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Abstract. Surface ozone, a major air pollutant with important implications for human health, ecosystems,
and climate, shows long-term trends shaped by both anthropogenic and climatic drivers. Here, we
developed a machine learning-based approach, namely the fixed emission approximation (FEA), to
disentangle the effects of meteorological variability and anthropogenic emissions on summertime ozone
trends in China. We identified three phases of ozone trends corresponding to clean air actions.
Anthropogenic emissions drove an approximately +23.2 & 1.1 pg m= increase in summer maximum
daily 8-hour average ozone during 2013-2017, followed by an approximately —4.6 + 1.5 ug m decrease
between 2017 and 2020. However, extreme meteorological anomalies, including heatwaves and
extended rainfall, emerged as key drivers of ozone variability during 2020-2023. Satellite-derived
formaldehyde-to-nitrogen dioxide ratios revealed widespread urban volatile organic compounds-limited
regimes, with a shift toward nitrogen oxides-limited sensitivity under the influence of heatwaves. Finally,
we assess ozone trends under sustained climate warming from 1970 to 2023 based on the FEA
framework. The results indicate a significant climate-driven increase in ozone levels across China's
urban agglomerations, underscoring the amplifying role of climate change in ozone pollution.
Together, these findings highlight the dual influence of anthropogenic and climatic factors on ozone
pollution and emphasize the need for integrated strategies that couple emission mitigation with

climate adaptation to effectively manage ozone risks in a warming world.
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1 Introduction

Surface ozone (O3) is a critical air pollutant that poses significant threats to human health (Knowlton et
al., 2004), ecosystems (Agathokleous et al., 2020), and climate (Fishman et al., 1979; Hauglustaine et
al., 1994). It forms through complex photochemical reactions involving nitrogen oxides (NOx) and
volatile organic compounds (VOCs) in the presence of sunlight (Jacob, 2000; Wang et al., 2017),
exhibiting a nonlinear response to its precursors (Guo et al., 2023; Liu and Shi, 2021; Wang et al., 2023a).
Controlling ozone pollution remains a global environmental challenge. In recent years, China has
implemented a series of national clean air actions, most notably the Air Pollution Prevention and Control
Action Plan (2013-2017) and the Three-Year Action Plan for Winning the Blue-Sky War (2018-2020)
(Geng et al., 2024; Zhang et al., 2019; Zheng et al., 2018), that have markedly improved air quality,
particularly by reducing fine particulate matter (PM> ) (Geng et al., 2024; Zhang et al., 2019). However,
surface ozone levels have continued to rise in many regions, raising concerns over the complex drivers
of ozone trends and highlighting the need for scientific attribution to guide effective mitigation strategies
(Lietal., 2019a; Liu et al., 2023; Wang et al., 2023a; Weng et al., 2022).

Long-term ozone variability is jointly influenced by anthropogenic emissions and weather
conditions as well as regional climate (Hallquist et al., 2016; Li et al., 2019b; Wang et al., 2022a). While
emission controls directly regulate precursor abundance, climate change modulates ozone through
chemical feedbacks, meteorological dynamics, and biosphere—atmosphere interactions (Ma and Yin,
2021; Xue et al., 2020). Over the past century, global surface temperatures have substantially increased
relative to the pre-industrial baseline (1850—1900), driven largely by human activities (IPCC, 2021). In
such a warming world, extreme climate anomalies — such as heatwaves and persistent rainfall shifts — are
expected to intensify (Li et al., 2025a; Li et al., 2025b). These events are increasingly recognized as
critical modulators of ozone variability through their impacts on photochemistry and precursor emissions
(Gao et al., 2023; Pu et al., 2017; Wang et al., 2022a).

Quantifying the respective roles of anthropogenic emissions and meteorological variability in
driving ozone trends is therefore essential for evaluating the effectiveness of clean air policies (Li et al.,

2019a; Liu et al., 2023). Previous studies have reported rapid increases in surface ozone concentrations
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in urban cluster regions in China — such as the Beijing—Tianjin—Hebei (BTH) and Yangtze River Delta
(YRD) — during the first phase (2013 — 2017), with increases of approximately 28% and 18%,
respectively (Chen et al., 2020; Li et al., 2019a; Liu et al., 2023). In contrast, a modest decline in ozone
levels was observed during 2018 — 2020, largely attributed to emission reductions (Li et al., 2021; Liu
and Wang, 2020b; Wang et al., 2024b; Wang et al., 2023a). However, since 2021, observations indicate
a renewed increase in ozone concentrations (Fig. S1). These fluctuations suggest oscillating trends over
the past decade, the drivers of which remain poorly constrained.

Two main approaches have been applied to attribute air pollution trends: chemical transport models
(CTMs) (Li et al., 2021; Liu et al., 2023; Liu and Wang, 2020a) and data-driven statistical frameworks
(Li et al., 2019a; Li et al., 2019b; Li et al., 2020). The CTMs simulate atmospheric composition based
on emission inventories, meteorological fields, and chemical mechanisms (Ivatt et al., 2022; Liu and Shi,
2021; Liu et al., 2023; Ye et al., 2024). They allow attribution of trend components to emissions or
meteorology, and can also resolve sector-specific impacts. However, these models face challenges,
including uncertainties and temporal lags in emission inventories. Statistical models, on the other hand,
rely on observational datasets and predictor-response relationships without requiring explicit emissions
or chemical schemes (Li et al., 2019a; Liet al., 2019b; Li et al., 2020; Zhai et al., 2019). With the growing
availability of atmospheric big data, statistical and machine learning models have emerged as useful tools
for trend attribution (Dai et al., 2023; Grange et al., 2018; Vu et al., 2019; Zhang et al., 2025; Zheng et
al., 2023). For instance, Grange et al. (2018) developed a random forest-based framework to isolate
meteorological influences on particulate matter. Similarly, Wang et al. (2023) used an enhanced extreme
gradient boosting (XGBoost) model to analyze spatial and temporal ozone patterns in China from 2010
to 2021, confirming that emission reductions played a key role in recent declines. Other recent efforts
have extended statistical models to long-term assessments of air pollution drivers under climate change
(Wang et al., 2022b).

