 This study systematically assessed the impacts of aerosol related processes on O_3 variability in the context of China's
143 historical CAAP and future carbon neutrality targets. Two key mechanisms (ARI and HET) were incorporated into the WRF-
144 Chem framework to capture the coupled physical and chemical influences of aerosols on O_3 formation. The implementation
145 and validation of these modules were based on our previous studies and are briefly summarized here. This work provided a
146 comprehensive evaluation of aerosol-mediated influences on surface O_3 variability within the dual context of China's CAAP
147 and prospective carbon neutrality pathways. Two representative aerosol-related processes (ARI and HET) were explicitly
148 represented in the WRF-Chem modeling system to account for the coupled physical and chemical pathways through which
149 aerosols regulate O_3 formation. The formulation, implementation, and performance evaluation of these processes followed the
150 methodologies established in our earlier studies and are only briefly outlined here for completeness (Li et al., 2024b). Within
151 this framework, ARI modulated O_3 concentrations through two primary mechanisms. First, aerosols attenuated incoming solar
152 radiation, thereby influencing photolysis frequencies through light extinction. Second, aerosols perturbed meteorological
153 conditions by altering radiative fluxes, giving rise to aerosol–radiation feedbacks (ARF). While ARF was natively supported
154 in the standard WRF-Chem configuration, the default Fast-J photolysis scheme did not dynamically account for aerosol optical
155 properties, which led to the omission of aerosol extinction effects on photolysis rates. To overcome this deficiency, a
156 customized coupling interface was implemented to link prognostic aerosol optical parameters—such as scattering and
157 absorption coefficients—to the Fast-J module. This modification allowed aerosol optical depth to be calculated online and

158 enabled photolysis rates to respond consistently to the evolving spatial and temporal distributions of aerosols.

159 The ARI mechanism affects O_3 primarily through two pathways: (1) modifying photolysis rates via aerosol extinction,
160 and (2) altering meteorological fields through aerosol–radiation feedback (ARF). Although the default WRF-Chem framework
161 includes ARF, the embedded Fast J photolysis scheme lacks a dynamic linkage to aerosol optical properties, thereby omitting
162 the direct impact of aerosol extinction on photolysis. To address this limitation, we developed a customized interface that
163 dynamically couple aerosol optical parameters (e.g., scattering and absorption coefficients) with the Fast J module. This
164 enhancement enabled accurate calculation of aerosol optical depth and allowed photolysis rates to respond realistically to
165 spatiotemporal aerosol variability.

166 The HET mechanism was implemented within the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
167 aerosol module to simulate heterogeneous reactions involving O_3 , NO_x, and hydrogen on aerosol surfaces. This module
168 accounted for multiphase uptake processes, enhancing the mode's ability to capture the complex interplay between aerosols
169 and oxidants and to represent secondary chemical transformations. Heterogeneous chemistry exerts complex influences on O_3
170 formation by altering radical budgets, modifying reactive nitrogen cycling, and changing aerosol-phase reaction rates. In the
171 enhanced WRF-Chem, HET is represented through multiple pathways on dust and black carbon surfaces, including (1)
172 heterogeneous uptake of HO_2 , OH, NO_x, and NO₃; (2) nighttime N_2O_5 hydrolysis to 2HNO₃; (3) heterogeneous formation of
173 HONO from NO₂ uptake on carbonaceous aerosols; (4) SO_2 and H_2SO_4 heterogeneous oxidation; and (5) direct O_3 uptake on
174 dust and black carbon surfaces. These processes collectively modify photolysis-driven radical initiation and NO_x partitioning.
175 Therefore, the net HET effect reflects the balance among several aerosol-mediated pathways rather than a single mechanism.
176 The specific heterogeneous reactions and their corresponding uptake coefficients (γ) used in this study are listed in Table S1.
177 Both ARI and HET mechanisms were consistently applied in all historical and scenario-based simulations conducted in this
178 study, ensuring internally consistent representation of aerosol– O_3 interactions. Key parameters—such as uptake coefficients,
179 aerosol surface area densities, and photolysis scaling factors—followed values validated in our previous modeling work. Key
180 parameters, including uptake coefficients, aerosol surface area densities, and photolysis scaling factors, followed values that
181 had been validated in our previous modeling studies (Li et al., 2024b). The enhanced WRF-Chem system had been
182 systematically assessed in earlier work and was demonstrated to realistically reproduce meteorological fields, aerosol
183 characteristics, and trace gas concentrations in China, with particularly robust performance in YRD. The improved WRF-Chem
184 system has been extensively evaluated and shown to reliably reproduce meteorological conditions, aerosol properties, and
185 trace gas concentrations over China, particularly in the YRD region (Qu et al., 2023; Li et al., 2018).

设置了格式: 下标

186 2.3 Numerical experimental designs

187 To systematically assess the respective and combined impacts of anthropogenic emission changes, meteorological
188 variability, and aerosol-related mechanisms on O_3 , we designed three sets of numerical experiments using the enhanced WRF-

189 Chem modeling framework (Table 1). These experiments focused on: (1) historical attribution, (2) precursor-specific sensitivity,
190 and (3) future multi-pollutant mitigation pathways. To disentangle the respective and combined influences of anthropogenic
191 emission changes, meteorological variability, and aerosol-related processes on surface O₃, three groups of numerical
192 experiments were designed within the enhanced WRF-Chem modeling framework (Table 1).

193 1) SET1: Historical Attribution Simulations (2013–2020).

194 This set aimed to quantify the primary drivers of O₃ variations during two critical phases of CAAP (Phase I and Phase II).

195 A total of 11 simulations were conducted, addressing emission changes, meteorological effects, and aerosol mechanisms:

196 Emission-driven effects: To isolate the influence of anthropogenic emission changes, three simulations were performed
197 under fixed meteorological conditions (2020) with AEs turned off (13E20M_NOALL, 17E20M_NOALL, 20E20M_NOALL).

198 The differences among these runs quantify the net O₃ response to evolving emissions alone.

199 Meteorology-driven effects: To evaluate the role of meteorological variability, three additional simulations used fixed
200 emissions (2013) and excluded AEs (13E13M_NOALL, 13E17M_NOALL, 13E20M_NOALL). Differences among these runs
201 reflect the contribution of meteorological factors to O₃ trends.

202 Aerosol effects (AEs): For each emission year (2013, 2017, and 2020), three parallel simulations were conducted: (i) with
203 all aerosol-related processes enabled (AEs), (ii) with heterogeneous chemistry disabled (NOHET), and (iii) with all aerosol
204 effects turned off (NOALL). By comparing pairs of these simulations (e.g., AEs=NOHET, NOHET=NOALL, AEs=NOALL),
205 we quantified the isolated contributions of HET, ARI, and their combined impacts. For example, the difference between
206 20E20M_AEs and 20E20M_NOHET isolated the HET contribution under 2020 emission conditions, while 20E20M_NOHET
207 versus 20E20M_NOALL captured the ARI effect. This approach was applied to all emission years to evaluate the phase-
208 resolved impacts of aerosol-related mechanisms on O₃ trends. Schematic diagram of scenario design and ozone responses to
209 aerosol-related processes in different emission phases were shown in Figure 1.

210 The first set of simulations was conducted to identify the dominant drivers of O₃ variability during two major stages of
211 CAAP, referred to as Phase I and Phase II. In total, 11 simulations were performed to isolate the effects of emission changes,
212 meteorological variability, and aerosol-related mechanisms. To quantify the impact of anthropogenic emission changes alone,
213 three simulations were conducted using fixed meteorological conditions from 2020, with all aerosol-related effects disabled
214 (13E20M_NOALL, 17E20M_NOALL, and 20E20M_NOALL). Differences among these simulations represented the net O₃
215 response to emission evolution in the absence of aerosol feedbacks and meteorological variability. The contribution of
216 meteorological variability was assessed through an additional set of simulations using fixed anthropogenic emissions from
217 2013 while varying meteorological conditions (2013, 2017, and 2020). Aerosol-related processes were excluded in these runs
218 (13E13M_NOALL, 13E17M_NOALL, and 13E20M_NOALL), and the resulting differences quantified the meteorology-
219 driven component of O₃ changes. To evaluate aerosol effects (AEs), three parallel simulations were conducted for each

220 emission year (2013, 2017, and 2020): (i) with all aerosol-related processes enabled (AEs), (ii) with heterogeneous chemistry
221 disabled (NOHET), and (iii) with all aerosol effects turned off (NOALL). Pairwise comparisons among these simulations (e.g.,
222 AEs-NOHET, NOHET-NOALL, and AEs-NOALL) allowed the individual contributions of heterogeneous chemistry (HET),
223 aerosol-radiation interactions (ARI), and their combined effects to be quantified. For example, the difference between
224 20E20M_AEs and 20E20M_NOHET isolated the HET contribution under 2020 emission conditions, whereas the comparison
225 between 20E20M_NOHET and 20E20M_NOALL represented the ARI effect. This analytical framework was applied
226 consistently across all emission years to characterize phase-resolved aerosol influences on O₃ trends. A schematic illustration
227 of the experimental design and the associated O₃ responses was provided in Figure 1.

设置了格式: 字体: (中文) 等线, 字体颜色: 自动设置

228 2) SET2: Single-Precursor Sensitivity Experiments (2020 baseline).

229 The second group of simulations was designed to examine the nonlinear responses of O₃ to individual precursor emission
230 controls under active aerosol effects. All experiments were based on the 2020 anthropogenic emissions inventory. For each
231 simulation, emissions of one precursor (primary PM_{2.5}, NOx, volatile organic compounds (VOCs), SO₂, or NH₃) were reduced
232 by 25% and 50%, while emissions of the remaining species were held constant. Reductions in primary PM_{2.5} included both
233 black carbon (BC) and organic carbon (OC). To investigate the nonlinear O₃ responses to individual precursor controls under
234 active aerosol conditions, we conducted sensitivity experiments based on the 2020 emissions inventory. Each experiment
235 involved a 25% and 50% reduction in one of five key precursors—primary PM_{2.5}, NOx, VOCs, SO₂, and NH₃—while holding
236 other emissions constant. Reductions in primary PM_{2.5} included both black carbon (BC) and organic carbon (OC). All
237 simulations retained both HET and ARI mechanisms to ensure consistent physical and chemical representations of AEs.

238 3) SET3: Multi-Pollutant Co-Reduction Experiments (Future Scenarios).

239 To explore the effects of future mitigation strategies aligned with China's dual-carbon goals (carbon peaking and carbon
240 neutrality), a series of simulations were conducted with coordinated reductions in all anthropogenic emissions. We referred to
241 the mid- and long-term projections evaluated by The third set of experiments explored potential O₃ responses under future
242 emission mitigation pathways aligned with China's carbon peaking and carbon neutrality objectives. Coordinated reductions
243 in all major anthropogenic emissions were applied, guided by the mid- and long-term projections reported by Cheng et al.
244 (2021), who analyzed China's air quality improvement trajectory under the dual-carbon strategy. Their analysis suggested that
245 anthropogenic emissions will decrease by approximately 26%–32% by 2030 relative to 2020 levels, followed by a slower
246 reduction pace thereafter, reaching a maximum decline of about 31% by 2060 compared to 2030. Based on these projections,
247 two representative reduction levels—30% and 50%—were selected to approximate emission conditions corresponding to the
248 carbon peaking (2030) and carbon neutrality (2060) targets, respectively. To further characterize the nonlinear O₃ response
249 under increasingly stringent mitigation, a series of additional co-control scenarios spanning 10%, 20%, 40%, 60%, 70%, 80%,
250 and 90% reductions was implemented. Across all future experiments, emissions of primary PM_{2.5}, NOx, VOCs, SO₂, and NH₃

251 were scaled down proportionally, reflecting a coordinated multi-pollutant mitigation framework. Aerosol-related processes
252 were consistently enabled in all simulations to preserve realistic aerosol–O₃ feedbacks. Their study estimated that by 2030,
253 total anthropogenic pollutant emissions would decrease by 26%–32% relative to 2020 levels. However, after 2030, the
254 mitigation pace is projected to slow, with a maximum reduction of approximately 31% by 2060 compared to 2030 levels.
255 Guided by these projections, we selected two representative emission reduction levels 30% and 50% to approximate China's
256 carbon peaking (2030) and carbon neutrality (2060) targets, respectively. To further investigate the nonlinear nature of O₃
257 responses under deeper mitigation, additional reduction scenarios of 10%, 20%, 40%, 60%, 70%, 80%, and 90% were included.
258 In all scenarios, emissions of primary PM_{2.5}, NO_x, VOCs, SO₂, and NH₃ were proportionally reduced, representing a co-control
259 strategy for multiple pollutants. Aerosol-related processes were kept active across all future simulations to ensure realism in
260 atmospheric feedbacks.

