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Abstract. Surface ozone, a major air pollutant with important implications for air quality,
ecosystems, and climate, shows long-term trends shaped by both anthropogenic and climatic drivers.
Here, we developed a machine learning-based approach, namely the fixed emission approximation
(FEA), to decouple the effects of meteorological variability and anthropogenic emissions on
summertime ozone trends in China under the clean air actions. Anthropogenic emissions drove an
approximately +23.2 + 1.1 ug m™ increase in summer maximum daily 8-hour average ozone during
2013-2017, followed by an approximately —4.6 + 1.5 ug m~ decrease between 2017 and 2020 in
response to strengthened emission controls. In contrast, meteorological anomalies, including
heatwaves and rainfall conditions, emerged as substantial drivers of ozone variability during 2020—
2023. Satellite-derived formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile
organic compounds-limited regimes for ozone production, with a shift toward nitrogen oxides-
limited sensitivity under influence of heatwaves. Extending the FEA framework to assess long-term
climate influences from 1970 to 2023, we find that sustained climate warming has driven a
substantial increase in urban summertime ozone in China. These results demonstrate that climate
change was increasingly offsetting the benefits of emission reductions and highlight the need for
integrated ozone mitigation strategies that jointly address emission controls and climate adaptation

in a warming world.
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1 Introduction

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton et
al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et
al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and
volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017),
exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a).
Controlling ozone pollution remains a global environmental challenge. In recent years, China has
implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control
Action Plan (2013-2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018-2020)
(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality,
particularly by reducing fine particulate matter (PM>5) (Geng et al., 2024; Zhang et al., 2019). However,
surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers
of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies
(Li et al., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022).

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather
conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022a). While
emission controls directly regulate precursor abundance, climate change modulates ozone through
chemical feedbacks, meteorological dynamics, and biosphere—atmosphere interactions (Ma and Yin,
2021; Xue et al., 2020). Over the past century, global surface temperatures have substantially increased
relative to the pre-industrial baseline (1850—-1900), driven largely by human activities IPCC, 2021). In
such a warming world, extreme climate anomalies — such as heatwaves and persistent rainfall shifts —
were expected to be intensified (Li et al., 2025a; Li et al., 2025b). These events were increasingly
recognized as critical modulators of ozone variability through their impacts on photochemistry and
precursor emissions (Gao et al., 2023; Pu et al., 2017; Wang et al., 2022a).

Quantifying the respective roles of anthropogenic emissions and meteorological variability in
driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al.,

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations
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in urban cluster regions in China — such as the Beijing—Tianjin—Hebei (BTH) and Yangtze River Delta
(YRD) — during the Phase I (2013 — 2017), with increases of approximately 28% and 18%, respectively
(Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone levels was
observed during 2018 — 2020, largely attributed to emission reductions (Li et al., 2021; Liu and Wang,
2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate a renewed
increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over the past
decade, the drivers of which remain poorly constrained.

Two main approaches have been applied to attribute air pollution trends: chemical transport models
(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks
(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). The CTMs simulate atmospheric composition based
on emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi,
2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or
meteorology, and can also resolve sector-specific impacts. However, these models face challenges,
including uncertainties and temporal lags in emission inventories. Statistical models, on the other hand,
rely on observational datasets and predictor-response relationships without requiring explicit emissions
or chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing
availability of atmospheric big data, machine learning models have emerged as useful tools for trend
attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng et al., 2023).
For instance, Grange et al. (2018) developed a random forest-based framework to isolate meteorological
influences on particulate matter. Similarly, Wang et al. (2023) used an enhanced extreme gradient
boosting (XGBoost) model to analyze spatial and temporal ozone patterns in China from 2010 to 2021,
confirming that emission reductions played a key role in recent declines. Other recent efforts have
extended statistical models to long-term assessments of air pollution drivers under climate change (Wang
et al., 2022b).

Here, we developed a machine learning-based model framework — fixed emission approximation
(FEA) — to quantify the relative contribution of anthropogenic emissions and meteorological conditions
in shaping summertime surface ozone trends in China. Applying the FEA to nationwide observational
data from 2013 to 2023, we identified three phases of ozone evolution corresponding to the major clean

air actions. We further analyzed short-term ozone anomalies associated with extreme weather events,
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such as the 2022 heatwave and seasonal rainfall. To characterize ozone production regimes, we integrated
satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO,, FNR) ratios from the tropospheric
monitoring instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation sensitivity
across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends from 1970 to
2023, using historical meteorological reanalysis data. Collectively, these analyses provide an integrated
understanding of how anthropogenic and climatic factors jointly shape surface ozone dynamics under a

warming climate.