Here, we developed a machine learning-based framework — fixed emission approximation (FEA) —
to quantify the respective roles of anthropogenic emissions and meteorological conditions in shaping
summertime surface ozone trends in China. Applying the FEA to nationwide observational data from
2013 to 2023, we identified three phases of ozone evolution corresponding to the major clean air actions

and policy transitions. We further analyzed short-term ozone anomalies associated with extreme weather



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

events, such as the 2022 heatwave and seasonal rainfall. To characterize ozone production regimes, we
integrated satellite-derived formaldehyde-to-nitrogen dioxide (HCHO/NO,, FNR) ratios from the
tropospheric monitoring instrument (TROPOMI), revealing spatiotemporal shifts in ozone formation
sensitivity across China. Finally, we extend our FEA analysis to evaluate climate-driven ozone trends
from 1970 to 2023, using historical meteorological reanalysis data. Collectively, these analyses provide
an integrated understanding of how anthropogenic and climatic factors jointly shape surface ozone

dynamics under a warming climate.

2 Data and methods

2.1 Data sources and methodology overview

Figure 1 provides an overview of the data analysis and methodological framework employed in this
study. We first integrated multi-dimensional datasets, including hourly surface air pollutant
concentrations, meteorological reanalysis fields, and satellite remote sensing data. Hourly surface
observations of ozone, nitrogen dioxide (NO,), carbon monoxide (CO), and fine particulate matter (PM, s)
were accessed from the National Environmental Monitoring Center of China through the open website

https://air.cnemc.cn: 18007/ (last accessed: May 20, 2024). Hourly meteorological data with a spatial

resolution of 0.25° x 0.25° were sourced from the ERAS reanalysis dataset provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) and are available for download at

https://cds.climate.copernicus.cu (last accessed: March 20, 2025). Detailed variables are listed in Table

S1. The time variables — hour (hour of day) and month (month of year) — are used as emission surrogates
to capture regular diurnal and seasonal variations in anthropogenic activity. A similar strategy is widely
applied in previous studies about long-term trends in air pollutants (e.g., Grange et al., 2018; Vu et al.,
2019) to separate short-term cyclical emission variability from long-term trends. For 2013 — 2014, the
surface MDAS8 ozone data were obtained from the Tracking Air Pollution in China (TAP) dataset (Geng
et al., 2021), which can be downloaded from http://tapdata.org (last accessed: May 20, 2024). The
TROPOMI on the Sentinel-5P satellite provides global continuous observation data for two indicators of
ozone precursors: NO; and formaldehyde (HCHO) column concentrations (Lamsal et al., 2014; Shen et

al., 2019). The FNR was used as a proxy for VOC/NOx reactivity and as a diagnostic indicator of ozone
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120 formation sensitivity (Sillman, 1995), to explain and verify the impact of extreme weather and

121 anthropogenic emissions on ozone. Details of the ozone sensitivity diagnostic method are provided in

122 Text S1.
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124 Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-dimensional
125 datasets, including ground-based observations, meteorological reanalysis, and satellite remote sensing. A fixed

126 emission approximation (FEA) approach, developed based on the random forest (RF) model, is employed to

127 quantitatively disentangle the contributions of meteorological conditions (MET) and anthropogenic emissions (ANT)
128 to ozone trend variations, and its performance is compared with the conventional meteorological normalization
129 method. The SHAP technique is further applied to assess the influence of extreme weather events, such as heatwaves

130 (HW) and extreme precipitation (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is used to

131 diagnose ozone production sensitivity, to explain and verify the impact of extreme weather and anthropogenic
132 emissions on ozone. Finally, the FEA framework is extended to evaluate the long-term impacts of climate change on
133 ozone trends since 1970.

134 2.2 Machine learning-based FEA approach

135 In this study, we develop a machine learning-based FEA approach to assess the impacts of
136 meteorological factors and anthropogenic emissions on the year-round variations in 0zone concentrations
137 (Fig. 1). First, a regression model is constructed using the random forest (RF) algorithm to relate ozone

138 concentrations to temporal emission surrogates and to meteorological parameters at multiple atmospheric
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levels. These temporal emission surrogates, including month and hour, represent short-term regular
emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-
driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et al.,
2019). The meteorological parameters include 18 distinct variables at different altitudes (see Table S1).
It should be noteworthy that surface air pollutant observations for each city represent multi-site averages
rather than data from a single monitoring station, which reduces the influence of local representativeness
errors. The meteorological data are obtained from the nearest grid cell corresponding to each city,
ensuring spatial consistency between the pollutant and meteorological datasets. This approach was
similar to the methodologies widely adopted in previous studies (Shi et al., 2021; Wang et al., 2025; Yao
et al., 2024; Zheng et al., 2023). Our modeling strategy involves building and predicting models for
individual cities and for each year from 2015 to 2023, which helps in minimizing the uncertainty caused
by surface heterogeneity. Due to the lack of available observational data for many cities in 2013 and
2014, we did not develop models for these two years. In our approach, 80% of the dataset is used for
model training, while the remaining 20% is reserved for testing. We perform ten-fold cross-validation
and assess model performance using seven statistical metrics, as listed in Table S2.