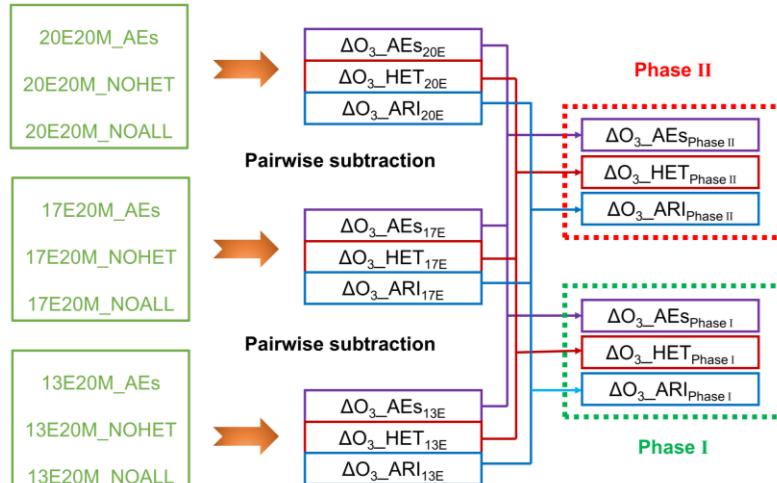
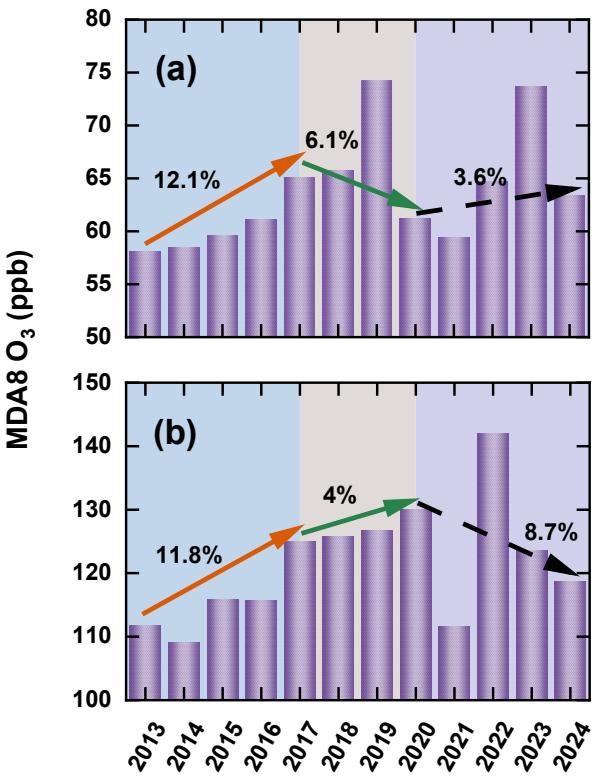

261 All experiments (SET1, SET2, SET3) were conducted for the months of January and July, representing winter and summer
262 conditions, respectively, to capture seasonal contrasts in O₃ formation. Daily mean O₃ concentrations were used as the primary
263 diagnostic metric. Although ARI primarily influence daytime photochemistry through modified photolysis and boundary layer
264 dynamics, heterogeneous chemistry played a crucial role in nighttime radical removal and O₃ loss. Therefore, the commonly
265 used MDA8 O₃ may underestimate full-day aerosol effects. Using daily mean O₃ provided a more integrated and representative
266 metric to capture the combined impacts of aerosol interactions over a 24-hour period.

Table 1 Overview of WRF-Chem numerical experiments. Summary of scenario configurations for numerical simulations.

Scenario sets	Scenario ID	Anthropogenic emissions	Meteorology	HET ^a	ARI ^b	Purpose
SET1	20E20M_AEs	2020		✓	✓	Baseline scenario with full aerosol effects
	20E20M_NOHET			✗	✓	Isolate impact of HET
	20E20M_NOALL			✗	✗	No aerosol effects
	17E20M_AEs	2017	2020	✓	✓	Emission-driven impact (2017 emissions with fixed meteorology)
	17E20M_NOHET			✗	✓	Same as above, excluding HET
	17E20M_NOALL			✗	✗	Same as above, excluding all aerosol effects
	13E20M_AEs	2013		✓	✓	Emission-driven impact (2013 emissions with fixed meteorology)
	13E20M_NOHET			✗	✓	Same as above, excluding HET
	13E20M_NOALL			✗	✗	Same as above, excluding all aerosol effects
SET2	13E13M_NOALL	2013	2013	✗	✗	Meteorology-driven impact (2013 meteorology with fixed emissions)
	13E17M_NOALL	2013	2017	✗	✗	Meteorology-driven impact (2017 meteorology with fixed emissions)
	CUT_PM2.5_25/50	25 (50) % reduction in PM _{2.5} in 2020				O ₃ response to PM _{2.5} -only reduction
	CUT_NOx_25/50	25 (50) % reduction in NOx in 2020				O ₃ response to NOx-only reduction
	CUT_VOCs_25/50	25 (50) % reduction in VOCs in 2020				O ₃ response to VOCs-only reduction
SET3	CUT_NH3_25/50	25 (50) % reduction in NH ₃ in 2020				O ₃ response to NH ₃ -only reduction
	CUT_SO2_25/50	25 (50) % reduction in SO ₂ in 2020				O ₃ response to SO ₂ -only reduction
	CUT_MEIC_10	10% reduction in 2020	2020	✓	✓	Representative carbon peak scenario (aligned with 2030 goal)
	CUT_MEIC_20	20% reduction in 2020				
	CUT_MEIC_30	30% reduction in 2020				
	CUT_MEIC_40	44% reduction in 2020	Representative carbon neutrality scenario (aligned with 2060 goal)			
	CUT_MEIC_50	50% reduction in 2020				
	CUT_MEIC_60	64% reduction in 2020				
	CUT_MEIC_70	70% reduction in 2020				
	CUT_MEIC_80	84% reduction in 2020				
	CUT_MEIC_90	90% reduction in 2020				

268 HET^a: Heterogeneous chemistry (HET) was enabled when the heterogeneous reaction switch was set to 1, respectively.269 ARI^b: Aerosol–radiation interaction (ARI) was considered active when both aer_ra_feedback = 1 and aerosol optical properties 270 were transmitted to the photolysis module.

O₃ responses to aerosol effects in different emission phases


271
272 **Figure 1** Schematic diagram of scenario design and ozone responses to aerosol-related processes during the Clean Air Action
273 phases. Conceptual diagram illustrating the scenario design and the associated ozone responses to aerosol-mediated processes
274 during the CAAP phases. Note: HET=heterogeneous chemistry, ARI=aerosol-radiation interaction, AEs=aerosol effects
275 (HET+ARI). Scenario IDs such as “13E20M” refer to emission year 2013 with 2020 meteorology.

276 2.4 Historical changes in emissions and observed O₃

277 Since 2013, the Chinese government had implemented a series of stringent air quality control policies under the CAAP,
278 which led to profound shifts in anthropogenic emissions of key air pollutants. Figure S2 showed the temporal evolution of six
279 major pollutants (SO₂, primary PM_{2.5}, BC, OC, NOx, and VOCs) across provinces in YRD from 2013 to 2020. Substantial
280 reductions were observed for all pollutants except VOCs, with SO₂, primary PM_{2.5}, BC, OC and NOx decreasing by 69.7%,
281 46.9%, 40.4%, 38.0%, and 27.9%, respectively. During Phase I, emission control efforts had primarily targeted reductions in
282 PM_{2.5}. This focus resulted in significant decreases in primary particulate emissions: primary PM_{2.5}, BC, and OC were reduced
283 by 37.0%, 30.0%, and 27.3%, respectively. Simultaneously, key precursors such as SO₂ and NOx declined by 56.4% and 19.8%.
284 However, due to the lack of targeted VOCs control measures during this period, VOCs emissions increased by 7.1%, largely
285 driven by industrial processes and solvent usage. Interannual changes in six key species—SO₂, primary PM_{2.5}, BC, OC, NOx,
286 and VOCs—at the provincial scale in the YRD during 2013–2020 was presented in Figure S2. Over this period, emissions of
287 most pollutants declined substantially, with the exception of VOCs. Cumulatively, SO₂, primary PM_{2.5}, BC, OC, and NOx
288 emissions were reduced by 69.7%, 46.9%, 40.4%, 38.0%, and 27.9%, respectively. During the first phase of the CAAP (Phase
289 I), control strategies were predominantly oriented toward particulate matter abatement. As a result, primary PM_{2.5}, BC, and
290 OC emissions decreased markedly by 37.0%, 30.0%, and 27.3%, respectively. Concurrently, notable reductions were achieved
291 for major gaseous precursors, with SO₂ and NOx declining by 56.4% and 19.8%. In contrast, the absence of explicit VOCs-

292 targeted measures during this stage led to a 7.1% increase in VOCs emissions (Li et al., 2019b). Phase II marked a strategic
293 shift toward more balanced control of NOx and VOCs. While emissions of SO₂, NOx, and particulate matter continued to
294 decrease, the rate of reduction slowed compared to Phase I. Specifically, NOx and VOCs emissions decreased by only 7.4%
295 and 4.6%, respectively. Overall, VOCs emissions in the YRD still showed a net increase of 2.2% over the full 2013–2020
296 period. Spatially, the most pronounced emission reductions occurred in the northwestern and central YRD subregions (Figure
297 S3), consistent with national trends and findings from earlier studies. The second phase of the CAAP (Phase II) was
298 characterized by a transition toward more coordinated regulation of NOx and VOCs. Although emissions of SO₂, NOx, and
299 PM_{2.5} continued to decrease, the overall pace of reduction was slower than that observed in Phase I. Specifically, NOx and
300 VOCs emissions declined by 7.4% and 4.6%, respectively. Nevertheless, when considering the entire 2013–2020 period, VOCs
301 emissions in the YRD still exhibited a net increase of 2.2%. From a spatial perspective, emission reductions were most
302 pronounced in the northwestern and central subregions of the YRD (Figure S3), a pattern that aligns with national emission
303 reduction trends and is consistent with previous regional assessments (Liu et al., 2023a; Yan et al., 2024).

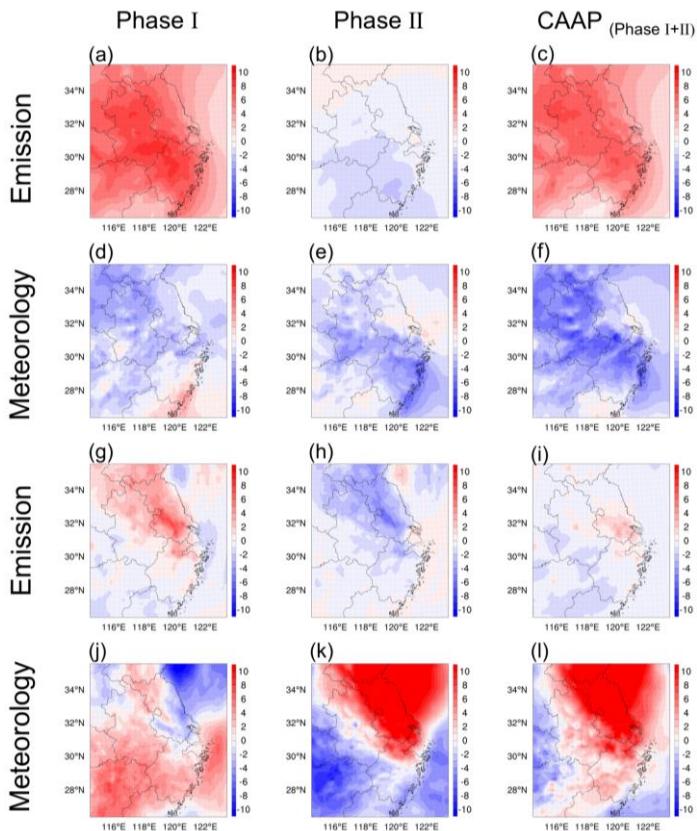
304 In addition to modifying emissions, the CAAP brought about substantial changes in observed O₃. Figure 2 illustrated the
305 annual variation of the MDA8 O₃ in winter and summer across the YRD based on ground-based observations from 2013 to
306 2024. In winter, O₃ increased by approximately 7 $\mu\text{g m}^{-3}$ during 2013–2017, at an average annual growth rate of 3%. This trend
307 reversed during 2017–2020, with a decrease of 4 $\mu\text{g m}^{-3}$ (2% per year), followed by a modest increase of 2.2 $\mu\text{g m}^{-3}$ (0.91%
308 per year) between 2020 and 2024. In summer, O₃ rose by 13.2 $\mu\text{g m}^{-3}$ during 2013–2017, continued to increase by 4.9 $\mu\text{g m}^{-3}$
309 from 2017 to 2020, and then declined sharply by 11.4 $\mu\text{g m}^{-3}$ during 2020–2024. These results suggested that in the early phase
310 of clean air efforts, the insufficient control of O₃ precursors contributed to significant increases in both winter and summer O₃.
311 However, stronger VOCs and NOx control measures in recent years appeared to mitigate this upward trend. A particularly
312 sharp drop in O₃ between 2020 and 2021 was likely caused by a combination of intensified emission reductions and unusual
313 meteorological conditions (Yin et al., 2021). Overall, observed MDA8 O₃ in the YRD increased by 12.1% in winter and 11.8%
314 in summer during 2013–2017. In the subsequent periods (2017–2020 and 2020–2024), winter O₃ levels first declined and then
315 rebounded, while summer O₃ initially rose and then decreased. The underlying causes of these contrasting patterns were
316 explored in detail in the Results section. Note that this study did not focus on the spatial distribution of O₃ changes, as this
317 topic has already been extensively examined in previous literature (Hu et al., 2025; Zhao et al., 2023).

318
319 **Figure 2** Annual trends in winter (a) and summer (b) MDA8 O₃ concentrations (ppb) over the Yangtze River Delta (YRD)
320 from 2013 to 2024 based on continuous ground-based observations.

