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Abstract. Surface ozone, a major air pollutant with important implications for human health, ecosystems, 20 

and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. Here, we 21 

developed a machine learning-based approach, namely the fixed emission approximation (FEA), to 22 

disentangle the effects of meteorological variability and anthropogenic emissions on summertime ozone 23 

trends in China. We identified three phases of ozone trends corresponding to clean air actions. 24 

Anthropogenic emissions drove an approximately +23.2 ± 1.1 μg m⁻3 increase in summer maximum 25 

daily 8-hour average ozone during 2013–2017, followed by an approximately −4.6 ± 1.5 μg m⁻3 decrease 26 

between 2017 and 2020. However, extreme meteorological anomalies, including heatwaves and 27 

extended rainfall, emerged as key drivers of ozone variability during 2020–2023. Satellite-derived 28 

formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile organic compounds-limited 29 

regimes, with a shift toward nitrogen oxides-limited sensitivity under the influence of heatwaves. Finally, 30 

we assess ozone trends under sustained climate warming from 1970 to 2023 based on the FEA 31 

framework. The results indicate a significant climate-driven increase in ozone levels across China's 32 

urban agglomerations, underscoring the amplifying role of climate change in ozone pollution. 33 

Together, these findings highlight the dual influence of anthropogenic and climatic factors on ozone 34 

pollution and emphasize the need for integrated strategies that couple emission mitigation with 35 

climate adaptation to effectively manage ozone risks in a warming world.36 
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1 Introduction 37 

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton et 38 

al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et 39 

al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and 40 

volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017), 41 

exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a). 42 

Controlling ozone pollution remains a global environmental challenge. In recent years, China has 43 

implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control 44 

Action Plan (2013–2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018–2020) 45 

(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality, 46 

particularly by reducing fine particulate matter (PM2.5) (Geng et al., 2024; Zhang et al., 2019). However, 47 

surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers 48 

of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies 49 

(Li et al., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022). 50 

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather 51 

conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022a). While 52 

emission controls directly regulate precursor abundance, climate change modulates ozone through 53 

chemical feedbacks, meteorological dynamics, and biosphere–atmosphere interactions (Ma and Yin, 54 

2021; Xue et al., 2020). Over the past century, global surface temperatures have substantially increased 55 

relative to the pre-industrial baseline (1850–1900), driven largely by human activities (IPCC, 2021). In 56 

such a warming world, extreme climate anomalies – such as heatwaves and persistent rainfall shifts – are 57 

expected to intensify (Li et al., 2025a; Li et al., 2025b). These events are increasingly recognized as 58 

critical modulators of ozone variability through their impacts on photochemistry and precursor emissions 59 

(Gao et al., 2023; Pu et al., 2017; Wang et al., 2022a). 60 

Quantifying the respective roles of anthropogenic emissions and meteorological variability in 61 

driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al., 62 

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations 63 
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in urban cluster regions in China – such as the Beijing–Tianjin–Hebei (BTH) and Yangtze River Delta 64 

(YRD) – during the first phase (2013 – 2017), with increases of approximately 28% and 18%, 65 

respectively (Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone 66 

levels was observed during 2018 – 2020, largely attributed to emission reductions (Li et al., 2021; Liu 67 

and Wang, 2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate 68 

a renewed increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over 69 

the past decade, the drivers of which remain poorly constrained. 70 

Two main approaches have been applied to attribute air pollution trends: chemical transport models 71 

(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks 72 

(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). The CTMs simulate atmospheric composition based 73 

on emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi, 74 

2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or 75 

meteorology, and can also resolve sector-specific impacts. However, these models face challenges, 76 

including uncertainties and temporal lags in emission inventories. Statistical models, on the other hand, 77 

rely on observational datasets and predictor-response relationships without requiring explicit emissions 78 

or chemical schemes (Li et al., 2019a; Li et al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing 79 

availability of atmospheric big data, statistical and machine learning models have emerged as useful tools 80 

for trend attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng et 81 

al., 2023). For instance, Grange et al. (2018) developed a random forest-based framework to isolate 82 

meteorological influences on particulate matter. Similarly, Wang et al. (2023) used an enhanced extreme 83 

gradient boosting (XGBoost) model to analyze spatial and temporal ozone patterns in China from 2010 84 

to 2021, confirming that emission reductions played a key role in recent declines. Other recent efforts 85 

have extended statistical models to long-term assessments of air pollution drivers under climate change 86 

(Wang et al., 2022b). 87 

Here, we developed a machine learning-based framework – fixed emission approximation (FEA) – 88 

to quantify the respective roles of anthropogenic emissions and meteorological conditions in shaping 89 

summertime surface ozone trends in China. Applying the FEA to nationwide observational data from 90 

2013 to 2023, we identified three phases of ozone evolution corresponding to the major clean air actions 91 

and policy transitions. We further analyzed short-term ozone anomalies associated with extreme weather 92 
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events, such as the 2022 heatwave and seasonal rainfall. To characterize ozone production regimes, we 93 

integrated satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO2, FNR) ratios from the 94 

tropospheric monitoring instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation 95 

sensitivity across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends 96 

from 1970 to 2023, using historical meteorological reanalysis data. Collectively, these analyses provide 97 

an integrated understanding of how anthropogenic and climatic factors jointly shape surface ozone 98 

dynamics under a warming climate. 99 

2 Data and methods 100 

2.1 Data sources and methodology overview 101 

Figure 1 provides an overview of the data analysis and methodological framework employed in this 102 

study. We first integrated multi-dimensional datasets, including hourly surface air pollutant 103 

concentrations, meteorological reanalysis fields, and satellite remote sensing data. Hourly surface 104 

observations of ozone, nitrogen dioxide (NO2), carbon monoxide (CO), and fine particulate matter (PM2.5) 105 

were accessed from the National Environmental Monitoring Center of China through the open website 106 

https://air.cnemc.cn:18007/ (last accessed: May 20, 2024). Hourly meteorological data with a spatial 107 

resolution of 0.25° × 0.25° were sourced from the ERA5 reanalysis dataset provided by the European 108 

