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Abstract. Surface ozone, a major air pollutant with important implications for air quality, 21 

ecosystems, and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. 22 

Here, we developed a machine learning-based approach, namely the fixed emission approximation 23 

(FEA), to decouple the effects of meteorological variability and anthropogenic emissions on 24 

summertime ozone trends in China under the clean air actions. Anthropogenic emissions drove an 25 

approximately +23.2 ± 1.1 μg m⁻3 increase in summer maximum daily 8-hour average ozone during 26 

2013–2017, followed by an approximately −4.6 ± 1.5 μg m⁻3 decrease between 2017 and 2020 in 27 

response to strengthened emission controls. In contrast, meteorological anomalies, including 28 

heatwaves and rainfall conditions, emerged as substantial drivers of ozone variability during 2020–29 

2023. Satellite-derived formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile 30 

organic compounds-limited regimes for ozone production, with a shift toward nitrogen oxides-31 

limited sensitivity under influence of heatwaves. Extending the FEA framework to assess long-term 32 

climate influences from 1970 to 2023, we find that sustained climate warming has driven a 33 

substantial increase in urban summertime ozone in China. These results demonstrate that climate 34 

change was increasingly offsetting the benefits of emission reductions and highlight the need for 35 

integrated ozone mitigation strategies that jointly address emission controls and climate adaptation 36 

in a warming world.37 
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1 Introduction 38 

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton et 39 

al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et 40 

al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and 41 

volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017), 42 

exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a). 43 

Controlling ozone pollution remains a global environmental challenge. In recent years, China has 44 

implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control 45 

Action Plan (2013–2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018–2020) 46 

(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality, 47 

particularly by reducing fine particulate matter (PM2.5) (Geng et al., 2024; Zhang et al., 2019). However, 48 

surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers 49 

of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies 50 

(Li et al., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022). 51 

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather 52 

conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022a). While 53 

emission controls directly regulate precursor abundance, climate change modulates ozone through 54 

chemical feedbacks, meteorological dynamics, and biosphere–atmosphere interactions (Ma and Yin, 55 

2021; Xue et al., 2020). Over the past century, global surface temperatures have substantially increased 56 

relative to the pre-industrial baseline (1850–1900), driven largely by human activities (IPCC, 2021). In 57 

such a warming world, extreme climate anomalies – such as heatwaves and persistent rainfall shifts – 58 

were expected to be intensified (Li et al., 2025a; Li et al., 2025b). These events were increasingly 59 

recognized as critical modulators of ozone variability through their impacts on photochemistry and 60 

precursor emissions (Gao et al., 2023; Pu et al., 2017; Wang et al., 2022a). 61 

Quantifying the respective roles of anthropogenic emissions and meteorological variability in 62 

driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al., 63 

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations 64 
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in urban cluster regions in China – such as the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta 65 

(YRD) – during the Phase Ⅰ (2013 – 2017), with increases of approximately 28% and 18%, respectively 66 

(Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone levels was 67 

observed during 2018 – 2020, largely attributed to emission reductions (Li et al., 2021; Liu and Wang, 68 

2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate a renewed 69 

increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over the past 70 

decade, the drivers of which remain poorly constrained. 71 

Two main approaches have been applied to attribute air pollution trends: chemical transport models 72 

(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks 73 

(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). The CTMs simulate atmospheric composition based 74 

on emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi, 75 

2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or 76 

meteorology, and can also resolve sector-specific impacts. However, these models face challenges, 77 

including uncertainties and temporal lags in emission inventories. Statistical models, on the other hand, 78 

rely on observational datasets and predictor-response relationships without requiring explicit emissions 79 

or chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing 80 

availability of atmospheric big data, machine learning models have emerged as useful tools for trend 81 

attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng et al., 2023). 82 

For instance, Grange et al. (2018) developed a random forest-based framework to isolate meteorological 83 

influences on particulate matter. Similarly, Wang et al. (2023) used an enhanced extreme gradient 84 

boosting (XGBoost) model to analyze spatial and temporal ozone patterns in China from 2010 to 2021, 85 

confirming that emission reductions played a key role in recent declines. Other recent efforts have 86 

extended statistical models to long-term assessments of air pollution drivers under climate change (Wang 87 

et al., 2022b). 88 

Here, we developed a machine learning-based model framework – fixed emission approximation 89 

(FEA) – to quantify the relative contribution of anthropogenic emissions and meteorological conditions 90 

in shaping summertime surface ozone trends in China. Applying the FEA to nationwide observational 91 

data from 2013 to 2023, we identified three phases of ozone evolution corresponding to the major clean 92 

air actions. We further analyzed short-term ozone anomalies associated with extreme weather events, 93 
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such as the 2022 heatwave and seasonal rainfall. To characterize ozone production regimes, we integrated 94 

satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO2, FNR) ratios from the tropospheric 95 

monitoring instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation sensitivity 96 

across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends from 1970 to 97 

2023, using historical meteorological reanalysis data. Collectively, these analyses provide an integrated 98 

understanding of how anthropogenic and climatic factors jointly shape surface ozone dynamics under a 99 

warming climate. 100 

2 Data and methods 101 

2.1 Data sources and methodology overview 102 

Figure 1 provides an overview of the data analysis and methodological framework employed in this 103 

study. We first integrated multi-dimensional datasets, including hourly surface air pollutant 104 

concentrations, meteorological reanalysis fields, and satellite remote sensing data. Hourly surface 105 

observations of ozone, NO2, carbon monoxide (CO), and PM2.5 were accessed from the National 106 