2 Data and methods

2.1 Data sources and methodology overview

Figure 1 provides an overview of the data analysis and methodological framework employed in this
study. We first integrated multi-dimensional datasets, including hourly surface air pollutant
concentrations, meteorological reanalysis fields, and satellite remote sensing data. Hourly surface
observations of ozone, NO,, carbon monoxide (CO), and PM,s were accessed from the National

Environmental Monitoring Center of China through the open website https://air.cneme.cn:18007/ (last

accessed: May 20, 2024). Hourly meteorological data with a spatial resolution of 0.25° x 0.25° were
sourced from the ERAS reanalysis dataset provided by the European Centre for Medium-Range Weather

Forecasts (ECMWF) and are available for download at https://cds.climate.copernicus.eu (last accessed:

March 20, 2025). Detailed variables are listed in Table S1. The time variables — hour (hour of day) and
month (month of year) — are used as emission surrogates to capture regular diurnal and seasonal
variations in anthropogenic activity. A similar strategy is widely applied in previous studies about long-
term trends in air pollutants (e.g., Grange et al., 2018; Vu et al., 2019) to separate short-term cyclical
emission variability from long-term trends. For 2013 — 2014, the surface MDAS8 ozone data were
obtained from the Tracking Air Pollution in China (TAP) dataset (Geng et al., 2021), which can be
downloaded from http://tapdata.org (last accessed: May 20, 2024). The TROPOMI on the Sentinel-5P
satellite provides global continuous observation data for two indicators of ozone precursors: NO, and
HCHO column concentrations (Lamsal et al., 2014; Shen et al., 2019). The FNR was used as a proxy for

VOC/NOx reactivity and as a diagnostic indicator of ozone formation sensitivity (Sillman, 1995), to
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explain and verify the impact of extreme weather and anthropogenic emissions on ozone. Details of the

ozone sensitivity diagnostic method are provided in Text S1.

Air pollutants data Meteorological data TROPOMI data
Ground-based observation: ERAS reanalysis NO, column concentration
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Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional
datasets, including ground-based observations, meteorological reanalysis, and satellite remote sensing. A fixed
emission approximation (FEA) approach, developed based on the random forest (RF) model, is employed to
quantitatively disentangle the contributions of meteorological conditions (MET) and anthropogenic emissions (ANT)
to ozone trend variations, and its performance is compared with the conventional meteorological normalization
method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves
(HW) and prolonged rainfall (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to
diagnose ozone production sensitivity, to explain and verify the impact of extreme weather and anthropogenic
emissions on ozone. Finally, the FEA framework is extended to evaluate the long-term impacts of climate change on

ozone trends since 1970.

2.2 Machine learning-based FEA approach

In this study, we develop a machine learning-based FEA approach to assess the impacts of
meteorological factors and anthropogenic emissions on the year-round variations in ozone concentrations
(Fig. 1). First, a regression model is constructed using the random forest algorithm to relate ozone
concentrations to temporal emission surrogates and to meteorological parameters at multiple atmospheric

levels. These temporal emission surrogates, including month and hour, represent short-term regular
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emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-
driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et al.,
2019). The meteorological parameters include 18 distinct variables at different altitudes (see Table S1).
It should be noteworthy that surface air pollutant observations for each city represent multi-site averages
rather than data from a single monitoring station, which reduces the influence of local representativeness
uncertainty. The meteorological data are obtained from the nearest grid cell corresponding to each city,
ensuring spatial consistency between the pollutant and meteorological datasets. This approach was
similar to the methodologies widely adopted in previous studies (Shi et al., 2021; Wang et al., 2025; Yao
et al., 2024; Zheng et al., 2023). Our modeling strategy involves building and predicting models for
individual cities and for each year from 2015 to 2023, which helps in minimizing the uncertainty caused
by surface heterogeneity. Due to the lack of available observational data for many cities in 2013 and
2014, we did not develop models for these two years. In our approach, 80% of the dataset is used for
model training, while the remaining 20% is reserved for testing. We perform ten-fold cross-validation
and assess model performance using seven statistical metrics, as listed in Table S2.

Following the construction of the machine learning models for individual cities and years, we
introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone
precursors remain unchanged from the baseline year. Specifically, we establish hourly-resolution models
for the baseline year (i) during the summer season (June to August) as a reference for anthropogenic
emissions, represented by the pink solid line in Fig. 1. These models are then applied to predict ozone
concentrations under the meteorological conditions of the prediction year (;), while holding the emission
levels constant at those of the baseline year (i), as shown by the blue solid line in Fig. 1. The difference
between the predicted values (Pred;) and the observed values (OBS;) for the baseline year (i) represents
the model residuals (RES;), as shown in Eq. (1). The difference in observed MDAS ozone concentrations
between baseline year i and prediction year j is driven by the differences in meteorological conditions
MET;;y and anthropogenic emission controls ANT;;) (Eq. 2).The prediction result Pred;(;, obtained
by applying the model trained with data from year i to the meteorological conditions of year j, the
difference between Pred;(;y and Baseline (Pred,) is driven by MET;(;, while the difference between
Pred;(;, and the observed levels in year j (OBS;), minus the RES;, yields the ozone variation driven by

(ANT;(j)). Therefore, MET;;y and ANT;;) can be quantified and calculated using Eqgs. (3-4).
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OBS; = Pred; + RES; , (1)

METL(J) = PT@di(j) — Predi, (3)

The difference in observed MDAS ozone concentrations between two different prediction years (j;,
J2) is driven by the differences in meteorological conditions (AMET;(jy,j>)) and anthropogenic emission
controls (4ANTj1,j2)) (Eq. 5). The term AMET;;y j,) represents the changes in meteorological
conditions and can be calculated by the difference between the predicted values, Pred;;;) and
Pred;jz, for the corresponding years (Eq. 6). Similarly, the value of AANTj;q ), representing the
change in anthropogenic emissions between the two years j; and />, can be therefore calculated using Eq.
(7). By performing these calculations, we can isolate and quantify the contributions of meteorological
conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix
research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method