321 **3. Results and discussion**

322 Before presenting the simulation outcomes, it is important to clarify that the performance of the enhanced WRF-Chem
323 model, particularly its representation of meteorological fields, and air pollutant concentrations. The 20E20M_AEs scenario,
324 which incorporates 2020 anthropogenic emissions and meteorological conditions with both ARI and HET effects activated,
325 was deemed the most realistic representation of the atmospheric state during that year. The accuracy of simulated
326 meteorological parameters and pollutant concentrations under this scenario (20E20M_AEs) has been thoroughly validated
327 against ground-based observations in earlier work and is therefore not reiterated here (Li et al., 2024a). As summarized in
328 Table S2, the model reasonably captures the magnitude, seasonal variability of PM_{2.5}, O₃, as well as the major features of
329 temperature, relative humidity, and wind speed. These results provide confidence in the model's ability to represent the
330 atmospheric conditions relevant to the subsequent analysis. Accordingly, the subsequent sections focus on interpreting the key
331 drivers, underlying mechanisms, and broader implications of modeled O₃ changes under various historical and future emission
332 scenarios, with a particular emphasis on the role of aerosol related processes.

设置了格式: 下标


设置了格式: 下标

333 **3.1 Attribution of historical seasonal O₃ changes to emissions and meteorology**

334 We conducted a series of attribution simulations (SET1) to elucidate the dominant drivers of O₃ variability in YRD over
335 the past decade. To isolate the effects of emission changes, we excluded aerosol interactions (i.e., the NOALL cases) and held
336 meteorological conditions constant at 2020 levels while varying the emission year. The resulting O₃ responses are presented
337 in Figure 3. A set of attribution simulations (SET1) with aerosol processes disabled (NOALL) and fixed 2020 meteorology
338 was conducted to isolate emission-driven O₃ variability in the YRD over the past decade, with the resulting responses shown
339 in Figure 3. During Phase I, emission reductions unexpectedly led to O₃ increases of 6.3 ppb in winter and 1.3 ppb in summer.
340 In contrast, Phase II witnessed coordinated NOx and VOCs controls, leading to O₃ reductions of 0.9 ppb (winter) and 1.5 ppb
341 (summer). These contrasting outcomes reflect the nonlinear chemistry of O₃ formation. While Phase I focused primarily on
342 reducing PM_{2.5} and SO₂, VOCs emissions remained poorly regulated and even increased, enhancing photochemical activity.
343 In contrast, Phase II adopted a more balanced control strategy targeting both NOx and VOCs, which proved more effective in
344 mitigating O₃ pollution. Spatially, the strongest O₃ responses occurred in the northwestern and central parts of the YRD,
345 aligning with regions that experienced the largest emission reductions.

346 To assess the influence of meteorological conditions, we fixed anthropogenic emissions at 2013 levels and varied the
347 meteorological fields across years. Results revealed seasonally asymmetric impacts: meteorology contributed to wintertime
348 O₃ declines (1.7 ppb and 2.1 ppb during Phases I and II, respectively), but promoted summertime O₃ increases (1.4 ppb and
349 4.6 ppb). This highlighted a distinct seasonal asymmetry in meteorological influences on O₃. As summarized in Table S43,
350 changes in five key meteorological parameters (shortwave radiation (SW), temperature (T₂), relative humidity (RH₂), planetary
351 boundary layer height (PBLH), and wind speed (WS₁₀)) collectively explain these trends. In winter, lower radiation and T₂,
352 higher RH₂, and stronger WS₁₀ suppressed O₃ formation and accumulation. Conversely, summer conditions characterized by
353 higher radiation and T₂, coupled with lower RH₂ and weaker WS₁₀, favored O₃ build-up. Although this study does not explicitly
354 quantify the relative contributions of individual meteorological factors, prior studies (Liu et al., 2023a; Yan et al., 2024; Dai et
355 al., 2024) using multiple linear regression consistently identify SW and T₂ as dominant drivers. Figure S4 presented the spatial
356 distributions of meteorological changes from 2013 to 2020, revealing that the most pronounced shifts—especially in radiation
357 and temperature—occurred in the central YRD and were more significant in summer, consistent with stronger O₃ responses.

358 In summary, anthropogenic emission changes were the dominant drivers of winter O₃ increases during Phase I. These
359 findings are consistent with earlier research (Cao et al., 2022; Wu et al., 2022), which similarly highlighted that early-phase
360 air quality interventions—though effective in reducing PM_{2.5}—often overlooked the complex chemistry of O₃, particularly the
361 roles of VOCs and NOx, thereby unintentionally intensifying O₃ pollution. The transition to coordinated multi-pollutant control
362 strategies in Phase II enabled more effective O₃ mitigation. In addition, the role of meteorology was non-negligible. Our
363 findings, in line with those of Liu and Wang (2020), emphasize a pronounced seasonal asymmetry—meteorology suppressed

winter O_3 but enhanced summer levels. Notably, wintertime O_3 variability was primarily emission-driven during Phase I, but increasingly influenced by meteorology in Phase II. In contrast, summer O_3 changes were consistently dominated by meteorological variability across both phases. These insights underscore the need for future O_3 control strategies to account for both emissions and meteorological variability, particularly in the context of climate change and evolving pollution regimes.

[These externally driven \$O_3\$ changes provide the foundation for evaluating how aerosol-mediated processes further modulate the emission-driven portion of the \$O_3\$ response.](#)

设置了格式: 下标

设置了格式: 下标

Figure 3 Attribution of seasonal O_3 variations (ppb) in the Yangtze River Delta to emission reductions (a–c, g–i) and meteorological influences (d–f, j–l) during Phase I and Phase II of the CAAP, with winter and summer results displayed in the upper and lower rows, respectively. Seasonal changes in O_3 (ppb) over YRD attributed to anthropogenic emission reductions (b) and meteorological variability (e) during the two phases of the Clean Air Action Plan. Results are shown for winter (top two rows) and summer (bottom two rows).

370

371

372

373

374

375

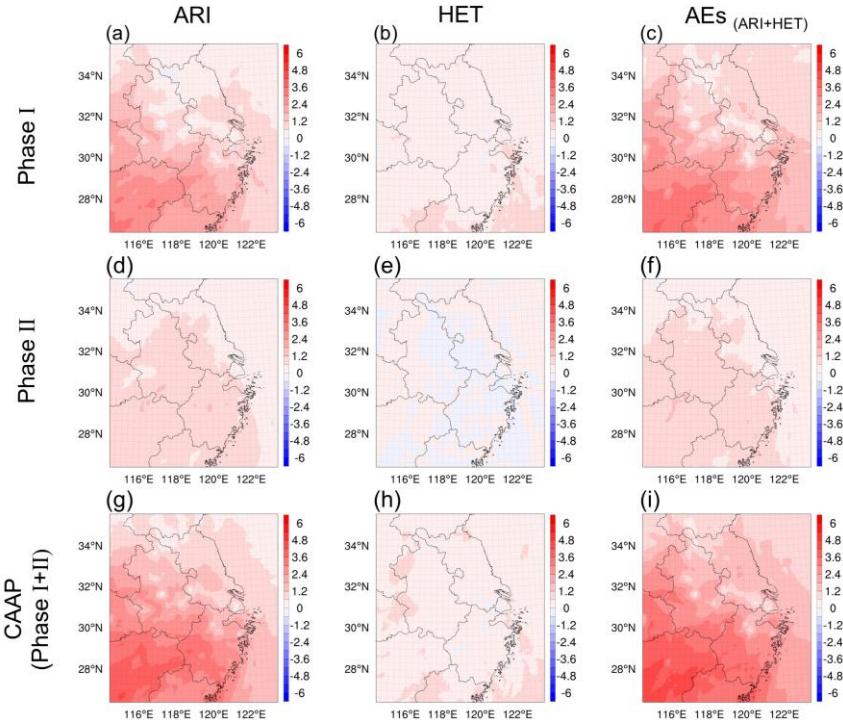
3.2 Aerosol multi-effects contributions to past seasonal O_3 variations

Building on the external drivers identified in Section 3.1, we next examined how ARI and HET modified the emission-reduction-driven O_3 response. The multifaceted roles of aerosols in regulating O_3 through aerosol-radiation feedbacks,

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅, 下标

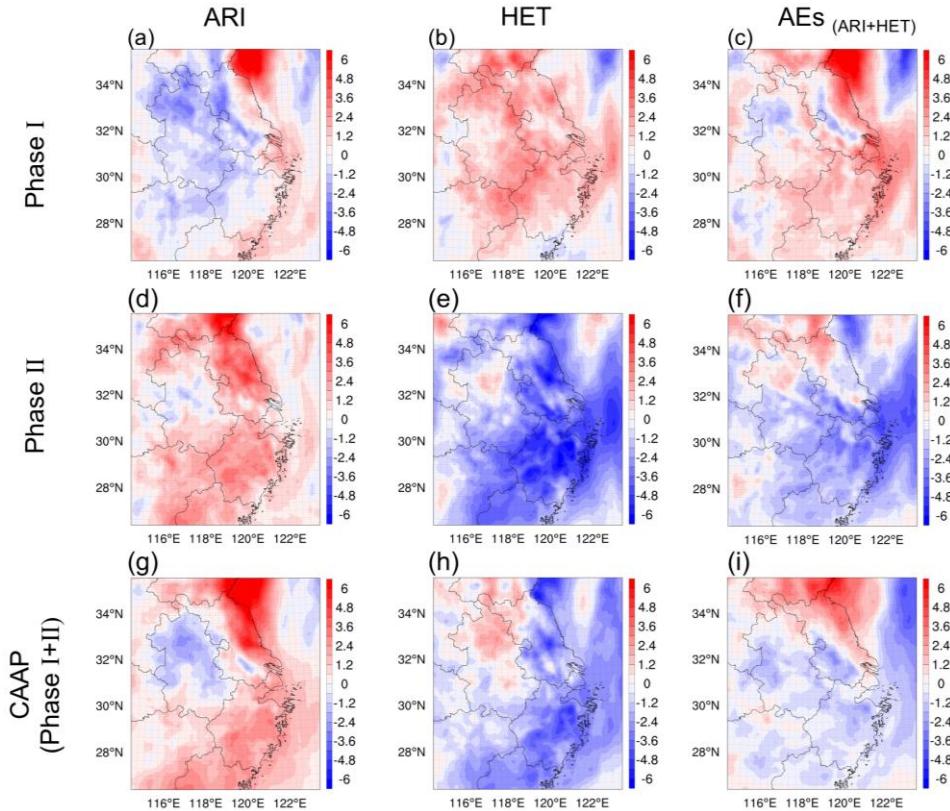
设置了格式: 字体: 10 磅


379 photolysis attenuation, and heterogeneous chemistry—have been extensively examined in our previous study (Li et al., 2024b).
380 In this section, we quantify the seasonal and phase resolved contributions of two key mechanisms to O_3 changes: ARI and
381 HET, across the two implementation stages of the CAAP. Detailed descriptions of the experimental configurations are provided
382 in Section 2.3 and illustrated in Figure 1. Figure 4 illustrated the wintertime spatial patterns of O_3 changes driven by ARI and
383 HET across the YRD during both phases of the CAAP, displayed the spatial distributions of O_3 responses to ARI and HET
384 during winter for both CAAP phases over YRD. In Phase I, ARI induced a significant O_3 increase of up to 1.14 ppb across the
385 region, while the contribution from HET was notably smaller at 0.32 ppb. This indicated that early aerosol reductions primarily
386 enhanced O_3 via increased solar radiation and associated meteorological feedbacks, rather than through the suppression of
387 radical uptake on particle surfaces. This finding contrasted with those of Li et al. (2019a), who—using GEOS-Chem
388 simulations—attributed O_3 increases over the BTH to reduced HO_2 uptake under declining $PM_{2.5}$. The discrepancy may stem
389 from differences in model representation; our framework explicitly incorporates both ARI-driven meteorological feedbacks
390 and the direct photolysis attenuation by aerosols, enabling a more comprehensive simulation of aerosol–radiation interaction.
391 During Phase II, the ARI-induced O_3 increase weakened to +0.74 ppb, and the contribution from HET became negligible or
392 slightly negative (−0.01 ppb). This suggested that ARI remained the dominant aerosol-related driver of winter O_3 variability,
393 while the influence of HET diminished. The reduced overall aerosol impact during this phase was consistent with smaller
394 primary $PM_{2.5}$ emission reductions (−8% in Phase II compared to −37% in Phase I). Summing the contributions from both
395 mechanisms, the total aerosol-driven O_3 enhancement reached +1.46 ppb in Phase I and +0.73 ppb in Phase II, culminating in
396 a net wintertime increase of +2.2 ppb over the CAAP period.

设置了格式: 字体: 10 磅

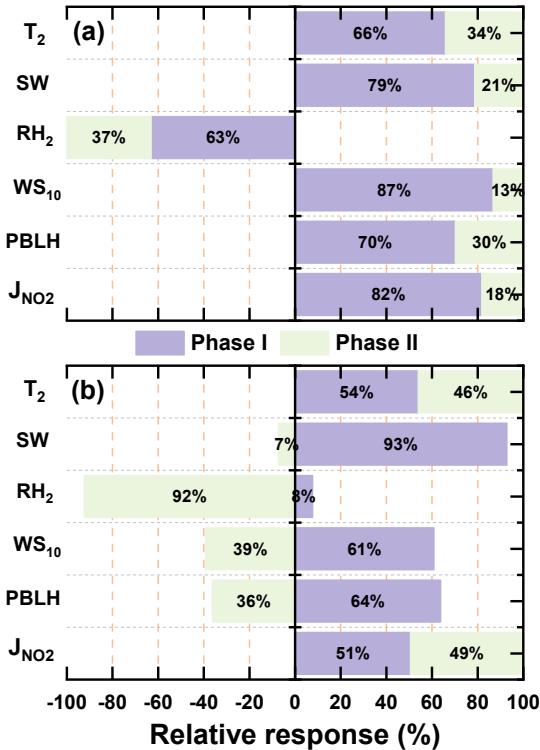
设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅


设置了格式: 字体: 10 磅

397
398 **Figure 4** Spatial distribution of winter O₃ changes (ppb) over the Yangtze River Delta induced by aerosol–radiation
399 interactions (ARI, a, d, g), heterogeneous chemistry (HET, b, e, h) and their combined effects (AEs, c, f, i) during two stages
400 of the [Clean Air Action Plan CAAP](#). All results are based on SET1 simulations.