Environmental Monitoring Center of China through the open website https://air.cnemc.cn:18007/ (last 107 

accessed: May 20, 2024). Hourly meteorological data with a spatial resolution of 0.25° × 0.25° were 108 

sourced from the ERA5 reanalysis dataset provided by the European Centre for Medium-Range Weather 109 

Forecasts (ECMWF) and are available for download at https://cds.climate.copernicus.eu (last accessed: 110 

March 20, 2025). Detailed variables are listed in Table S1. The time variables – hour (hour of day) and 111 

month (month of year) – are used as emission surrogates to capture regular diurnal and seasonal 112 

variations in anthropogenic activity. A similar strategy is widely applied in previous studies about long-113 

term trends in air pollutants (e.g., Grange et al., 2018; Vu et al., 2019) to separate short-term cyclical 114 

emission variability from long-term trends. For 2013 – 2014, the surface MDA8 ozone data were 115 

obtained from the Tracking Air Pollution in China (TAP) dataset (Geng et al., 2021), which can be 116 

downloaded from http://tapdata.org (last accessed: May 20, 2024). The TROPOMI on the Sentinel-5P 117 

satellite provides global continuous observation data for two indicators of ozone precursors: NO2 and 118 

HCHO column concentrations (Lamsal et al., 2014; Shen et al., 2019). The FNR was used as a proxy for 119 

VOC/NOx reactivity and as a diagnostic indicator of ozone formation sensitivity (Sillman, 1995)，to 120 

https://air.cnemc.cn:18007/
https://cds.climate.copernicus.eu/
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explain and verify the impact of extreme weather and anthropogenic emissions on ozone. Details of the 121 

ozone sensitivity diagnostic method are provided in Text S1. 122 

 123 
Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional 124 

datasets, including ground-based observations, meteorological reanalysis, and satellite remote sensing. A fixed 125 

emission approximation (FEA) approach, developed based on the random forest (RF) model, is employed to 126 

quantitatively disentangle the contributions of meteorological conditions (MET) and anthropogenic emissions (ANT) 127 

to ozone trend variations, and its performance is compared with the conventional meteorological normalization 128 

method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves 129 

(HW) and prolonged rainfall (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to 130 

diagnose ozone production sensitivity, to explain and verify the impact of extreme weather and anthropogenic 131 

emissions on ozone. Finally, the FEA framework is extended to evaluate the long-term impacts of climate change on 132 

ozone trends since 1970. 133 

2.2 Machine learning-based FEA approach 134 

In this study, we develop a machine learning-based FEA approach to assess the impacts of 135 

meteorological factors and anthropogenic emissions on the year-round variations in ozone concentrations 136 

(Fig. 1). First, a regression model is constructed using the random forest algorithm to relate ozone 137 

concentrations to temporal emission surrogates and to meteorological parameters at multiple atmospheric 138 

levels. These temporal emission surrogates, including month and hour, represent short-term regular 139 
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emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-140 

driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et al., 141 

2019). The meteorological parameters include 18 distinct variables at different altitudes (see Table S1). 142 

It should be noteworthy that surface air pollutant observations for each city represent multi-site averages 143 

rather than data from a single monitoring station, which reduces the influence of local representativeness 144 

uncertainty. The meteorological data are obtained from the nearest grid cell corresponding to each city, 145 

ensuring spatial consistency between the pollutant and meteorological datasets. This approach was 146 

similar to the methodologies widely adopted in previous studies (Shi et al., 2021; Wang et al., 2025; Yao 147 

et al., 2024; Zheng et al., 2023). Our modeling strategy involves building and predicting models for 148 

individual cities and for each year from 2015 to 2023, which helps in minimizing the uncertainty caused 149 

by surface heterogeneity. Due to the lack of available observational data for many cities in 2013 and 150 

2014, we did not develop models for these two years. In our approach, 80% of the dataset is used for 151 

model training, while the remaining 20% is reserved for testing. We perform ten-fold cross-validation 152 

and assess model performance using seven statistical metrics, as listed in Table S2. 153 

Following the construction of the machine learning models for individual cities and years, we 154 

introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone 155 

precursors remain unchanged from the baseline year. Specifically, we establish hourly-resolution models 156 

for the baseline year (i) during the summer season (June to August) as a reference for anthropogenic 157 

emissions, represented by the pink solid line in Fig. 1. These models are then applied to predict ozone 158 

concentrations under the meteorological conditions of the prediction year (j), while holding the emission 159 

levels constant at those of the baseline year (i), as shown by the blue solid line in Fig. 1. The difference 160 

between the predicted values (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖) and the observed values (𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖) for the baseline year (i) represents 161 

the model residuals (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖), as shown in Eq. (1). The difference in observed MDA8 ozone concentrations 162 

between baseline year i and prediction year j is driven by the differences in meteorological conditions 163 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and anthropogenic emission controls 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) (Eq. 2).The prediction result 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) obtained 164 

by applying the model trained with data from year i to the meteorological conditions of year j, the 165 

difference between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and Baseline (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) is driven by 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗), while the difference between 166 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and the observed levels in year j (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗), minus the 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖, yields the ozone variation driven by 167 

