
Dear Editor, 

 

Thank you very much for your and the reviewers’ thoughtful and constructive 

comments on our manuscript. We have carefully addressed all comments and 

suggestions point by point and have revised the manuscript accordingly. Detailed 

responses to the reviewers’ comments are provided below (in blue), and all 

corresponding revisions are highlighted in red in the revised manuscript. 

 

In addition, we would like to request the addition of a new co-author, Prof. Bin Yuan, 

who made significant contributions to the revision of the manuscript by providing 

critical feedback and valuable suggestions during the revision stage. We kindly apply 

for the editor’s approval for this authorship update. 

 

Thank you very much for your time and consideration! 

We are looking for forward to hearing from you. 

 

Sincerely, 

Yunjiang Zhang, on behalf of all co-authors 

Nanjing University of Information Science and Technology, Nanjing, China 

Email address: yjzhang@nuist.edu.cn 
 

  



Response to Referee #1 

General Comments: The manuscript provides valuable insights into surface ozone trends in China, 

driven by emissions and meteorological factors, using the Fixed Emission Approximation (FEA) 

method. While the study is important, several key issues require attention before it can be accepted. 

Response: We sincerely thank the reviewer for the positive and constructive comments on our 

manuscript. These suggestions have been very helpful in improving the quality and clarity of our 

work. We have carefully revised the manuscript accordingly. 

1. The explanation of emission surrogates and the impact of coarse-resolution meteorological data on 

the regression process is insufficient. Additionally, regional ozone trends, especially in the PRD, need 

clearer explanations, and the manuscript should include maps or time-series for key ozone precursors 

(CO, NOx, VOCs). 

Response: Thank you for these important and constructive comments. We have addressed each point 

in the revised manuscript; a concise summary of our changes and rationale follows. 

(1) We expanded the method section to clarify that the time variables (hour of day, month of year) 

serve as emission surrogates that capture regular diurnal and seasonal patterns in anthropogenic 

activity (e.g., traffic emission cycles). This approach is widely used in weather-normalization and 

RF-based attribution studies because it helps separate short-term cyclical emission variability 

from long-term trends (such as Grange et al., Vu et al., and Shi et al.). We also note that inclusion 

of these surrogates improved model performance in cross-validation. The detailed modification 

can be found in the revised manuscript on page 7 lines 140-143 and page 9 lines 197-198. 
(2) We now explicitly state our handling of meteorological inputs: meteorological predictors were 

taken from the nearest ERA5 grid cell (0.25°×0.25°) to each city region, while the surface air 

pollutant concentrations represent multi-site city averages (i.e., averages over all available 

monitoring stations within each city). This city-average / nearest-grid strategy follows common 

practice in recent machine-learning air-quality studies and balances spatial representativeness 

with data availability. We have added the discussion of the limitations introduced by using coarse 

reanalysis fields and how this uncertainty was partially mitigated by (i) training models per city, 

(ii) using many meteorological predictors at multiple levels, and (iii) performing interannual 

resampling uncertainty tests (see new text and Fig. 2 now highlighted in the main text). We also 

discuss for future coupled machine learning and chemical transport modeling work to more fully 

assess resolution sensitivities. The detailed modification can be found in the revised manuscript 

on page 7 lines 144-149 and pages 22-23 lines 521-525. 



(3) We expanded the results and discussion to better explain why PRD trends differ from northern 

regions. Key points added: (i)PRD has relatively stronger biogenic VOC and marine influences 

and lower anthropogenic NOx compared with northern basins (e.g., BTH), leading to a more NOx-

limited photochemical regime; (ii) subtropical maritime climate, higher humidity and cloudiness, 

and frequent typhoon/monsoon perturbations modulate transport and photolysis, reducing the 

straightforward response of ozone to local emission changes; (iii) therefore, PRD shows smaller 

ozone increases in response to the same emission changes that produced larger effects in VOC-

sensitive northern regions. During phase II, the trends obtained using the FEA method were 

generally consistent with those from previous studies using statistical methods. In this phase, the 

changes in ozone production sensitivity regimes in the PRD region were more pronounced 

compared to those in the YRD and SCB regions. We cite recent regional studies that support these 

mechanisms. The detailed modification can be found in the revised manuscript on page15 line 

340-342 and page17 lines 387-390. 
(4) We agree that precursor maps/timeseries strengthen the attribution. Accordingly, we added: (i) 

spatial maps of surface CO and NO2 (ground-based where available) and column NO2 and HCHO 

from TROPOMI (new Fig. 3); (ii) city-level summertime and whole year time series for CO, NO2, 

and PM2.5 for the five major regions (new Fig. S5); and (iii) discussion linking these precursor 

trends to regime shifts (HCHO/NO2) and the FEA results (Fig. 6). Because continuous ground-

based VOC observations are sparse nationally, we did not add nationwide VOC maps, instead we 

use satellite HCHO as an established proxy for VOC emissions. The detailed modification can be 

found in the revised manuscript on page12 lines 277-292, page15 lines 342-343 and page15 lines 