Following the construction of the machine learning models for individual cities and years, we
introduce the FEA approach. The key principle of FEA is the assumption that the total emissions of ozone
precursors remain unchanged from the baseline year. Specifically, we establish hourly-resolution models
for the baseline year (i) during the summer season (June to August) as a reference for anthropogenic
emissions, represented by the pink solid line in Fig. 1. These models are then applied to predict ozone
concentrations under the meteorological conditions of the prediction year (), while holding the emission
levels constant at those of the baseline year (i), as shown by the blue solid line in Fig. 1. The difference
between the predicted values (Pred;) and the observed values (OBS;) for the baseline year (i) represents
the model residuals (RES;), as shown in Eq. (1). The difference in observed MDAS ozone concentrations
between baseline year i and prediction year j is driven by the differences in meteorological conditions
MET;(jy and anthropogenic emission controls ANT;(;y (Eq.2).The prediction result Pred;(;, obtained
by applying the model trained with data from year i to the meteorological conditions of year j, the
difference between Pred;(;y and Baseline (Pred,) is driven by MET;(j), while the difference between

Pred;;, and the observed levels in year j (OBS;), minus the RES;, yields the ozone variation driven by
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(ANT;j)). Therefore, MET;jy and ANT;g;, can be quantified and calculated using Eqgs. (3-4).

OBS; = Pred; + RES; , (1)
OBS;jy = MET;j, + ANTy;) @)
MET;j, = Pred,j, — Pred,, €)
ANT;(;, = OBS; — Pred,(;, — RES; , (4)

The difference in observed MDAS ozone concentrations between two different prediction years (j;,
J2) is driven by the differences in meteorological conditions (AMET;y,j>)) and anthropogenic emission
controls (4ANT;(j1,j2)) (Eq. 5). The term AMET;;q j,) represents the changes in meteorological
conditions and can be calculated by the difference between the predicted values, Pred;;y and
Pred;jy), for the corresponding years (Eq. 6). Similarly, the value of AANT;(j; j5), representing the
change in anthropogenic emissions between the two years j; and j», can be therefore calculated using Eq.
(7). By performing these calculations, we can isolate and quantify the contributions of meteorological
conditions and anthropogenic emission controls to the observed ozone trends. We used a cross-matrix
research method to assess the uncertainty of FEA, with specific formulas available in Supporting Method

S2.
AOBS jy jz) = AMET;(jy jz) + AANT(jy 2y » )
AMET;(j1,j2) = Predi(jz) — Pred;(jyy, (6)
AANT(jy 5y = ANTy(jz — ANT;jyy = (OBS;, — Pred,(j» — RES;) — (0BS;, — Pred,(j;y — RES;)

= (OBSJZ - OBSjl) - (PT'Edi(jz) - Predi(jl)) , (7)

Model performance was first evaluated through ten-fold cross-validation for the BTH region,
revealing high predictive skill between observed and predicted MDAS ozone levels during 2015-2023
(Fig. S2). The index of agreement (IOA) ranged from 0.96 to 0.97, with correlation coefficients (R)
between 0.93 and 0.95. Root mean square errors (RMSE) and normalized mean bias (NMB) varied from
16.9 to 21.9 ugm= and 8 to 25%, respectively, indicating high model accuracy. Nationally, the model
yielded R values of 0.88-0.91 and IOA of 0.93-0.95, with errors remaining within acceptable ranges
(Tables S3—S8). To assess uncertainty stemming from interannual model training variability, we applied

a matrix-based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in residuals
8
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ranged from -9% to 3%, and remained within +£12% for all regions — supporting the robustness of the
FEA method. We found that the model with the added time variables exhibited significantly smaller

uncertainty compared to the model without it (Fig. S3).
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Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is calculated using the
approach described in Text S2. The diagonal line in each sub-panel represents the changes in the residuals of the

models.

2.3 Weather normalization analysis

To compare the FEA method with other commonly used statistical approaches, we also applied the
widely adopted meteorological normalization technique based on the RF algorithm. This approach
constructs a regression model that relates air pollutant concentrations to meteorological parameters and
emission surrogate indicators (i.e., time variables such as unix time, day of year, day of month, and hour
of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained, pollutant concentrations are
predicted by randomly resampling meteorological variables from long-term historical meteorological
datasets, thereby generating a new ensemble of predictions (Vu et al., 2019). These predictions are made
under consistent meteorological conditions, enabling the isolation of meteorological influences from
anthropogenic emission effects on air pollutant trends. The resulting weather-normalized pollutant
concentrations (Fig. 1) represent the levels expected under average meteorological conditions, thus
reflecting the impact of emission changes alone. This approach, first proposed by Grange et al. (2018),
has been widely applied in the long-term attribution of air pollution trends and in assessing short-term

emission reduction effects (Shi et al., 2021; Vu et al., 2019). In this study, the meteorological
9
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normalization follows this established framework, with meteorological variables randomly sampled from
the long-term dataset spanning 1970-2023. Each normalization process involves 1,000 iterations, and the
arithmetic mean of these iterations' simulated values is adopted as the final normalized result. The
alignment between FEA-based and weather-normalized trends (Fig. S4) affirms the robustness of the

FEA framework.