401 In contrast to winter, summertime O₃ responses to AEs revealed different dominant mechanisms and magnitudes, as
402 shown in Figure 5. In Phase I, HET played a more substantial role, contributing a 1.62 ppb increase, whereas ARI slightly
403 suppressed O₃ by 0.51 ppb. This pattern indicated that under high photochemical activity, reduced particulate matter
404 significantly weakened radical scavenging, thereby elevating HO₂ levels and promoting O₃ formation. During Phase II,
405 however, HET unexpectedly contributed a 2.86 ppb decreases in O₃, while ARI induced a 1.56 ppb enhancement. The HET-
406 driven decrease may be linked to complex nonlinear chemical responses under further reduced aerosol backgrounds, which
407 diminished the amplification effect of radical availability. Across both phases, HET consistently emerged as the primary driver
408 of summertime aerosol-related O₃ variability. When aggregated, aerosols contributed a 1.11 ppb increase in Phase I and a 1.30
409 ppb decrease in Phase II, yielding a modest net summer reduction of 0.19 ppb over the CAAP period.


设置了格式: 字体: 10 磅

410
411 **Figure 5** Spatial distribution of summer O_3 changes (ppb) over the Yangtze River Delta induced by aerosol–radiation
412 interactions (ARI, a, d, g), heterogeneous chemistry (HET, b, e, h) and their combined effects (AEs, c, f, i) during two stages
413 of the [CAAP](#)[Clean Air Action Plan](#). All results are based on SET1 simulations.

414 To elucidate the underlying mechanisms of aerosol impacts on O_3 , we examined the changes in key meteorological
415 variables, photolysis rates, and HO_2 radical concentrations induced by ARI and HET during the two implementation phases of
416 the CAAP. Figure 6 presented the variations in five key meteorological parameters and the NO_2 photolysis rate (J_{NO_2}) in winter
417 and summer as influenced by ARI. The results indicated that ARI consistently enhanced J_{NO_2} , SW, T_2 , WS_{10} , and PBLH, while
418 reducing RH_2 during winter across both phases. These modifications—especially increased SW and T_2 —significantly
419 facilitated photochemical O_3 production, thereby elevating O_3 . Notably, the magnitude of these changes was substantially
420 greater in Phase I than in Phase II, which can be attributed to the more pronounced reductions in aerosol emissions during the
421 earlier phase.

设置了格式: 字体: 10 磅

422
423 **Figure 6** Relative changes in meteorological variables and photolysis rates induced by aerosol-radiation interactions (ARI) in
424 winter (a) and summer (b) during two phases of the [CAAP Clean Air Action](#) in the Yangtze River Delta (YRD).

425 In summer, ARI and HET exerted contrasting influences on ground-level O₃, with their effects reversing between the two
426 phases. During Phase I, the substantial reduction in primary PM_{2.5} emissions (37%) notably weakened HO₂ radical
427 uptake on aerosol surfaces, leading to elevated HO₂ concentrations (Figure 7d). This increase in HO₂ facilitated the
428 conversion of NO to NO₂, thereby accelerating photochemical O₃ formation. Consequently, HET contributed positively
429 to O₃ (+1.62 ppb). In contrast, ARI led to a slight decrease in O₃ (-0.51 ppb), likely due to enhanced vertical mixing from
430 reduced aerosol extinction, which increased solar radiation and photolysis rates. However, the concurrent rise in temperature
431 and PBLH may have diluted surface O₃ in certain regions (Figure 6b), resulting in a net negative O₃ response to ARI during
432 this phase. In Phase II, the magnitude of aerosol reductions was much smaller (only -8%), and drier meteorological
433 conditions may have reduced aerosol liquid water content, thereby limiting heterogeneous interactions between HO₂
434 radicals and aerosol surfaces. As a result, the previously positive HET effect was substantially weakened or even reversed,
435 contributing to a net O₃ reduction (-2.86 ppb). In contrast, the ARI-induced increases in T₂ and photolysis rates more
436 effectively enhanced photochemical O₃ production. Simultaneously, reductions in PBLH and WS₁₀ during this period
437 suppressed vertical and horizontal O₃ dispersion (Figure 6b), collectively leading to a net positive O₃ response (+1.56 ppb).

设置了格式: 字体: 10 磅

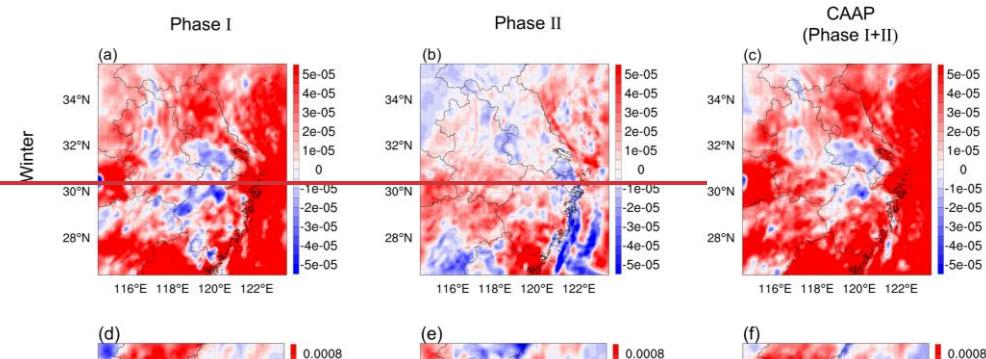
设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

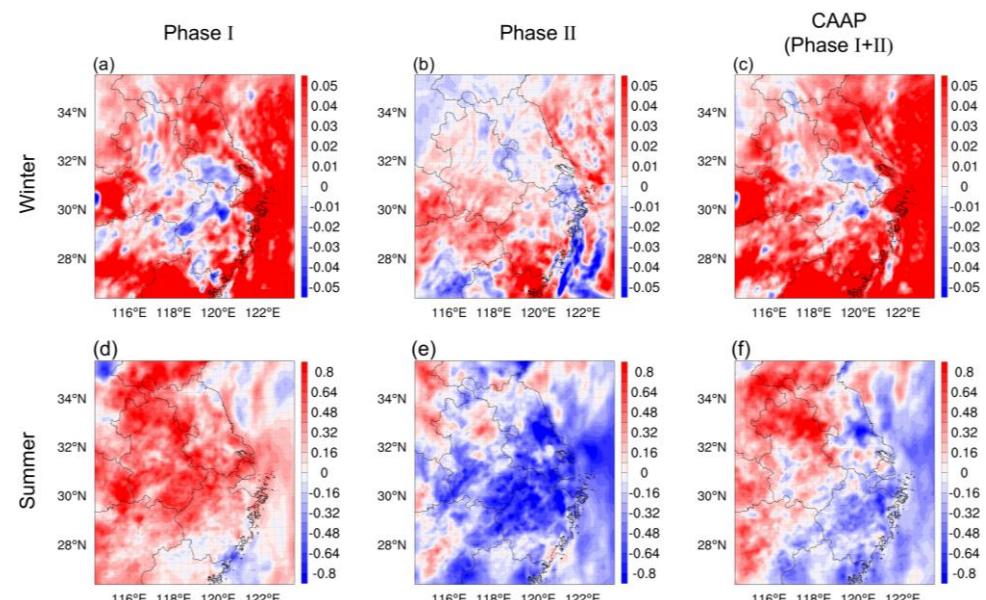
438 During Phase I, the substantial reductions in aerosol mass and surface area primarily weakened HO₂ heterogeneous uptake, as
439 indicated by elevated HO₂ (Figure 7d). This reduction in radical loss increased the availability of HO₂ and OH, leading to an
440 enhancement in the photochemical ozone production term P(O₃) (Dyson et al., 2023). In parallel, N₂O₅ also increased during
441 Phase I (Figure S5a), consistent with suppressed heterogeneous hydrolysis under reduced aerosol liquid water (ALW) and
442 diminished aerosol surface area (Brown and Stutz, 2012). The weakened N₂O₅ hydrolysis further limited nighttime conversion
443 of reactive nitrogen to HNO₃, maintaining NO_x in more photochemically active forms (Ma et al., 2023b). Meanwhile,
444 heterogeneous NO₂ uptake—an important HONO source—was significantly reduced, consistent with the simulated decrease
445 in HONO (Figure S5d). The reduction in HONO slightly weakened early-morning radical initiation (Yu et al., 2022), but this
446 influence was outweighed by the strong enhancement in HO₂ and the limited conversion of NO_x into HNO₃. As a result, HET
447 exerted a net positive contribution to O₃ (+1.62 ppb) in Phase I.

设置了格式

448 In contrast, Phase II exhibited a fundamentally different chemical response. Although aerosol loadings continued to
449 decrease, the relative importance of heterogeneous pathways shifted substantially. HO₂ declined during Phase II (Figure 7e),
450 indicating a reduced radical pool and weaker propagation of daytime photochemical production. At the same time, N₂O₅
451 decreased markedly (Figure S5b), suggesting that nighttime NO_x/N₂O₅ chemistry became less effective at sustaining reactive
452 nitrogen cycling under even lower aerosol surface area and ALW. Rather than promoting efficient nighttime NO_x recycling,
453 this suppression favored a net loss of reactive nitrogen through terminal sinks (e.g., HNO₃), shifting NO_x partitioning toward
454 less photochemically active forms and weakening daytime P(O₃). Conversely, HONO concentrations rebounded during Phase
455 II (Figure S5e). This increase reflects the altered balance between NO₂ uptake and nighttime NO_x partitioning under reduced
456 N₂O₅ hydrolysis. However, despite this HONO increase, its positive effect on radical initiation could not compensate for the
457 combined decline in HO₂, weakened N₂O₅ hydrolysis, and enhanced HNO₃ formation (George et al., 2015). The joint effect
458 was a net reduction in the morning radical pool and diminished photochemical O₃ production (-2.86 ppb). This multi-pathway
459 adjustment explains the observed sign reversal of HET's effect on O₃ between the two phases and underscores the importance
460 of considering the full suite of heterogeneous processes—rather than radical uptake alone—when interpreting aerosol-
461 mediated O₃ responses. In future work, we plan to apply integrated process rate (IPR) diagnostics to more directly evaluate
462 how individual heterogeneous pathways—such as HO₂ uptake, HONO formation, and N₂O₅ hydrolysis—shape the resulting
463 O₃ responses. Coupled with continued improvements in heterogeneous chemistry parameterizations and more comprehensive
464 constraints on radical, reactive nitrogen, and aerosol liquid water fields, this will enable a more detailed and process-resolved
465 understanding of phase-dependent O₃ changes.


设置了格式

设置了格式


设置了格式

466 This phase-dependent reversal in O₃ responses to ARI and HET during summer underscores the nonlinear, complex,
467 and seasonally sensitive nature of aerosol–ozone interactions. These findings highlight the necessity of jointly
468 considering meteorological variability and aerosol physicochemical properties when assessing O₃ responses under

469 evolving air quality regulations and climate change scenarios.

470

471
472 **Figure 7** Spatial distributions of HO₂ concentration (ppb) changes induced by aerosol heterogeneous chemistry (HET) in
473 winter (a-c) and summer (d-f) during two phases of the [CAAPClean Air Action](#) in the Yangtze River Delta (YRD).

474 To further evaluate whether daytime and nighttime O₃ responses compensate within the daily mean metric, we examined
475 the diurnal cycles of baseline O₃ concentration and the aerosol-mediated impacts (HET, ARI, and AEs) during Phase I, Phase

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅, 下标

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅, 下标

设置了格式: 字体: 10 磅

476 II, and the overall CAAP period for both winter (Figure S6) and summer (Figure S7). Across all phases and both seasons, the
477 dominant O_3 perturbations occur during daytime hours, coinciding with the photochemical peak at 14–16 LT. In winter, Phase
478 I exhibits a pronounced daytime enhancement driven by ARI (up to ~2.41 ppb), whereas HET induces a consistently positive
479 but comparatively weaker increase (up to ~0.49 ppb). In Phase II, the ARI-induced enhancement weakens notably (peaking at
480 ~1.24 ppb), and HET-induced changes remain minor. In summer, the diurnal behavior more clearly reflects a daytime-
481 dominated response. During Phase I, HET produces a marked midday O_3 enhancement (up to ~2.01 ppb), while ARI imposes
482 a weaker yet persistent negative contribution. In contrast, Phase II is characterized by a strong HET-driven daytime O_3 decrease
483 (maximum ~3.43 ppb), overwhelming the comparatively modest positive ARI effect. For all cases, nighttime O_3 changes share
484 the same direction as daytime responses but remain substantially smaller in magnitude, insufficient to offset the daytime signals
485 dominated by photochemistry. These diurnal patterns confirm that the phase-dependent O_3 responses to aerosol effects are not
486 artifacts of day–night compensation in daily mean metrics, but instead arise from robust, daytime-dominant photochemical
487 adjustments.

