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Abstract. Surface ozone, a major air pollutant with important implications for human health, 21 

ecosystems, and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. 22 

Here, we developed a machine learning-based approach, namely the fixed emission approximation 23 

(FEA), to disentangle the effects of meteorological variability and anthropogenic emissions on 24 

summertime ozone trends in China under the clean air actions. Anthropogenic emissions drove an 25 

approximately +23.2 ± 1.1 μg m⁻3 increase in summer maximum daily 8-hour average ozone during 26 

2013–2017, followed by an approximately −4.6 ± 1.5 μg m⁻3 decrease between 2017 and 2020 in 27 

response to strengthened emission controls. In contrast, meteorological anomalies, including 28 

heatwaves and rainfall conditions, emerged as key drivers of ozone variability during 2020–2023. 29 

Satellite-derived formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile 30 

organic compounds-limited regimes for ozone production, with a shift toward nitrogen oxides-31 

limited sensitivity under influence of heatwaves. Extending the FEA framework to assess long-term 32 

climate influences from 1970 to 2023, we find that sustained climate warming has driven a 33 

substantial increase in urban summertime ozone in China. These results demonstrate that climate 34 

change was increasingly offsetting the benefits of emission reductions and highlight the need for 35 

integrated ozone mitigation strategies that jointly address emission controls and climate adaptation 36 

in a warming world.37 
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1 Introduction 38 

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton et 39 

al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et 40 

al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and 41 

volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017), 42 

exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a). 43 

Controlling ozone pollution remains a global environmental challenge. In recent years, China has 44 

implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control 45 

Action Plan (2013–2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018–2020) 46 

(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality, 47 

particularly by reducing fine particulate matter (PM2.5) (Geng et al., 2024; Zhang et al., 2019). However, 48 

surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers 49 

of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies 50 

(Li et al., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022). 51 

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather 52 

conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022a). While 53 

emission controls directly regulate precursor abundance, climate change modulates ozone through 54 

chemical feedbacks, meteorological dynamics, and biosphere–atmosphere interactions (Ma and Yin, 55 

2021; Xue et al., 2020). Over the past century, global surface temperatures have substantially increased 56 

relative to the pre-industrial baseline (1850–1900), driven largely by human activities (IPCC, 2021). In 57 

such a warming world, extreme climate anomalies – such as heatwaves and persistent rainfall shifts – 58 

were expected to be intensified (Li et al., 2025a; Li et al., 2025b). These events were increasingly 59 

recognized as critical modulators of ozone variability through their impacts on photochemistry and 60 

precursor emissions (Gao et al., 2023; Pu et al., 2017; Wang et al., 2022a). 61 

Quantifying the respective roles of anthropogenic emissions and meteorological variability in 62 

driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al., 63 

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations 64 
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in urban cluster regions in China – such as the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta 65 

(YRD) – during the Phase Ⅰ (2013 – 2017), with increases of approximately 28% and 18%, respectively 66 

(Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone levels was 67 

observed during 2018 – 2020, largely attributed to emission reductions (Li et al., 2021; Liu and Wang, 68 

2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate a renewed 69 

increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over the past 70 

decade, the drivers of which remain poorly constrained. 71 

Two main approaches have been applied to attribute air pollution trends: chemical transport models 72 

(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks 73 

(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). The CTMs simulate atmospheric composition based 74 

on emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi, 75 

2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or 76 

meteorology, and can also resolve sector-specific impacts. However, these models face challenges, 77 

including uncertainties and temporal lags in emission inventories. Statistical models, on the other hand, 78 

rely on observational datasets and predictor-response relationships without requiring explicit emissions 79 

or chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing 80 

availability of atmospheric big data, machine learning models have emerged as useful tools for trend 81 

attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng et al., 2023). 82 

For instance, Grange et al. (2018) developed a random forest-based framework to isolate meteorological 83 

influences on particulate matter. Similarly, Wang et al. (2023) used an enhanced extreme gradient 84 

boosting (XGBoost) model to analyze spatial and temporal ozone patterns in China from 2010 to 2021, 85 

confirming that emission reductions played a key role in recent declines. Other recent efforts have 86 

extended statistical models to long-term assessments of air pollution drivers under climate change (Wang 87 

et al., 2022b). 88 

Here, we developed a machine learning-based model framework – fixed emission approximation 89 

(FEA) – to quantify the relative contribution of anthropogenic emissions and meteorological conditions 90 

in shaping summertime surface ozone trends in China. Applying the FEA to nationwide observational 91 

data from 2013 to 2023, we identified three phases of ozone evolution corresponding to the major clean 92 

air actions. We further analyzed short-term ozone anomalies associated with extreme weather events, 93 
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such as the 2022 heatwave and seasonal rainfall. To characterize ozone production regimes, we integrated 94 

satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO2, FNR) ratios from the tropospheric 95 

monitoring instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation sensitivity 96 

across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends from 1970 to 97 

2023, using historical meteorological reanalysis data. Collectively, these analyses provide an integrated 98 

understanding of how anthropogenic and climatic factors jointly shape surface ozone dynamics under a 99 

warming climate. 100 

2 Data and methods 101 

2.1 Data sources and methodology overview 102 

Figure 1 provides an overview of the data analysis and methodological framework employed in this 103 

study. We first integrated multi-dimensional datasets, including hourly surface air pollutant 104 

concentrations, meteorological reanalysis fields, and satellite remote sensing data. Hourly surface 105 

observations of ozone, nitrogen dioxide (NO2), carbon monoxide (CO), and fine particulate matter (PM2.5) 106 

were accessed from the National Environmental Monitoring Center of China through the open website 107 

https://air.cnemc.cn:18007/ (last accessed: May 20, 2024). Hourly meteorological data with a spatial 108 

resolution of 0.25° × 0.25° were sourced from the ERA5 reanalysis dataset provided by the European 109 