Centre for Medium-Range Weather Forecasts (ECMWF) and are available for download at 109 

https://cds.climate.copernicus.eu (last accessed: March 20, 2025). Detailed variables are listed in Table 110 

S1. The time variables – hour (hour of day) and month (month of year) – are used as emission surrogates 111 

to capture regular diurnal and seasonal variations in anthropogenic activity. A similar strategy is widely 112 

applied in previous studies about long-term trends in air pollutants (e.g., Grange et al., 2018; Vu et al., 113 

2019) to separate short-term cyclical emission variability from long-term trends. For 2013 – 2014, the 114 

surface MDA8 ozone data were obtained from the Tracking Air Pollution in China (TAP) dataset (Geng 115 

et al., 2021), which can be downloaded from http://tapdata.org (last accessed: May 20, 2024). The 116 

TROPOMI on the Sentinel-5P satellite provides global continuous observation data for two indicators of 117 

ozone precursors: NO2 and formaldehyde (HCHO) column concentrations (Lamsal et al., 2014; Shen et 118 

al., 2019). The FNR was used as a proxy for VOC/NOx reactivity and as a diagnostic indicator of ozone 119 

https://air.cnemc.cn:18007/
https://cds.climate.copernicus.eu/
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formation sensitivity (Sillman, 1995)， to explain and verify the impact of extreme weather and 120 

anthropogenic emissions on ozone. Details of the ozone sensitivity diagnostic method are provided in 121 

Text S1. 122 

 123 
Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional 124 

datasets, including ground-based observations, meteorological reanalysis, and satellite remote sensing. A fixed 125 

emission approximation (FEA) approach, developed based on the random forest (RF) model, is employed to 126 

quantitatively disentangle the contributions of meteorological conditions (MET) and anthropogenic emissions (ANT) 127 

to ozone trend variations, and its performance is compared with the conventional meteorological normalization 128 

method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves 129 

(HW) and extreme precipitation (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to 130 

diagnose ozone production sensitivity, to explain and verify the impact of extreme weather and anthropogenic 131 

emissions on ozone. Finally, the FEA framework is extended to evaluate the long-term impacts of climate change on 132 

ozone trends since 1970. 133 

2.2 Machine learning-based FEA approach 134 

In this study, we develop a machine learning-based FEA approach to assess the impacts of 135 

meteorological factors and anthropogenic emissions on the year-round variations in ozone concentrations 136 

(Fig. 1). First, a regression model is constructed using the random forest (RF) algorithm to relate ozone 137 

concentrations to temporal emission surrogates and to meteorological parameters at multiple atmospheric 138 
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levels. These temporal emission surrogates, including month and hour, represent short-term regular 139 

emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-140 

driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et al., 141 

2019). The meteorological parameters include 18 distinct variables at different altitudes (see Table S1). 142 

It should be noteworthy that surface air pollutant observations for each city represent multi-site averages 143 

rather than data from a single monitoring station, which reduces the influence of local representativeness 144 

errors. The meteorological data are obtained from the nearest grid cell corresponding to each city, 145 

ensuring spatial consistency between the pollutant and meteorological datasets. This approach was 146 

similar to the methodologies widely adopted in previous studies (Shi et al., 2021; Wang et al., 2025; Yao 147 

et al., 2024; Zheng et al., 2023). Our modeling strategy involves building and predicting models for 148 

individual cities and for each year from 2015 to 2023, which helps in minimizing the uncertainty caused 149 

by surface heterogeneity. Due to the lack of available observational data for many cities in 2013 and 150 

2014, we did not develop models for these two years. In our approach, 80% of the dataset is used for 151 

model training, while the remaining 20% is reserved for testing. We perform ten-fold cross-validation 152 

and assess model performance using seven statistical metrics, as listed in Table S2. 153 

Following the construction of the machine learning models for individual cities and years, we 154 

introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone 155 

precursors remain unchanged from the baseline year. Specifically, we establish hourly-resolution models 156 

for the baseline year (i) during the summer season (June to August) as a reference for anthropogenic 157 

emissions, represented by the pink solid line in Fig. 1. These models are then applied to predict ozone 158 

concentrations under the meteorological conditions of the prediction year (j), while holding the emission 159 

levels constant at those of the baseline year (i), as shown by the blue solid line in Fig. 1. The difference 160 

between the predicted values (𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖) and the observed values (𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖) for the baseline year (i) represents 161 

the model residuals (𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖), as shown in Eq. (1). The difference in observed MDA8 ozone concentrations 162 

between baseline year i and prediction year j is driven by the differences in meteorological conditions 163 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and anthropogenic emission controls 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) (Eq. 2).The prediction result 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) obtained 164 

by applying the model trained with data from year i to the meteorological conditions of year j, the 165 

difference between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and Baseline (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖) is driven by 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗), while the difference between 166 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) and the observed levels in year j (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗), minus the 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖, yields the ozone variation driven by 167 
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(𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗)). Therefore, 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) and 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) can be quantified and calculated using Eqs. (3-4). 168 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                                   (1) 169 

𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖(𝑗𝑗) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) ,                               (2) 170 

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝑗𝑗) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ,                                (3) 171 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗) = 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖  ,                          (4) 172 

The difference in observed MDA8 ozone concentrations between two different prediction years (j1, 173 

j2) is driven by the differences in meteorological conditions (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)) and anthropogenic emission 174 

controls (𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ) (Eq. 5). The term 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2)  represents the changes in meteorological 175 

conditions and can be calculated by the difference between the predicted values, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)  and 176 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2), for the corresponding years (Eq. 6). Similarly, the value of 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2), representing the 177 

change in anthropogenic emissions between the two years j1 and j2, can be therefore calculated using Eq. 178 