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅, 下标

设置了格式: 字体: 10 磅

488 Previous studies showed that ARI and HET were not fully independent and could interact through aerosol–meteorology–
489 chemistry feedbacks (Chen et al., 2019; Liu et al., 2023b; Kong et al., 2018; Li et al., 2020a). ARI-induced increases in near-
490 surface relative humidity typically enhanced aerosol hygroscopic growth and expanded aerosol surface area. The resulting
491 increase in aerosol liquid water promoted gas-to-particle partitioning and facilitated aqueous- and surface-phase reactions,
492 thereby accelerating heterogeneous oxidation pathways involving SO_2 and NO_x . The strengthened heterogeneous formation
493 of secondary inorganic aerosols further modified solar radiation and potentially intensified the ARI effect. In the present study,
494 our primary focus was to quantify the separate and combined contributions of ARI and HET to O_3 changes across different
495 stages of the CAAP. Accordingly, we isolated their individual impacts rather than examining their nonlinear coupling. We
496 acknowledged that ARI–HET interactions might also affect O_3 under certain chemical and meteorological conditions, and we
497 indicated that future work would incorporate dedicated coupled-sensitivity experiments to more explicitly quantify these
498 nonlinearities and their implications for O_3 formation.

设置了格式: 下划线, 字体颜色: 深红

设置了格式: 下标

设置了格式: 下标

设置了格式: 下标

499 Figure S8 illustrated the hierarchical relationships among the four factors analyzed in this section. Emission reductions
500 and meteorological variability constituted the external drivers of O_3 changes, whereas ARI and HET acted as aerosol-mediated
501 modulators that adjust the emission-reduction-driven O_3 responses. This framework motivated our presentation sequence,
502 where external drivers were examined first, followed by the modulation effects of ARI and HET. Figure 8 illustrated the
503 attribution of surface O_3 changes to different driving factors during the two phases of the CAAP over YRD. In winter,
504 anthropogenic emissions emerged as the dominant driver of O_3 increases during Phase I, contributing 6.3 ppb, primarily due
505 to enhanced photochemical production under VOCs-limited conditions. In contrast, Phase II saw a modest O_3 decline (0.9 ppb)
506 resulting from co-reductions in NO_x and VOCs, suggesting improved control effectiveness through coordinated precursor

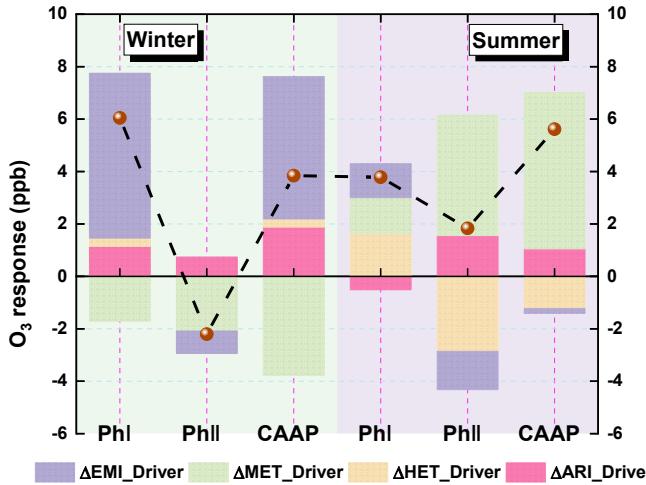
设置了格式: 下标

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅, 下标

设置了格式: 字体: 10 磅


设置了格式: 字体: 10 磅, 下标

设置了格式: 字体: 10 磅

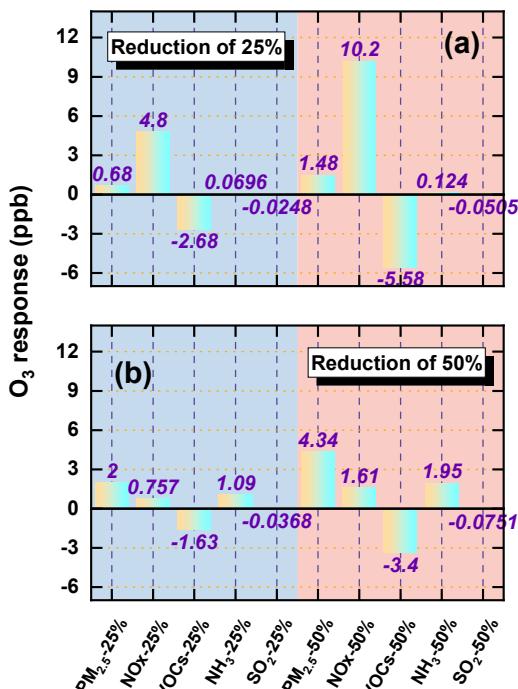
507 mitigation. Meteorological changes consistently exerted a suppressive effect on wintertime O₃, contributing -1.7 ppb and -2.1
508 ppb in Phases I and II, respectively. AEs—mediated by ARI and HET—also contributed to O₃ accumulation, particularly in
509 Phase I ($+1.46$ ppb), though their influence weakened in Phase II ($+0.73$ ppb) due to the smaller reductions in aerosol loading.
510 Overall, the wintertime O₃ increase in Phase I was jointly driven by emissions and aerosol-related processes, while the slight
511 decline in Phase II reflected the synergistic benefits of emission reductions and favorable meteorological conditions. In contrast,
512 the attribution profile for summer revealed a dominant role of meteorology. Meteorological variability accounted for a
513 substantial O₃ increase in Phase II ($+4.6$ ppb), outweighing the contributions of emission changes. The effect of emission
514 reductions on summer O₃ was limited and nonlinear: a slight increase ($+1.3$ ppb) was observed in Phase I, followed by a minor
515 decline (-1.5 ppb) in Phase II, indicative of a photochemical regime with weak emission sensitivity. Aerosol-related effects
516 exhibited strong seasonal contrasts. HET was the dominant mechanism influencing O₃ in both summer phases, albeit with
517 opposite signs—enhancing O₃ by 1.62 ppb in Phase I but reducing it by 2.86 ppb in Phase II. These contrasting effects likely
518 reflect differences in HO₂ uptake efficiency under evolving humidity and temperature conditions. ARI effects were
519 comparatively modest, leading to a slight O₃ decrease in Phase I (0.51 ppb) and an increase in Phase II (1.56 ppb), likely driven
520 by enhanced photolysis and reduced vertical mixing.

521 Collectively, these results highlight the evolving interplay among emission control efforts, meteorological conditions, and
522 aerosol effects in shaping surface O₃ trends. While anthropogenic emissions primarily drove winter O₃ increases during the
523 early phase of the CAAP, the roles of meteorology and aerosol processes became increasingly prominent in summer and in the
524 later policy phase. This multi-factor attribution framework aligns well with prior modeling and observational studies in eastern
525 China (Zhu et al., 2021; Zhou et al., 2019). For example, Liu et al. (2023a) demonstrated that declining PM_{2.5} levels enhanced
526 O₃ formation by weakening HO₂ radical scavenging, particularly under VOCs-limited regimes—a conclusion consistent with
527 our wintertime results. Similarly, Yang et al. (2019) highlighted the growing influence of meteorological variability in recent
528 years as the sensitivity of O₃ to emission changes has diminished. Our study extends this knowledge base by providing phase-
529 resolved attribution and explicitly separating the effects of ARI and HET. Notably, the reversal of HET-driven O₃ responses in
530 summer—from enhancement to suppression—has rarely been quantified and underscores the importance of dynamically
531 characterizing aerosol–ozone interactions under evolving atmospheric and policy contexts.

设置了格式: 字体: 10 磅
设置了格式: 字体: 10 磅

532
533 **Figure 8** Attribution of surface O₃ changes to different driving factors during the two phases of the [CAAP Clean Air Action](#)
534 [Plan \(CAAP\)](#) over the Yangtze River Delta (YRD). Bars represent the contributions from anthropogenic emission reductions
535 (EMI), meteorological variability (MET), aerosol–radiation interactions (ARI), and heterogeneous chemistry (HET) to winter
536 (left) and summer (right) O₃ changes during Phase I and Phase II. Units: ppb.

537 3.3 O₃ responses to precursor emission reductions under aerosol effects


538 We conducted a series of sensitivity simulations based on the 2020 emission inventory to evaluate how reductions in
539 precursor emissions influence O₃ in the presence of aerosol effects. Anthropogenic emissions of five major pollutants—primary
540 PM_{2.5}, NO_x, VOCs, NH₃, and SO₂—were individually reduced by 25% and 50%, while AEs (including ARI and HET) were
541 retained. Before presenting the simulation results, we first assessed the O₃ chemical regimes over YRD using the widely
542 adopted H₂O₂/HNO₃ ratio (Jeon et al., 2018; Peng et al., 2011; Hammer et al., 2002; Zhang et al., 2000). This metric serves as
543 a diagnostic indicator of O₃ production sensitivity, with ratios <0.6 indicating VOCs-limited conditions, >0.8 denoting NO_x-
544 limited regimes, and intermediate values representing transitional states. Figure S95 showed the spatial distribution of this
545 ratio under the baseline scenario (20E20M_AEs). The analysis reveals that wintertime O₃ formation is predominantly VOCs-
546 limited across the YRD, while in summer, most areas exhibit transitional or NO_x-limited regimes, except parts of Anhui
547 Province. Figure 9 displayed the simulated O₃ responses to precursor reductions in both seasons. The results highlight strong
548 seasonal differences and nonlinear sensitivities depending on chemical regime. In winter, reductions in primary PM_{2.5} and NO_x
549 led to substantial O₃ increases. Specifically, 25% and 50% reductions in PM_{2.5} increased O₃ by 0.7 ppb and 1.5 ppb, respectively,
550 while NO_x reductions caused even larger enhancements of 4.8 ppb and 10.2 ppb. These increases primarily stem from
551 weakened aerosol suppression mechanisms—namely reduced heterogeneous uptake and increased photolysis rates—which
552 enhance radical availability and photochemical activity. Additionally, under VOCs-limited conditions, NO_x reductions
553 diminish O₃ titration by NO, further contributing to O₃ accumulation. Among all precursors, NO_x reductions produced the

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

554 most pronounced O_3 increase. In contrast, NH_3 and SO_2 reductions exerted negligible impacts on O_3 , underscoring their limited
 555 roles in direct O_3 photochemistry. VOCs controls, on the other hand, effectively suppressed O_3 formation, with 25% and 50%
 556 reductions yielding decreases of 2.7 ppb and 5.6 ppb, respectively. In summer, O_3 responses followed broadly similar trends
 557 but with different magnitudes. Reducing $PM_{2.5}$ and NOx increased O_3 by 2 ppb and 4.3 ppb ($PM_{2.5}$) and 0.8 ppb and 1.6 ppb
 558 (NOx), respectively. Notably, the O_3 increase associated with $PM_{2.5}$ reductions exceeded that from NOx cuts, underscoring the
 559 critical role of particulate matter in regulating radical chemistry via aerosol-mediated pathways. VOCs reductions remained
 560 the only control strategy that consistently decreased O_3 , lowering concentrations by 1.6 ppb and 3.4 ppb for 25% and 50%
 561 reductions, respectively. Again, NH_3 and SO_2 reductions had negligible effects. Collectively, these findings suggest that
 562 continued $PM_{2.5}$ -targeted controls may inadvertently worsen O_3 pollution under active AEs, particularly in summer. In contrast,
 563 VOCs mitigation remains the most robust and seasonally effective strategy for O_3 reduction.

564
 565 **Figure 9** O_3 concentration changes (ppb) in response to 25% and 50% reductions in precursor emissions over YRD during
 566 winter (a) and summer (b). O_3 concentration changes (ppb) in response to 25% and 50% reductions in precursor emissions over
 567 the Yangtze River Delta during winter (a) and summer (b). The columns represent different precursors: primary $PM_{2.5}$, NOx ,
 568 VOCs, NH_3 , and SO_2 . Simulations are based on the 2020 emission inventory and consider both aerosol–radiation interactions
 569 (ARI) and heterogeneous chemistry (HET).

570 Figure S106 presented the distribution of O_3 changes under 25% and 50% precursor reductions for both seasons. Strong
 571 seasonal contrasts and regional gradients in O_3 responses are evident. Reductions in $PM_{2.5}$ consistently caused widespread O_3

设置了格式: 字体: 10 磅

572 increases across the YRD, with the most pronounced enhancements in northwestern inland regions—particularly southern
573 Jiangsu and central-to-northern Anhui—where historically high aerosol burdens make O₃ formation especially sensitive to
574 weakened aerosol suppression (via ARI and HET). Conversely, coastal cities such as Shanghai and eastern Zhejiang exhibited
575 smaller O₃ increases, reflecting their lower baseline aerosol concentrations and weaker aerosol feedbacks. VOCs reductions
576 led to the largest O₃ decreases in urban corridors, particularly along the Shanghai–Nanjing–Hangzhou (SNH) axis, where
577 VOCs emissions are elevated and O₃ formation is strongly VOCs-sensitive. NOx reductions yielded seasonally opposite effects:
578 in winter, O₃ increased broadly across the YRD, while in summer, decreases were observed in most regions except Anhui
579 Province. These patterns align with seasonal chemical regimes inferred from H₂O₂/HNO₃ ratios—VOCs-limited in winter and
580 NOx-limited or transitional in summer. NH₃ and SO₂ reductions produced negligible spatial effects in both seasons, reinforcing
581 their limited involvement in direct O₃ photochemistry. These spatially heterogeneous responses highlight the need for
582 geographically differentiated control strategies. Regions with historically high aerosol pollution are more likely to experience
583 unintended O₃ increases following PM_{2.5} or NOx reductions. Conversely, VOCs control provides consistent and widespread
584 O₃ benefits across both seasons, making it a key lever for achieving co-benefits in both PM_{2.5} and O₃ mitigation.