Centre for Medium-Range Weather Forecasts (ECMWF) and are available for download at 110 

https://cds.climate.copernicus.eu (last accessed: March 20, 2025). Detailed variables are listed in Table 111 

S1. The time variables – hour (hour of day) and month (month of year) – are used as emission surrogates 112 

to capture regular diurnal and seasonal variations in anthropogenic activity. A similar strategy is widely 113 

applied in previous studies about long-term trends in air pollutants (e.g., Grange et al., 2018; Vu et al., 114 

2019) to separate short-term cyclical emission variability from long-term trends. For 2013 – 2014, the 115 

surface MDA8 ozone data were obtained from the Tracking Air Pollution in China (TAP) dataset (Geng 116 

et al., 2021), which can be downloaded from http://tapdata.org (last accessed: May 20, 2024). The 117 

TROPOMI on the Sentinel-5P satellite provides global continuous observation data for two indicators of 118 

ozone precursors: NO2 and formaldehyde (HCHO) column concentrations (Lamsal et al., 2014; Shen et 119 

al., 2019). The FNR was used as a proxy for VOC/NOx reactivity and as a diagnostic indicator of ozone 120 

https://air.cnemc.cn:18007/
https://cds.climate.copernicus.eu/
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formation sensitivity (Sillman, 1995)， to explain and verify the impact of extreme weather and 121 

anthropogenic emissions on ozone. Details of the ozone sensitivity diagnostic method are provided in 122 

Text S1. 123 

 124 
Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional 125 

datasets, including ground-based observations, meteorological reanalysis, and satellite remote sensing. A fixed 126 

emission approximation (FEA) approach, developed based on the random forest (RF) model, is employed to 127 

quantitatively disentangle the contributions of meteorological conditions (MET) and anthropogenic emissions (ANT) 128 

to ozone trend variations, and its performance is compared with the conventional meteorological normalization 129 

method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves 130 

(HW) and extreme precipitation (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to 131 

diagnose ozone production sensitivity, to explain and verify the impact of extreme weather and anthropogenic 132 

emissions on ozone. Finally, the FEA framework is extended to evaluate the long-term impacts of climate change on 133 

ozone trends since 1970. 134 

2.2 Machine learning-based FEA approach 135 

In this study, we develop a machine learning-based FEA approach to assess the impacts of 136 

meteorological factors and anthropogenic emissions on the year-round variations in ozone concentrations 137 

(Fig. 1). First, a regression model is constructed using the random forest (RF) algorithm to relate ozone 138 

concentrations to temporal emission surrogates and to meteorological parameters at multiple atmospheric 139 
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levels. These temporal emission surrogates, including month and hour, represent short-term regular 140 

emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-141 

driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et al., 142 

2019). The meteorological parameters include 18 distinct variables at different altitudes (see Table S1). 143 

It should be noteworthy that surface air pollutant observations for each city represent multi-site averages 144 

rather than data from a single monitoring station, which reduces the influence of local representativeness 145 

uncertainty. The meteorological data are obtained from the nearest grid cell corresponding to each city, 146 

ensuring spatial consistency between the pollutant and meteorological datasets. This approach was 147 

similar to the methodologies widely adopted in previous studies (Shi et al., 2021; Wang et al., 2025; Yao 148 

et al., 2024; Zheng et al., 2023). Our modeling strategy involves building and predicting models for 149 

individual cities and for each year from 2015 to 2023, which helps in minimizing the uncertainty caused 150 

by surface heterogeneity. Due to the lack of available observational data for many cities in 2013 and 151 

2014, we did not develop models for these two years. In our approach, 80% of the dataset is used for 152 

model training, while the remaining 20% is reserved for testing. We perform ten-fold cross-validation 153 

and assess model performance using seven statistical metrics, as listed in Table S2. 154 

Following the construction of the machine learning models for individual cities and years, we 155 

introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone 156 

precursors remain unchanged from the baseline year. Specifically, we establish hourly-resolution models 157 

for the baseline year (i) during the summer season (June to August) as a reference for anthropogenic 158 

emissions, represented by the pink solid line in Fig. 1. These models are then applied to predict ozone 159 

concentrations under the meteorological conditions of the prediction year (j), while holding the emission 160 

levels constant at those of the baseline year (i), as shown by the blue solid line in Fig. 1. The difference 161 

between the predicted values (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖) and the observed values (𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖) for the baseline year (i) represents 162 

the model residuals (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖), as shown in Eq. (1). The difference in observed MDA8 ozone concentrations 163 

between baseline year i and prediction year j is driven by the differences in meteorological conditions 164 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and anthropogenic emission controls 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) (Eq. 2).The prediction result 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) obtained 165 

by applying the model trained with data from year i to the meteorological conditions of year j, the 166 

difference between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and Baseline (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) is driven by 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗), while the difference between 167 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and the observed levels in year j (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗), minus the 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖, yields the ozone variation driven by 168 
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(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗)). Therefore, 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) can be quantified and calculated using Eqs. (3-4). 169 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                                   (1) 170 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖(𝑗𝑗) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) ,                               (2) 171 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ,                                (3) 172 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                          (4) 173 