355-356. 
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Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO across major city clusters 

in China. The panels represent the average MDA8 ozone, surface NO2, and TROPOMI NO2, HCHO column concentrations for 354 

cities in China during the summertime (June–August) from 2018 to 2023. The corresponding five regions includes BTH (37°–41°N, 

114°–118°E); YRD (30°–33°N, 118.2°–122°E); SCB (28.5°–31.5°N, 103.5°–107°E); PRD (21.5°–24°N, 112°–115.5°E) and FWP 

(106.25–111.25°E, 33–35°N, and 108.75–113.75°E, 35–37°N). 

 
Figure S5. Ground-based observed time series of NO2, CO and PM2.5. Panels (a-c) show the summertime average time series of 

NO2, CO, and PM2.5 for China’s five major city clusters from 2015 to 2023. Panels (e-f) present the annual average time series of NO2, 

CO, and PM2.5 for China’s five major city clusters from 2015 to 2023. 

 

2. The discussion on the COVID-19 lockdown requires more detailed analysis of TROPOMI data to 

explain regional ozone changes, and maps for regions like the North China Plain would help clarify 

spatial patterns. Figures, particularly Figure 3, lack clear quantitative results, and Section 3.3 requires 

deeper analysis. 
Response: We sincerely thank the reviewer for these valuable and constructive comments. We have 

substantially revised the relevant sections to strengthen the discussion and quantitative analysis 

related to the COVID-19 lockdown period, as summarized below:  

(1) We applied the formaldehyde-to-NO2 ratio (FNR) diagnostic to classify ozone formation 

regimes and evaluate their spatial changes during the lockdown. The new analysis reveals clear 

regional differences: the North China Plain (NCP) and Yangtze River Delta (YRD) shifted 

toward more VOC-limited conditions due to sharp NOx reductions, while parts of southern 

China remained in NOx-limited or transition regimes. The updated manuscript includes 

corresponding maps to illustrate these spatial patterns (Fig. S13). 

(2) We have significantly revised Figure 6 to provide year-round quantitative results, distinguishing 

the relative contributions of the three ozone sensitivity regimes (NOx-limited, VOC-limited, and 

transition) over time.  
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Figure S13. Ozone formation sensitivity regimes during COVID-19. Spatial distribution of ozone formation sensitivity regimes in 

China from January to April 2020 during the COVID-19 pandemic. The hollow triangles represent the geographical coordinates of five 

key urban clusters in China. 

 
Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-limited, NOx-limited, and 

transitional ozone sensitivity regimes across five key regions during the summertime (June to August) from 2018 to 2023, based on the 

FNR analysis. Panel (f) presents the overall trends for all five regions. 

 

3. Finally, the roles of temperature, humidity, and radiation in ozone formation need clearer 

interpretation.  

Response: We appreciate this important and constructive comment. In response, we have expanded 

our analysis and discussion to clarify the distinct roles of temperature, humidity, and solar radiation 

in ozone formation across different regions. Our extended machine learning analysis (see Fig. S16) 

reveals region-specific sensitivities of ozone to these meteorological factors. We also incorporated 

relevant literature to further support the interpretation of these regional contrasts. The detailed 
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modification can be found in the revised manuscript on pages 18-19 lines 430-442. 

 

Figure S16. Partial dependence of ozone on T, RH, and SR for representative cities. Panels show the 3D-dependence plots of 

MDA8 ozone with RH, T, and SR for representative cities in BTH, FWP, YRD, and PRD, including MDA8 ozone-RH-T, MDA8 ozone-

RH-SR, and MDA8 ozone-SR-T. 

In conclusion, a major revision is needed to address these issues, strengthen the analysis, and improve 

the clarity and presentation of the results. 

Response: We sincerely thank the reviewer for the constructive and insightful comments. We have 

c (Nanjing, YRD)

b (Xi'an, FWP)

a (Beijing, BTH)

e (Guangzhou, PRD)

d (Chongqing, SCB)



carefully revised the manuscript to address all the concerns raised and substantially improved the 

analysis, clarity, and presentation of the results. Detailed point-by-point responses and corresponding 

revisions are provided below.  

 

Specific Comments: 

Line 193: What is TAP? 

Response: Thank you for your comment. We have clarified the meaning of TAP in the revised 

manuscript： 

For 2013 – 2014, the surface MDA8 ozone data were obtained from the Tracking Air Pollution 

in China (TAP) dataset (Geng et al., 2021), which can be downloaded from http://tapdata.org (last 

accessed: May 20, 2024). 

 

Line 114: How does the author account for the uncertainty in coarse-resolution meteorological 

variables and site data during the RF regression process? Is the specified elevation referring to the 

site elevation or the average elevation of the coarse-resolution meteorological variable grid? 