2.3 Quantification of extreme weather-driven changes in ozone

An unprecedented and prolonged heat wave in the summer of 2022 struck central and eastern China,
with the most severely affected area being the YRD (Wang et al., 2023b; Zhang et al., 2023), identified
as the longest-lasting and most intense heat wave since at least 1961 (Mallapaty, 2022). The Yangtze-
Huaihe region, where the prolonged rainfall occurs, is also a region of frequent sustained extreme
precipitation events (Yin et al., 2020). The opening of the “rainy season” is marked in late June with the
northward push of the East Asian summer winds and the first northward jump of the subtropical high-
pressure ridgeline in the western Pacific Ocean, and generally lasts until mid-July.

We employed the SHapley Additive exPlanations (SHAP) method (Lundberg et al., 2020) to
elucidate the potential impacts of all input features k on the predictions of the RF model. SHAP assigns
an importance score to each feature, revealing their respective contributions to model predictions.
Positive values indicate a beneficial influence on predictions, while negative values denote adverse
effects. The extreme heatwave events in 2022 (HW) and prolonged rainfall (PR) provide unique and
realistic atmospheric environments for us to explore the effects of typical weather extremes on ozone.
The PR period is defined as June 15 to July 15 each year, with the remaining period from June to August
categorized as the non-prolonged rain period (NPR). To isolate the effects of the rainy season, we defined
the HW event in 2022 as occurring from July 16 to August 31, while the corresponding periods in other
years were considered non-heatwave (NHW) periods. We first calculated the SHAP values for input
features during PR and NPR, as well as HW and NHW periods. The relative changes in SHAP values
(ASHAP) between these conditions were used to assess the responses of MDAS ozone to the rainy season
and the 2022 heatwave, as per the following Eqs:

ASHAPk = SHAPPR - SHAPNPR (8)

10
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2.5 FEA-based assessment of climate change impacts on ozone

To evaluate the long-term impact of climate change on surface ozone concentrations across
China from 1970 to 2023, we extended the framework of our machine learning-based FEA method.
The core idea of this analysis is to isolate the influence of long-term meteorological variability on
ozone while assuming fixed anthropogenic emissions. Given the availability of relatively complete
and continuous hourly ozone observations and meteorological data from 2015 to 2023, this period
was used to construct nine emission baseline scenarios. Following the modeling protocol described in
Section 2.2, nine independent random forest models were trained for each city and scenario, with each
year from 2015 to 2023 serving as an emissions reference. Model inputs included hourly ozone
observations, key meteorological predictors, and time-related variables (hour of day and month of year).
The trained models were then applied to historical meteorological reanalysis data from 1970 to 2023 to
simulate ozone trends under fixed emissions (Fig. 1), yielding nine independent ozone trajectories, each
reflecting the influence of long-term meteorological variability under a different fixed-emissions
assumption. While the choice of emission baseline may affect the absolute magnitude of simulated ozone,
it does not alter the primary objective: assessing the sensitivity of surface ozone to meteorological drivers
over multidecadal timescales (Lecceur et al., 2014; Leung et al., 2018; Wang et al., 2022b). This approach
could capture the climate-induced ozone signal while adopting the common assumption that emissions
are not themselves influenced by climate change — a simplification consistent with prior attribution
studies (Dang and Liao, 2019; Leung et al., 2018; Shen et al., 2017; Wang et al., 2022b). For comparison,
we also estimated the impact of anthropogenic emission changes on ozone concentrations during 2015—
2023 using the same FEA methodology and the complete hourly dataset for model training. This dual-
track analysis enables a clear distinction between the impacts of climate variability and emission
mitigation on observed ozone trends.

To examine the sensitivity of urban ozone pollution to climate variability under different potential
atmospheric conditions (e.g., oxidation capacity) and its possible evolution under global warming, we
defined three representative regional scenarios based on typical ozone pollution characteristics in China
(Fig. 3a): a high-pollution scenario for BTH (BaseBTH), a moderate-pollution scenario for YRD
(BaseYRD), and a low-pollution scenario for Pearl River Delta (PRD) (BasePRD). These scenarios allow

assessment of ozone trends and climate impacts under fixed emissions across three distinct atmospheric

11
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3 Results and Discussion

3.1 Spatiotemporal evolution of summertime ozone (2013-2023)

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum daily
8-hour average (MDAS) ozone, surface NO, and TROPOMI NO,, HCHO column concentrations across
China, along with the locations of the country’s five major city clusters: Beijing-Tianjin-Hebei (BTH),
Fenwei Plain (FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River Delta (PRD).
Across these five major city clusters, the average summer ozone concentrations ranged from 88.9 to
161.3 ug m= — substantially exceeding the 43.0 ug m~ threshold associated with ecosystem productivity
loss (Gong et al., 2021) and the World Health Organization (WHO, 2021)-recommended peak seasonal
average of 60 ugm=. TROPOMI satellite observations of NO, column concentration show notably
elevated concentrations over the five major city clusters, particularly in the BTH, YRD, and FWP, which
align with surface NO, distribution patterns and confirm the scale of anthropogenic NOx emissions in
these regions (Zheng et al.,2021). TROPOMI satellite observations of HCHO column concentrations
similarly reveal these city clusters as hotspots for VOC emissions (Fig. 3d). These concurrent high levels
of NO, and HCHO suggest a strong photochemical ozone pollution potential, as the abundant precursors
in these urban clusters could drive substantial ozone production during the summer months. This
highlights the significant risks posed by summertime ozone in China’s most urbanized and industrialized

regions, with implications for both human health and ecosystem.
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Figure 3. Spatial distribution of summertime MDAS ozone, surface NO2, and TROPOMI NO2, HCHO across

major city clusters in China. The panels represent the average MDAS ozone, surface NO2, and TROPOMI NO,
HCHO column concentrations for 354 cities in China during the summertime (June-August) from 2018 to 2023.
The corresponding five regions includes BTH (37°-41°N, 114°~118°E); YRD (30°-33°N, 118.2°-122°E); SCB
(28.5°-31.5°N, 103.5°-107°E); PRD (21.5°-24°N, 112°-115.5°E) and FWP (106.25-111.25°E, 33-35°N, and
108.75-113.75°E, 35-37°N).