S2.
AOBS(j1 12 = AMETy(j1 j2) + AANTyj1 oy 5)
AMETy s j2) = Predy(jz — Pred; s, (6)
AANT;jy j2y = ANTy(jy — ANTy(j1y = (0OBSj, — Pred;(,y — RES;) — (0BS;; — Pred(j1y — RES;)

= (OBSJZ — OBS]1) — (Predi(jz) — Predi(jl)) R (7)

Model performance was first evaluated through ten-fold cross-validation, revealing high predictive
skill between observed and predicted MDAS ozone levels during 2015-2023 in the BTH regions (Fig.
S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation coefficients (R) between
0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias (NMB) varied from 16.9 to
21.9 pgm= and 8 to 25%, respectively, indicating high model accuracy. Nationally, the model yielded R
values of 0.88—0.91 and IOA of 0.93—0.95, with errors remaining within acceptable ranges (Tables S3—
S8). To assess uncertainty stemming from interannual model training variability, we applied a matrix-
based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in residuals ranged

from -9% to 3%, and remained within £12% for all regions — supporting the robustness of the FEA

8
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method. Notably, inclusion of time-related variables could reduce model uncertainty compared to
simulations excluding these predictors. The average uncertainty decreased by approximately 2—4% at the

regional-mean level (Fig. S3).
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Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the
approach described in Text S2. The x-axis represents the years used for model training, and the y-axis represents the
years predicted by the trained model. The diagonal line in each sub-panel represents the changes in the residuals of

the models.

2.3 Weather normalization analysis

To compare the FEA method with other commonly used statistical approaches, we also applied the
widely adopted meteorological normalization technique based on the RF algorithm (Grange et al., 2018;
Vu et al., 2019). This approach constructs a regression model that relates air pollutant concentrations to
meteorological parameters and emission surrogate indicators (i.e., time variables such as unix time, day
of year, day of month, and hour of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained,
air pollutant concentrations are predicted by randomly resampling meteorological variables from long-
term historical meteorological datasets, thereby generating a new ensemble of predictions (Vu et al.,
2019). These predictions are made under consistent meteorological conditions, enabling the isolation of
meteorological influences from anthropogenic emission effects on air pollutant trends. The resulting
weather-normalized pollutant concentrations (Fig. 1) represent the levels expected under average
meteorological conditions, thus reflecting the impact of emission changes alone. In this study, the

meteorological normalization follows this established framework, with meteorological variables
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randomly sampled from the long-term dataset spanning 1970-2023. Each normalization process involves
1,000 iterations, and the arithmetic mean of these iterations' simulated values was adopted as the final
normalized result. The alignment between FEA-based and weather-normalized trends (Fig. S4) affirms

the robustness of the FEA framework.

2.3 Quantification of extreme weather-driven changes in ozone

An unprecedented and persistent heatwave struck central and eastern China during the summer of
2022, with the YRD experiencing the most severe impacts (Wang et al., 2023b; Zhang et al., 2023). This
event has been identified as the longest-lasting and most intense heatwave since at least 1961 (Mallapaty,
2022). In contrast, the Yangtze-Huaihe region is climatologically prone to sustained extreme precipitation,
where prolonged rainfall episodes frequently occur during the East Asian summer monsoon (Yin et al.,
2020). Together, the extreme heatwave (HW) in 2022 and recurrent prolonged rainfall (PR) events
provide unique and physically realistic atmospheric conditions to investigate the impacts of typical
weather extremes on surface ozone.

To quantify the contributions of extreme meteorological conditions to ozone variability, we applied
the SHapley Additive exPlanations (SHAP) method (Lundberg et al., 2020) to interpret predictions from
the random forest model. SHAP assigns an importance value to each input feature &, representing its
marginal contribution to the model-predicted MDAS ozone. The PR period was defined as 15 June to 15
July for each year, while the remaining period from June to August was classified as the non-prolonged
rainfall (NPR) period. The HW event in 2022 was defined as 16 July to 31 August, with the same calendar
period in other years designated as non-heatwave (NHW) conditions.

SHAP values were calculated for all input features during the PR and NPR periods, as well as during
the HW and NHW periods, respectively. The relative changes in SHAP values (ASHAP) between these
conditions were used to assess the responses of MDAS ozone to the rainy season or the 2022 heatwave
weather conditions, as per the following Eqs:

ASHAP,, = SHAPpi — SHAPypg (8)

ASHAP,, = SHAP,y, — SHAPy .y 9)

2.5 FEA-based assessment of climate change impacts on ozone

To evaluate the long-term impact of climate change on surface ozone concentrations across
10
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China from 1970 to 2023, we extended the framework of our machine learning-based FEA method.
The core idea of this analysis is to isolate the influence of long-term meteorological variability on
ozone while assuming fixed anthropogenic emissions. Given the availability of relatively complete
and continuous hourly ozone observations and meteorological data from 2015 to 2023, this period
was used to construct nine emission baseline scenarios. Following the modeling protocol described in
Section 2.2, nine independent random forest models were trained for each city and scenario, with each
year from 2015 to 2023 serving as an emissions reference. Model inputs included hourly ozone
observations, key meteorological predictors, and time-related variables (hour of day and month of year).
The trained models were then applied to historical meteorological reanalysis data from 1970 to 2023 to
simulate ozone trends under fixed emissions (Fig. 1), yielding nine independent ozone trajectories, each
reflecting the influence of long-term meteorological variability under a different fixed-emissions
assumption. While the choice of emission baseline may affect the absolute magnitude of simulated ozone,
it does not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers
over multidecadal timescales (Lecceur et al., 2014; Leung et al., 2018; Wang et al., 2022b). This approach
could capture the climate-induced ozone signal while adopting the common assumption that emissions
are not themselves influenced by climate change — a simplification consistent with prior attribution
studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022b). For comparison,
we also estimated the impact of anthropogenic emission changes on ozone concentrations during 2015—
2023 using the same FEA methodology and the complete hourly dataset for model training. This dual-
track analysis enables a clear distinction between the impacts of climate variability and emission
mitigation on observed ozone trends.