The difference in observed MDA8 ozone concentrations between two different prediction years (j1, 174 

j2) is driven by the differences in meteorological conditions (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)) and anthropogenic emission 175 

controls (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ) (Eq. 5). The term 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)  represents the changes in meteorological 176 

conditions and can be calculated by the difference between the predicted values, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)  and 177 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2), for the corresponding years (Eq. 6). Similarly, the value of 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2), representing the 178 

change in anthropogenic emissions between the two years j1 and j2, can be therefore calculated using Eq. 179 

(7). By performing these calculations, we can isolate and quantify the contributions of meteorological 180 

conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix 181 

research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method 182 

S2. 183 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(𝑗𝑗1,𝑗𝑗2) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ,                       (5) 184 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) ,                            (6) 185 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗2) − 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗1) = �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� − �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� 186 

= (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2  − 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1) − (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)) ,         (7) 187 

Model performance was first evaluated through ten-fold cross-validation for the BTH region, 188 

revealing high predictive skill between observed and predicted MDA8 ozone levels during 2015-2023 189 

(Fig. S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation coefficients (R) 190 

between 0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias (NMB) varied from 191 

16.9 to 21.9 μg m⁻3 and 8 to 25%, respectively, indicating high model accuracy. Nationally, the model 192 

yielded R values of 0.88–0.91 and IOA of 0.93–0.95, with errors remaining within acceptable ranges 193 

(Tables S3–S8). To assess uncertainty stemming from interannual model training variability, we applied 194 

a matrix-based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in residuals 195 
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ranged from -9% to 3%, and remained within ±12% for all regions – supporting the robustness of the 196 

FEA method. Notably, inclusion of time-related variables could reduce model uncertainty compared to 197 

simulations excluding these predictors. The average uncertainty decreased by approximately 2–4% at the 198 

regional-mean level (Fig. S3). 199 

 200 

Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the 201 

approach described in Text S2. The x-axis represents the years used for model training, and the y-axis represents the 202 

years predicted by the trained model. The diagonal line in each sub-panel represents the changes in the residuals of 203 

the models. 204 

2.3 Weather normalization analysis 205 

To compare the FEA method with other commonly used statistical approaches, we also applied the 206 

widely adopted meteorological normalization technique based on the RF algorithm (Grange et al., 2018; 207 

Vu et al., 2019). This approach constructs a regression model that relates air pollutant concentrations to 208 

meteorological parameters and emission surrogate indicators (i.e., time variables such as unix time, day 209 

of year, day of month, and hour of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained, 210 

air pollutant concentrations are predicted by randomly resampling meteorological variables from long-211 

term historical meteorological datasets, thereby generating a new ensemble of predictions (Vu et al., 212 

2019). These predictions are made under consistent meteorological conditions, enabling the isolation of 213 

meteorological influences from anthropogenic emission effects on air pollutant trends. The resulting 214 

weather-normalized pollutant concentrations (Fig. 1) represent the levels expected under average 215 

meteorological conditions, thus reflecting the impact of emission changes alone. In this study, the 216 
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meteorological normalization follows this established framework, with meteorological variables 217 

randomly sampled from the long-term dataset spanning 1970-2023. Each normalization process involves 218 

1,000 iterations, and the arithmetic mean of these iterations' simulated values was adopted as the final 219 

normalized result. The alignment between FEA-based and weather-normalized trends (Fig. S4) affirms 220 

the robustness of the FEA framework. 221 

2.3 Quantification of extreme weather-driven changes in ozone 222 

An unprecedented and persistent heatwave struck central and eastern China during the summer of 223 

2022, with the Yangtze River Delta (YRD) experiencing the most severe impacts (Wang et al., 2023b; 224 

Zhang et al., 2023). This event has been identified as the longest-lasting and most intense heatwave since 225 

at least 1961 (Mallapaty, 2022). In contrast, the Yangtze-Huaihe region is climatologically prone to 226 

sustained extreme precipitation, where prolonged rainfall episodes frequently occur during the East Asian 227 

summer monsoon (Yin et al., 2020). Together, the extreme heatwave (HW) in 2022 and recurrent 228 

prolonged rainfall (PR) events provide unique and physically realistic atmospheric conditions to 229 

investigate the impacts of typical weather extremes on surface ozone. 230 

To quantify the contributions of extreme meteorological conditions to ozone variability, we applied 231 

the SHapley Additive exPlanations (SHAP) method (Lundberg et al., 2020) to interpret predictions from 232 

the random forest model. SHAP assigns an importance value to each input feature k, representing its 233 

marginal contribution to the model-predicted MDA8 ozone. The PR period was defined as 15 June to 15 234 