Figure 4 presents the interannual variations in MDAS ozone concentrations during summertime
across China, with a focus on five key urban clusters. During the first phase (2013—-2017), the average
nationwide MDAS ozone increased significantly (p <0.01), rising from 95.5 to 118.0 ug m~. This growth
was especially pronounced in the BTH and FWP regions, where concentrations increased by
approximately 38% and 41%, respectively. In contrast, ozone increases were more modest in the YRD
(~11%), SCB (~15%), and PRD (~16%) regions, respectively. These results were consistent with the
previous studies (Li et al., 2021; Liu and Wang, 2020a, 2020b; Wang et al., 2023a). In the second phase,
corresponding to the implementation of more stringent emission controls on NOy and VOCs emissions
(Geng et al., 2024; Liu et al., 2023), a moderate national decrease in MDAS ozone was observed, with
concentrations declining to 109.0 pg m= from 2017 to 2020. The declines during this period were most
notable in FWP (—16%) and YRD (—15%), while BTH (—6%), SCB (—11%), and PRD (—4%) also showed
reductions compared to their concentration peaks observed in 2017. However, the MDAS ozone
rebounded, reaching 118.4 ugm= in 2023 — comparable to its 2017 peak — with a particularly sharp
increase during the summer of 2022. From 2021 to 2023, MDAS ozone concentrations rose by 2.8 ug m™

in BTH, 3.1 uygm~ in FWP, 16.1 uygm= in YRD, and 18.5 pg m= in SCB, respectively.
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Figure S1 further illustrates the spatiotemporal evolution of summertime MDAS ozone in China
from 2013 to 2023. On average, approximately 68% of cities exceeded the WHO air quality guideline of
100.0 pg m3 for the MDAS ozone. Elevated ozone levels were primarily observed in densely populated
and economically developed regions. Spatially, ozone hotspot regions expanded between 2013 and 2017
(Fig. S1 a-¢), followed by contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in
2021. A sharp reversal was observed in 2022, with widespread increases in MDAS8 ozone (Fig. S1 k).
These changes could be closely linked to emission control measures and meteorological conditions,

which will be further discussed in Sections 3.2 and 3.3.
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Figure 4. Interannual trends of summertime MDAS ozone across China (2013-2023). Panel (a) illustrates the
seasonal variations of MDAS 0zone during the summer months (June, July, and August) across 354 cities nationwide.
Panels (b-f) show the average trend across five key regions in China: BTH, FWP, YRD, SCB, and PRD. The summer
months are defined according to meteorological seasonality, encompassing June, July, and August. In the violin plots,
hollow diamond markers denote the mean, while solid diamond markers represent the median. The Mann-Kendall
test and Sen's slope estimator were employed to assess the statistical significance and rate of change in the monthly
average MDAS ozone concentrations. The p value represents the significance level from the Mann-Kendall test,

which is used to determine the statistical significance of the trend in the data.

3.2 Anthropogenic emission drivers of ozone trends

To disentangle the relative impacts of anthropogenic emissions and meteorological variability on
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observed ozone trends, we applied the machine learning-based FEA framework described in Section 2.2.
As illustrated in Fig. 5, anthropogenic emissions were the dominant driver of ozone increases during
2013-2017, contributing an average rise of approximately 23.2+ 1.1 pgm= nationwide. The most
pronounced increases occurred in the FWP and BTH (45.0+2.0 ungm= and 42.1+2.0 pgm,
respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 + 1.6 ug m=), reflecting
its predominantly NOy-limited photochemical regime versus VOC-limited regimes in other regions (Ren
et al.,, 2022). As shown in Fig. S5, the precursor gases NO, and CO exhibited regionally distinct
decreasing trends, partially explaining the spatial heterogeneity of ozone changes. During the second
phase, the MDAS ozone decreased by 10.5+2.0 pygm™ in BTH and 10.4+3.0 pgm3 in FWP, with
smaller declines in YRD (—4.8+3.8 ugm™), SCB (-2.8+2.4 pgm=), and PRD (-6.6+ 1.4 ugm™)
between 2017 and 2020 (Fig. 5). These trends are broadly consistent with those derived using
independent statistical approaches (Wang et al., 2023).