(7). By performing these calculations, we can isolate and quantify the contributions of meteorological 179 

conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix 180 

research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method 181 

S2. 182 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥(𝑗𝑗1,𝑗𝑗2) = 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) + 𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) ,                       (5) 183 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) ,                            (6) 184 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑖𝑖(𝑗𝑗1,𝑗𝑗2) = 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗2) − 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖(𝑗𝑗1) = �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� − �𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖� 185 

= (𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗2  − 𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗1) − (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗2) −  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖(𝑗𝑗1)) ,         (7) 186 

Model performance was first evaluated through ten-fold cross-validation for the BTH region, 187 

revealing high predictive skill between observed and predicted MDA8 ozone levels during 2015-2023 188 

(Fig. S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation coefficients (R) 189 

between 0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias (NMB) varied from 190 

16.9 to 21.9 μg m⁻3 and 8 to 25%, respectively, indicating high model accuracy. Nationally, the model 191 

yielded R values of 0.88–0.91 and IOA of 0.93–0.95, with errors remaining within acceptable ranges 192 

(Tables S3–S8). To assess uncertainty stemming from interannual model training variability, we applied 193 

a matrix-based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in residuals 194 
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ranged from -9% to 3%, and remained within ±12% for all regions – supporting the robustness of the 195 

FEA method. We found that the model with the added time variables exhibited significantly smaller 196 

uncertainty compared to the model without it (Fig. S3). 197 

 198 

Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the 199 

approach described in Text S2. The diagonal line in each sub-panel represents the changes in the residuals of the 200 

models. 201 

2.3 Weather normalization analysis 202 

To compare the FEA method with other commonly used statistical approaches, we also applied the 203 

widely adopted meteorological normalization technique based on the RF algorithm. This approach 204 

constructs a regression model that relates air pollutant concentrations to meteorological parameters and 205 

emission surrogate indicators (i.e., time variables such as unix time, day of year, day of month, and hour 206 

of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained, pollutant concentrations are 207 

predicted by randomly resampling meteorological variables from long-term historical meteorological 208 

datasets, thereby generating a new ensemble of predictions (Vu et al., 2019). These predictions are made 209 

under consistent meteorological conditions, enabling the isolation of meteorological influences from 210 

anthropogenic emission effects on air pollutant trends. The resulting weather-normalized pollutant 211 

concentrations (Fig. 1) represent the levels expected under average meteorological conditions, thus 212 

reflecting the impact of emission changes alone. This approach, first proposed by Grange et al. (2018), 213 

has been widely applied in the long-term attribution of air pollution trends and in assessing short-term 214 

emission reduction effects (Shi et al., 2021; Vu et al., 2019). In this study, the meteorological 215 
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normalization follows this established framework, with meteorological variables randomly sampled from 216 

the long-term dataset spanning 1970-2023. Each normalization process involves 1,000 iterations, and the 217 

arithmetic mean of these iterations' simulated values is adopted as the final normalized result. The 218 

alignment between FEA-based and weather-normalized trends (Fig. S4) affirms the robustness of the 219 

FEA framework. 220 

2.3 Quantification of extreme weather-driven changes in ozone 221 

An unprecedented and prolonged heat wave in the summer of 2022 struck central and eastern China, 222 

with the most severely affected area being the YRD (Wang et al., 2023b; Zhang et al., 2023), identified 223 

as the longest-lasting and most intense heat wave since at least 1961 (Mallapaty, 2022). The Yangtze-224 

Huaihe region, where the prolonged rainfall occurs, is also a region of frequent sustained extreme 225 

precipitation events (Yin et al., 2020). The opening of the “rainy season” is marked in late June with the 226 

northward push of the East Asian summer winds and the first northward jump of the subtropical high-227 

pressure ridgeline in the western Pacific Ocean, and generally lasts until mid-July. 228 

We employed the SHapley Additive exPlanations (SHAP) method (Lundberg et al., 2020) to 229 

elucidate the potential impacts of all input features 𝑘𝑘 on the predictions of the RF model. SHAP assigns 230 

an importance score to each feature, revealing their respective contributions to model predictions. 231 

Positive values indicate a beneficial influence on predictions, while negative values denote adverse 232 

effects. The extreme heatwave events in 2022 (HW) and prolonged rainfall (PR) provide unique and 233 

realistic atmospheric environments for us to explore the effects of typical weather extremes on ozone. 234 

The PR period is defined as June 15 to July 15 each year, with the remaining period from June to August 235 

categorized as the non-prolonged rain period (NPR). To isolate the effects of the rainy season, we defined 236 

the HW event in 2022 as occurring from July 16 to August 31, while the corresponding periods in other 237 

years were considered non-heatwave (NHW) periods. We first calculated the SHAP values for input 238 

features during PR and NPR, as well as HW and NHW periods. The relative changes in SHAP values 239 

(𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥) between these conditions were used to assess the responses of MDA8 ozone to the rainy season 240 

and the 2022 heatwave, as per the following Eqs: 241 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                               (8) 242 

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻𝐻𝐻 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁                             (9) 243 
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2.5 FEA-based assessment of climate change impacts on ozone 244 

To evaluate the long-term impact of climate change on surface ozone concentrations across 245 

China from 1970 to 2023, we extended the framework of our machine learning-based FEA method. 246 

The core idea of this analysis is to isolate the influence of long-term meteorological variability on 247 

ozone while assuming fixed anthropogenic emissions. Given the availability of relatively complete 248 

and continuous hourly ozone observations and meteorological data from 2015 to 2023, this period 249 

was used to construct nine emission baseline scenarios. Following the modeling protocol described in 250 

Section 2.2, nine independent random forest models were trained for each city and scenario, with each 251 

year from 2015 to 2023 serving as an emissions reference. Model inputs included hourly ozone 252 

observations, key meteorological predictors, and time-related variables (hour of day and month of year). 253 