July for each year, while the remaining period from June to August was classified as the non-prolonged 235 

rainfall (NPR) period. The HW event in 2022 was defined as 16 July to 31 August, with the same calendar 236 

period in other years designated as non-heatwave (NHW) conditions. 237 

SHAP values were calculated for all input features during the PR and NPR periods, as well as during 238 

the HW and NHW periods, respectively. The relative changes in SHAP values (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) between these 239 

conditions were used to assess the responses of MDA8 ozone to the rainy season or the 2022 heatwave 240 

weather conditions, as per the following Eqs: 241 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                               (8) 242 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                             (9) 243 

2.5 FEA-based assessment of climate change impacts on ozone 244 



11 
 

To evaluate the long-term impact of climate change on surface ozone concentrations across 245 

China from 1970 to 2023, we extended the framework of our machine learning-based FEA method. 246 

The core idea of this analysis is to isolate the influence of long-term meteorological variability on 247 

ozone while assuming fixed anthropogenic emissions. Given the availability of relatively complete 248 

and continuous hourly ozone observations and meteorological data from 2015 to 2023, this period 249 

was used to construct nine emission baseline scenarios. Following the modeling protocol described in 250 

Section 2.2, nine independent random forest models were trained for each city and scenario, with each 251 

year from 2015 to 2023 serving as an emissions reference. Model inputs included hourly ozone 252 

observations, key meteorological predictors, and time-related variables (hour of day and month of year). 253 

The trained models were then applied to historical meteorological reanalysis data from 1970 to 2023 to 254 

simulate ozone trends under fixed emissions (Fig. 1), yielding nine independent ozone trajectories, each 255 

reflecting the influence of long-term meteorological variability under a different fixed-emissions 256 

assumption. While the choice of emission baseline may affect the absolute magnitude of simulated ozone, 257 

it does not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers 258 

over multidecadal timescales (Lecœur et al., 2014; Leung et al., 2018; Wang et al., 2022b). This approach 259 

could capture the climate-induced ozone signal while adopting the common assumption that emissions 260 

are not themselves influenced by climate change – a simplification consistent with prior attribution 261 

studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022b). For comparison, 262 

we also estimated the impact of anthropogenic emission changes on ozone concentrations during 2015–263 

2023 using the same FEA methodology and the complete hourly dataset for model training. This dual-264 

track analysis enables a clear distinction between the impacts of climate variability and emission 265 

mitigation on observed ozone trends. 266 

To examine the sensitivity of urban ozone pollution to climate variability under different potential 267 

atmospheric conditions (e.g., oxidation capacity) and its possible evolution under global warming, we 268 

defined three representative regional scenarios based on typical ozone pollution characteristics in China 269 

(Fig. 3a): a high-pollution scenario for BTH (BaseBTH), a moderate-pollution scenario for YRD 270 

(BaseYRD), and a low-pollution scenario for Pearl River Delta (PRD) (BasePRD). These scenarios allow 271 

assessment of ozone trends and climate impacts under fixed emissions across three distinct atmospheric 272 

conditions. 273 
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3 Results and Discussion 274 

3.1 Spatiotemporal variation of summertime ozone 275 

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum daily 276 

8-hour average (MDA8) ozone, surface NO2, and TROPOMI NO2, HCHO column concentrations across 277 

China, along with the locations of the country’s five typical city clusters: BTH, Fenwei Plain (FWP), 278 

YRD, Sichuan Basin (SCB), and PRD. Across these five city clusters, the average summer ozone 279 

concentrations ranged from 88.9 to 161.3 μg m⁻3 – substantially exceeding the 43.0 μg m⁻3 threshold 280 

associated with ecosystem productivity loss (Gong et al., 2021) and the World Health Organization 281 

(WHO, 2021) recommended peak seasonal average of 60 μg m⁻3. TROPOMI satellite observations of 282 

NO2 column concentration show notably elevated concentrations over the five city clusters, particularly 283 

in the BTH, YRD, and FWP, which align with surface NO2 distribution patterns and confirm the scale of 284 

anthropogenic NOx emissions in these regions (Zheng et al., 2021). TROPOMI satellite observations of 285 

HCHO column concentrations similarly reveal these city clusters as hotspots for VOC emissions (Fig. 286 

3d). These concurrent high levels of NO2 and HCHO suggest a strong photochemical ozone pollution 287 

potential, as the abundant precursors in these urban clusters could drive substantial ozone production 288 

during the summer months.  289 

 290 
Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO across 291 

major city clusters in China. The panels represent the average MDA8 ozone, surface NO2, and TROPOMI NO2, 292 

HCHO column concentrations for 354 cities in China during the summertime (June–August) from 2018 to 2023. 293 

The corresponding five regions includes BTH (37°–41°N, 114°–118°E); YRD (30°–33°N, 118.2°–122°E); SCB 294 
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(28.5°–31.5°N, 103.5°–107°E); PRD (21.5°–24°N, 112°–115.5°E) and FWP (106.25–111.25°E, 33–35°N, and 295 