The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation to
anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and
transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO», NOy, PM, s, and
VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 1.07 Tg
(12%), respectively, relative to the same period in 2019 (Geng et al., 2024). Despite these reductions,
MDAS ozone concentrations increased by 1.7-2.3 pug m~ across BTH, FWP, YRD, and SCB, while a
slight decrease occurred in PRD (Fig. S6). Overall, ~79% of monitored cities experienced ozone
increases, with a national mean enhancement of 2.1 £ 1.3 pg m= (Fig. S7). In the post-pandemic period
(2020 - 2023), concentrations of NO,, CO, and PM; 5 stabilized or declined more gradually (Fig. S5),
and the contribution of anthropogenic emissions to ozone variability weakened considerably (Fig. S8).
Regionally, emission-driven changes ranged from —1.2 to +2.6 pgm™ in BTH, 1.6 to +4.0 pg m™ in
FWP, —4.7 to +7.4 pgm= in YRD, -3.6 to +3.0 pg m= in SCB, and 3.8 to +7.7 pg m~® in PRD. These
results indicate that while emission control policies initially produced substantial benefits, their
effectiveness has gradually diminished, suggesting that ozone responses to further emission reductions

may have reached a saturation point.
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Figure 5. Anthropogenic and meteorological drivers of ozone trends from 2013 to 2023. Changes in summertime
MDAS ozone concentrations were decomposed into contributions from anthropogenic emissions and meteorological
variability using the FEA framework. Results reflect ensemble estimates based on multiple baseline years (2015—
2023) for emissions. Boxplots indicate the interquartile range, with values in parentheses denoting the 25th and 75th

percentiles across all baseline scenarios.

Satellite retrievals of tropospheric NO, and HCHO from TROPOMI (Figs. S9 - S10) further reveal
evolving ozone production chemistry. NO; columns exhibited strong east — west gradients, with eastern
China maintaining levels five times higher than the west. Between 2018 and 2023, NO; columns over
the North China Plain (NCP) declined from 4.13 x 10" to 3.85 x 10'5 molecules cm2, while HCHO
remained stable until 2021, followed by a sharp increase in 2022. The spatial pattern of temperature
anomalies between heatwave (HW) and non-heatwave (NHW) periods (Fig. S11) reveals strong positive
differences in the YRD and SCB, consistent with enhanced biogenic and anthropogenic VOC emissions
under extreme heat (Qin et al., 2025; Tao et al., 2024). By 2023, HCHO concentrations had returned to
pre-heatwave levels. To diagnose the evolving chemical sensitivity of ozone production, we examined
the spatiotemporal evolution of the HCHO/NO; ratio (Text S1). Figure S12 shows that this ratio exhibited
regionally distinct transitions from 2018 to 2023, reflecting shifts in photochemical regimes. Figure 6
summarizes the relative contributions of VOC-limited, NOx-limited, and transitional regimes across the

five key regions. In BTH, NOy-limited areas accounted for ~82% of the domain in 2018 and remained
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above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, summer ozone
formation was largely controlled by NOx-limited and transitional regimes. The YRD underwent a notable
shift from VOC- to NOx-limited chemistry, with VOC-limited fractions decreasing from ~35% in 2018
to ~22% in 2023, particularly during 2022 when extreme heat amplified VOC emissions and
photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB region consistently exhibited strong
NOx limitation (>75%), whereas the PRD showed a gradual expansion of the transitional regime
alongside a modest contraction of VOC-limited areas. These shifts in photochemical sensitivity
correspond well with the ozone decrease observed during Phase II emission reductions. Spatial
distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) reveal that most
of China was in a transitional regime, with major urban clusters remaining VOC-limited and only limited
areas in southern China being NOy-limited. This spatial pattern aligns with the observed widespread
ozone increases during the lockdown (Fig. S7). Collectively, these regional transitions reflect the dual
influences of sustained anthropogenic emission controls and short-term climatic perturbations. The
findings highlight that ozone production chemistry in China is becoming increasingly shaped by the
complex interplay between emission reduction efforts and the rising frequency of meteorological

extremes under a warming climate.
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Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-
limited, and transitional ozone sensitivity regimes across five key regions during the summertime (June to August)

from 2018 to 2023, based on the FNR analysis. Panel (f) presents the overall trends for all five regions.
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3.3 Meteorological impact on ozone variation

Figure 5 shows the interannual meteorological contributions to summertime MDAS8 ozone across
different emission-control phases. During Phase I (2013 - 2017), meteorology exerted relatively weak
influences on ozone variability, with contributions ranging from —4.8 to +3.9 ug m—>—far smaller than
those from anthropogenic emission changes. In contrast, meteorological anomalies became a decisive
factor during Phase II (2017-2020), driving substantial ozone reductions. Ozone decreases attributable
to meteorology reached —14.4 + 3.0 pg m=3 in the FWP, —15.9 + 3.8 pg m=3 in the YRD, and —11.1 £ 2.4
pg m= in the SCB, explaining 58 + 12%, 77 & 18%, and 80 = 17% of the total ozone decline, respectively.
A notable shift occurred during Phase III, when the influence of extreme meteorological events
increasingly dominated ozone variability. In the summer of 2022, persistent heatwaves across eastern
and southern China (Mallapaty, 2022; Wang et al., 2023b) triggered sharp ozone increases of +20.8 £ 3.6
pug m ~ in the YRD and +22.1 + 3.2 ug m= in the SCB, reflecting the enhanced photochemical activity
under high-temperature and intense solar radiation conditions. The following summer (2023) featured
anomalously heavy rainfall, resulting in sharp ozone suppression (—17.8 + 2.3 pg m= in the YRD and —
9.7 £ 3.3 pg m~ in the SCB). This reduction coincided with a remarkable increase in precipitation, i.e.,
102% in YRD and 35% in SCB (Fig. S14), indicating that rainfall-induced wet scavenging and
diminished photolysis substantially curtailed ozone production.