The trained models were then applied to historical meteorological reanalysis data from 1970 to 2023 to 254 

simulate ozone trends under fixed emissions (Fig. 1), yielding nine independent ozone trajectories, each 255 

reflecting the influence of long-term meteorological variability under a different fixed-emissions 256 

assumption. While the choice of emission baseline may affect the absolute magnitude of simulated ozone, 257 

it does not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers 258 

over multidecadal timescales (Lecœur et al., 2014; Leung et al., 2018; Wang et al., 2022b). This approach 259 

could capture the climate-induced ozone signal while adopting the common assumption that emissions 260 

are not themselves influenced by climate change – a simplification consistent with prior attribution 261 

studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022b). For comparison, 262 

we also estimated the impact of anthropogenic emission changes on ozone concentrations during 2015–263 

2023 using the same FEA methodology and the complete hourly dataset for model training. This dual-264 

track analysis enables a clear distinction between the impacts of climate variability and emission 265 

mitigation on observed ozone trends. 266 

To examine the sensitivity of urban ozone pollution to climate variability under different potential 267 

atmospheric conditions (e.g., oxidation capacity) and its possible evolution under global warming, we 268 

defined three representative regional scenarios based on typical ozone pollution characteristics in China 269 

(Fig. 3a): a high-pollution scenario for BTH (BaseBTH), a moderate-pollution scenario for YRD 270 

(BaseYRD), and a low-pollution scenario for Pearl River Delta (PRD) (BasePRD). These scenarios allow 271 

assessment of ozone trends and climate impacts under fixed emissions across three distinct atmospheric 272 
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conditions. 273 

3 Results and Discussion 274 

3.1 Spatiotemporal evolution of summertime ozone (2013–2023) 275 

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum daily 276 

8-hour average (MDA8) ozone, surface NO2, and TROPOMI NO2, HCHO column concentrations across 277 

China, along with the locations of the country’s five major city clusters: Beijing-Tianjin-Hebei (BTH), 278 

Fenwei Plain (FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River Delta (PRD). 279 

Across these five major city clusters, the average summer ozone concentrations ranged from 88.9 to 280 

161.3 μg m⁻3 – substantially exceeding the 43.0 μg m⁻3 threshold associated with ecosystem productivity 281 

loss (Gong et al., 2021) and the World Health Organization (WHO, 2021)-recommended peak seasonal 282 

average of 60 μg m⁻3. TROPOMI satellite observations of NO2 column concentration show notably 283 

elevated concentrations over the five major city clusters, particularly in the BTH, YRD, and FWP, which 284 

align with surface NO2 distribution patterns and confirm the scale of anthropogenic NOx emissions in 285 

these regions (Zheng et al.,2021). TROPOMI satellite observations of HCHO column concentrations 286 

similarly reveal these city clusters as hotspots for VOC emissions (Fig. 3d). These concurrent high levels 287 

of NO2 and HCHO suggest a strong photochemical ozone pollution potential, as the abundant precursors 288 

in these urban clusters could drive substantial ozone production during the summer months. This 289 

highlights the significant risks posed by summertime ozone in China’s most urbanized and industrialized 290 

regions, with implications for both human health and ecosystem. 291 
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 292 
Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO across 293 

major city clusters in China. The panels represent the average MDA8 ozone, surface NO2, and TROPOMI NO2, 294 

HCHO column concentrations for 354 cities in China during the summertime (June–August) from 2018 to 2023. 295 

The corresponding five regions includes BTH (37°–41°N, 114°–118°E); YRD (30°–33°N, 118.2°–122°E); SCB 296 

(28.5°–31.5°N, 103.5°–107°E); PRD (21.5°–24°N, 112°–115.5°E) and FWP (106.25–111.25°E, 33–35°N, and 297 

108.75–113.75°E, 35–37°N). 298 

 299 

Figure 4 presents the interannual variations in MDA8 ozone concentrations during summertime 300 

across China, with a focus on five key urban clusters. During the first phase (2013–2017), the average 301 

nationwide MDA8 ozone increased significantly (p < 0.01), rising from 95.5 to 118.0 μg m⁻3. This growth 302 

was especially pronounced in the BTH and FWP regions, where concentrations increased by 303 

approximately 38% and 41%, respectively. In contrast, ozone increases were more modest in the YRD 304 

(~11%), SCB (~15%), and PRD (~16%) regions, respectively. These results were consistent with the 305 

previous studies (Li et al., 2021; Liu and Wang, 2020a, 2020b; Wang et al., 2023a). In the second phase, 306 

corresponding to the implementation of more stringent emission controls on NOx and VOCs emissions 307 

(Geng et al., 2024; Liu et al., 2023), a moderate national decrease in MDA8 ozone was observed, with 308 

concentrations declining to 109.0 μg m⁻3 from 2017 to 2020. The declines during this period were most 309 

notable in FWP (−16%) and YRD (−15%), while BTH (−6%), SCB (−11%), and PRD (−4%) also showed 310 

reductions compared to their concentration peaks observed in 2017. However, the MDA8 ozone 311 

rebounded, reaching 118.4 μg m⁻3 in 2023 – comparable to its 2017 peak – with a particularly sharp 312 

increase during the summer of 2022. From 2021 to 2023, MDA8 ozone concentrations rose by 2.8 μg m⁻3 313 

in BTH, 3.1 μg m⁻3 in FWP, 16.1 μg m⁻3 in YRD, and 18.5 μg m⁻3 in SCB, respectively. 314 

55

50

45

40

35

30

25

20

15

La
tit

ud
e 

(º
)

 

BTH

FWP

YRDSCB

PRD

Surface MDA8 Ozone

a
150

140

130

120

110

100

90

80

70

60

M
D

A8 O
3  (μg m

-3)

 

Surface NO2

b 50

40

30

20

10

N
O

2  (μg m
-3)

55

50

45

40

35

30

25

20

15

La
tit

ud
e 

(º
)

140130120110100908070

TROPOMI NO2

c
5 x1015

4

3

2

1

0

TR
O

PO
M

I N
O

2  (m
olecules cm

−2) 