108.75–113.75°E, 35–37°N). 296 

 297 

Figure 4 presents the interannual variations in MDA8 ozone concentrations during summertime 298 

across China, with a focus on the five city cluster regions. During the Phase I (2013–2017), the average 299 

nationwide MDA8 ozone increased significantly (p < 0.01), rising from 95.5 to 118.0 μg m⁻3. This growth 300 

was especially pronounced in the BTH and FWP regions, where the concentrations increased by 301 

approximately 38% and 41%, respectively. In contrast, ozone increases were more modest in the YRD 302 

(~11%), SCB (~15%), and PRD (~16%) regions, respectively. These results were consistent with the 303 

previous studies (Li et al., 2021; Liu and Wang, 2020a, 2020b; Wang et al., 2023a). Corresponding to the 304 

implementation of more stringent emission controls on NOx and VOCs emissions during the Phase II 305 

(Geng et al., 2024; Liu et al., 2023), a moderate national decrease in MDA8 ozone was observed, with 306 

concentrations declining to 109.0 μg m⁻3 from 2017 to 2020. The declines during this period were most 307 

notable in FWP (−16%) and YRD (−15%), while BTH (−6%), SCB (−11%), and PRD (−4%) also showed 308 

reductions compared to their concentration peaks observed in 2017. However, the MDA8 ozone 309 

rebounded, reaching 118.4 μg m⁻3 in 2023 – comparable to its 2017 peak – with a particularly sharp 310 

increase during the summer of 2022. From 2021 to 2023, MDA8 ozone concentrations rose by 2.8 μg m⁻3 311 

in BTH, 3.1 μg m⁻3 in FWP, 16.1 μg m⁻3 in YRD, and 18.5 μg m⁻3 in SCB, respectively. 312 

Figure S1 further illustrates the spatiotemporal evolution of summertime MDA8 ozone in China 313 

from 2013 to 2023. On average, approximately 68% of the cities exceeded the WHO air quality guideline 314 

of 100 μg m⁻3 for the MDA8 ozone. Elevated ozone levels were primarily observed in densely populated 315 

and economically developed regions. Spatially, ozone hotspot regions expanded between 2013 and 2017 316 

(Fig. S1 a-e), followed by contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in 317 

2021. A sharp reversal was observed in 2022, with widespread increases in MDA8 ozone (Fig. S1 k). 318 

These changes could be closely linked to emission control measures and meteorological conditions, 319 

which will be further discussed in Sections 3.2 and 3.3. 320 
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 321 

Figure 4. Interannual trends of summertime MDA8 ozone across China (2013–2023). a the seasonal variations 322 

of MDA8 ozone during the summer months (June, July, and August) over China. b-f the average trend across the 323 

five city cluster regions in China: BTH, FWP, YRD, SCB, and PRD, respectively. The summer months are defined 324 

according to meteorological seasonality, encompassing June, July, and August. In the violin plots, hollow diamond 325 

markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall test and Sen's slope 326 

estimator were employed to assess the statistical significance and rate of change in the monthly average MDA8 327 

ozone concentrations. The p value represents the significance level from the Mann-Kendall test, which is used to 328 

determine the statistical significance of the trend in the data. 329 

 330 

3.2 Anthropogenic emission drivers of ozone trends 331 

To disentangle the relative impacts of anthropogenic emissions and meteorological variability on 332 

observed ozone trends, we applied the machine learning-based FEA framework described in Section 2.2. 333 

As illustrated in Fig. 5, anthropogenic emissions were the dominant driver of ozone increases during 334 

2013–2017, contributing an average rise of approximately 23.2 ± 1.1 μg m⁻3 nationwide. The most 335 

pronounced increases occurred in the FWP and BTH (45.0 ± 2.0 μg m⁻3 and 42.1 ± 2.0 μg m⁻3, 336 

respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 ± 1.6 μg m⁻3), reflecting 337 

its predominantly NOx-limited photochemical regime versus VOC-limited regimes in other regions (Ren 338 

et al., 2022). As shown in Fig. S5, the precursor gases NO2 and CO exhibited regionally distinct 339 
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decreasing trends, partially explaining the spatial heterogeneity of ozone changes. The MDA8 ozone 340 

decreased by 10.5 ± 2.0 μg m⁻3 in BTH and 10.4 ± 3.0 μg m⁻3 in FWP, with smaller declines in YRD (–341 

4.8 ± 3.8 μg m⁻3), SCB (–2.8 ± 2.4 μg m⁻3), and PRD (–6.6 ± 1.4 μg m⁻3) between 2017 and 2020 (Fig. 5). 342 

These trends were overall consistent with those derived using independent statistical approaches (Wang 343 

et al., 2023). The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation 344 

to anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and 345 

transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO2, NOx, PM2.5, and 346 

VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 1.07 Tg 347 

(12%), respectively, relative to the same period in 2019 (Geng et al., 2024). Despite these reductions, 348 

MDA8 ozone concentrations increased by 1.7–2.3 μg m⁻3 across BTH, FWP, YRD, and SCB, while a 349 

slight decrease occurred in PRD (Fig. S6). Overall, ~79% of monitored cities experienced ozone 350 

increases, with a national mean enhancement of 2.1 ± 1.3 μg m⁻3 (Fig. S7). In the post-pandemic period 351 