585 To better understand the temporal dynamics of O₃ responses, we analyzed diurnal variations in four representative cities—
586 Shanghai, Nanjing, Hangzhou, and Hefei—under 50% reductions of individual precursors (Figure S711). In winter, NOx
587 reductions led to substantial O₃ increases during afternoon hours (14:00–17:00), particularly in urban centers like Shanghai
588 and Hangzhou, where enhancements exceeded 15 ppb. These increases reflect the dual effect of diminished NO titration and
589 enhanced photochemical activity. PM_{2.5} reductions also caused moderate O₃ increases from late morning to early afternoon,
590 underscoring the influence of both ARI and HET. VOCs reductions induced midday O₃ declines (12:00–15:00) exceeding 5
591 ppb, consistent with VOCs-limited wintertime chemistry. In summer (Figure S128), VOCs reductions suppressed O₃
592 throughout the daytime, with maximum declines reaching up to 25 ppb in early afternoon, reaffirming the effectiveness of
593 VOCs control. In contrast, PM_{2.5} reductions led to notable O₃ increases during photochemically active hours (11:00–16:00),
594 highlighting the critical role of aerosols in modulating radical cycles and O₃ production. Overall, these diurnal profiles
595 underscore the time-sensitive nature of O₃ responses to precursor emission reductions. They emphasize the necessity for
596 temporally and spatially refined control strategies that account for local photochemical regimes, emission structures, and AEs.

597 3.4 Future O₃ responses to Carbon neutrality–driven emission reductions considering aerosol effects

598 We conducted a series of sensitivity simulations based on the 2020 anthropogenic emission inventory to assess the future
599 responses of O₃ to emission reductions under China's carbon peaking and carbon neutrality strategies. Emissions were reduced
600 by 30% and 50%, respectively, to represent projected levels during the carbon peaking and neutrality periods. These scenarios
601 explicitly accounted for ARI and HET to more accurately capture the atmospheric responses under future air quality and
602 climate policies. To enhance the policy relevance of our findings, additional reduction levels of 10%, 20%, 40%, 60%, 70%,

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

603 80%, and 90% were also included. As shown in Figure 10, O_3 exhibited pronounced seasonal variability in response to
604 progressive emission reductions. In winter, regional mean O_3 increased monotonically with the magnitude of emission cuts,
605 rising from +2.1% under the 10% reduction scenario to +14.6% under the 90% scenario. This counterintuitive increase is
606 primarily attributed to two synergistic mechanisms: (1) reduced O_3 titration resulting from NOx emission reductions, and (2)
607 weakened aerosol-mediated O_3 suppression due to lower aerosol loads, which diminish both ARI and HET processes. The
608 reduced availability of aerosol surfaces and optical attenuation enhances photolysis rates and radical propagation, thereby
609 promoting O_3 accumulation.

610 In contrast, summer O_3 declined steadily with increasing emission reductions, from -1.5% to -16.5% across the same
611 range. This decline reflects the dominance of VOCs-limited or transitional photochemical regimes in the region during summer,
612 where coordinated reductions in NOx and VOCs effectively suppress O_3 formation. ~~These results underscore the seasonal
613 asymmetry of O_3 responses under carbon neutrality – aligned emission trajectories: while stringent reductions may inadvertently
614 aggravate wintertime O_3 pollution, they offer substantial air quality co-benefits in summer. These results underscore the
615 seasonal asymmetry of O_3 responses under the carbon-neutrality – aligned emission trajectories used in this study—namely
616 the proportional precursor-reduction pathways designed to reflect long-term, economy-wide emission declines. While such
617 stringent reductions may inadvertently aggravate wintertime O_3 pollution, they yield substantial co-benefits for summer O_3
618 mitigation.~~ The spatial distribution of O_3 changes under these scenarios, presented in Figure S139, further corroborates the

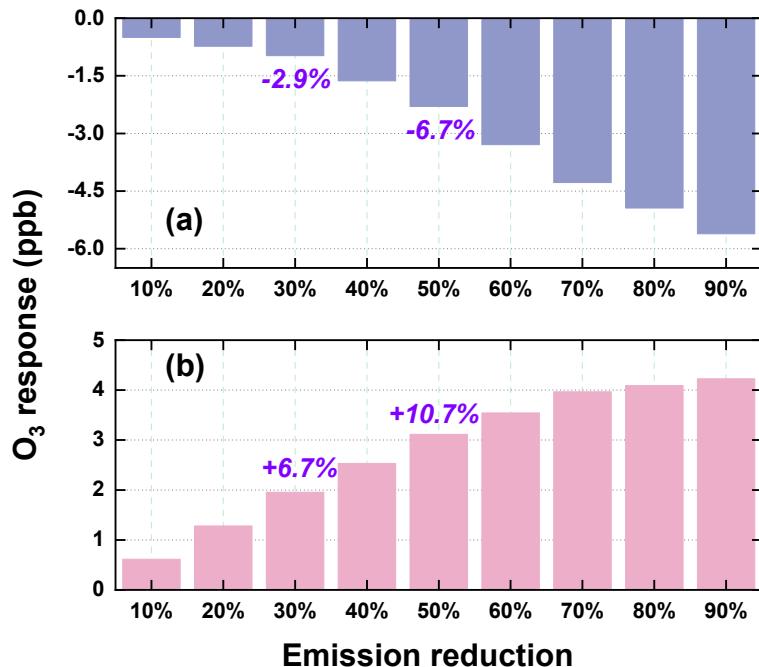
619 contrasting seasonal patterns. In winter, O_3 increases were most pronounced in inland areas of northern Anhui and central
620 Jiangsu—regions characterized by historically high aerosol burdens and stronger aerosol-mediated O_3 suppression. As
621 emissions decline, the weakening of both aerosol effects and NOx titration leads to a disproportionate O_3 rebound in these
622 locations. The largest summer O_3 reductions observed in densely populated urban corridors such as Shanghai, Nanjing, and
623 Hangzhou. These metropolitan areas, with high precursor emissions and transitional or NOx-limited chemical regimes, are
624 particularly responsive to coordinated VOCs and NOx controls. The spatial heterogeneity in O_3 responses highlights the
625 necessity of designing region-specific and seasonally adaptive emission control strategies. Differentiated approaches are
626 essential given the diverse pollution histories, chemical sensitivities, and aerosol–ozone coupling characteristics across the
627 YRD. Overall, these findings suggest that carbon neutrality–driven emission pathways, if carefully managed, can yield
628 significant summertime O_3 mitigation benefits, but must be complemented with targeted wintertime strategies to avoid adverse
629 trade-offs. ~~The proportional 10 – 90% reductions applied uniformly across all pollutant species were designed as an idealized
630 framework to systematically examine nonlinear O_3 responses under consistent boundary conditions. In practice, however,
631 future emission pathways are expected to exhibit pronounced sectoral and spatial heterogeneity—for example, SO_2 and
632 primary $PM_{2.5}$ typically decline faster than VOCs and NH_3 , and the pace of reductions varies across industrial, transportation,
633 and residential sectors. Such differences may influence the magnitude of O_3 responses and the balance among precursor~~

设置了格式: 下标

设置了格式: 字体: 10 磅

设置了格式: 下标

设置了格式: 下标


设置了格式: 下标

设置了格式: 下标

634 contributions. Recognizing this limitation, future work will incorporate sector-resolved and scenario-specific emission
635 pathways to provide a more realistic assessment of O_3 sensitivity under evolving emission structures.

设置了格式: 下标

设置了格式: 字体: 10 磅

636
637 **Figure 10** Seasonal variations in O_3 concentrations (ppb) projected under a range of emission reduction intensities (10%–90%),
638 including representative scenarios for carbon peaking (30%) and carbon neutrality (50%), referenced to 2020 conditions with
639 aerosol-related processes accounted for. Results for summer and winter are displayed in the upper and lower panels,
640 respectively. Projected seasonal O_3 changes (ppb) under progressive emission reduction scenarios (10%–90%, 30% carbon
641 peak, 50% carbon neutrality) relative to 2020 levels, incorporating aerosol effects. The upper panel shows summer responses,
642 while the lower panel shows winter responses.

643 3.5 Discussion and policy implications

644 This study presented a comprehensive assessment of O_3 responses to emission reductions under both the CAAP and future
645 carbon neutrality pathways, explicitly considering aerosol effects. Our findings underscore that while emission control
646 measures have been effective in substantially lowering $PM_{2.5}$, they may yield unintended consequences for O_3 pollution—
647 particularly under VOCs-limited regimes during winter. Specifically, aerosol-induced enhancements in O_3 —via weakened
648 heterogeneous chemistry (HET) and increased photolysis (ARI)—highlight the necessity of accounting for multiphase
649 feedback mechanisms in the design of future air quality strategies.

设置了格式: 字体: 10 磅

650 Our phase-resolved, seasonally differentiated attribution analysis suggests that coordinated reductions in VOCs and NOx
651 are critical for effective O_3 mitigation, especially in summer when photochemical activity is most intense. Furthermore, the
652 spatial heterogeneity of O_3 responses calls for region-specific strategies. For instance, in inland areas with historically high
653 aerosol burdens, the potential for O_3 rebound due to weakened aerosol suppression is more pronounced, necessitating tailored

mitigation approaches. In contrast, urban corridors such as the Shanghai–Nanjing–Hangzhou (SNH) axis—characterized by high VOCs emissions and transitional or NO_x-limited regimes—stand to benefit most from targeted VOCs controls, particularly under future carbon-neutrality-driven reductions. Uncertainties in HET parameterizations also introduce potential variability into the estimated O₃ responses. The uptake coefficients (γ) for HO₂, NO₂, and N₂O₅ depend on aerosol liquid water content, acidity, ionic strength, and particle composition (Jacob, 2000), yet these dependencies remain imperfectly constrained in current atmospheric models. As a result, uncertainties in these parameters may alter the magnitude of individual heterogeneous pathways simulated in this study. For example, higher assumed HO₂ uptake would strengthen radical loss and could reduce the positive HET contribution during Phase I, whereas larger N₂O₅ hydrolysis rates would enhance nighttime conversion of NO_x to HNO₃ and potentially intensify the negative HET influence in Phase II. Likewise, uncertainties in NO_x uptake and HONO yields could modulate early-morning radical initiation and shift the balance between radical propagation and reactive nitrogen recycling.

Importantly, while such uncertainties may influence the absolute magnitude of HET-induced O_3 perturbations, they are unlikely to overturn the direction of the response. Prior modeling studies provide support for this robustness. For instance, Shao et al. (2021) showed that varying γ_{HO_2} between 0.2 and 0.08 altered the magnitude of the O_3 increase driven by reduced HO_2 heterogeneous uptake—from approximately 6% (consistent with the ~7% reported by Li et al. (2019a) to about 2.5% during 2013–2016—yet the effect remained positive in all cases. These findings indicate that although heterogeneous uptake assumptions can change the amplitude of the response, the sign of the O_3 change is preserved because the underlying chemical mechanism (reduced radical loss leading to enhanced photochemical production) remains the same. By analogy, the phase-dependent sign reversal identified in our study reflects a structural shift in the competition among HO_2 uptake, N_2O_5 hydrolysis, and $HONO$ formation pathways, and is therefore unlikely to be reversed by plausible uncertainties in individual uptake coefficients. Our future studies will incorporate dedicated sensitivity simulations and integrated process rate (IPR) diagnostics to more systematically quantify how uncertainties in heterogeneous chemistry parameterizations propagate into O_3 simulations. Improvements in observational constraints on aerosol acidity, liquid water content, and heterogeneous reaction rates will further strengthen mechanistic understanding and reduce uncertainty in model-based assessments of aerosol– O_3 interactions under evolving emission pathways.

It should be noted that these simulations were conducted using a fixed meteorology framework, which facilitates the isolation of aerosol and emission effects on O_3 by minimizing year-to-year weather variability. While this approach reduces confounding influences and enhances attribution clarity, it inherently limits the representation of meteorologically driven O_3 variability, such as extreme heat waves or wind anomalies. Consequently, care must be taken when extrapolating these results to long-term trends or climate-change scenarios, as meteorology-emission interactions may modulate O_3 responses in practice. These limitations will be addressed in our future studies through sensitivity simulations incorporating dynamic meteorology.

685 These findings carry timely relevance for China's national climate and environmental goals. As outlined in the 14th Five-
686 Year Plan for Ecological and Environmental Protection and the 2060 Carbon Neutrality Roadmap, deep multi-sector emission
687 cuts are pivotal for achieving synergistic benefits between air quality improvement and climate change mitigation. Our results
688 demonstrate that under prevailing atmospheric chemical regimes—especially during winter—aggressive reductions in primary
689 PM_{2.5} and NOx may inadvertently exacerbate O₃ pollution unless accompanied by VOCs-focused controls and regionally
690 tailored strategies. In light of these findings, we advocate for an integrated policy framework that (i) coordinates VOCs and
691 NOx reductions according to regional O₃ sensitivity, (ii) strengthens VOCs monitoring and inventory resolution at the city
692 level, and (iii) explicitly incorporates aerosol effects in both short-term air pollution forecasting and long-term carbon-
693 neutrality scenarios. Such targeted and mechanism-informed strategies will help bridge the current policy gap between PM_{2.5}
694 control and O₃ pollution mitigation, while ensuring co-benefits under evolving climate objectives.