(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗)). Therefore, 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) can be quantified and calculated using Eqs. (3-4). 168 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                                   (1) 169 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖(𝑗𝑗) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) ,                               (2) 170 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,                                (3) 171 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                          (4) 172 

The difference in observed MDA8 ozone concentrations between two different prediction years (j1, 173 

j2) is driven by the differences in meteorological conditions (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)) and anthropogenic emission 174 

controls (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ) (Eq. 5). The term 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)  represents the changes in meteorological 175 

conditions and can be calculated by the difference between the predicted values, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)  and 176 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2), for the corresponding years (Eq. 6). Similarly, the value of 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2), representing the 177 

change in anthropogenic emissions between the two years j1 and j2, can be therefore calculated using Eq. 178 

(7). By performing these calculations, we can isolate and quantify the contributions of meteorological 179 

conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix 180 

research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method 181 

S2. 182 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(𝑗𝑗1,𝑗𝑗2) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ,                       (5) 183 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) ,                            (6) 184 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗2) − 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗1) = �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� − �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� 185 

= (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2  −𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1)− (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)) ,         (7) 186 

Model performance was first evaluated through ten-fold cross-validation, revealing high predictive 187 

skill between observed and predicted MDA8 ozone levels during 2015-2023 in the BTH regions (Fig. 188 

S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation coefficients (R) between 189 

0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias (NMB) varied from 16.9 to 190 

21.9 μg m⁻3 and 8 to 25%, respectively, indicating high model accuracy. Nationally, the model yielded R 191 

values of 0.88–0.91 and IOA of 0.93–0.95, with errors remaining within acceptable ranges (Tables S3–192 

S8). To assess uncertainty stemming from interannual model training variability, we applied a matrix-193 

based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in residuals ranged 194 

from -9% to 3%, and remained within ±12% for all regions – supporting the robustness of the FEA 195 
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method. Notably, inclusion of time-related variables could reduce model uncertainty compared to 196 

simulations excluding these predictors. The average uncertainty decreased by approximately 2–4% at the 197 

regional-mean level (Fig. S3). 198 

 199 

Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the 200 

approach described in Text S2. The x-axis represents the years used for model training, and the y-axis represents the 201 

years predicted by the trained model. The diagonal line in each sub-panel represents the changes in the residuals of 202 

the models. 203 

2.3 Weather normalization analysis 204 

To compare the FEA method with other commonly used statistical approaches, we also applied the 205 

widely adopted meteorological normalization technique based on the RF algorithm (Grange et al., 2018; 206 

Vu et al., 2019). This approach constructs a regression model that relates air pollutant concentrations to 207 

meteorological parameters and emission surrogate indicators (i.e., time variables such as unix time, day 208 

of year, day of month, and hour of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained, 209 

air pollutant concentrations are predicted by randomly resampling meteorological variables from long-210 

term historical meteorological datasets, thereby generating a new ensemble of predictions (Vu et al., 211 

2019). These predictions are made under consistent meteorological conditions, enabling the isolation of 212 

meteorological influences from anthropogenic emission effects on air pollutant trends. The resulting 213 

weather-normalized pollutant concentrations (Fig. 1) represent the levels expected under average 214 

meteorological conditions, thus reflecting the impact of emission changes alone. In this study, the 215 

meteorological normalization follows this established framework, with meteorological variables 216 
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randomly sampled from the long-term dataset spanning 1970-2023. Each normalization process involves 217 

1,000 iterations, and the arithmetic mean of these iterations' simulated values was adopted as the final 218 

normalized result. The alignment between FEA-based and weather-normalized trends (Fig. S4) affirms 219 

the robustness of the FEA framework. 220 

2.3 Quantification of extreme weather-driven changes in ozone 221 

An unprecedented and persistent heatwave struck central and eastern China during the summer of 222 

2022, with the YRD experiencing the most severe impacts (Wang et al., 2023b; Zhang et al., 2023). This 223 

event has been identified as the longest-lasting and most intense heatwave since at least 1961 (Mallapaty, 224 

2022). In contrast, the Yangtze-Huaihe region is climatologically prone to sustained extreme precipitation, 225 

where prolonged rainfall episodes frequently occur during the East Asian summer monsoon (Yin et al., 226 

2020). Together, the extreme heatwave (HW) in 2022 and recurrent prolonged rainfall (PR) events 227 

provide unique and physically realistic atmospheric conditions to investigate the impacts of typical 228 

weather extremes on surface ozone. 229 

To quantify the contributions of extreme meteorological conditions to ozone variability, we applied 230 

the SHapley Additive exPlanations (SHAP) method (Lundberg et al., 2020) to interpret predictions from 231 

the random forest model. SHAP assigns an importance value to each input feature k, representing its 232 

marginal contribution to the model-predicted MDA8 ozone. The PR period was defined as 15 June to 15 233 