(2020-2023), concentrations of NO2, CO, and PM2.5 stabilized or declined more gradually (Fig. S5), and 352 

the contribution of anthropogenic emissions to ozone variability weakened considerably (Fig. S8). 353 

Regionally, emission-driven changes ranged from –1.2 to +2.6 μg m⁻3 in BTH, –1.6 to +4.0 μg m⁻3 in 354 

FWP, –4.7 to +7.4 μg m⁻3 in YRD, –3.6 to +3.0 μg m⁻3 in SCB, and –3.8 to +7.7 μg m⁻3 in PRD. These 355 

results indicate that while emission controls initially yielded substantial ozone mitigation benefits during 356 

the Phase II, their effectiveness has gradually diminished, underscoring the need for more targeted and 357 

region-specific emission control strategies under evolving photochemical regimes. 358 
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 359 
Figure 5. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summertime 360 

MDA8 ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological 361 

variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015–362 

2023) for emissions. The interquartile range, with values in parentheses denoting the 25th and 75th percentiles across 363 

all baseline scenarios. 364 
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spatiotemporal evolution of the HCHO/NO2 ratio (Text S1). Figure S12 shows that this ratio exhibited 375 
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above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, summer ozone 379 

formation was largely controlled by NOx-limited and transitional regimes. The YRD underwent a notable 380 

shift from VOC- to NOx-limited chemistry, with VOC-limited fractions decreasing from ~35% in 2018 381 

to ~22% in 2023, particularly during 2022 when extreme heat amplified VOC emissions and 382 

photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB region consistently exhibited strong 383 

NOx limitation (>75%), whereas the PRD showed a gradual expansion of the transitional regime 384 

alongside a modest contraction of VOC-limited regions. These shifts in photochemical sensitivity 385 

correspond well with the ozone decrease observed during the Phase II emission reductions. Spatial 386 

distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) reveal that most 387 

of China was in a transitional regime, with major urban clusters remaining VOC-limited and only limited 388 

areas in southern China being NOx-limited. This spatial pattern aligns with the observed widespread 389 

ozone increases during the lockdown (Fig. S7). These findings highlight that ozone production chemistry 390 

in China was shaped by the complex interplay between emission reduction efforts and the rising 391 

frequency of meteorological extremes under a warming climate. 392 

 393 

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-394 

limited, and transitional ozone sensitivity regimes across five key regions during the summertime (June to August) 395 

from 2018 to 2023, based on the FNR analysis. a-e the trend across the five city cluster regions in China during the 396 

summer months (June, July, and August): BTH, FWP, YRD, SCB, and PRD, respectively. f presents the overall 397 

trends for all five regions. 398 
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3.3 Meteorological impact on ozone variation 399 

Figure 5 shows the interannual meteorological contributions to summertime MDA8 ozone across 400 

different emission-control phases. During the Phase I, meteorology exerted relatively weak influences 401 

on ozone variability, with contributions ranging from –4.8 to +3.9 μg m⁻3—far smaller than those from 402 

anthropogenic emission changes. In contrast, meteorological anomalies became a decisive factor from 403 

2017 to 2020, driving substantial ozone reductions. Ozone decreases attributable to meteorology reached 404 

–14.4 ± 3.0 μg m⁻3 in the FWP, –15.9 ± 3.8 μg m⁻3 in the YRD, and –11.1 ± 2.4 μg m⁻3 in the SCB, 405 

explaining 58 ± 12%, 77 ± 18%, and 80 ± 17% of the total ozone decline, respectively. A notable shift 406 

occurred from 2020 to 2023, when the influence of extreme meteorological events increasingly 407 

dominated ozone variability. In the summer of 2022, persistent heatwaves across eastern and southern 408 

China (Mallapaty, 2022; Wang et al., 2023b) triggered sharp ozone increases of +20.8 ± 3.6 μg m ⁻3 in 409 

the YRD and +22.1 ± 3.2 μg m⁻3 in the SCB, reflecting the enhanced photochemical activity under high-410 

temperature and intense solar radiation conditions. The following summer (2023) featured anomalously 411 

heavy rainfall, resulting in sharp ozone suppression (–17.8 ± 2.3 μg m⁻3 in the YRD and –9.7 ± 3.3 μg 412 

m⁻3 in the SCB). This reduction coincided with a remarkable increase in precipitation, i.e., 102% in YRD 413 

and 35% in SCB (Fig. S14), indicating that rainy meteorological conditions may have suppressed ozone 414 

production. 415 

To identify the dominant meteorological drivers, we analyzed Gini importance scores derived from 416 

the RF model across 18 predictor variables (Fig. S15). Temperature (T) emerged as the most influential 417 

predictor in the BTH and FWP regions, while shortwave solar radiation (SR), relative humidity (RH), 418 

and 850hPa zonal wind (u850) were most important in the YRD. In the PRD, ozone variability was 419 

primarily governed by temperature and transport-related indices, including meridional winds at different 420 

altitudes. These findings are consistent with the climatological contrast between northern continental and 421 

southern coastal regimes: in northern China, stagnant anticyclonic conditions (Gong and Liao, 2019) and 422 

strong solar radiation promote photochemical production (Bao et al., 2025), whereas in southern regions, 423 

high humidity and convective rainfall could tend to suppress ozone by reducing actinic flux and 424 

enhancing removal of precursors(Lu et al., 2019). 425 

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to key 426 

meteorological factors (T, RH, and SR) for representative cities in each cluster, revealing clear regional 427 
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contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to T (Fig. S16a), 428 

consistent with the enhancement of reaction kinetics and biogenic VOC emissions under hot conditions. 429 