To examine the sensitivity of urban ozone pollution to climate variability under different potential
atmospheric conditions (e.g., oxidation capacity) and its possible evolution under global warming, we
defined three representative regional scenarios based on typical ozone pollution characteristics in China
(Fig. 3a): a high-pollution scenario for BTH (BaseBTH), a moderate-pollution scenario for YRD
(BaseYRD), and a low-pollution scenario for Pearl River Delta (PRD) (BasePRD). These scenarios allow
assessment of ozone trends and climate impacts under fixed emissions across three distinct atmospheric

conditions.

11
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3 Results and Discussion

3.1 Spatiotemporal variation of summertime ozone

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum daily
8-hour average (MDAS) ozone, surface NO, and TROPOMI NO,, HCHO column concentrations across
China, along with the locations of the country’s five typical city clusters: BTH, Fenwei Plain (FWP),
YRD, Sichuan Basin (SCB), and PRD. Across these five city clusters, the average summer ozone
concentrations ranged from 88.9 to 161.3 ugm= — substantially exceeding the 43.0 ngm= threshold
associated with ecosystem productivity loss (Gong et al., 2021) and the World Health Organization
(WHO, 2021) recommended peak seasonal average of 60 ug m=. TROPOMI satellite observations of
NO; column concentration show notably elevated concentrations over the five city clusters, particularly
in the BTH, YRD, and FWP, which align with surface NO, distribution patterns and confirm the scale of
anthropogenic NOx emissions in these regions (Zheng et al., 2021). TROPOMI satellite observations of
HCHO column concentrations similarly reveal these city clusters as hotspots for VOC emissions (Fig.
3d). These concurrent high levels of NO, and HCHO suggest a strong photochemical ozone pollution
potential, as the abundant precursors in these urban clusters could drive substantial ozone production

during the summer months.
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Figure 3. Spatial distribution of summertime MDAS ozone, surface NOz, and TROPOMI NO;, HCHO across

major city clusters in China. The panels represent the average MDAS8 ozone, surface NO2, and TROPOMI NO»,
HCHO column concentrations for 354 cities in China during the summertime (June-August) from 2018 to 2023.
The corresponding five regions includes BTH (37°-41°N, 114°-118°E); YRD (30°-33°N, 118.2°-122°E); SCB
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(28.5°-31.5°N, 103.5°-107°E); PRD (21.5°-24°N, 112°-115.5°E) and FWP (106.25-111.25°E, 33-35°N, and
108.75-113.75°E, 35-37°N).

Figure 4 presents the interannual variations in MDAS8 ozone concentrations during summertime
across China, with a focus on the five city cluster regions. During the Phase I (2013-2017), the average
nationwide MDAS ozone increased significantly (p <0.01), rising from 95.5 to 118.0 ug m=. This growth
was especially pronounced in the BTH and FWP regions, where the concentrations increased by
approximately 38% and 41%, respectively. In contrast, ozone increases were more modest in the YRD
(~11%), SCB (~15%), and PRD (~16%) regions, respectively. These results were consistent with the
previous studies (Li et al., 2021; Liu and Wang, 2020a, 2020b; Wang et al., 2023a). Corresponding to the
implementation of more stringent emission controls on NOy and VOCs emissions during the Phase II
(Geng et al., 2024; Liu et al., 2023), a moderate national decrease in MDAS8 ozone was observed, with
concentrations declining to 109.0 pg m= from 2017 to 2020. The declines during this period were most
notable in FWP (—16%) and YRD (—15%), while BTH (—6%), SCB (—11%), and PRD (—4%) also showed
reductions compared to their concentration peaks observed in 2017. However, the MDAS ozone
rebounded, reaching 118.4 ugm= in 2023 — comparable to its 2017 peak — with a particularly sharp
increase during the summer of 2022. From 2021 to 2023, MDAS ozone concentrations rose by 2.8 ug m=
in BTH, 3.1 ugm™ in FWP, 16.1 uygm= in YRD, and 18.5 ug m= in SCB, respectively.

Figure S1 further illustrates the spatiotemporal evolution of summertime MDAS ozone in China
from 2013 to 2023. On average, approximately 68% of the cities exceeded the WHO air quality guideline
of 100 pg m3 for the MDAS ozone. Elevated ozone levels were primarily observed in densely populated
and economically developed regions. Spatially, ozone hotspot regions expanded between 2013 and 2017
(Fig. S1 a-e), followed by contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in
2021. A sharp reversal was observed in 2022, with widespread increases in MDAS ozone (Fig. S1 k).
These changes could be closely linked to emission control measures and meteorological conditions,

which will be further discussed in Sections 3.2 and 3.3.
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Figure 4. Interannual trends of summertime MDAS ozone across China (2013-2023). a the seasonal variations
of MDAS ozone during the summer months (June, July, and August) over China. b-f the average trend across the
five city cluster regions in China: BTH, FWP, YRD, SCB, and PRD, respectively. The summer months are defined
according to meteorological seasonality, encompassing June, July, and August. In the violin plots, hollow diamond
markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall test and Sen's slope
estimator were employed to assess the statistical significance and rate of change in the monthly average MDAS
ozone concentrations. The p value represents the significance level from the Mann-Kendall test, which is used to

determine the statistical significance of the trend in the data.