140130120110100908070

TROPOMI HCHO
d 14 x1015

12

10

8

6

4

2

0

TR
O

PO
M

I H
C

H
O

 (m
olecules cm

−2) 

 

Longitude (º)

  

 
 

 
 

Longitude (º)

  

 
 

 



14 

 

Figure S1 further illustrates the spatiotemporal evolution of summertime MDA8 ozone in China 315 

from 2013 to 2023. On average, approximately 68% of cities exceeded the WHO air quality guideline of 316 

100.0 μgௗm⁻3 for the MDA8 ozone. Elevated ozone levels were primarily observed in densely populated 317 

and economically developed regions. Spatially, ozone hotspot regions expanded between 2013 and 2017 318 

(Fig. S1 a-e), followed by contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in 319 

2021. A sharp reversal was observed in 2022, with widespread increases in MDA8 ozone (Fig. S1 k). 320 

These changes could be closely linked to emission control measures and meteorological conditions, 321 

which will be further discussed in Sections 3.2 and 3.3. 322 

 323 

Figure 4. Interannual trends of summertime MDA8 ozone across China (2013–2023). Panel (a) illustrates the 324 

seasonal variations of MDA8 ozone during the summer months (June, July, and August) across 354 cities nationwide. 325 

Panels (b-f) show the average trend across five key regions in China: BTH, FWP, YRD, SCB, and PRD. The summer 326 

months are defined according to meteorological seasonality, encompassing June, July, and August. In the violin plots, 327 

hollow diamond markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall 328 

test and Sen's slope estimator were employed to assess the statistical significance and rate of change in the monthly 329 

average MDA8 ozone concentrations. The p value represents the significance level from the Mann-Kendall test, 330 

which is used to determine the statistical significance of the trend in the data. 331 

 332 

3.2 Anthropogenic emission drivers of ozone trends 333 

To disentangle the relative impacts of anthropogenic emissions and meteorological variability on 334 
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observed ozone trends, we applied the machine learning-based FEA framework described in Section 2.2. 335 

As illustrated in Fig. 5, anthropogenic emissions were the dominant driver of ozone increases during 336 

2013–2017, contributing an average rise of approximately 23.2 ± 1.1 μg m⁻3 nationwide. The most 337 

pronounced increases occurred in the FWP and BTH (45.0 ± 2.0 μg m⁻3 and 42.1 ± 2.0 μg m⁻3, 338 

respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 ± 1.6 μg m⁻3), reflecting 339 

its predominantly NOx-limited photochemical regime versus VOC-limited regimes in other regions (Ren 340 

et al., 2022). As shown in Fig. S5, the precursor gases NO2 and CO exhibited regionally distinct 341 

decreasing trends, partially explaining the spatial heterogeneity of ozone changes. During the second 342 

phase, the MDA8 ozone decreased by 10.5 ± 2.0 μg m⁻3 in BTH and 10.4 ± 3.0 μg m⁻3 in FWP, with 343 

smaller declines in YRD (–4.8 ± 3.8 μg m⁻3), SCB (–2.8 ± 2.4 μg m⁻3), and PRD (–6.6 ± 1.4 μg m⁻3) 344 

between 2017 and 2020 (Fig. 5). These trends are broadly consistent with those derived using 345 

independent statistical approaches (Wang et al., 2023). 346 

The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation to 347 

anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and 348 

transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO2, NOx, PM2.5, and 349 

VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 1.07 Tg 350 

(12%), respectively, relative to the same period in 2019 (Geng et al., 2024). Despite these reductions, 351 

MDA8 ozone concentrations increased by 1.7–2.3 μg m⁻3 across BTH, FWP, YRD, and SCB, while a 352 

slight decrease occurred in PRD (Fig. S6). Overall, ~79% of monitored cities experienced ozone 353 

increases, with a national mean enhancement of 2.1 ± 1.3 μg m⁻3 (Fig. S7). In the post-pandemic period 354 

(2020–2023), concentrations of NO2, CO, and PM2.5 stabilized or declined more gradually (Fig. S5), 355 

and the contribution of anthropogenic emissions to ozone variability weakened considerably (Fig. S8). 356 

Regionally, emission-driven changes ranged from –1.2 to +2.6 μg m⁻3 in BTH, –1.6 to +4.0 μg m⁻3 in 357 

FWP, –4.7 to +7.4 μg m⁻3 in YRD, –3.6 to +3.0 μg m⁻3 in SCB, and –3.8 to +7.7 μg m⁻3 in PRD. These 358 

results indicate that while emission control policies initially produced substantial benefits, their 359 

effectiveness has gradually diminished, suggesting that ozone responses to further emission reductions 360 

may have reached a saturation point. 361 
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 362 
Figure 5. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summertime 363 

MDA8 ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological 364 

variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015–365 

2023) for emissions. Boxplots indicate the interquartile range, with values in parentheses denoting the 25th and 75th 366 

percentiles across all baseline scenarios. 367 

 368 

Satellite retrievals of tropospheric NO2 and HCHO from TROPOMI (Figs. S9–S10) further reveal 369 

evolving ozone production chemistry. NO2 columns exhibited strong east–west gradients, with eastern 370 

China maintaining levels five times higher than the west. Between 2018 and 2023, NO2 columns over 371 

the North China Plain (NCP) declined from 4.13 × 1015 to 3.85 × 1015 molecules cm⁻2, while HCHO 372 

remained stable until 2021, followed by a sharp increase in 2022. The spatial pattern of temperature 373 

anomalies between heatwave (HW) and non-heatwave (NHW) periods (Fig. S11) reveals strong positive 374 

differences in the YRD and SCB, consistent with enhanced biogenic and anthropogenic VOC emissions 375 

under extreme heat (Qin et al., 2025; Tao et al., 2024). By 2023, HCHO concentrations had returned to 376 

pre-heatwave levels. To diagnose the evolving chemical sensitivity of ozone production, we examined 377 

the spatiotemporal evolution of the HCHO/NO2 ratio (Text S1). Figure S12 shows that this ratio exhibited 378 

regionally distinct transitions from 2018 to 2023, reflecting shifts in photochemical regimes. Figure 6 379 

summarizes the relative contributions of VOC-limited, NOx-limited, and transitional regimes across the 380 

five key regions. In BTH, NOx-limited areas accounted for ~82% of the domain in 2018 and remained 381 