This behavior reflects the thermodynamic coupling between surface heating, boundary-layer expansion, 430 

and photochemical production. In Nanjing (YRD), ozone was more sensitive to solar radiation than to 431 

temperature (Fig. S16c), highlighting the dominant role of actinic flux in controlling radical production 432 

during warm and dry conditions. Consistent with these findings, Yang et al. (2024) reported that high-433 

temperature and low-RH conditions over the NCP and YRD could enhance photochemical ozone 434 

formation, with chemical production dominating during peak pollution periods. In the SCB, both T and 435 

RH exhibited strong influences, while ozone variability was shaped primarily by T and large-scale 436 

circulation patterns in the PRD associated with subtropical maritime flow and typhoon incursions from 437 

the Northwest Pacific (Chen et al., 2024; Wang et al., 2024a; Wang et al., 2022a). 438 

To further quantify these relationships, we applied SHAP (SHapley Additive exPlanations) analysis 439 

to evaluate the meteorological influence of the HW and the PR events in the Yangtze-Huaihe region 440 

between 2015 and 2023 (Section 2.4). As shown in Fig. S17, the HW events were associated with strong 441 

positive SHAP values in southeastern coastal areas, especially the YRD and SCB, driven by elevated SR 442 

and T. Mean SR during the HW periods was substantially higher than during the non-HW periods (Fig. 443 

S18), increasing photochemical activity through increased radical generation and faster reaction rates. 444 

Conversely, PR events produced consistent negative SHAP contributions across all regions (Fig. S19), 445 

reflecting the combined effects of reduced photolysis, increased humidity, and efficient wet scavenging 446 

on ozone production (He and Carmichael, 1999). A multi-year comparison (Fig. 7) highlights the 447 

opposing effects of key meteorological variables – including RH, T, boundary layer height (BLH), total 448 

precipitation (TP), and surface pressure (SP) – on MDA8 ozone. The trend in ΔSHAP values under 449 

high-humidity conditions from 2015 to 2023 (Fig. S20) further confirms the model’s ability to capture 450 

the suppressive effects of wet weather conditions on ozone formation. 451 
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 452 

Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather 453 

conditions. (a) Differences in SHAP values (ΔSHAP) between heatwave and non-heatwave periods in the Yangtze-454 

Huaihe region during summer 2022. (b) Differences in SHAP values (ΔSHAP) between prolonged rainfall periods 455 

and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution of ΔSHAP 456 

across cities; the center line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and 457 

the whisker line extends to one standard deviation. 458 

 459 

3.4 Reshaping distributions of ozone by climate change and emission controls 460 

To assess the long-term influence of climate change on surface ozone concentrations, we applied 461 

the FEA framework to simulate summertime ozone trends over the period 1970 – 2023. In this analysis, 462 

anthropogenic emissions were held constant at their 2015 – 2023 summertime levels, while interannual 463 

variations in meteorological variables were introduced using historical reanalysis data. This design 464 

isolates the climate-driven component of ozone trends while assuming that emission trajectories are 465 

independent of climate change – a simplification aligned with prior attribution frameworks (Wang et al., 466 

2022b). The impact of anthropogenic emission controls was estimated by comparing observed ozone 467 

concentrations with FEA-predicted values during 2015 – 2023, thereby quantifying the residual effect of 468 

emissions under fixed meteorology. 469 

As shown in Fig. 8, under the 2015-2023 emission levels, climate change has exerted a statistically 470 

significant (p < 0.05) positive influence on urban summertime ozone concentrations across China, 471 

resulting in a nationwide increase of approximately 0.06 μg m⁻3 yr⁻1 since 1970. All five major urban 472 

regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at 473 

0.12 μg m⁻3 yr⁻1. Three sensitivity simulations (see Section 2.5 and Fig. S21) confirm this robustness: 474 

trend slopes range from 0.11–0.14 μg m⁻3 yr⁻1 in BaseBTH (high-pollution scenario), 0.05–0.10 μg m⁻3 475 

yr⁻1 in the BaseYRD (moderate-pollution scenario), and 0.03–0.10 μg m⁻3 yr⁻1 in the BasePRD (low-476 

pollution scenario). Despite regional differences in chemical regimes or pollution levels, the consistent 477 
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upward tendencies underscore the pervasive climatic amplification of ozone formation. These results 478 

emphasize that climate change acts as a systematic driver of ozone growth across diverse atmospheric 479 

environments, reinforcing the need to embed climate resilience within emission control strategies. Spatial 480 

correlations between climate-driven ozone increases and temperature changes (Fig. S22) further confirm 481 

that warming is the dominant contributor to long-term ozone enhancement. In particular, the correlation 482 

coefficients between ozone trends and temperature anomalies reached 0.90 (BTH), 0.89 (FWP), 0.72 483 