3.2 Anthropogenic emission drivers of ozone trends

To disentangle the relative impacts of anthropogenic emissions and meteorological variability on
observed ozone trends, we applied the machine learning-based FEA framework described in Section 2.2.
As illustrated in Fig. 5, anthropogenic emissions were the dominant driver of ozone increases during
2013-2017, contributing an average rise of approximately 23.24 1.1 pgm= nationwide. The most
pronounced increases occurred in the FWP and BTH (45.0+£2.0 ugm= and 42.1+£2.0 ugm=,
respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 £ 1.6 ug m>), reflecting
its predominantly NOy-limited photochemical regime versus VOC-limited regimes in other regions (Ren

et al., 2022). As shown in Fig. S5, the precursor gases NO; and CO exhibited regionally distinct
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decreasing trends, partially explaining the spatial heterogeneity of ozone changes. The MDAS ozone
decreased by 10.5+2.0 uygm= in BTH and 10.4 + 3.0 ug m> in FWP, with smaller declines in YRD (-
4.8+3.8 ugm>), SCB (2.8 £2.4 pgm>), and PRD (6.6 + 1.4 ng m>) between 2017 and 2020 (Fig. 5).
These trends were overall consistent with those derived using independent statistical approaches (Wang
et al., 2023). The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation
to anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and
transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO,, NOy, PM, 5, and
VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 1.07 Tg
(12%), respectively, relative to the same period in 2019 (Geng et al., 2024). Despite these reductions,
MDAS ozone concentrations increased by 1.7-2.3 pg m= across BTH, FWP, YRD, and SCB, while a
slight decrease occurred in PRD (Fig. S6). Overall, ~79% of monitored cities experienced ozone
increases, with a national mean enhancement of 2.1 + 1.3 pug m= (Fig. S7). In the post-pandemic period
(2020-2023), concentrations of NO», CO, and PM s stabilized or declined more gradually (Fig. S5), and
the contribution of anthropogenic emissions to ozone variability weakened considerably (Fig. S8).
Regionally, emission-driven changes ranged from —1.2 to +2.6 ugm= in BTH, 1.6 to +4.0 pgm™ in
FWP, 4.7 to +7.4 uygm= in YRD, -3.6 to +3.0 pgm3 in SCB, and 3.8 to +7.7 ug m= in PRD. These
results indicate that while emission controls initially yielded substantial ozone mitigation benefits during
the Phase II, their effectiveness has gradually diminished, underscoring the need for more targeted and

region-specific emission control strategies under evolving photochemical regimes.
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Figure 5. Anthropogenic and meteorological drivers of 0zone trends from 2013 to 2023. Changes in summertime
MDAS ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological
variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015—
2023) for emissions. The interquartile range, with values in parentheses denoting the 25th and 75th percentiles across

all baseline scenarios.

Satellite retrievals of tropospheric NO; and HCHO from TROPOMI (Figs. S9-S10) further reveal
evolving ozone production chemistry. NO, columns exhibited strong east-west gradients, with eastern
China maintaining levels five times higher than the west. Between 2018 and 2023, NO; columns over
the North China Plain (NCP) declined from 4.13 x 10" to 3.85 x 10'3 molecules cm2, while HCHO
remained stable until 2021, followed by a sharp increase in 2022. The spatial pattern of temperature
anomalies between heatwave and non-heatwave periods (Fig. S11) reveals strong positive differences in
the YRD and SCB, consistent with enhanced biogenic and anthropogenic VOC emissions under extreme
heat (Qin et al., 2025; Tao et al., 2024). By 2023, HCHO concentrations had returned to pre-heatwave
levels. To diagnose the evolving chemical sensitivity of ozone production, we examined the
spatiotemporal evolution of the HCHO/NO: ratio (Text S1). Figure S12 shows that this ratio exhibited
regionally distinct transitions from 2018 to 2023, reflecting shifts in photochemical regimes. Figure 6
summarizes the relative contributions of VOC-limited, NOx-limited, and transitional regimes across the

five key regions. In BTH, NOx-limited areas accounted for ~82% of the domain in 2018 and remained
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above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, summertime
ozone formation was largely controlled by NOx-limited and transitional regimes. The YRD underwent a
notable shift from VOC- to NOy-limited chemistry, with VOC-limited fractions decreasing from ~35%
in 2018 to ~22% in 2023, particularly during 2022 when extreme heat amplified VOC emissions and
photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB region consistently exhibited strong
NOx limitation (>75%), whereas the PRD showed a gradual expansion of the transitional regime
alongside a modest contraction of VOC-limited regions. These shifts in photochemical sensitivity
correspond well with the ozone decrease observed during the Phase II emission reductions. Spatial
distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) reveal that most
of China was in a transitional regime, with major urban clusters remaining VOC-limited and only limited
areas in southern China being NOy-limited. This spatial pattern aligns with the observed widespread
ozone increases during the lockdown (Fig. S7). These findings highlight that ozone production chemistry
in China was shaped by the complex interplay between emission reduction efforts and the rising

frequency of meteorological extremes under a warming climate.