Response: Thank you for your comment. We now explicitly state our handling of meteorological 

inputs: meteorological predictors were taken from the nearest ERA5 grid cell (0.25°×0.25°) to each 

city region, while the surface air pollutant concentrations represent multi-site city averages (i.e., 

averages over all available monitoring stations within each city). This city-average / nearest-grid 

strategy follows common practice in recent machine-learning air-quality studies and balances spatial 

representativeness with data availability. We compared the observed meteorological data from 

weather stations in Nanjing, Suzhou, and Xuzhou with the ERA5 data we used and tested the 

sensitivity of ozone to different meteorological datasets. We found that the parameters from ERA5 

closely aligned with those from the weather stations. Sensitivity tests using different meteorological 

datasets showed that the predicted ozone trends under fixed 2019 emission conditions were generally 

consistent. This supports the reliability of ERA5 data, which, compared to weather station 

observations, provides a more comprehensive dataset, therefore, we chose ERA5 data for our machine 

learning simulations. The following compares the hourly temperature, pressure, and relative humidity 

observed at weather stations in Nanjing, Suzhou, and Xuzhou in 2019 with the corresponding ERA5 

data for these three parameters. Additionally, we replaced these three parameters with the observed 

data during model training and assessed the sensitivity of ozone to different meteorological datasets: 
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Additionally, we have added a discussion in the main text regarding the limitations introduced 

by using coarse reanalysis fields and how this uncertainty was partially mitigated by (i) training 

models for each city, (ii) using a wide range of meteorological predictors at multiple levels, and (iii) 

performing interannual resampling uncertainty tests. We also discuss the potential for future work 

that couples machine learning and chemical transport modeling to more fully assess the sensitivities 

to spatial resolution. The revised text now reads as follows: 

It should be noteworthy that surface air pollutant observations for each city represent multi-site 

averages rather than data from a single monitoring station, which reduces the influence of local 

representativeness errors. The meteorological data are obtained from the nearest grid cell 

corresponding to each city, ensuring spatial consistency between the pollutant and meteorological 

datasets. This approach was similar to the methodologies widely adopted in previous studies (Shi et 

al., 2021; Wang et al., 2025; Yao et al., 2024; Zheng et al., 2023). Our modeling strategy involves 

building and predicting models for individual cities and for each year from 2015 to 2023, which helps 

in minimizing the uncertainty caused by surface heterogeneity. 

Nonetheless, some limitations remain. The current implementation did not explicitly resolve 

Suzhou

Xuzhou



grid-scale spatial heterogeneity, vegetation, or land-use dynamics, which may influence ozone 

formation. Moreover, potential sensitivities to spatial resolution warrant further investigation through 

coupled applications of machine learning and chemical transport models. 

 

Line 115: What is an emission surrogate? Where did the author obtain it? It should be mentioned in 

Section 2.1. 

Response: Thank you for this helpful comment. We have expanded Section 2.1 to clarify the meaning 

and source of the emission surrogates. Specifically, the time variables – hour of day and month of 

year – are used as emission surrogates to capture regular diurnal and seasonal variations in 

anthropogenic activity (e.g., traffic emissions). This approach is widely applied in weather-

normalization and RF-based attribution studies (e.g., Grange et al., 2018; Vu et al., 2019) to separate 

short-term cyclical emission variability from long-term trends. We also found that including these 

surrogates improved model performance during cross-validation. The revised text now reads as 

follows:  

The time variables – hour (hour of day) and month (month of year) – are used as emission 

surrogates to capture regular diurnal and seasonal variations in anthropogenic activity. A similar 

strategy is widely applied in previous studies about long-term trends in air pollutants (e.g., Grange 

et al., 2018; Vu et al., 2019) to separate short-term cyclical emission variability from long-term trends. 

To assess uncertainty stemming from interannual model training variability, we applied a 

matrix-based resampling approach (see Text S2). As shown in Fig. 2, the relative difference in 

residuals ranged from -9% to 3%, and remained within ±12% for all regions – supporting the 

robustness of the FEA method. We found that the model with the added time variables exhibited 

significantly smaller uncertainty compared to the model without it (Fig. S3). 

 

2015

2016

2017

2018

2019

2020

2021

2022

2023

Ye
ar

 fo
r p

re
di

ci
to

n 
by

 th
e 

m
od

el

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

    

-3 -5 -5 -4 -5 -5 -5 -5 -4

-5 -3 -5 -4 -5 -5 -5 -4 -6

-5 -6 -3 -3 -4 -6 -5 -5 -4

-4 -5 -3 -4 -4 -4 -5 -3 -4

-5 -6 -4 -4 -2 -5 -5 -3 -4

-5 -5 -5 -4 -5 -3 -5 -5 -4

-5 -6 -5 -5 -4 -5 -3 -2 -5

-5 -5 -5 -3 -3 -5 -3 -3 -4

-5 -6 -4 -4 -4 -5 -5 -4 -3
a

-15

-10

-5

0

5

10

15

C
hina • FEA uncertainty (%

)