July for each year, while the remaining period from June to August was classified as the non-prolonged 234 

rainfall (NPR) period. The HW event in 2022 was defined as 16 July to 31 August, with the same calendar 235 

period in other years designated as non-heatwave (NHW) conditions. 236 

SHAP values were calculated for all input features during the PR and NPR periods, as well as during 237 

the HW and NHW periods, respectively. The relative changes in SHAP values (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) between these 238 

conditions were used to assess the responses of MDA8 ozone to the rainy season or the 2022 heatwave 239 

weather conditions, as per the following Eqs: 240 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                              (8) 241 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                             (9) 242 

2.5 FEA-based assessment of climate change impacts on ozone 243 

To evaluate the long-term impact of climate change on surface ozone concentrations across 244 
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China from 1970 to 2023, we extended the framework of our machine learning-based FEA method. 245 

The core idea of this analysis is to isolate the influence of long-term meteorological variability on 246 

ozone while assuming fixed anthropogenic emissions. Given the availability of relatively complete 247 

and continuous hourly ozone observations and meteorological data from 2015 to 2023, this period 248 

was used to construct nine emission baseline scenarios. Following the modeling protocol described in 249 

Section 2.2, nine independent random forest models were trained for each city and scenario, with each 250 

year from 2015 to 2023 serving as an emissions reference. Model inputs included hourly ozone 251 

observations, key meteorological predictors, and time-related variables (hour of day and month of year). 252 

The trained models were then applied to historical meteorological reanalysis data from 1970 to 2023 to 253 

simulate ozone trends under fixed emissions (Fig. 1), yielding nine independent ozone trajectories, each 254 

reflecting the influence of long-term meteorological variability under a different fixed-emissions 255 

assumption. While the choice of emission baseline may affect the absolute magnitude of simulated ozone, 256 

it does not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers 257 

over multidecadal timescales (Lecœur et al., 2014; Leung et al., 2018; Wang et al., 2022b). This approach 258 

could capture the climate-induced ozone signal while adopting the common assumption that emissions 259 

are not themselves influenced by climate change – a simplification consistent with prior attribution 260 

studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022b). For comparison, 261 

we also estimated the impact of anthropogenic emission changes on ozone concentrations during 2015–262 

2023 using the same FEA methodology and the complete hourly dataset for model training. This dual-263 

track analysis enables a clear distinction between the impacts of climate variability and emission 264 

mitigation on observed ozone trends. 265 

To examine the sensitivity of urban ozone pollution to climate variability under different potential 266 

atmospheric conditions (e.g., oxidation capacity) and its possible evolution under global warming, we 267 

defined three representative regional scenarios based on typical ozone pollution characteristics in China 268 

(Fig. 3a): a high-pollution scenario for BTH (BaseBTH), a moderate-pollution scenario for YRD 269 

(BaseYRD), and a low-pollution scenario for Pearl River Delta (PRD) (BasePRD). These scenarios allow 270 

assessment of ozone trends and climate impacts under fixed emissions across three distinct atmospheric 271 

conditions. 272 
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3 Results and Discussion 273 

3.1 Spatiotemporal variation of summertime ozone 274 

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum daily 275 

8-hour average (MDA8) ozone, surface NO2, and TROPOMI NO2, HCHO column concentrations across 276 

China, along with the locations of the country’s five typical city clusters: BTH, Fenwei Plain (FWP), 277 

YRD, Sichuan Basin (SCB), and PRD. Across these five city clusters, the average summer ozone 278 

concentrations ranged from 88.9 to 161.3 μg m⁻3 – substantially exceeding the 43.0 μg m⁻3 threshold 279 

associated with ecosystem productivity loss (Gong et al., 2021) and the World Health Organization 280 

(WHO, 2021) recommended peak seasonal average of 60 μg m⁻3. TROPOMI satellite observations of 281 

NO2 column concentration show notably elevated concentrations over the five city clusters, particularly 282 

in the BTH, YRD, and FWP, which align with surface NO2 distribution patterns and confirm the scale of 283 

anthropogenic NOx emissions in these regions (Zheng et al., 2021). TROPOMI satellite observations of 284 

HCHO column concentrations similarly reveal these city clusters as hotspots for VOC emissions (Fig. 285 

3d). These concurrent high levels of NO2 and HCHO suggest a strong photochemical ozone pollution 286 

potential, as the abundant precursors in these urban clusters could drive substantial ozone production 287 

during the summer months.  288 

 289 
Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO across 290 

major city clusters in China. The panels represent the average MDA8 ozone, surface NO2, and TROPOMI NO2, 291 

HCHO column concentrations for 354 cities in China during the summertime (June–August) from 2018 to 2023. 292 

The corresponding five regions includes BTH (37°–41°N, 114°–118°E); YRD (30°–33°N, 118.2°–122°E); SCB 293 
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(28.5°–31.5°N, 103.5°–107°E); PRD (21.5°–24°N, 112°–115.5°E) and FWP (106.25–111.25°E, 33–35°N, and 294 