695 **4. Conclusions**

696 ~~This study employed a phase- and season-resolved WRF-Chem modeling framework explicitly incorporating an improved aerosol-radiation interaction (ARI) scheme and a newly implemented heterogeneous chemistry (HET) module to quantify aerosol impacts on O₃ in the Yangtze River Delta (YRD) from 2013 to 2024. By integrating these mechanisms with anthropogenic emission changes, meteorological variability, and future carbon neutrality scenarios, we comprehensively assessed the drivers of historical and projected O₃ trends, as well as the nonlinear responses to precursor reductions. We employed a phase- and season-specific WRF-Chem framework that explicitly accounted for aerosol-radiation interactions and heterogeneous chemistry to characterize aerosol-driven modulation of O₃ over the YRD from 2013 to 2024. Through combined analyses of emission transitions, meteorological variability, and carbon-neutrality-oriented scenarios, this study provides an integrated assessment of the mechanisms governing historical O₃ changes and future responses to precursor emission controls.~~

设置了格式: 字体: 10 磅
带格式的: 缩进: 首行缩进: 2 字符

697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 O₃ exhibited a distinct rise-fall trajectory over the past decade, shaped by complex interactions among emission reductions, meteorological changes, and aerosol effects. During Phase I, substantial reductions in PM_{2.5} and SO₂, coupled with inadequate VOCs controls, led to significant wintertime O₃ increases (6.29 ppb) and modest summer increases (1.28 ppb). In Phase II, more balanced reductions in NOx and VOCs effectively suppressed O₃ formation. Meteorological variability also exhibited seasonally asymmetric impacts—suppressing O₃ in winter but enhancing accumulation in summer. While wintertime O₃ changes were primarily driven by emissions, summertime variations were dominated by meteorological factors. Aerosol effects further modulated O₃ concentrations through seasonally distinct mechanisms. In winter, ARI played the dominant role: the substantial aerosol reductions in Phase I enhanced solar radiation and boundary layer development, promoting O₃ formation (1.14 ppb); these effects weakened in Phase II (0.73 ppb). In summer, HET emerged as the primary driver: in Phase I, reduced aerosols weakened radical scavenging and increased O₃ (1.62 ppb), whereas in Phase II, reduced HO₂ uptake

715 efficiency and drier conditions reversed this effect, leading to net O₃ decreases (2.86 ppb). Summer O₃ was more sensitive
716 to HET. In Phase I, aerosol decreases weakened heterogeneous radical uptake, enhancing O₃ formation (+1.62 ppb). In Phase
717 II, however, the net HET effect reversed sign (-2.86 ppb), driven by shifts in multiple heterogeneous pathways—including
718 changes in radical uptake, HONO and N₂O₅ chemistry, and aerosol liquid water—rather than radical scavenging alone.

设置了格式: 字体: 10 磅

719 Accounting for aerosol effects, precursor emission reductions elicited marked seasonal and spatial O₃ responses. In winter,
720 a 50% reduction in VOCs effectively suppressed O₃ by 5.58 ppb, whereas equivalent reductions in NOx and PM_{2.5} increased
721 O₃ by 10.2 ppb and 1.48 ppb, respectively—primarily due to weakened O₃ titration and radical loss processes. In summer,
722 reductions in PM_{2.5} led to greater increases in O₃ than NOx (4.34 ppb vs. 1.61 ppb under the 50% reduction scenario),
723 highlighting the crucial role of aerosol effects in shaping photochemical O₃ production. Under carbon neutrality–driven
724 emission reduction scenarios, O₃ exhibited pronounced seasonally contrasting responses. In winter, O₃ increased
725 monotonically with the magnitude of emission cuts, primarily due to the weakened titration by NO and the diminished aerosol-
726 mediated suppression via heterogeneous chemistry and radiation attenuation. In contrast, summer O₃ consistently declined,
727 with the most substantial improvements observed in high-emission urban corridors. These reductions were mainly driven by
728 the synergistic control of NOx and VOCs under NOx-limited and transitional photochemical regimes. When aerosol effects
729 were considered, wintertime O₃ increased by 6.7% and 10.7% under carbon peaking and neutrality scenarios, respectively,
730 whereas summertime O₃ decreased by 2.9% and 6.7%, highlighting the critical role of multiphase aerosol effects in shaping
731 future air quality outcomes and making climate mitigation strategies.

732 While this study provides innovative and policy-informative findings, several uncertainties remain that warrant further
733 investigation. Uncertainties primarily arise from limitations in the parameterization of heterogeneous chemistry, assumptions
734 in future emission projections, and the current resolution of VOCs emission inventories. Future efforts should prioritize the
735 enhancement of real-time VOCs monitoring, vertical profiling of O₃ and its precursors, and the refinement of multiphase
736 chemical processes in regional models. In conclusion, a holistic and mechanism-informed approach—one that jointly accounts
737 for emissions, aerosol effects, atmospheric chemistry, and meteorology—is essential for the effective co-control of PM_{2.5} and
738 O₃ in the carbon neutrality era. Seasonally adaptive, region-specific, and chemically targeted policies are critical to maximizing
739 air quality and climate co-benefits under evolving environmental and policy contexts.

740 Code availability

741 The WRF-Chem model (version 3.7.1) used in this study is based on the standard release from NCAR
742 (<https://doi.org/10.5065/D6MK6B4K>), with modifications to the aerosol and chemical mechanisms. Details of these
743 modifications are documented in Section 2.2 of the paper. The updated code about model and NCL scripts used for data
744 processing and visualization can be provided upon request.

745 **Data availability**

746 The FNL (Final Analysis) meteorological data are available from the Research Data Archive of NCAR:
747 <http://rda.ucar.edu/datasets/ds083.2/>. The MEIC v1.4 emission inventory can be accessed at:
748 http://meicmodel.org/?page_id=560. Hourly surface O₃ observations are provided by the China National Environmental
749 Monitoring Centre (CNEMC) and are available at: <http://www.cnemc.cn/>.

750 **Author contributions**

751 **YL, and TW** formulated the research, and **YL**: carried it out. **ML, YQ, HW, and MX**: technical support on the WRF-Chem
752 model. **CL, YL, and YW**: reviewed the manuscript.

753 **Competing interests**

754 The corresponding author has stated that all the authors have no conflicts of interest.

755 **Disclaimer**

756 Publisher's note: Copernicus Publications remains neutral about jurisdictional claims in published maps and institutional
757 affiliations.

758 **Financial support**

759 This investigation was supported by the National Key Basic Research & Development Program of China (2024YFC3711905),
760 the Doctoral Scientific Research Fund of Henan Finance University (2024BS055), and the National Natural Science
761 Foundation of China (42477103), the Creative talent exchange program for foreign experts in the Belt and Road countries, the
762 Henan Provincial Science and Technology Research and Development Program (252102320085).

764 Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, *Chem. Soc. Rev.*, 41, 6405-6447, 765 <https://doi.org/10.1039/C2CS35181A>, 2012.

766 Cao, J., Qiu, X., Liu, Y., Yan, X., Gao, J., and Peng, L.: Identifying the dominant driver of elevated surface ozone concentration 767 in North China plain during summertime 2012 – 2017, *Environ. Pollut.*, 300, 118912, 768 <https://doi.org/10.1016/j.envpol.2022.118912>, 2022.

769 Chen, J., Li, Z., Lv, M., Wang, Y., Wang, W., Zhang, Y., Wang, H., Yan, X., Sun, Y., and Cribb, M.: Aerosol hygroscopic growth, 770 contributing factors, and impact on haze events in a severely polluted region in northern China, *Atmos. Chem. Phys.*, 19, 771 1327-1342, <https://doi.org/10.5194/acp-19-1327-2019>, 2019.

772 Chen, X., Zhong, B., Huang, F., Wang, X., Sarkar, S., Jia, S., Deng, X., Chen, D., and Shao, M.: The role of natural factors in 773 constraining long-term tropospheric ozone trends over Southern China, *Atmos. Environ.*, 220, 117060, 774 <https://doi.org/10.1016/j.atmosenv.2019.117060>, 2020.

775 Cheng, J., Tong, D., Zhang, Q., Liu, Y., Lei, Y., Yan, G., Yan, L., Yu, S., Cui, R. Y., Clarke, L., Geng, G., Zheng, B., Zhang, X., 776 Davis, S. J., and He, K.: Pathways of China's PM2.5 air quality 2015–2060 in the context of carbon neutrality, *Natl. Sci. 777 Rev.*, 8, <https://doi.org/10.1093/nsr/nwab078>, 2021.

778 Dai, H., Liao, H., Wang, Y., and Qian, J.: Co-occurrence of ozone and PM2.5 pollution in urban/non-urban areas in eastern 779 China from 2013 to 2020: Roles of meteorology and anthropogenic emissions, *Sci. Total Environ.*, 924, 171687, 780 <https://doi.org/10.1016/j.scitotenv.2024.171687>, 2024.

781 Dai, H., Liao, H., Li, K., Yue, X., Yang, Y., Zhu, J., Jin, J., Li, B., and Jiang, X.: Composited analyses of the chemical and 782 physical characteristics of co-polluted days by ozone and PM 2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region, 783 *Atmos. Chem. Phys.*, 23, 23-39, <https://doi.org/10.5194/acp-23-23-2023>, 2023.

784 Dang, R., Liao, H., and Fu, Y.: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in 785 China over 2012–2017, *Sci. Total Environ.*, 754, 142394, <https://doi.org/10.1016/j.scitotenv.2020.142394>, 2021.

786 Dyson, J. E., Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. 787 E., Shaw, M., Hamilton, J. F., Lewis, A. C., Worrall, S. D., Bacak, A., Mehra, A., Bannan, T. J., Coe, H., Percival, C. J., 788 Ouyang, B., Hewitt, C. N., Jones, R. L., Crilley, L. R., Kramer, L. J., Acton, W. J. F., Bloss, W. J., Saksakulkrai, S., Xu, 789 J., Shi, Z., Harrison, R. M., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S., Wei, L., Fu, P., Wang, X., Arnold, S. R., 790 and Heard, D. E.: Impact of HO₂ aerosol uptake on radical levels and O₃ production during summertime in Beijing, 791 *Atmos. Chem. Phys.*, 23, 5679-5697, <https://doi.org/10.5194/acp-23-5679-2023>, 2023.

792 Gao, J., Zhu, B., Xiao, H., Kang, H., Pan, C., Wang, D., and Wang, H.: Effects of black carbon and boundary layer interaction 793 on surface ozone in Nanjing, China, *Atmos. Chem. Phys.*, 18, 7081-7094, <https://doi.org/10.5194/acp-18-7081-2018>, 794 2018.

795 Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D., and Zheng, B.: Efficacy of China's clean air 796 actions to tackle PM2. 5 pollution between 2013 and 2020, *Nat. Geosci.*, 17, 987-994, <https://doi.org/10.1038/s41561-024-01540-z>, 2024.

797 George, C., Ammann, M., D'Anna, B., Donaldson, D. J., and Nizkorodov, S. A.: Heterogeneous Photochemistry in the 798 Atmosphere, *Chem. Rev.*, 115, 4218-4258, <https://doi.org/10.1021/cr500648z>, 2015.

799 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled "online" 800 chemistry within the WRF model, *Atmos. Environ.*, 39, 6957-6975, <https://doi.org/10.1016/j.atmosenv.2005.04.027>, 2005.

801 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene 802 emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181-3210, 803 <https://doi.org/10.5194/acp-6-3181-2006>, 2006.

804 Hammer, M. U., Vogel, B., and Vogel, H.: Findings on H₂O₂/HNO₃ as an indicator of ozone sensitivity in Baden - Württemberg, 805 Berlin-Brandenburg, and the Po valley based on numerical simulations, *J. Geophys. Res.: Atmos.*, 107, LOP 3-1-LOP 3- 806 18, <https://doi.org/10.1029/2000JD000211>, 2002.

88 Hu, F., Xie, P., Xu, J., Lv, Y., Zhang, Z., Zheng, J., and Tian, X.: Long-term trends of ozone in the Yangtze River Delta, China:
89 spatiotemporal impacts of meteorological factors, local, and non-local emissions, *J. Environ. Sci.*, 156, 408-420,
90 <https://doi.org/10.1016/j.jes.2024.07.017>, 2025.

91 Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, *Atmos. Environ.*, 34, 2131-2159,
92 [https://doi.org/10.1016/S1352-2310\(99\)00462-8](https://doi.org/10.1016/S1352-2310(99)00462-8), 2000.

93 Jeon, W., Choi, Y., Souri, A. H., Roy, A., Diao, L., Pan, S., Lee, H. W., and Lee, S.-H.: Identification of chemical fingerprints
94 in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean, *Sci.
95 Total Environ.*, 613-614, 820-828, <https://doi.org/10.1016/j.scitotenv.2017.09.177>, 2018.

96 Kong, L., Du, C., Zhanzakova, A., Cheng, T., Yang, X., Wang, L., Fu, H., Chen, J., and Zhang, S.: Trends in heterogeneous
97 aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study, *Sci. Total Environ.*, 634,
98 1192-1204, <https://doi.org/10.1016/j.scitotenv.2018.04.086>, 2018.