2015

2016

2017

2018

2019

2020

2021

2022

2023

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

-5 -7 -3 -4 -6 -4 -6 -6 -6

-7 -2 -7 -7 -8 -5 -7 -8 -9

-4 -9 -3 -4 -2 -4 -7 -5 -2

-5 -9 -5 -9 -2 -4 -7 -4 -5

-7 -10 -2 -2 -4 -3 -6 -5 -5

-4 -6 -4 -3 -2 -2 -3 -3 -4

-6 -8 -6 -6 -5 -3 -3 -4 -7

-6 -9 -4 -4 -5 -3 -4 -3 -5

-7 -10 -2 -5 -5 -4 -7 -6 -3
b

-15

-10

-5

0

5

10

15

BTH
 • FEA uncertainty (%

)

2015

2016

2017

2018

2019

2020

2021

2022

2023

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

-2 -3 -3 -1 -5 -3 -4 -4 -3

-3 -2 -5 -6 -5 -3 -3 -5 -4

-3 -6 -3 -4 -4 -7 -4 -6 -5

-2 -7 -4 -1 -3 -3 -3 -4 -5

-7 -6 -4 -3 -3 -5 -4 -4 -5

-3 -3 -6 -3 -5 -3 -5 -3 -4

-5 -4 -4 -3 -4 -5 -3 -2 -4

-6 -6 -5 -4 -4 -3 -2 -3 -5

-3 -5 -5 -5 -5 -4 -4 -5 -3
c

-15

-10

-5

0

5

10

15

FW
P • FEA uncertainty (%

)

2015

2016

2017

2018

2019

2020

2021

2022

2023

Ye
ar

 fo
r p

re
di

ci
to

n 
by

 th
e 

m
od

el

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year to train the model

-2 -5 -6 -7 -4 -7 -7 -3 -4

-6 -3 -5 -5 -7 -9 -11 0 -6

-8 -5 -4 -3 -4 -12 -6 -2 -2

-8 -6 -3 -6 -7 -9 -10 2 -5

-5 -8 -4 -7 -2 -10 -9 -3 -3

-7 -9 -10 -8 -9 -4 -6 -7 -6

-7 -10 -5 -9 -8 -6 -3 -1 -6

-4 0 -2 2 -3 -8 -1 -4 1

-4 -6 -2 -4 -3 -7 -6 1 -3
d

-15

-10

-5

0

5

10

15

YR
D

 • FEA uncertainty (%
)

2015

2016

2017

2018

2019

2020

2021

2022

2023

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year to train the model

-5 -6 -7 -5 -6 -6 -6 -8 -6

-7 -4 -6 -6 -6 -6 -6 -4 -7

-7 -6 -4 -5 -4 -7 -6 -4 -7

-6 -6 -5 3 -7 -8 -7 -3 -5

-6 -5 -4 -7 -1 -7 -7 2 -4

-6 -6 -6 -7 -7 -4 -6 -3 -6

-6 -6 -5 -7 -7 -6 -4 1 -5

-9 -5 -4 -3 2 -4 1 -3 -6

-6 -7 -7 -6 -5 -6 -6 -6 -3
e

-15

-10

-5

0

5

10

15

SC
B • FEA uncertainty (%

)

2015

2016

2017

2018

2019

2020

2021

2022

2023

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Year to train the model

-4 -3 -3 -2 -2 1 -4 -2 -7

-4 -5 -6 -1 -2 -2 -5 -3 -4

-3 -5 -5 -7 -3 -4 -8 -7 -4

-2 -1 -8 0 -3 0 -3 -7 1

-2 -2 -4 -3 -3 -1 -3 -5 0

0 -2 -4 0 -1 -3 -4 -3 -3

-4 -4 -9 -3 -3 -4 -4 -7 -4

-2 -3 -7 -6 -4 -3 -6 -3 -2

-7 -4 -4 1 0 -3 -4 -2 -3
f

-15

-10

-5

0

5

10

15

PR
D

 • FEA uncertainty (%
)



Figure 2. Uncertainty assessment of the FEA method. The uncertainty for the FEA method is 

calculated using the approach described in Text S2. The diagonal line in each sub-panel represents 

the changes in the residuals of the models. 

 

Figure S3. Uncertainty of the FEA method without time variables. The uncertainty for the FEA 

method is calculated using the approach described in Text S2. The diagonal line in each sub-panel 

represents the changes in the residuals of the models. 
 

Line 117: “The aforementioned variables”: It’s not clear. 

Response: Thank you for your comment. We have clarified the reference to “the aforementioned 

variables” in the revised manuscript: 

First, a regression model is constructed using the random forest (RF) algorithm to relate ozone 

concentrations to temporal emission surrogates and to meteorological parameters at multiple 

atmospheric levels. These temporal emission surrogates, including month and hour, represent short-

term regular emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-

term emission-driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 

2021; Vu et al., 2019). The meteorological parameters include 18 distinct variables at different 

altitudes (see Table S1). 