140

105

70

35

0

M
D

A8
 o

zo
ne

 (μ
g 

m
−3

)

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

95.5
   -0.7
(-1.4, -0.5)  

   23.2
(23.0, 24.0)  118.0

   -4.4
(-4.9, -4.1)      -4.6

(-4.9, -4.2)  113.6

   6.1
(5.7, 6.4)  

   3.3
(3.0, 3.8)  118.3

a

2013 2017 2020 2023

China
200

160

120

80

40

0

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

121.8
   3.9
(2.5, 4.9)  

   42.1
(41.1, 43.5)  167.8

   -0.2
(-0.9, 0.6)  

    -10.5
(-11.3, -9.8)  

157.1
   5.5
(4.0, 5.9)  

   0.4
(0.1, 1.9)  163.0

b

2013 2017 2020 2023

BTH

200

160

120

80

40

0

M
D

A8
 o

zo
ne

 (μ
g 

m
−3

)

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

113.1
   1.6
(0.3, 2.2)  

   45.0
(44.4, 46.3)  159.7

    -14.4
(-13.6, -12.7)     -10.4

(-12.1, -11.2)  
134.9

  10.1
(9.3, 11.7)  

   3.3
(1.6, 4.1)  148.3

c

2013 2017 2020 2023

FWP
180

135

90

45

0

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

103.8
    -4.8
(-5.5, -3.3)  

   27.2
(24.9, 29.7)  137.1

    -15.9
(-18.3, -14.5)  

   -4.8
(-6.1, -2.4)  121.2

   8.8
(7.9, 10.7)  

    1.7
(-0.3, 2.6)  126.8

d

2013 2017 2020 2023

YRD

180

135

90

45

0

M
D

A8
 o

zo
ne

 (μ
g 

m
−3

)

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

112.8
   0.1
(-0.1, 0.7)  

   17.2
(16.7, 18.3)  130.1

    -11.1
(-13.9, -9.8)      -2.8

(-4.1, -0.3)  117.3

   10.5
(9.6, 12.1)  

    1.2
(0.2, 2.8)  128.5

e

2013 2017 2020 2023

SCB
120

90

60

30

0

  A
nt

hr
op

og
en

ic
 

em
is

si
on

 c
on

tro
l

M
et

eo
ro

lo
gi

ca
l

   
va

ria
tio

ns

73.5
   -2.2
(-3.0, -2.3)  

   13.4
(13.7, 14.3)  84.9

   2.9
(1.4, 3.8)  

    -6.6
(-7.5, -5.1)  

82.1

   6.2
(5.4, 7.4)  

   0.8
(-0.4, 1.6)  88.2

f

2013 2017 2020 2023

PRD



17 
 

above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, summer ozone 382 

formation was largely controlled by NOx-limited and transitional regimes. The YRD underwent a notable 383 

shift from VOC- to NOx-limited chemistry, with VOC-limited fractions decreasing from ~35% in 2018 384 

to ~22% in 2023, particularly during 2022 when extreme heat amplified VOC emissions and 385 

photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB region consistently exhibited strong 386 

NOx limitation (>75%), whereas the PRD showed a gradual expansion of the transitional regime 387 

alongside a modest contraction of VOC-limited areas. These shifts in photochemical sensitivity 388 

correspond well with the ozone decrease observed during Phase II emission reductions. Spatial 389 

distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) reveal that most 390 

of China was in a transitional regime, with major urban clusters remaining VOC-limited and only limited 391 

areas in southern China being NOx-limited. This spatial pattern aligns with the observed widespread 392 

ozone increases during the lockdown (Fig. S7). Collectively, these regional transitions reflect the dual 393 

influences of sustained anthropogenic emission controls and short-term climatic perturbations. The 394 

findings highlight that ozone production chemistry in China is becoming increasingly shaped by the 395 

complex interplay between emission reduction efforts and the rising frequency of meteorological 396 

extremes under a warming climate. 397 

 398 

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-399 

limited, and transitional ozone sensitivity regimes across five key regions during the summertime (June to August) 400 

from 2018 to 2023, based on the FNR analysis. Panel (f) presents the overall trends for all five regions. 401 
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3.3 Meteorological impact on ozone variation 402 

Figure 5 shows the interannual meteorological contributions to summertime MDA8 ozone across 403 

different emission-control phases. During Phase I (2013–2017), meteorology exerted relatively weak 404 

influences on ozone variability, with contributions ranging from –4.8 to +3.9 μg m⁻3—far smaller than 405 

those from anthropogenic emission changes. In contrast, meteorological anomalies became a decisive 406 

factor during Phase II (2017–2020), driving substantial ozone reductions. Ozone decreases attributable 407 

to meteorology reached –14.4 ± 3.0 μg m⁻3 in the FWP, –15.9 ± 3.8 μg m⁻3 in the YRD, and –11.1 ± 2.4 408 

μg m⁻3 in the SCB, explaining 58 ± 12%, 77 ± 18%, and 80 ± 17% of the total ozone decline, respectively. 409 

A notable shift occurred during Phase III, when the influence of extreme meteorological events 410 

increasingly dominated ozone variability. In the summer of 2022, persistent heatwaves across eastern 411 

and southern China (Mallapaty, 2022; Wang et al., 2023b) triggered sharp ozone increases of +20.8 ± 3.6 412 