99 Li, J., Han, Z., Li, J., Liu, R., Wu, Y., Liang, L., and Zhang, R.: The formation and evolution of secondary organic aerosol
100 during haze events in Beijing in wintertime, *Sci. Total Environ.*, 703, 134937,
101 <https://doi.org/10.1016/j.scitotenv.2019.134937>, 2020a.

102 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in summer
103 surface ozone in China, *Proceedings of the National Academy of Sciences*, 116, 422-427,
104 <https://doi.org/10.1073/pnas.1812168116>, 2019a.

105 Li, K., Jacob, D. J., Shen, L., Lu, X., De Smedt, I., and Liao, H.: Increases in surface ozone pollution in China from 2013 to
106 2019: anthropogenic and meteorological influences, *Atmos. Chem. Phys.*, 20, 11423-11433, <https://doi.org/10.5194/acp-20-11423-2020>, 2020b.

107 Li, M., Wang, T., Xie, M., Li, S., Zhuang, B., Chen, P., Huang, X., and Han, Y.: Agricultural Fire Impacts on Ozone
108 Photochemistry Over the Yangtze River Delta Region, East China, *J. Geophys. Res.: Atmos.*, 123, 6605-6623,
109 <https://doi.org/10.1029/2018JD028582>, 2018.

110 Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L., Zhang, Y., Bo, Y., Su, H., Cheng, Y., and
111 He, K.: Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during
112 1990 – 2017: drivers, speciation and ozone formation potential, *Atmos. Chem. Phys.*, 19, 8897-8913,
113 <https://doi.org/10.5194/acp-19-8897-2019>, 2019b.

114 Li, Y., Wang, T., Wang, Q. g., Li, M., Qu, Y., Wu, H., and Xie, M.: Exploring the role of aerosol-ozone interactions on O₃ surge
115 and PM2.5 decline during the clean air action period in Eastern China 2014 – 2020, *Atmos. Res.*, 302, 107294,
116 <https://doi.org/10.1016/j.atmosres.2024.107294>, 2024a.

117 Li, Y., Wang, T., Wang, Q. g., Li, M., Qu, Y., Wu, H., and Xie, M.: Impact of aerosol-radiation interaction and heterogeneous
118 chemistry on the winter decreasing PM2.5 and increasing O₃ in Eastern China 2014–2020, *J. Environ. Sci.*, 151, 469-
119 483, <https://doi.org/10.1016/j.jes.2024.04.010>, 2025.

120 Li, Y., Wang, T., Wang, Q. g., Li, M., Qu, Y., Wu, H., Fan, J., Shao, M., and Xie, M.: Deciphering the seasonal dynamics of
121 multifaceted aerosol-ozone interplay: Implications for air quality management in Eastern China, *Sci. Total Environ.*, 946,
122 174327, <https://doi.org/10.1016/j.scitotenv.2024.174327>, 2024b.

123 Li, Y., Wang, T., Wang, Q. g., Qu, Y., Wu, H., Xie, M., Li, M., Li, S., and Zhuang, B.: Spatiotemporal Variations of PM2.5 and
124 O₃ Relationship during 2014 – 2021 in Eastern China, *Aerosol and Air Quality Research*, 23, 230060,
125 <https://doi.org/10.4209/aaqr.230060>, 2023.

126 Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Ground-level ozone pollution and its health
127 impacts in China, *Atmos. Environ.*, 173, 223-230, <https://doi.org/10.1016/j.atmosenv.2017.11.014>, 2018.

128 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles
129 of meteorology, *Atmos. Chem. Phys.*, 20, 6305-6321, <https://doi.org/10.5194/acp-20-6305-2020>, 2020.

130 Liu, Y., Geng, G., Cheng, J., Liu, Y., Xiao, Q., Liu, L., Shi, Q., Tong, D., He, K., and Zhang, Q.: Drivers of Increasing Ozone
131 during the Two Phases of Clean Air Actions in China 2013 – 2020, *Environ. Sci. Technol.*, 57, 8954-8964,
132 <https://doi.org/10.1021/acs.est.3c00054>, 2023a.

133 Liu, Z., Wang, H., Peng, Y., Zhang, W., Che, H., Zhang, Y., Liu, H., Wang, Y., Zhao, M., and Zhang, X.: The combined effects
134 of meteorology and human activities on ozone pollution in China, *Atmos. Environ.*, 173, 231-240, <https://doi.org/10.1016/j.atmosenv.2017.11.015>, 2018.

855 of heterogeneous chemistry and aerosol-radiation interaction on severe haze simulation by atmospheric chemistry model
856 in Middle-Eastern China, *Atmos. Environ.*, 302, 119729, <https://doi.org/10.1016/j.atmosenv.2023.119729>, 2023b.

857 Lu, S., Gong, S., Chen, J., Zhang, L., Ke, H., Pan, W., Lu, J., and You, Y.: Contribution assessment of meteorology vs. emissions
858 in the summer ozone trend from 2014 to 2023 in China by an environmental meteorology index, *Atmos. Environ.*, 343,
859 120992, <https://doi.org/10.1016/j.atmosenv.2024.120992>, 2025.

860 Ma, D., Wang, T., Wu, H., Qu, Y., Liu, J., Liu, J., Li, S., Zhuang, B., Li, M., and Xie, M.: The effect of anthropogenic emission,
861 meteorological factors, and carbon dioxide on the surface ozone increase in China from 2008 to 2018 during the East
862 Asia summer monsoon season, *Atmos. Chem. Phys.*, 23, 6525-6544, <https://doi.org/10.5194/acp-23-6525-2023>, 2023a.

863 Ma, P., Quan, J., Dou, Y., Pan, Y., Liao, Z., Cheng, Z., Jia, X., Wang, Q., Zhan, J., Ma, W., Zheng, F., Wang, Y., Zhang, Y., Hua,
864 C., Yan, C., Kulmala, M., Liu, Y., Huang, X., Yuan, B., Brown, S. S., and Liu, Y.: Regime-Dependence of Nocturnal
865 Nitrate Formation via N2O5 Hydrolysis and Its Implication for Mitigating Nitrate Pollution, *Geophys. Res. Lett.*, 50,
866 e2023GL106183, <https://doi.org/10.1029/2023GL106183>, 2023b.

867 Ni, Y., Yang, Y., Wang, H., Li, H., Li, M., Wang, P., Li, K., and Liao, H.: Contrasting changes in ozone during 2019–2021
868 between eastern and the other regions of China attributed to anthropogenic emissions and meteorological conditions, *Sci.
869 Total Environ.*, 908, 168272, <https://doi.org/10.1016/j.scitotenv.2023.168272>, 2024.

870 Peng, Y.-P., Chen, K.-S., Wang, H.-K., Lai, C.-H., Lin, M.-H., and Lee, C.-H.: Applying model simulation and photochemical
871 indicators to evaluate ozone sensitivity in southern Taiwan, *J. Environ. Sci.*, 23, 790-797, [https://doi.org/10.1016/S1001-0742\(10\)60479-2](https://doi.org/10.1016/S1001-0742(10)60479-2), 2011.

872 Qu, Y., Wang, T., Yuan, C., Wu, H., Gao, L., Huang, C., Li, Y., Li, M., and Xie, M.: The underlying mechanisms of PM2.5 and
873 O3 synergistic pollution in East China: Photochemical and heterogeneous interactions, *Sci. Total Environ.*, 873, 162434,
874 <https://doi.org/10.1016/j.scitotenv.2023.162434>, 2023.

875 Shao, M., Lv, S., Song, Y., Liu, R., and Dai, Q.: Disentangling the effects of meteorology and emissions from anthropogenic
876 and biogenic sources on the increased surface ozone in Eastern China, *Atmos. Res.*, 311, 107699,
877 <https://doi.org/10.1016/j.atmosres.2024.107699>, 2024.

878 Shao, M., Wang, W., Yuan, B., Parrish, D. D., Li, X., Lu, K., Wu, L., Wang, X., Mo, Z., Yang, S., Peng, Y., Kuang, Y., Chen,
879 W., Hu, M., Zeng, L., Su, H., Cheng, Y., Zheng, J., and Zhang, Y.: Quantifying the role of PM2.5 dropping in variations
880 of ground-level ozone: Inter-comparison between Beijing and Los Angeles, *Sci. Total Environ.*, 788, 147712,
881 <https://doi.org/10.1016/j.scitotenv.2021.147712>, 2021.

882 Sun, L., Xue, L., Wang, Y., Li, L., Lin, J., Ni, R., Yan, Y., Chen, L., Li, J., and Zhang, Q.: Impacts of meteorology and emissions
883 on summertime surface ozone increases over central eastern China between 2003 and 2015, *Atmos. Chem. Phys.*, 19,
884 1455-1469, <https://doi.org/10.5194/acp-19-1455-2019>, 2019.

885 Wu, K., Wang, Y., Qiao, Y., Liu, Y., Wang, S., Yang, X., Wang, H., Lu, Y., Zhang, X., and Lei, Y.: Drivers of 2013–2020 ozone
886 trends in the Sichuan Basin, China: Impacts of meteorology and precursor emission changes, *Environ. Pollut.*, 300,
887 118914, <https://doi.org/10.1016/j.envpol.2022.118914>, 2022.

888 Yan, D., Jin, Z., Zhou, Y., Li, M., Zhang, Z., Wang, T., Zhuang, B., Li, S., and Xie, M.: Anthropogenically and meteorologically
889 modulated summertime ozone trends and their health implications since China's clean air actions, *Environ. Pollut.*, 343,
890 123234, <https://doi.org/10.1016/j.envpol.2023.123234>, 2024.

891 Yang, H., Chen, L., Liao, H., Zhu, J., Wang, W., and Li, X.: Weakened aerosol–radiation interaction exacerbating ozone
892 pollution in eastern China since China's clean air actions, *Atmos. Chem. Phys.*, 24, 4001-4015,
893 <https://doi.org/10.5194/acp-24-4001-2024>, 2024.

894 Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X., Louie, P. K. K., Chen, D., and Bian, Y.: Quantitative impacts
895 of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta,
896 China, and implications for ozone control strategy, *Atmos. Chem. Phys.*, 19, 12901-12916, <https://doi.org/10.5194/acp-19-12901-2019>, 2019.

897 Yin, H., Lu, X., Sun, Y., Li, K., Gao, M., Zheng, B., and Liu, C.: Unprecedented decline in summertime surface ozone over
898 eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology, *Environ. Res. Lett.*,
899 16, 124069, <https://doi.org/10.1088/1748-9326/ac3e22>, 2021.

900

设置了格式: 字体: (默认) Times New Roman, 10 磅

902 Yu, C., Huang, L., Xue, L., Shen, H., Li, Z., Zhao, M., Yang, J., Zhang, Y., Li, H., Mu, J., and Wang, W.: Photoenhanced
903 Heterogeneous Uptake of NO₂ and HONO Formation on Authentic Winter Time Urban Grime, *ACS Earth Space Chem.*,
904 6, 1960-1968, <https://pubs.acs.org/doi/10.1021/acsearthspacechem.2c00054>, 2022.

905 Yu, Y., Wang, Z., He, T., Meng, X., Xie, S., and Yu, H.: Driving factors of the significant increase in surface ozone in the
906 Yangtze River Delta, China, during 2013 – 2017, *Atmos. Pollut. Res.*, 10, 1357-1364,
907 <https://doi.org/10.1016/j.apr.2019.03.010>, 2019.

908 Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter (PM 2.5)
909 trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology, *Atmos. Chem.
910 Phys.*, 19, 11031-11041, <https://doi.org/10.5194/acp-19-11031-2019>, 2019.

911 Zhang, H., Roehl, C. M., Sander, S. P., and Wennberg, P. O.: Intensity of the second and third OH overtones of H₂O₂, HNO₃,
912 and HO₂NO₂, *J. Geophys. Res.: Atmos.*, 105, 14593-14598, <https://doi.org/10.1029/2000JD900118>, 2000.

913 Zhang, X., Zhang, W.-C., Wu, W., and Liu, H.-B.: Understanding ozone variability in spatial responses to emissions and
914 meteorology in China using interpretable machine learning, *iScience*, 28, 113036,
915 <https://doi.org/10.1016/j.isci.2025.113036>, 2025.

916 Zhao, X., Zhang, Z., Xu, J., Gao, J., Cheng, S., Zhao, X., Xia, X., and Hu, B.: Impacts of aerosol direct effects on PM_{2.5} and
917 O₃ respond to the reductions of different primary emissions in Beijing-Tianjin-Hebei and surrounding area, *Atmos.
918 Environ.*, 309, 119948, <https://doi.org/10.1016/j.atmosenv.2023.119948>, 2023.

919 Zhou, M., Zhang, L., Chen, D., Gu, Y., Fu, T.-M., Gao, M., Zhao, Y., Lu, X., and Zhao, B.: The impact of aerosol-radiation
920 interactions on the effectiveness of emission control measures, *Environ. Res. Lett.*, 14, 024002,
921 <https://doi.org/10.1088/1748-9326/aaf27d>, 2019.

922 Zhu, J., Chen, L., Liao, H., Yang, H., Yang, Y., and Yue, X.: Enhanced PM_{2.5} Decreases and O₃ Increases in China During
923 COVID-19 Lockdown by Aerosol-Radiation Feedback, *Geophys. Res. Lett.*, 48, e2020GL090260,
924 <https://doi.org/10.1029/2020GL090260>, 2021.

925

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅
设置了格式: 字体: (默认) Times New Roman, 10 磅

设置了格式: 字体: (默认) Times New Roman, 10 磅