108.75–113.75°E, 35–37°N). 295 

 296 

Figure 4 presents the interannual variations in MDA8 ozone concentrations during summertime 297 

across China, with a focus on the five city cluster regions. During the Phase I (2013–2017), the average 298 

nationwide MDA8 ozone increased significantly (p < 0.01), rising from 95.5 to 118.0 μg m⁻3. This growth 299 

was especially pronounced in the BTH and FWP regions, where the concentrations increased by 300 

approximately 38% and 41%, respectively. In contrast, ozone increases were more modest in the YRD 301 

(~11%), SCB (~15%), and PRD (~16%) regions, respectively. These results were consistent with the 302 

previous studies (Li et al., 2021; Liu and Wang, 2020a, 2020b; Wang et al., 2023a). Corresponding to the 303 

implementation of more stringent emission controls on NOx and VOCs emissions during the Phase II 304 

(Geng et al., 2024; Liu et al., 2023), a moderate national decrease in MDA8 ozone was observed, with 305 

concentrations declining to 109.0 μg m⁻3 from 2017 to 2020. The declines during this period were most 306 

notable in FWP (−16%) and YRD (−15%), while BTH (−6%), SCB (−11%), and PRD (−4%) also showed 307 

reductions compared to their concentration peaks observed in 2017. However, the MDA8 ozone 308 

rebounded, reaching 118.4 μg m⁻3 in 2023 – comparable to its 2017 peak – with a particularly sharp 309 

increase during the summer of 2022. From 2021 to 2023, MDA8 ozone concentrations rose by 2.8 μg m⁻3 310 

in BTH, 3.1 μg m⁻3 in FWP, 16.1 μg m⁻3 in YRD, and 18.5 μg m⁻3 in SCB, respectively. 311 

Figure S1 further illustrates the spatiotemporal evolution of summertime MDA8 ozone in China 312 

from 2013 to 2023. On average, approximately 68% of the cities exceeded the WHO air quality guideline 313 

of 100 μg m⁻3 for the MDA8 ozone. Elevated ozone levels were primarily observed in densely populated 314 

and economically developed regions. Spatially, ozone hotspot regions expanded between 2013 and 2017 315 

(Fig. S1 a-e), followed by contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in 316 

2021. A sharp reversal was observed in 2022, with widespread increases in MDA8 ozone (Fig. S1 k). 317 

These changes could be closely linked to emission control measures and meteorological conditions, 318 

which will be further discussed in Sections 3.2 and 3.3. 319 
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 320 

Figure 4. Interannual trends of summertime MDA8 ozone across China (2013–2023). a the seasonal variations 321 

of MDA8 ozone during the summer months (June, July, and August) over China. b-f the average trend across the 322 

five city cluster regions in China: BTH, FWP, YRD, SCB, and PRD, respectively. The summer months are defined 323 

according to meteorological seasonality, encompassing June, July, and August. In the violin plots, hollow diamond 324 

markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall test and Sen's slope 325 

estimator were employed to assess the statistical significance and rate of change in the monthly average MDA8 326 

ozone concentrations. The p value represents the significance level from the Mann-Kendall test, which is used to 327 

determine the statistical significance of the trend in the data. 328 
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3.2 Anthropogenic emission drivers of ozone trends 330 

To disentangle the relative impacts of anthropogenic emissions and meteorological variability on 331 

observed ozone trends, we applied the machine learning-based FEA framework described in Section 2.2. 332 

As illustrated in Fig. 5, anthropogenic emissions were the dominant driver of ozone increases during 333 

2013–2017, contributing an average rise of approximately 23.2 ± 1.1 μg m⁻3 nationwide. The most 334 

pronounced increases occurred in the FWP and BTH (45.0 ± 2.0 μg m⁻3 and 42.1 ± 2.0 μg m⁻3, 335 

respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 ± 1.6 μg m⁻3), reflecting 336 

its predominantly NOx-limited photochemical regime versus VOC-limited regimes in other regions (Ren 337 

et al., 2022). As shown in Fig. S5, the precursor gases NO2 and CO exhibited regionally distinct 338 
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decreasing trends, partially explaining the spatial heterogeneity of ozone changes. The MDA8 ozone 339 

decreased by 10.5 ± 2.0 μg m⁻3 in BTH and 10.4 ± 3.0 μg m⁻3 in FWP, with smaller declines in YRD (–340 

4.8 ± 3.8 μg m⁻3), SCB (–2.8 ± 2.4 μg m⁻3), and PRD (–6.6 ± 1.4 μg m⁻3) between 2017 and 2020 (Fig. 5). 341 

These trends were overall consistent with those derived using independent statistical approaches (Wang 342 

et al., 2023). The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation 343 

to anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and 344 

transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO2, NOx, PM2.5, and 345 

VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 1.07 Tg 346 

(12%), respectively, relative to the same period in 2019 (Geng et al., 2024). Despite these reductions, 347 

MDA8 ozone concentrations increased by 1.7–2.3 μg m⁻3 across BTH, FWP, YRD, and SCB, while a 348 

slight decrease occurred in PRD (Fig. S6). Overall, ~79% of monitored cities experienced ozone 349 

increases, with a national mean enhancement of 2.1 ± 1.3 μg m⁻3 (Fig. S7). In the post-pandemic period 350 

(2020-2023), concentrations of NO2, CO, and PM2.5 stabilized or declined more gradually (Fig. S5), and 351 

the contribution of anthropogenic emissions to ozone variability weakened considerably (Fig. S8). 352 