a c VOC-limited Transitional NOy-limited b c

2T 10 2a 10

© = T =

EZ 03 EL o5

°3 28

2 £ 06 2 E 06

o D o o

S 2 04 52 04

= G 2

c .2 024 c .z 024

22 £

85 00 S £ 00

© O o O

28 T T T T T 23 T T T T T
cr: — ch

20 10 Sm 10

Bg B9

:§ b 0.8 § :m; 0.8

Q

2 E 06 2 E 0.6

o O o O

S 2 04 S L 04

= =

c .2 024 c 2 024

52 52

S8 0.0 T T T T T 28 00 T T T T T
e fo 2

S8 10 S 210

1 By 8

é;‘”: 0.8 §_§g°-8—

2 g 06 28506

R S>%

S 2 04 £ 004

S 2 S5E 9

c > 02 c2 502

2% 29 =

8 S 00 8% T 00

° 3 T T T T T 3 T T T T T

T © 2018 ' 2019 ' 2020 ' 2021 ' 2022 ' 2023 & 2 2018 ' 2019 ' 2020 ' 2021 ' 2022 ' 2023

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-
limited, and transitional ozone sensitivity regimes across five key regions during the summertime (June to August)
from 2018 to 2023, based on the FNR analysis. a-e the trend across the five city cluster regions in China during the
summer months (June, July, and August): BTH, FWP, YRD, SCB, and PRD, respectively. f the overall trends for all

five regions.
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3.3 Meteorological impact on ozone variation

Figure 5 shows the interannual meteorological contributions to summertime MDAS8 ozone across
different emission-control phases. During the Phase I, meteorology exerted relatively weak influences
on ozone variability, with contributions ranging from —4.8 to +3.9 ug m>—far smaller than those from
anthropogenic emission changes. In contrast, meteorological anomalies became a decisive factor from
2017 to 2020, driving substantial ozone reductions. Ozone decreases attributable to meteorology reached
—14.4 £ 3.0 ug m™ in the FWP, —15.9 + 3.8 uyg m= in the YRD, and —11.1 + 2.4 ug m= in the SCB,
explaining 58 + 12%, 77 £ 18%, and 80 + 17% of the total ozone decline, respectively. A notable shift
occurred from 2020 to 2023, when the influence of extreme meteorological events increasingly
dominated ozone variability. In the summer of 2022, persistent heatwaves across eastern and southern
China (Mallapaty, 2022; Wang et al., 2023b) triggered sharp ozone increases of +20.8 + 3.6 ug m ~ in
the YRD and +22.1 + 3.2 ug m™ in the SCB, reflecting the enhanced photochemical activity under high-
temperature and intense solar radiation conditions. The following summer (2023) featured anomalously
heavy rainfall, resulting in sharp ozone suppression (—17.8 = 2.3 ug m™> in the YRD and -9.7 + 3.3 pug
m~3 in the SCB). This reduction coincided with a remarkable increase in precipitation, i.e., 102% in YRD
and 35% in SCB (Fig. S14), indicating that rainy meteorological conditions may have suppressed ozone
production.

To identify the dominant meteorological drivers, we analyzed Gini importance scores derived from
the RF model across 18 predictor variables (Fig. S15). Temperature (7) emerged as the most influential
predictor in the BTH and FWP regions, while shortwave solar radiation (SR), relative humidity (RH),
and 850hPa zonal wind (u850) were most important in the YRD. In the PRD, ozone variability was
primarily governed by temperature and transport-related indices, including meridional winds at different
altitudes. These findings are consistent with the climatological contrast between northern continental and
southern coastal regimes: in northern China, stagnant anticyclonic conditions (Gong and Liao, 2019) and
strong solar radiation promote photochemical production (Bao et al., 2025), whereas in southern regions,
high humidity and convective rainfall could tend to suppress ozone by reducing actinic flux and
enhancing removal of precursors(Lu et al., 2019).

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to key

meteorological factors (T, RH, and SR) for representative cities in each cluster, revealing clear regional
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contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to 7 (Fig. S16a),
consistent with the enhancement of reaction kinetics and biogenic VOC emissions under hot conditions.
This behavior reflects the thermodynamic coupling between surface heating, boundary-layer expansion,
and photochemical production. In Nanjing (YRD), ozone was more sensitive to solar radiation than to
temperature (Fig. S16c), highlighting the dominant role of actinic flux in controlling radical production
during warm and dry conditions. Consistent with these findings, Yang et al. (2024) reported that high-
temperature and low-RH conditions over the NCP and YRD could enhance photochemical ozone
formation, with chemical production dominating during peak pollution periods. In the SCB, both T and
RH exhibited strong influences, while ozone variability was shaped primarily by 7 and large-scale
circulation patterns in the PRD associated with subtropical maritime flow and typhoon incursions from
the Northwest Pacific (Chen et al., 2024; Wang et al., 2024a; Wang et al., 2022a).