 

Line 127-129: Rewrite this sentence. 

Response: Thank you for your comment. We have rewritten the sentence for clarity: 

Specifically, we establish hourly-resolution models for the baseline year (i) during the summer 
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season (June to August) as a reference for anthropogenic emissions, represented by the pink solid line 

in Fig. 1. 

 

Line 243: “Anthropogenic drivers” to “Anthropogenic emission drivers”. 

Response: Thank you for your suggestion. We have updated it. 

 

Line 243: You should show the anthropogenic emission map or time-series line for major ozone 

precursor such as CO, NOx, and VOC. 

Response: Thank you for your suggestion. We have added Ground-based observed time series of 

NO2, CO and PM2.5. The related modification is shown as follows: 

As shown in Fig. S5, the precursor gases NO2 and CO exhibited regionally distinct decreasing 

trends, partially explaining the spatial heterogeneity of ozone changes. 

In the post-pandemic period (2020–2023), concentrations of NO2, CO, and PM2.5 stabilized or 

declined more gradually (Fig. S5), and the contribution of anthropogenic emissions to ozone 

variability weakened considerably (Fig. S8). 

Supplement: 

 

Figure S5. Ground-based observed time series of NO2, CO and PM2.5. Panels (a-c) show the 

summertime average time series of NO2, CO, and PM2.5 for China’s five major city clusters from 2015 

to 2023. Panels (e-f) present the annual average time series of NO2, CO, and PM2.5 for China’s five 

major city clusters from 2015 to 2023. 

 

Line 249-251: The author needs to explain why the PRD is rising and why it is falling in other regions. 

Response: Thank you for your suggestion. We have added a more detailed explanation, the related 
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modification is shown as follows: 

The most pronounced increases occurred in the FWP and BTH (45.0 ± 2.0 μg m⁻3 and 42.1 ± 2.0 

μg m⁻3, respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 ± 1.6 μg m⁻3), 

reflecting its predominantly NOx-limited photochemical regime versus VOC-limited regimes in other 

regions (Ren et al., 2022). 

 

Line 260: Authors should show a map to tell reader where is northern China? 

Response: Thank you for your suggestion. The reference to “northern China” specifically pertains to 

the BTH (Beijing-Tianjin-Hebei) and FWP (Fenwei Plain) city clusters in northern China. We have 

now clarified this in the manuscript. 

 

Line 260-262: Prior to 2017, PRD consistently recorded the lowest ozone concentrations among these 

major regions. Intuitively, the PRD appears to have the least potential for ozone reduction. Yet why 

did both the YRD and SCB regions exhibit smaller reduction margins than the PRD? 

Response: Thank you for your comment. During phase II, MDA8 ozone decreased by 10.5 ± 2.0 

μg m⁻3 in BTH and 10.4 ± 3.0 μg m⁻3 in FWP, with smaller declines in YRD (–4.8 ± 3.8 μg m⁻3), SCB 

(–2.8 ± 2.4 μg m⁻3), and PRD (–6.6 ± 1.4 μg m⁻3). These changes are attributed to anthropogenic 

emission controls. Our results are generally consistent with those obtained by Wang et al. (2023) 

using statistical methods. Notably, the PRD region showed relatively larger changes compared to 

YRD and SCB, which can be attributed to shifts in the ozone production sensitivity regimes. We have 

provided a detailed explanation of these changes in the main text: 

The SCB region consistently exhibited strong NOx limitation (>75%), whereas the PRD showed 

a gradual expansion of the transitional regime alongside a modest contraction of VOC-limited areas. 

These shifts in photochemical sensitivity correspond well with the ozone decrease observed during 

Phase II emission reductions. 



 

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-

limited, NOx-limited, and transitional ozone sensitivity regimes across five key regions during the 

summertime (June to August) from 2018 to 2023, based on the FNR analysis. Panel (f) presents the 

overall trends for all five regions. 
 

Line 266-268: The author should inform readers: How much have anthropogenic emissions decreased 

in major regions due to the nationwide lockdown? 

Response: Thank you for your suggestion. We have added quantitative information on emission 

reductions during the nationwide lockdown. The revised text reads: 

The COVID-19 pandemic (January-April 2020) introduced an unprecedented perturbation to 

anthropogenic activity, leading to sharp declines in industrial production, energy consumption, and 

transportation (Shi and Brasseur, 2020; Zheng et al., 2021). National emissions of SO2, NOx, PM2.5, 

and VOCs were estimated to have decreased by 0.37 Tg (12%), 0.87 Tg (13%), 0.25 Tg (10%), and 

1.07 Tg (12%), respectively, relative to the same period in 2019 (Geng et al., 2024). 

 

Line 273-275: The author suggests that the rise in ozone concentrations is due to suppressed NO 

titration. Therefore, the author could fully utilize TROPOMI data to analyze changes in sensitive 

zones during the COVID-19 period. This may help explain why ozone concentrations in the 

remaining 20% of cities decreased during the COVID-19 pandemic. 