To identify the dominant meteorological drivers, we analyzed Gini importance scores derived from
the RF model across 18 predictor variables (Fig. S15). Temperature (7) emerged as the most influential
predictor in the BTH and FWP regions, while shortwave solar radiation (SR), relative humidity (RH),
and 850hPa zonal wind (u850) were most important in the YRD. In the PRD, ozone variability was
primarily governed by temperature and transport-related indices, including meridional winds at different
altitudes. These findings are consistent with the climatological contrast between northern continental and
southern coastal regimes: in northern China, stagnant anticyclonic conditions (Gong and Liao, 2019) and
strong solar radiation promote photochemical buildup (Bao et al., 2025), whereas in southern regions,
high humidity and convective rainfall tend to suppress ozone by reducing actinic flux and enhancing
removal of precursors.

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to key

meteorological factors (T, RH, SR) for representative cities in each cluster, revealing clear regional
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contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to T (Fig. S16a),
consistent with the enhancement of reaction kinetics and biogenic VOC emissions under hot conditions.
This behavior reflects the thermodynamic coupling between surface heating, boundary-layer expansion,
and photochemical production. In Nanjing (YRD), ozone is more sensitive to solar radiation than to
temperature (Fig. S16c), highlighting the dominant role of actinic flux in controlling radical production
during warm and dry conditions. Yang et al. (2024) similarly reported that high-temperature and low-RH
conditions over the NCP and YRD enhance photochemical ozone formation, with chemical production
being the dominant process driving ozone buildup during the most polluted months. In the SCB, both T
and RH exhibit strong influences, while in the PRD, ozone variability is shaped primarily by T and large-
scale circulation patterns associated with subtropical maritime flow and typhoon incursions from the
Northwest Pacific (Chen et al., 2024; Wang et al., 2024a; Wang et al., 2022a).

To further quantify these relationships, we applied SHAP (SHapley Additive exPlanations) analysis
to evaluate the meteorological influence of heatwave (HW) and pluvial (PR) events in the Yangtze-
Huaihe region between 2015 and 2023 (Section 2.4). As shown in Fig. S17, HW events were associated
with strong positive SHAP values in southeastern coastal areas, especially the YRD and SCB, driven by
elevated SR and T. Mean SR during HW periods was substantially higher than during non-HW periods
(Fig. S18), increasing photochemical activity through increased radical generation and faster reaction
rates. Conversely, PR events produced consistent negative SHAP contributions across all regions (Fig.
S19), reflecting the combined effects of reduced photolysis, increased humidity, and efficient wet
scavenging on ozone production (He and Carmichael, 1999). A multi-year comparison (Fig. 7) highlights
the opposing effects of key meteorological variables — including RH, T, boundary layer height (BLH),
total precipitation (TP), and surface pressure (SP) —on MDAS ozone. The trend in A SHAP values under
high-humidity conditions from 2015 to 2023 (Fig. S20) further confirms the model’s ability to capture

the suppressive effects of wet weather conditions on ozone formation.
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Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy weather
conditions. (a) Differences in SHAP values (ASHAP) between heatwave and non-heatwave periods in the Yangtze-
Huaihe region during summer 2022. (b) Differences in SHAP values (ASHAP) between prolonged rainfall periods
and non-prolonged rainfall periods in the same region from 2015 to 2023. Box plots show the distribution of ASHAP
across cities; the center line indicates the median, boxes denote the interquartile range (25th-75th percentiles), and

the whisker line extends to one standard deviation.

3.4 Reshaping distributions of ozone controlled by a warming climate

To assess the long-term influence of climate change on surface ozone concentrations, we applied
the FEA framework to simulate summertime ozone trends over the period 1970 — 2023. In this analysis,
anthropogenic emissions were held constant at their 2015 — 2023 summertime levels, while interannual
variations in meteorological variables were introduced using historical reanalysis data. This design
isolates the climate-driven component of ozone trends while assuming that emission trajectories are
independent of climate change — a simplification aligned with prior attribution frameworks (Wang et al.,
2022b). The impact of anthropogenic emission controls was estimated by comparing observed ozone
concentrations with FEA-predicted values during 2015 — 2023, thereby quantifying the residual effect of
emissions under fixed meteorology.

As shown in Fig. 8, under the 2015-2023 emission levels, climate change has exerted a statistically
significant (p < 0.05) positive influence on urban summertime ozone concentrations across China,
resulting in a nationwide increase of approximately 0.06 ug m= yr! since 1970. All five major urban
regions displayed upward trends, with the most pronounced increase observed in the BTH and SCB at
0.12 ugm= yr!. Three sensitivity simulations (see Section 2.5 and Fig. S21) confirm this robustness:
trend slopes range from 0.11-0.14 pg m= yr! in BaseBTH, 0.05-0.10 ugm= yr! in BaseYRD, and
0.03-0.10 pg m~ yr! in BasePRD. Despite regional differences in chemical regimes or pollution levels,

the consistent upward tendencies underscore the pervasive climatic amplification of ozone formation.
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These results emphasize that climate change acts as a systematic driver of ozone growth across diverse
atmospheric environments, reinforcing the need to embed climate resilience within emission control
strategies. Spatial correlations between climate-driven ozone increases and temperature changes (Fig.
S22) further confirm that warming is the dominant contributor to long-term ozone enhancement. In
particular, the correlation coefficients between ozone trends and temperature anomalies reached 0.90
(BTH), 0.89 (FWP), 0.72 (YRD), and 0.93 (SCB), indicating a strong temperature dependence of
climate-induced ozone formation in these regions. The PRD showed a weaker correlation, likely due to
its unique subtropical maritime climate and higher humidity and cloud cover, which tend to suppress
photochemical ozone production (Yang et al., 2019). The right panel of Fig. 8 depicts summertime ozone
trends from 2015 to 2023 under the combined influence of anthropogenic emissions, derived from the
FEA method. Ozone concentrations rose across all regions between 2015 and 2018, declined modestly
during 2018-2020, and rebounded thereafter in most regions except the PRD.