To further quantify these relationships, we applied SHAP (SHapley Additive exPlanations) analysis
to evaluate the meteorological influence of the HW and the PR events in the Yangtze-Huaihe region
between 2015 and 2023 (Section 2.4). As shown in Fig. S17, the HW events were associated with strong
positive SHAP values in southeastern coastal areas, especially the YRD and SCB, driven by elevated SR
and 7. Mean SR during the HW periods was substantially higher than during the NHW periods (Fig.
S18), increasing photochemical activity through increased radical generation and faster reaction rates.
Conversely, PR events produced consistent negative SHAP contributions across all regions (Fig. S19),
reflecting the combined effects of reduced photolysis, increased humidity, and efficient wet scavenging
on ozone production (He and Carmichael, 1999). A multi-year comparison (Fig. 7) highlights the
opposing effects of key meteorological variables — including RH, 7, boundary layer height (BLH), total
precipitation (TP), and surface pressure (SP) — on MDAS ozone. The trend in A SHAP values under
high-humidity conditions from 2015 to 2023 (Fig. S20) further confirms the model’s ability to capture

the suppressive effects of wet weather conditions on ozone formation.
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Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather
conditions. a the differences in SHAP values (ASHAP) between heatwave and non-heatwave periods in the Yangtze-
Huaihe region during summer 2022. b theASHAP between prolonged rainfall periods and non-prolonged rainfall
periods in the same region from 2015 to 2023. Box plots show the distribution of ASHAP across cities; the center
line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and the whisker line extends

to one standard deviation.

3.4 Reshaping distributions of ozone by climate change and emission controls

To assess the long-term influence of climate change on surface ozone concentrations, we applied
the FEA framework to simulate summertime ozone trends over the period 1970 — 2023. In this analysis,
anthropogenic emissions were held constant at their 2015 — 2023 summertime levels, while interannual
variations in meteorological variables were introduced using historical reanalysis data. This design
isolates the climate-driven component of ozone trends while assuming that emission trajectories are
independent of climate change — a simplification aligned with prior attribution frameworks (Wang et al.,
2022b). The impact of anthropogenic emission controls was estimated by comparing observed ozone
concentrations with FEA-predicted values during 2015 — 2023, thereby quantifying the residual effect of
emissions under fixed meteorology.

As shown in Fig. §, under the 2015-2023 emission levels, climate change has exerted a statistically
significant (p < 0.05) positive influence on urban summertime ozone concentrations across China,
resulting in a nationwide increase of approximately 0.06 ug m=> yr~! since 1970. All five major urban
regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at
0.12 pgm= yr!. Three sensitivity simulations (see Section 2.5 and Fig. S21) confirm this robustness:
trend slopes range from 0.11-0.14 pg m= yr! in BaseBTH (high-pollution scenario), 0.05-0.10 pg m™
yr! in the BaseYRD (moderate-pollution scenario), and 0.03—0.10 pg m= yr! in the BasePRD (low-

pollution scenario). Despite regional differences in chemical regimes or pollution levels, the consistent
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upward tendencies underscore the pervasive climatic amplification of ozone formation. These results
emphasize that climate change acts as a systematic driver of ozone growth across diverse atmospheric
environments, reinforcing the need to embed climate resilience within emission control strategies. Spatial
correlations between climate-driven ozone increases and temperature changes (Fig. S22) further confirm
that warming is the dominant contributor to long-term ozone enhancement. In particular, the correlation
coefficients between ozone trends and temperature anomalies reached 0.90 (BTH), 0.89 (FWP), 0.72
(YRD), and 0.93 (SCB), indicating a strong temperature dependence of climate-induced ozone formation
in these regions. The PRD showed a weaker correlation, likely due to its unique subtropical maritime
climate and higher humidity and cloud cover, which tend to suppress photochemical ozone production
(Yang et al., 2019). The right panel of Fig. 8 depicts summertime ozone trends from 2015 to 2023 under
the combined influence of anthropogenic emissions, derived from the FEA method. Ozone
concentrations rose across all regions between 2015 and 2018, declined modestly during 2018-2020, and
rebounded thereafter in most regions except the PRD.

These findings are consistent with future projections that anticipate more frequent high-ozone
episodes under continued warming (Li et al., 2023). Recent analyses (Yang et al., 2024) show that the
frequency of high-temperature and low-humidity conditions during 2000-2019 was markedly higher than
in 1980-1999, suggesting that ozone pollution in both the NCP and YRD has intensified under historical
climate change. Indeed, while national emission controls curbed ozone growth after 2018, a post-2020
rebound has emerged, implying that the climatic penalty on ozone is beginning to offset emission gains.
The extreme 2022 heatwave exemplified this effect, substantially enhancing photochemical activity and
shifting ozone sensitivity from VOC-limited to transitional or NOy-limited regimes. Although reductions
in anthropogenic precursor emissions have improved ozone control efficiency, the warming-induced
enhancement of ozone increasingly interferes with — and in some regions may partially offset — the air-

quality gains achieved through emission reduction efforts.