μg m ⁻3 in the YRD and +22.1 ± 3.2 μg m⁻3 in the SCB, reflecting the enhanced photochemical activity 413 

under high-temperature and intense solar radiation conditions. The following summer (2023) featured 414 

anomalously heavy rainfall, resulting in sharp ozone suppression (–17.8 ± 2.3 μg m⁻3 in the YRD and –415 

9.7 ± 3.3 μg m⁻3 in the SCB). This reduction coincided with a remarkable increase in precipitation, i.e., 416 

102% in YRD and 35% in SCB (Fig. S14), indicating that rainfall-induced wet scavenging and 417 

diminished photolysis substantially curtailed ozone production. 418 

To identify the dominant meteorological drivers, we analyzed Gini importance scores derived from 419 

the RF model across 18 predictor variables (Fig. S15). Temperature (T) emerged as the most influential 420 

predictor in the BTH and FWP regions, while shortwave solar radiation (SR), relative humidity (RH), 421 

and 850hPa zonal wind (u850) were most important in the YRD. In the PRD, ozone variability was 422 

primarily governed by temperature and transport-related indices, including meridional winds at different 423 

altitudes. These findings are consistent with the climatological contrast between northern continental and 424 

southern coastal regimes: in northern China, stagnant anticyclonic conditions (Gong and Liao, 2019) and 425 

strong solar radiation promote photochemical buildup (Bao et al., 2025), whereas in southern regions, 426 

high humidity and convective rainfall tend to suppress ozone by reducing actinic flux and enhancing 427 

removal of precursors. 428 

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to key 429 

meteorological factors (T, RH, SR) for representative cities in each cluster, revealing clear regional 430 
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contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to T (Fig. S16a), 431 

consistent with the enhancement of reaction kinetics and biogenic VOC emissions under hot conditions. 432 

This behavior reflects the thermodynamic coupling between surface heating, boundary-layer expansion, 433 

and photochemical production. In Nanjing (YRD), ozone is more sensitive to solar radiation than to 434 

temperature (Fig. S16c), highlighting the dominant role of actinic flux in controlling radical production 435 

during warm and dry conditions. Yang et al. (2024) similarly reported that high-temperature and low-RH 436 

conditions over the NCP and YRD enhance photochemical ozone formation, with chemical production 437 

being the dominant process driving ozone buildup during the most polluted months. In the SCB, both T 438 

and RH exhibit strong influences, while in the PRD, ozone variability is shaped primarily by T and large-439 

scale circulation patterns associated with subtropical maritime flow and typhoon incursions from the 440 

Northwest Pacific (Chen et al., 2024; Wang et al., 2024a; Wang et al., 2022a). 441 

To further quantify these relationships, we applied SHAP (SHapley Additive exPlanations) analysis 442 

to evaluate the meteorological influence of heatwave (HW) and pluvial (PR) events in the Yangtze-443 

Huaihe region between 2015 and 2023 (Section 2.4). As shown in Fig. S17, HW events were associated 444 

with strong positive SHAP values in southeastern coastal areas, especially the YRD and SCB, driven by 445 

elevated SR and T. Mean SR during HW periods was substantially higher than during non-HW periods 446 

(Fig. S18), increasing photochemical activity through increased radical generation and faster reaction 447 

rates. Conversely, PR events produced consistent negative SHAP contributions across all regions (Fig. 448 

S19), reflecting the combined effects of reduced photolysis, increased humidity, and efficient wet 449 

scavenging on ozone production (He and Carmichael, 1999). A multi-year comparison (Fig. 7) highlights 450 

the opposing effects of key meteorological variables – including RH, T, boundary layer height (BLH), 451 

total precipitation (TP), and surface pressure (SP) – on MDA8 ozone. The trend in ΔSHAP values under 452 

high-humidity conditions from 2015 to 2023 (Fig. S20) further confirms the model’s ability to capture 453 

the suppressive effects of wet weather conditions on ozone formation. 454 
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 455 

Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather 456 

conditions. (a) Differences in SHAP values (ΔSHAP) between heatwave and non-heatwave periods in the Yangtze-457 

Huaihe region during summer 2022. (b) Differences in SHAP values (ΔSHAP) between prolonged rainfall periods 458 

and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution of ΔSHAP 459 

across cities; the center line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and 460 

the whisker line extends to one standard deviation. 461 

 462 

3.4 Reshaping distributions of ozone controlled by a warming climate 463 

To assess the long-term influence of climate change on surface ozone concentrations, we applied 464 

the FEA framework to simulate summertime ozone trends over the period 1970 – 2023. In this analysis, 465 

anthropogenic emissions were held constant at their 2015 – 2023 summertime levels, while interannual 466 

variations in meteorological variables were introduced using historical reanalysis data. This design 467 

isolates the climate-driven component of ozone trends while assuming that emission trajectories are 468 

independent of climate change – a simplification aligned with prior attribution frameworks (Wang et al., 469 

2022b). The impact of anthropogenic emission controls was estimated by comparing observed ozone 470 

concentrations with FEA-predicted values during 2015 – 2023, thereby quantifying the residual effect of 471 

emissions under fixed meteorology. 472 

As shown in Fig. 8, under the 2015-2023 emission levels, climate change has exerted a statistically 473 

significant (p < 0.05) positive influence on urban summertime ozone concentrations across China, 474 

resulting in a nationwide increase of approximately 0.06 μg m⁻3 yr⁻1 since 1970. All five major urban 475 

regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at 476 

0.12 μg m⁻3 yr⁻1. Three sensitivity simulations (see Section 2.5 and Fig. S21) confirm this robustness: 477 

trend slopes range from 0.11–0.14 μg m⁻3 yr⁻1 in BaseBTH, 0.05–0.10 μg m⁻3 yr⁻1 in BaseYRD, and 478 

0.03–0.10 μg m⁻3 yr⁻1 in BasePRD. Despite regional differences in chemical regimes or pollution levels, 479 

the consistent upward tendencies underscore the pervasive climatic amplification of ozone formation. 480 
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These results emphasize that climate change acts as a systematic driver of ozone growth across diverse 481 

atmospheric environments, reinforcing the need to embed climate resilience within emission control 482 

strategies. Spatial correlations between climate-driven ozone increases and temperature changes (Fig. 483 