Regionally, emission-driven changes ranged from –1.2 to +2.6 μg m⁻3 in BTH, –1.6 to +4.0 μg m⁻3 in 353 

FWP, –4.7 to +7.4 μg m⁻3 in YRD, –3.6 to +3.0 μg m⁻3 in SCB, and –3.8 to +7.7 μg m⁻3 in PRD. These 354 

results indicate that while emission controls initially yielded substantial ozone mitigation benefits during 355 

the Phase II, their effectiveness has gradually diminished, underscoring the need for more targeted and 356 

region-specific emission control strategies under evolving photochemical regimes. 357 
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 358 
Figure 5. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summertime 359 

MDA8 ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological 360 

variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015–361 

2023) for emissions. The interquartile range, with values in parentheses denoting the 25th and 75th percentiles across 362 

all baseline scenarios. 363 
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regionally distinct transitions from 2018 to 2023, reflecting shifts in photochemical regimes. Figure 6 375 

summarizes the relative contributions of VOC-limited, NOx-limited, and transitional regimes across the 376 
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above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, summertime 378 

ozone formation was largely controlled by NOx-limited and transitional regimes. The YRD underwent a 379 

notable shift from VOC- to NOx-limited chemistry, with VOC-limited fractions decreasing from ~35% 380 

in 2018 to ~22% in 2023, particularly during 2022 when extreme heat amplified VOC emissions and 381 

photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB region consistently exhibited strong 382 

NOx limitation (>75%), whereas the PRD showed a gradual expansion of the transitional regime 383 

alongside a modest contraction of VOC-limited regions. These shifts in photochemical sensitivity 384 

correspond well with the ozone decrease observed during the Phase II emission reductions. Spatial 385 

distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) reveal that most 386 

of China was in a transitional regime, with major urban clusters remaining VOC-limited and only limited 387 

areas in southern China being NOx-limited. This spatial pattern aligns with the observed widespread 388 

ozone increases during the lockdown (Fig. S7). These findings highlight that ozone production chemistry 389 

in China was shaped by the complex interplay between emission reduction efforts and the rising 390 

frequency of meteorological extremes under a warming climate. 391 

 392 

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-393 

limited, and transitional ozone sensitivity regimes across five key regions during the summertime (June to August) 394 

from 2018 to 2023, based on the FNR analysis. a-e the trend across the five city cluster regions in China during the 395 

summer months (June, July, and August): BTH, FWP, YRD, SCB, and PRD, respectively. f the overall trends for all 396 

five regions. 397 
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3.3 Meteorological impact on ozone variation 398 

Figure 5 shows the interannual meteorological contributions to summertime MDA8 ozone across 399 

different emission-control phases. During the Phase I, meteorology exerted relatively weak influences 400 

on ozone variability, with contributions ranging from –4.8 to +3.9 μg m⁻3—far smaller than those from 401 

anthropogenic emission changes. In contrast, meteorological anomalies became a decisive factor from 402 

2017 to 2020, driving substantial ozone reductions. Ozone decreases attributable to meteorology reached 403 

–14.4 ± 3.0 μg m⁻3 in the FWP, –15.9 ± 3.8 μg m⁻3 in the YRD, and –11.1 ± 2.4 μg m⁻3 in the SCB, 404 

explaining 58 ± 12%, 77 ± 18%, and 80 ± 17% of the total ozone decline, respectively. A notable shift 405 

occurred from 2020 to 2023, when the influence of extreme meteorological events increasingly 406 

dominated ozone variability. In the summer of 2022, persistent heatwaves across eastern and southern 407 

China (Mallapaty, 2022; Wang et al., 2023b) triggered sharp ozone increases of +20.8 ± 3.6 μg m ⁻3 in 408 

the YRD and +22.1 ± 3.2 μg m⁻3 in the SCB, reflecting the enhanced photochemical activity under high-409 

temperature and intense solar radiation conditions. The following summer (2023) featured anomalously 410 

heavy rainfall, resulting in sharp ozone suppression (–17.8 ± 2.3 μg m⁻3 in the YRD and –9.7 ± 3.3 μg 411 

m⁻3 in the SCB). This reduction coincided with a remarkable increase in precipitation, i.e., 102% in YRD 412 

and 35% in SCB (Fig. S14), indicating that rainy meteorological conditions may have suppressed ozone 413 

production. 414 

To identify the dominant meteorological drivers, we analyzed Gini importance scores derived from 415 

the RF model across 18 predictor variables (Fig. S15). Temperature (T) emerged as the most influential 416 

predictor in the BTH and FWP regions, while shortwave solar radiation (SR), relative humidity (RH), 417 

and 850hPa zonal wind (u850) were most important in the YRD. In the PRD, ozone variability was 418 

primarily governed by temperature and transport-related indices, including meridional winds at different 419 

altitudes. These findings are consistent with the climatological contrast between northern continental and 420 

southern coastal regimes: in northern China, stagnant anticyclonic conditions (Gong and Liao, 2019) and 421 

strong solar radiation promote photochemical production (Bao et al., 2025), whereas in southern regions, 422 

high humidity and convective rainfall could tend to suppress ozone by reducing actinic flux and 423 

enhancing removal of precursors(Lu et al., 2019). 424 

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to key 425 

meteorological factors (T, RH, and SR) for representative cities in each cluster, revealing clear regional 426 
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contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to T (Fig. S16a), 427 

consistent with the enhancement of reaction kinetics and biogenic VOC emissions under hot conditions. 428 