Response: Thank you for your suggestion. We applied the formaldehyde-to-NO2 ratio (FNR) 
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diagnostic to classify ozone formation regimes and evaluate their spatial changes during the lockdown. 

The new analysis reveals clear regional differences: the North China Plain (NCP) and Yangtze River 

Delta (YRD) shifted toward more VOC-limited conditions due to sharp NOx reductions, while parts 

of southern China remained in NOx-limited or transition regimes. The updated manuscript includes 

corresponding maps to illustrate these spatial patterns (Fig. S13). the related modification is shown 

as follows: 

Spatial distributions of ozone formation sensitivity during the COVID-19 lockdown (Fig. S13) 

reveal that most of China was in a transitional regime, with major urban clusters remaining VOC-

limited and only limited areas in southern China being NOx-limited. This spatial pattern aligns with 

the observed widespread ozone increases during the lockdown (Fig. S7). 

Supplement: 

 
Figure S13. Ozone formation sensitivity regimes during COVID-19. Spatial distribution of ozone 

formation sensitivity regimes in China from January to April 2020 during the COVID-19 pandemic. 

The hollow triangles represent the geographical coordinates of five key urban clusters in China. 

 

Line 275-276: The author should explain how anthropogenic emissions have changed during this 

period. 

Response: Thank you for your suggestion. We have added Ground-based observed time series of 

NO2, CO and PM2.5, which provide insights into the changes in anthropogenic emissions during this 

period. The related modification is shown as follows: 

In the post-pandemic period (2020–2023), concentrations of NO2, CO, and PM2.5 stabilized or 

declined more gradually (Fig. S5), and the contribution of anthropogenic emissions to ozone 

variability weakened considerably (Fig. S8).  

Supplement: 
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Figure S5. Ground-based observed time series of NO2, CO and PM2.5. Panels (a-c) show the 

summertime average time series of NO2, CO, and PM2.5 for China’s five major city clusters from 2015 

to 2023. Panels (e-f) present the annual average time series of NO2, CO, and PM2.5 for China’s five 

major city clusters from 2015 to 2023. 

 

Line 295: Where is North China Plain? 

Response: Thank you for your comment. We have marked the coordinates of the North China Plain 

(NCP) on the map. The related modification is shown as follows: 

Supplement: 

 

Figure S10. Spatial and temporal variations of satellite NO2. Map of average levels of satellite-

observed NO2 from June-August 2018 to 2023. The rectangle in panel (a) represents the extent of the 

North China Plain (NCP). 

 

Line 297: “The Yangtze River Delta” to “YRD”.? 
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Response: Thank you for your suggestion. We have corrected the error. 

 

Line 298-299: You can show a ∆temperature map from ERA5 data. 

Response: Thank you for your suggestion. We have added a spatial distribution of daytime 

temperature differences between HW and NHW. The related modification is shown as follows: 

Between 2018 and 2023, NO2 columns over the North China Plain (NCP) declined from 4.13 × 

1015 to 3.85 × 1015 molecules cm⁻2, while HCHO remained stable until 2021, followed by a sharp 

increase in 2022. The spatial pattern of temperature anomalies between heatwave (HW) and non-

heatwave (NHW) periods (Fig. S11) reveals strong positive differences in the YRD and SCB, 

consistent with enhanced biogenic and anthropogenic VOC emissions under extreme heat (Qin et al., 

2025; Tao et al., 2024). 

Supplement: 

 

Figure S11. Spatial distribution of daytime (11:00-17:00) temperature differences between HW and 

NHW. The HW period is defined as July 16 to August 31, 2022, while the corresponding period in 

other years is considered as NHW. 

 

Line 306-307: The author might use this to explain why the PRD's changes differ from those of other 

cities in Section 3.2. 

Response: Thank you for your suggestion. We have incorporated the concept of differences in ozone 

sensitivity intervals in Section 3.2 to clarify why the changes in the PRD differ from those of other 

cities. The related modification is shown as follows: 

The most pronounced increases occurred in the FWP and BTH (45.0 ± 2.0 μg m⁻3 and 42.1 ± 2.0 

μg m⁻3, respectively), whereas the PRD exhibited a relatively modest enhancement (13.4 ± 1.6 μg m⁻3), 

reflecting its predominantly NOx-limited photochemical regime versus VOC-limited regimes in other 

regions (Ren et al., 2022). 

The SCB region consistently exhibited strong NOx limitation (>75%), whereas the PRD showed 
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a gradual expansion of the transitional regime alongside a modest contraction of VOC-limited areas. 