S22) further confirm that warming is the dominant contributor to long-term ozone enhancement. In 484 

particular, the correlation coefficients between ozone trends and temperature anomalies reached 0.90 485 

(BTH), 0.89 (FWP), 0.72 (YRD), and 0.93 (SCB), indicating a strong temperature dependence of 486 

climate-induced ozone formation in these regions. The PRD showed a weaker correlation, likely due to 487 

its unique subtropical maritime climate and higher humidity and cloud cover, which tend to suppress 488 

photochemical ozone production (Yang et al., 2019). The right panel of Fig. 8 depicts summertime ozone 489 

trends from 2015 to 2023 under the combined influence of anthropogenic emissions, derived from the 490 

FEA method. Ozone concentrations rose across all regions between 2015 and 2018, declined modestly 491 

during 2018-2020, and rebounded thereafter in most regions except the PRD.  492 

These findings are consistent with future projections that anticipate more frequent high-ozone 493 

episodes under continued warming (Li et al., 2023). Recent analyses (Yang et al., 2024) show that the 494 

frequency of high-temperature and low-humidity conditions during 2000-2019 was markedly higher than 495 

in 1980-1999, suggesting that ozone pollution in both the NCP and YRD has intensified under historical 496 

climate change. Indeed, while national emission controls curbed ozone growth after 2018, a post-2020 497 

rebound has emerged, implying that the climatic penalty on ozone is beginning to offset emission gains. 498 

The extreme 2022 heatwave exemplified this effect, substantially enhancing photochemical activity and 499 

shifting ozone sensitivity from VOC-limited to transitional or NOx-limited regimes. Although reductions 500 

in anthropogenic precursor emissions have improved ozone control efficiency, the direct warming-501 

induced enhancement of ozone increasingly interferes with – and in some regions may partially offset – 502 

the air-quality gains achieved through emission reduction efforts.  503 
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 504 

Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends 505 

attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA 506 

framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission 507 

controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate 508 

the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the 509 

5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-510 

Kendall test. More details of the sensitivity tests are provided in Fig. S18. 511 

4 Conclusions and implications 512 

China is confronted with the dual challenges of climate change and ozone pollution. Over the past 513 

decade, summertime ozone concentrations across the country have exhibited complex spatiotemporal 514 

patterns, reflecting the evolving interplay between anthropogenic emissions, meteorological variability, 515 

and large-scale climate dynamics. In this study, we developed and applied a machine learning-based FEA 516 

framework to disentangle and quantify the respective roles of anthropogenic emissions and 517 

meteorological drivers in shaping ozone trends during 2013-2023. With a national-level prediction 518 

uncertainty of approximately 6%, the FEA method provides a computationally efficient and scalable tool 519 

for diagnosing atmospheric variability across large spatial and temporal domains. Nonetheless, some 520 

limitations remain. The current implementation did not explicitly resolve grid-scale spatial heterogeneity, 521 

vegetation, or land-use dynamics, which may influence ozone formation. Moreover, potential 522 
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sensitivities to spatial resolution warrant further investigation through coupled applications of machine 523 

learning and chemical transport models. 524 

Our analysis revealed that increased anthropogenic precursor emissions were the dominant driver 525 

of the sharp rise in summertime MDA8 ozone concentrations during the first phase (2013–2017), 526 

contributing an average increase of 23.2 ± 1.1  μg m⁻3. In contrast, during the second phase (2018–2020), 527 

enhanced air quality regulations – particularly the synergistic control of NOx and VOCs – led to 528 

measurable reductions in MDA8 ozone, with national-average declines of 4.6 ± 1.5  μg m⁻3. These 529 

improvements were especially evident in regions such as BTH and FWP, where ozone formation is highly 530 

sensitive to VOC levels. However, during the most recent period (2021–2023), the impact of emission 531 

reductions diminished considerably, with regional ozone levels either plateauing or rebounding. This 532 

stagnation underscores the urgent need for more targeted, region-specific emission control strategies that 533 

address the shifting photochemical sensitivity of ozone formation regimes. 534 

Using SHAP attribution analysis, we further quantified the influence of meteorological extremes on 535 

ozone variability. Record-breaking heatwaves in 2022 enhanced ozone concentrations by up to +5.8 μg 536 

m⁻3, while prolonged pluvial episodes—particularly during the East Asian monsoon season—suppressed 537 

ozone by as much as −15.2 μg m⁻3. These results highlight the growing dominance of short-term 538 

meteorological extremes in shaping ozone air quality under a warming climate. Complementary satellite-539 

based FNR diagnostics revealed that most urban clusters remain VOC-limited or transitional, except the 540 

PRD, which is largely NOx-limited. The 2022 heatwave induced regime shifts in regions such as the 541 

YRD, where intensified VOC emissions and elevated temperatures drove transitions toward NOx-limited 542 

conditions. These findings emphasize the need for dynamic, region-specific assessments of ozone 543 

sensitivity to guide effective mitigation strategies. 544 

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term 545 

trends from 1970 to 2023 by fixing emissions and allowing meteorological variables to evolve with 546 

observed climate trends. Our findings show that climate change has contributed to a significant upward 547 

trend in urban summertime ozone, averaging 0.06 μg m⁻3 a⁻1, with particularly strong increases in the 548 

BTH and SCB. Correlations between ozone and surface temperature were consistently high (r = 0.72–549 

0.93) in BTH, FWP, YRD, and SCB, suggesting that warming has increasingly offset gains from emission 550 

controls in recent years. Although reductions in anthropogenic precursor emissions have improved ozone 551 
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control efficiency, the direct warming-induced enhancement of ozone increasingly interferes with – and 552 

in some regions may partially offset – the air-quality gains achieved through emission reduction efforts.  553 

554 
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