This behavior reflects the thermodynamic coupling between surface heating, boundary-layer expansion, 429 

and photochemical production. In Nanjing (YRD), ozone was more sensitive to solar radiation than to 430 

temperature (Fig. S16c), highlighting the dominant role of actinic flux in controlling radical production 431 

during warm and dry conditions. Consistent with these findings, Yang et al. (2024) reported that high-432 

temperature and low-RH conditions over the NCP and YRD could enhance photochemical ozone 433 

formation, with chemical production dominating during peak pollution periods. In the SCB, both T and 434 

RH exhibited strong influences, while ozone variability was shaped primarily by T and large-scale 435 

circulation patterns in the PRD associated with subtropical maritime flow and typhoon incursions from 436 

the Northwest Pacific (Chen et al., 2024; Wang et al., 2024a; Wang et al., 2022a). 437 

To further quantify these relationships, we applied SHAP (SHapley Additive exPlanations) analysis 438 

to evaluate the meteorological influence of the HW and the PR events in the Yangtze-Huaihe region 439 

between 2015 and 2023 (Section 2.4). As shown in Fig. S17, the HW events were associated with strong 440 

positive SHAP values in southeastern coastal areas, especially the YRD and SCB, driven by elevated SR 441 

and T. Mean SR during the HW periods was substantially higher than during the NHW periods (Fig. 442 

S18), increasing photochemical activity through increased radical generation and faster reaction rates. 443 

Conversely, PR events produced consistent negative SHAP contributions across all regions (Fig. S19), 444 

reflecting the combined effects of reduced photolysis, increased humidity, and efficient wet scavenging 445 

on ozone production (He and Carmichael, 1999). A multi-year comparison (Fig. 7) highlights the 446 

opposing effects of key meteorological variables – including RH, T, boundary layer height (BLH), total 447 

precipitation (TP), and surface pressure (SP) – on MDA8 ozone. The trend in ΔSHAP values under 448 

high-humidity conditions from 2015 to 2023 (Fig. S20) further confirms the model’s ability to capture 449 

the suppressive effects of wet weather conditions on ozone formation. 450 
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 451 

Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather 452 

conditions. a the differences in SHAP values (ΔSHAP) between heatwave and non-heatwave periods in the Yangtze-453 

Huaihe region during summer 2022. b theΔSHAP between prolonged rainfall periods and non-prolonged rainfall 454 

periods in the same region from 2015 to 2023. Box plots show the distribution of ΔSHAP across cities; the center 455 

line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and the whisker line extends 456 

to one standard deviation. 457 

 458 

3.4 Reshaping distributions of ozone by climate change and emission controls 459 

To assess the long-term influence of climate change on surface ozone concentrations, we applied 460 

the FEA framework to simulate summertime ozone trends over the period 1970 – 2023. In this analysis, 461 

anthropogenic emissions were held constant at their 2015 – 2023 summertime levels, while interannual 462 

variations in meteorological variables were introduced using historical reanalysis data. This design 463 

isolates the climate-driven component of ozone trends while assuming that emission trajectories are 464 

independent of climate change – a simplification aligned with prior attribution frameworks (Wang et al., 465 

2022b). The impact of anthropogenic emission controls was estimated by comparing observed ozone 466 

concentrations with FEA-predicted values during 2015 – 2023, thereby quantifying the residual effect of 467 

emissions under fixed meteorology. 468 

As shown in Fig. 8, under the 2015-2023 emission levels, climate change has exerted a statistically 469 

significant (p < 0.05) positive influence on urban summertime ozone concentrations across China, 470 

resulting in a nationwide increase of approximately 0.06 μg m⁻3 yr⁻1 since 1970. All five major urban 471 

regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at 472 

0.12 μg m⁻3 yr⁻1. Three sensitivity simulations (see Section 2.5 and Fig. S21) confirm this robustness: 473 

trend slopes range from 0.11–0.14 μg m⁻3 yr⁻1 in BaseBTH (high-pollution scenario), 0.05–0.10 μg m⁻3 474 

yr⁻1 in the BaseYRD (moderate-pollution scenario), and 0.03–0.10 μg m⁻3 yr⁻1 in the BasePRD (low-475 

pollution scenario). Despite regional differences in chemical regimes or pollution levels, the consistent 476 
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upward tendencies underscore the pervasive climatic amplification of ozone formation. These results 477 

emphasize that climate change acts as a systematic driver of ozone growth across diverse atmospheric 478 

environments, reinforcing the need to embed climate resilience within emission control strategies. Spatial 479 

correlations between climate-driven ozone increases and temperature changes (Fig. S22) further confirm 480 

that warming is the dominant contributor to long-term ozone enhancement. In particular, the correlation 481 

coefficients between ozone trends and temperature anomalies reached 0.90 (BTH), 0.89 (FWP), 0.72 482 