These findings are consistent with future projections that anticipate more frequent high-ozone
episodes under continued warming (Li et al., 2023). Recent analyses (Yang et al., 2024) show that the
frequency of high-temperature and low-humidity conditions during 2000-2019 was markedly higher than
in 1980-1999, suggesting that ozone pollution in both the NCP and YRD has intensified under historical
climate change. Indeed, while national emission controls curbed ozone growth after 2018, a post-2020
rebound has emerged, implying that the climatic penalty on ozone is beginning to offset emission gains.
The extreme 2022 heatwave exemplified this effect, substantially enhancing photochemical activity and
shifting ozone sensitivity from VOC-limited to transitional or NOy-limited regimes. Although reductions
in anthropogenic precursor emissions have improved ozone control efficiency, the direct warming-
induced enhancement of ozone increasingly interferes with — and in some regions may partially offset —

the air-quality gains achieved through emission reduction efforts.
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Figure 8. Impact of climate change and emission controls on ozone trends. Left panels show ozone trends
attributable to long-term climate change from 1970 to 2023, simulated under fixed emission scenarios using the FEA
framework. Right panels depict ozone trends from 2015 to 2023, reflecting the impact of anthropogenic emission
controls. Each trajectory represents results based on a distinct emissions baseline year. Shaded grey areas indicate
the interquartile range (25th-75th percentiles), solid red lines denote trend estimates, and light red shading marks the
5th-95th percentile confidence intervals. Statistical significance and trend slopes were assessed using the Mann-

Kendall test. More details of the sensitivity tests are provided in Fig. S18.

4 Conclusions and implications

China is confronted with the dual challenges of climate change and ozone pollution. Over the past
decade, summertime ozone concentrations across the country have exhibited complex spatiotemporal
patterns, reflecting the evolving interplay between anthropogenic emissions, meteorological variability,
and large-scale climate dynamics. In this study, we developed and applied a machine learning-based FEA
framework to disentangle and quantify the respective roles of anthropogenic emissions and
meteorological drivers in shaping ozone trends during 2013-2023. With a national-level prediction
uncertainty of approximately 6%, the FEA method provides a computationally efficient and scalable tool
for diagnosing atmospheric variability across large spatial and temporal domains. Nonetheless, some
limitations remain. The current implementation did not explicitly resolve grid-scale spatial heterogeneity,

vegetation, or land-use dynamics, which may influence ozone formation. Moreover, potential
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sensitivities to spatial resolution warrant further investigation through coupled applications of machine
learning and chemical transport models.

Our analysis revealed that increased anthropogenic precursor emissions were the dominant driver
of the sharp rise in summertime MDAS ozone concentrations during the first phase (2013-2017),
contributing an average increase of 23.2+ 1.1 pg m=. In contrast, during the second phase (2018-2020),
enhanced air quality regulations — particularly the synergistic control of NOy and VOCs — led to
measurable reductions in MDAS8 ozone, with national-average declines of 4.6+1.5 pugm™. These
improvements were especially evident in regions such as BTH and FWP, where ozone formation is highly
sensitive to VOC levels. However, during the most recent period (2021-2023), the impact of emission
reductions diminished considerably, with regional ozone levels either plateauing or rebounding. This
stagnation underscores the urgent need for more targeted, region-specific emission control strategies that
address the shifting photochemical sensitivity of ozone formation regimes.

Using SHAP attribution analysis, we further quantified the influence of meteorological extremes on
ozone variability. Record-breaking heatwaves in 2022 enhanced ozone concentrations by up to +5.8 pg
m~3, while prolonged pluvial episodes—particularly during the East Asian monsoon season—suppressed
ozone by as much as —15.2 pug m=. These results highlight the growing dominance of short-term
meteorological extremes in shaping ozone air quality under a warming climate. Complementary satellite-
based FNR diagnostics revealed that most urban clusters remain VOC-limited or transitional, except the
PRD, which is largely NOx-limited. The 2022 heatwave induced regime shifts in regions such as the
YRD, where intensified VOC emissions and elevated temperatures drove transitions toward NOx-limited
conditions. These findings emphasize the need for dynamic, region-specific assessments of ozone
sensitivity to guide effective mitigation strategies.

To assess the climate penalty on ozone, we extended the FEA framework to simulate long-term
trends from 1970 to 2023 by fixing emissions and allowing meteorological variables to evolve with
observed climate trends. Our findings show that climate change has contributed to a significant upward
trend in urban summertime ozone, averaging 0.06 ug m= a~!, with particularly strong increases in the
BTH and SCB. Correlations between ozone and surface temperature were consistently high (»=0.72—
0.93) in BTH, FWP, YRD, and SCB, suggesting that warming has increasingly offset gains from emission

controls in recent years. Although reductions in anthropogenic precursor emissions have improved ozone
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552 control efficiency, the direct warming-induced enhancement of ozone increasingly interferes with — and

553 in some regions may partially offset — the air-quality gains achieved through emission reduction efforts.
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