(YRD), and 0.93 (SCB), indicating a strong temperature dependence of climate-induced ozone formation 484 

in these regions. The PRD showed a weaker correlation, likely due to its unique subtropical maritime 485 

climate and higher humidity and cloud cover, which tend to suppress photochemical ozone production 486 

(Yang et al., 2019). The right panel of Fig. 8 depicts summertime ozone trends from 2015 to 2023 under 487 

the combined influence of anthropogenic emissions, derived from the FEA method. Ozone 488 

concentrations rose across all regions between 2015 and 2018, declined modestly during 2018-2020, and 489 

rebounded thereafter in most regions except the PRD.  490 

These findings are consistent with future projections that anticipate more frequent high-ozone 491 

episodes under continued warming (Li et al., 2023). Recent analyses (Yang et al., 2024) show that the 492 

frequency of high-temperature and low-humidity conditions during 2000-2019 was markedly higher than 493 

in 1980-1999, suggesting that ozone pollution in both the NCP and YRD has intensified under historical 494 

climate change. Indeed, while national emission controls curbed ozone growth after 2018, a post-2020 495 

rebound has emerged, implying that the climatic penalty on ozone is beginning to offset emission gains. 496 

The extreme 2022 heatwave exemplified this effect, substantially enhancing photochemical activity and 497 

shifting ozone sensitivity from VOC-limited to transitional or NOx-limited regimes. Although reductions 498 

in anthropogenic precursor emissions have improved ozone control efficiency, the warming-induced 499 

enhancement of ozone increasingly interferes with – and in some regions may partially offset – the air-500 

quality gains achieved through emission reduction efforts.  501 
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 502 

Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends 503 

attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA 504 

framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission 505 

controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate 506 

the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the 507 

5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-508 

Kendall test. More details of the sensitivity tests are provided in Fig. S18. 509 

4 Conclusions and implications 510 

In this study, we developed a machine learning-based FEA framework to disentangle and quantify the 511 

respective roles of anthropogenic emissions and meteorological drivers in shaping ozone trends during 512 

2013-2023. With a national-level prediction uncertainty of approximately 6%, the FEA method provides 513 

a computationally efficient and scalable tool for diagnosing atmospheric variability across large spatial 514 

and temporal domains. However, the current model framework did not explicitly resolve grid-scale 515 

spatial heterogeneity, vegetation feedbacks, or land-use dynamics, which may influence the ozone 516 

prediction. In addition, the sensitivity of the results to spatial resolution need further investigation 517 

through coupled applications of machine learning and chemical transport models. 518 

Our results revealed that increased anthropogenic emissions were the dominant driver of the sharp 519 

rise in summertime MDA8 ozone concentrations during the Phase Ⅰ, contributing an average increase of 520 
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23.2 ± 1.1  μg m⁻3. In contrast, the strengthened clean air actions during the Phase II – particularly the 521 

synergistic control of NOx and VOCs – led to measurable reductions in MDA8 ozone, with national-522 

average declines of 4.6 ± 1.5  μg m⁻3 from 2017 to 2020. These improvements were especially evident in 523 

regions such as BTH and FWP, where ozone formation was highly sensitive to VOCs. However, the 524 

impact of emission reductions diminished considerably during the recent period (2021–2023). This 525 

stagnation underscores the urgent need for more targeted, region-specific emission control strategies that 526 

address the shifting photochemical sensitivity of ozone formation regimes. 527 

Using the SHAP attribution analysis, we further quantified the influence of meteorological extremes 528 

on ozone variability. Record-breaking heatwaves in 2022 enhanced ozone concentrations by up to +5.8 529 

μg m⁻3, while prolonged pluvial episodes, particularly during the East Asian monsoon season, suppressed 530 

ozone by as much as −15.2 μg m⁻3. These results highlight the dominance of short-term meteorological 531 

extremes in shaping ozone air quality under a warming climate. Complementary satellite-based FNR 532 

diagnostics revealed that most urban clusters remain VOC-limited or transitional, except the PRD, which 533 

is largely NOx-limited. The 2022 heatwave induced regime shifts in regions such as the YRD, where 534 

intensified VOC emissions and elevated temperatures drove transitions toward NOx-limited conditions. 535 

These findings emphasize the need for dynamic, region-specific assessments of ozone sensitivity to guide 536 

effective mitigation strategies. 537 

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term 538 

trends from 1970 to 2023 by fixing emissions and allowing meteorological variables to evolve with 539 

observed climate trends. Our findings show that climate change has contributed to a significant upward 540 

trend in urban summertime ozone, averaging 0.06 μg m⁻3 a⁻1, with particularly strong increases in the 541 

BTH and SCB. Good correlations between the modelled ozone and surface temperature (r = 0.72-0.93) 542 

across major urban clusters indicated that climate warming exerts a persistent control on the long-term 543 

evolution of ozone. While reductions in precursor emissions have improved ozone control efficiency, the 544 

direct enhancement of ozone by rising temperatures increasingly interferes with, and in some regions 545 

may partially offset, the air-quality benefits achieved through emission mitigation. Together, these 546 

findings highlight that effective ozone management in a warming world will require integrated strategies 547 

that jointly address emission reductions and climate adaptation. 548 

549 
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