(YRD), and 0.93 (SCB), indicating a strong temperature dependence of climate-induced ozone formation 483 

in these regions. The PRD showed a weaker correlation, likely due to its unique subtropical maritime 484 

climate and higher humidity and cloud cover, which tend to suppress photochemical ozone production 485 

(Yang et al., 2019). The right panel of Fig. 8 depicts summertime ozone trends from 2015 to 2023 under 486 

the combined influence of anthropogenic emissions, derived from the FEA method. Ozone 487 

concentrations rose across all regions between 2015 and 2018, declined modestly during 2018-2020, and 488 

rebounded thereafter in most regions except the PRD.  489 

These findings are consistent with future projections that anticipate more frequent high-ozone 490 

episodes under continued warming (Li et al., 2023). Recent analyses (Yang et al., 2024) show that the 491 

frequency of high-temperature and low-humidity conditions during 2000-2019 was markedly higher than 492 

in 1980-1999, suggesting that ozone pollution in both the NCP and YRD has intensified under historical 493 

climate change. Indeed, while national emission controls curbed ozone growth after 2018, a post-2020 494 

rebound has emerged, implying that the climatic penalty on ozone is beginning to offset emission gains. 495 

The extreme 2022 heatwave exemplified this effect, substantially enhancing photochemical activity and 496 

shifting ozone sensitivity from VOC-limited to transitional or NOx-limited regimes. Although reductions 497 

in anthropogenic precursor emissions have improved ozone control efficiency, the warming-induced 498 

enhancement of ozone increasingly interferes with – and in some regions may partially offset – the air-499 

quality gains achieved through emission reduction efforts.  500 
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 501 
Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends 502 

attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA 503 

framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission 504 

controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate 505 

the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the 506 

5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-507 

Kendall test. More details of the sensitivity tests are provided in Fig. S18. 508 

4 Conclusions and implications 509 

In this study, we developed a machine learning-based FEA framework to disentangle and quantify the 510 

respective roles of anthropogenic emissions and meteorological drivers in shaping ozone trends during 511 

2013-2023. With a national-level prediction uncertainty of approximately 6%, the FEA method provides 512 

a computationally efficient and scalable tool for diagnosing atmospheric variability across large spatial 513 

and temporal domains. However, the current model framework did not explicitly resolve grid-scale 514 

spatial heterogeneity, vegetation feedbacks, or land-use dynamics, which may influence the ozone 515 

prediction. In addition, the sensitivity of the results to spatial resolution need further investigation 516 

through coupled applications of machine learning and chemical transport models. 517 

Our results revealed that increased anthropogenic emissions were the dominant driver of the sharp 518 

rise in summertime MDA8 ozone concentrations during the Phase Ⅰ, contributing an average increase of 519 
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23.2 ± 1.1  μg m⁻3. In contrast, the strengthened clean air actions during the Phase II – particularly the 520 

synergistic control of NOx and VOCs – led to measurable reductions in MDA8 ozone, with national-521 

average declines of 4.6 ± 1.5  μg m⁻3 from 2017 to 2020. These improvements were especially evident in 522 

regions such as BTH and FWP, where ozone formation was highly sensitive to VOCs. However, the 523 

impact of emission reductions diminished considerably during the recent period (2021–2023). This 524 

stagnation underscores the urgent need for more targeted, region-specific emission control strategies that 525 

address the shifting photochemical sensitivity of ozone formation regimes. 526 

Using the SHAP attribution analysis, we further quantified the influence of meteorological extremes 527 

on ozone variability. Record-breaking heatwaves in 2022 enhanced ozone concentrations by up to +5.8 528 

μg m⁻3, while prolonged pluvial episodes, particularly during the East Asian monsoon season, suppressed 529 

ozone by as much as −15.2 μg m⁻3. These results highlight the dominance of short-term meteorological 530 

extremes in shaping ozone air quality under a warming climate. Complementary satellite-based FNR 531 

diagnostics revealed that from 2018 to 2023, summertime ozone formation was predominantly 532 

influenced by NOx-limited and transitional regimes, while VOC-limited areas experienced a decline.The 533 

2022 heatwave induced regime shifts in regions such as the YRD, where intensified VOC emissions and 534 

elevated temperatures drove transitions toward NOx-limited conditions. These findings emphasize the 535 

need for dynamic, region-specific assessments of ozone sensitivity to guide effective mitigation strategies. 536 

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term 537 

trends from 1970 to 2023 by fixing emissions and allowing meteorological variables to evolve with 538 

observed climate trends. Our findings show that climate change has contributed to a significant upward 539 

trend in urban summertime ozone, averaging 0.06 μg m⁻3 yr⁻1, with particularly strong increases in the 540 

BTH and SCB. Good correlations between the modelled ozone and surface temperature (r = 0.72-0.93) 541 

across major urban clusters indicated that climate warming exerts a persistent control on the long-term 542 

evolution of ozone. While reductions in precursor emissions have improved ozone control efficiency, the 543 

direct enhancement of ozone by rising temperatures increasingly interferes with, and in some regions 544 

may partially offset, the air-quality benefits achieved through emission mitigation. Together, these 545 

findings highlight that effective ozone management in a warming world will require integrated strategies 546 

that jointly address emission reductions and climate adaptation. 547 

548 
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