These shifts in photochemical sensitivity correspond well with the ozone decrease observed during 

Phase II emission reductions. 
 

Figure 3: It is recommended that the author label the locations of major regions on this map.  

Response: Thank you for your suggestion. In the revised manuscript, we have replaced the 

corresponding image with a map showing the trend of ozone sensitivity intervals across the five major 

city clusters of China from 2018 to 2023. Additionally, the map in the supplementary material has 

also been updated to reflect the latitude and longitude range corresponding to the five major city 

clusters. 

The related modification is shown as Fig. 6 and Fig. S12. 

 

Section 3.3: Lack of quantitative results. Figure 3 fails to clearly show the interannual changes in 

sensitive areas. The authors should adopt a more explicit presentation method to highlight the 

differences in area among sensitive zones in each region.  

Response: Thank you for your insightful comments and suggestions. We have revised Section 3.3 

and enhanced the presentation of Figure to better highlight the interannual changes in sensitive areas. 

A more explicit method has been adopted to clearly show the differences in area among the sensitive 

zones in each region. The related modification is shown as follows: 

To diagnose the evolving chemical sensitivity of ozone production, we examined the 

spatiotemporal evolution of the HCHO/NO2 ratio (Text S1). Figure S12 shows that this ratio exhibited 

regionally distinct transitions from 2018 to 2023, reflecting shifts in photochemical regimes. Figure 

6 summarizes the relative contributions of VOC-limited, NOx-limited, and transitional regimes across 

the five key regions. In BTH, NOx-limited areas accounted for ~82% of the domain in 2018 and 

remained above 45% thereafter, while VOC-limited regions declined from ~14% to ~2%. In FWP, 

summer ozone formation was largely controlled by NOx-limited and transitional regimes. The YRD 

underwent a notable shift from VOC- to NOx-limited chemistry, with VOC-limited fractions 

decreasing from ~35% in 2018 to ~22% in 2023, particularly during 2022 when extreme heat 

amplified VOC emissions and photochemical activity (Qin et al., 2025; Tao et al., 2024). The SCB 

region consistently exhibited strong NOx limitation (>75%), whereas the PRD showed a gradual 

expansion of the transitional regime alongside a modest contraction of VOC-limited areas. These 

shifts in photochemical sensitivity correspond well with the ozone decrease observed during Phase II 

emission reductions.  



 

Figure 6. Trends in the distributions of ozone production sensitivity regimes. Fractions of VOC-

limited, NOx-limited, and transitional ozone sensitivity regimes across five key regions during the 

summertime (June to August) from 2018 to 2023, based on the FNR analysis. Panel (f) presents the 

overall trends for all five regions. 
 

Line 337-350: Authors cannot merely provide quantitative descriptions; ACP journals require authors 

to conduct deeper analysis of these quantitative results. 

Response: Thank you for your insightful comments and suggestions. We have revised the manuscript 

to provide a deeper analysis of the quantitative results presented. This includes a more detailed 

interpretation of the data and its implications.  

The corresponding modifications can be found in Section 3.3. 

 

Line 356-357: That’s a boring sentence. Although the author provides some explanation in lines 358-

359, this explanation is overly broad. For example, why are RH and temperature the dominant factors 

in other regions, while shortwave radiation and RH are the dominant factors in the YRD region? What 

is the relationship between temperature and radiation? Which variable is the fundamental cause of 

ozone concentration changes, and what role does RH play in this process? 

Response: Thank you for your insightful comments. We have removed the sentence and we have 

expanded our analysis and discussion to clarify the distinct roles of temperature, humidity, and solar 
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radiation in ozone formation across different regions. Our extended machine learning analysis (see 

Fig. S16) reveals region-specific sensitivities of ozone to these meteorological factors. The related 

modification is shown as follows: 

Partial dependence analysis (Fig. S16) further illustrates the nonlinear responses of ozone to 

key meteorological factors (T, RH, SR) for representative cities in each cluster, revealing clear 

regional contrasts. In Beijing (BTH), ozone concentrations show the strongest positive response to T 

(Fig. S16a), consistent with the enhancement of reaction kinetics and biogenic VOC emissions under 

hot conditions. This behavior reflects the thermodynamic coupling between surface heating, 

boundary-layer expansion, and photochemical production. In Nanjing (YRD), ozone is more sensitive 

to solar radiation than to temperature (Fig. S16c), highlighting the dominant role of actinic flux in 

controlling radical production during warm and dry conditions. Yang et al. (2024) similarly reported 

that high-temperature and low-RH conditions over the NCP and YRD enhance photochemical ozone 

formation, with chemical production being the dominant process driving ozone buildup during the 

most polluted months. In the SCB, both T and RH exhibit strong influences, while in the PRD, ozone 

variability is shaped primarily by T and large-scale circulation patterns associated with subtropical 

maritime flow and typhoon incursions from the Northwest Pacific (Chen et al., 2024; Wang et al., 

2024a; Wang et al., 2022a). 