21



501
502

503
504
505
506
507
508

509

510

511

512

513

514

515

516

517

518

519

a g7 — 12 bizs — 25 G110 — 20
27 ] Slope=0.06 ygm 2 - - Slope=0.12uygm @ r | Slope=0.06 ygm 2 r
E g4 _| pvalue =0.0034 -9 120 —{ p-value = 0.0035 =20 105| Prvalue =0.1475 15 5
o 84— r - r 2
= r 7 o 5
e Le 115 _| 15 1 -3
2 g1 H — bt o [ 10 100 o5 & o
B L B [ &
£ ? o 3 110 | H pa g ¢
s l * 14 ol [ 5 1 0? T, 53
2 () o r 7 o o — o [} o — @
£, % 59 ° k0 s o leage2l| | 6% % 31l so 2050 L 3s
5 12 e T s 11920 © o 0 | 0 |1® o0 L5 &8
2 75| 60 o L-3 100 {1 ° F 90 o805 o0 & r 3%
° L 1 ° L5 L10 3 @
3 {®0 ee®? 4 il 6 o5 1940 &% L ] o 9o e [ 8 s
Sl © o° ° [ e L -10 a5 © 00 o L15 § 5
2 r B ° [ L =
5] L -9 90 —| o [ .15 J H P L-20 &
[ _ r 7 L i L 3
g e [ -12 85| [ 20 80 [ 25 —
S 1 China 1 BTH[ ] FWP[
86 | e 15 804 25 I 30
O SO P ° 9P O S SO P N W% PR SRS SR N >
N S SN S o NS S S ) o R S N S Y o
d 100 — 12 ®o — 15 T — 15
27 | Slope=0.11pgm @ r | Slope =0.12pygm @ [ 12 | Slope=0.03ugm 2@ [ 12
£ p-value = 0.0022 =9 p-value = 0.0049 r p-value = 0.0577 ~ >
> 95 90 | [ 65 L z
= r — Ed
EX [ 6 Lo Lo 3
[}
2 90| - [ 1 [ B
£ st °o o3 fe 60 | o © o 56 ‘s §
° 7 ° e L [ 3 o &P o [ 3 & 3
T 85 ° ° o 1% 69, ® e 3
£ of C r 00%% B 0o |° o[, 2§
s 4 o & o oo - Lo 55—0M o0 § 8
2800 050 o 3 F TV ° o g 8
1 o B o o -
g P o5 9%° & 7 [ e ©o G M o r® oge
° %52, |6 [ 6 50 | © “o ° ° [, 22
2 75° o0 = [ o - s ©
] o Lo L 4 L =
5 4 ° lo L -9 9 «
e 70 r H 454 L 3
S -12 L -12 | L2 —©
o 7 YRD- 7 SCBt PRD |
-3 ISR | M IS 60 L L 15 ol b s
PO SR SR S i PO MR MR SRR Y SRS SR R SR S
S S S S ) o NS S S S Y o SR S N S Y >

Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends
attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA
framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission
controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate
the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the
5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-

Kendall test. More details of the sensitivity tests are provided in Fig. S18.

4 Conclusions and implications

In this study, we developed a machine learning-based FEA framework to disentangle and quantify the
respective roles of anthropogenic emissions and meteorological drivers in shaping ozone trends during
2013-2023. With a national-level prediction uncertainty of approximately 6%, the FEA method provides
a computationally efficient and scalable tool for diagnosing atmospheric variability across large spatial
and temporal domains. However, the current model framework did not explicitly resolve grid-scale
spatial heterogeneity, vegetation feedbacks, or land-use dynamics, which may influence the ozone
prediction. In addition, the sensitivity of the results to spatial resolution need further investigation
through coupled applications of machine learning and chemical transport models.

Our results revealed that increased anthropogenic emissions were the dominant driver of the sharp

rise in summertime MDAS ozone concentrations during the Phase I, contributing an average increase of
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23.241.1 pgm=. In contrast, the strengthened clean air actions during the Phase Il — particularly the
synergistic control of NOy and VOCs — led to measurable reductions in MDAS ozone, with national-
average declines of 4.6 £ 1.5 ugm= from 2017 to 2020. These improvements were especially evident in
regions such as BTH and FWP, where ozone formation was highly sensitive to VOCs. However, the
impact of emission reductions diminished considerably during the recent period (2021-2023). This
stagnation underscores the urgent need for more targeted, region-specific emission control strategies that
address the shifting photochemical sensitivity of ozone formation regimes.

Using the SHAP attribution analysis, we further quantified the influence of meteorological extremes
on ozone variability. Record-breaking heatwaves in 2022 enhanced ozone concentrations by up to +5.8
ug m=3, while prolonged pluvial episodes, particularly during the East Asian monsoon season, suppressed
ozone by as much as —15.2 pg m>. These results highlight the dominance of short-term meteorological
extremes in shaping ozone air quality under a warming climate. Complementary satellite-based FNR
diagnostics revealed that from 2018 to 2023, summertime ozone formation was predominantly
influenced by NOx-limited and transitional regimes, while VOC-limited areas experienced a decline.The
2022 heatwave induced regime shifts in regions such as the YRD, where intensified VOC emissions and
elevated temperatures drove transitions toward NOx-limited conditions. These findings emphasize the
need for dynamic, region-specific assessments of 0zone sensitivity to guide effective mitigation strategies.

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term
trends from 1970 to 2023 by fixing emissions and allowing meteorological variables to evolve with
observed climate trends. Our findings show that climate change has contributed to a significant upward
trend in urban summertime ozone, averaging 0.06 ug m yr!, with particularly strong increases in the
BTH and SCB. Good correlations between the modelled ozone and surface temperature (» = 0.72-0.93)
across major urban clusters indicated that climate warming exerts a persistent control on the long-term
evolution of ozone. While reductions in precursor emissions have improved ozone control efficiency, the
direct enhancement of ozone by rising temperatures increasingly interferes with, and in some regions
may partially offset, the air-quality benefits achieved through emission mitigation. Together, these
findings highlight that effective ozone management in a warming world will require integrated strategies

that jointly address emission reductions and climate adaptation.
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