 
Figure S16. Partial dependence of ozone on T, RH, and SR for representative cities. Panels show 

the 3D-dependence plots of MDA8 ozone with RH, T, and SR for representative cities in BTH, FWP, 

YRD, and PRD, including MDA8 ozone-RH-T, MDA8 ozone-RH-SR, and MDA8 ozone-SR-T. 

 

c (Nanjing, YRD)

b (Xi'an, FWP)

a (Beijing, BTH)

e (Guangzhou, PRD)

d (Chongqing, SCB)



Line 369-371: Figure S13 shows that the correlation between T and SR in inland southern China is 

very low during both HW and NHW periods. Why is this? Additionally, the correlation for RH 

between HW and NHW appears significantly different. I recommend that the authors adjust the 

colorbar in Figure S13E-F to a red-blue scale with zero centered. This may reveal positive correlations 

for RH in certain regions. 

Response: Thank you for your insightful comments and suggestions. We appreciate the reviewer 

pointing out the issue. The correlation does not imply causality, and Figure S13 should not have 

been used as evidence. We have removed the corresponding content from the manuscript.  

 

Line 379: “amplifying” to “increasing”. 

Response: Thank you for your suggestion. We have replaced “amplifying” with “increasing”. 

 

Line 383-384: I do not agree that. Cloud cover directly influences temperature and shortwave 

radiation variations and should not be considered a secondary effect. 

Response: Thank you for your suggestion, we agree with you. During extreme weather events, ozone 

variation is influenced by multiple meteorological parameters, and there is no primary or secondary 

relationship among them. We have revised the manuscript accordingly. The revised sentence is as 

follows: 

A multi-year comparison (Fig. 7) highlights the opposing effects of key meteorological variables 

– including RH, T, boundary layer height (BLH), total precipitation (TP), and surface pressure (SP) 

– on MDA8 ozone.  

 

Line 387: What is the RH effect? 

Response: Thank you for your comment. We have modified the corresponding text to avoid 

ambiguity. The revised sentence is as follows: 

The trend in ΔSHAP values under high-humidity conditions from 2015 to 2023 (Fig. S20) 

further confirms the model’s ability to capture the suppressive effects of wet weather conditions on 

ozone formation.  



Response to referee #2 

Comments: Tropospheric ozone is a globally important air pollutant and a short-lived climate forcer, 

with substantial impacts on human health, climate change, and terrestrial ecosystems. Understanding 

the relationship between ozone concentration changes and their driving factors is essential for 

developing effective control strategies. This study utilizes ground-based observational data from the 

Chinese monitoring network during 2013-2023 and develops a machine-learning-based method to 

quantitatively disentangle the contributions of meteorological conditions and anthropogenic 

emissions. The analysis is further extended to evaluate the sensitivity of ozone to climate change. In 

addition, the authors employ satellite retrievals to explore the changes in precursor ratios and to 

diagnose the shifts in chemical regimes. The proposed analytical framework provides valuable 

insights and will be highly informative for future studies. Overall, the manuscript is clearly structured, 

well-designed, and well-written, and it fits well within the scope of ACP. I would recommend 

publication after the following issues are addressed: 

Response: We sincerely thank the reviewer for the encouraging and insightful evaluation of our study. 

We are very grateful for the recognition of our analytical framework and its relevance to 

understanding ozone evolution and control strategies. Following the reviewer’s valuable suggestions, 

we have carefully revised the manuscript to improve its clarity and completeness. All corresponding 

modifications have been incorporated into the revised version, with detailed point-by-point responses 

provided below. 

 

Title suggestion: Consider revising the title to “Tracking surface ozone responses to clean air actions 

under a warming climate in China” for clarity and stronger alignment with the scope. 

Response: We greatly appreciate the reviewer’s constructive suggestion regarding the title. Following 

this advice, we have revised the title to: 

“Tracking surface ozone responses to clean air actions under a warming climate in China using 

machine learning.” 

This revised title provides clearer expression and more accurately captures the methodological 

framework and research scope of our study. 

 

Lines 52-54: This sentence requires additional references. In particular, the 2021 IPCC report should 

be cited and carefully verified. 

Response: We appreciate the reviewer’s helpful suggestion. In response, we have thoroughly 

reviewed the relevant literature and added the IPCC Sixth Assessment Report (AR6, 2021) as an 

authoritative reference to strengthen and substantiate the statement in lines 57–58. The corresponding 



text has also been carefully checked and revised to ensure both scientific accuracy and contextual 

consistency. 

 

Line 81: Provide the full name of XGBoost when first introduced. 

Response: Thank you for your suggestion. We have now provided the full name of XGBoost 

(“eXtreme Gradient Boosting”) upon its first mention in line 85-86 to improve clarity and readability. 

 

Line 89: Please remove the word “monsoon”. 

Response: Thank you for your suggestion. This word “monsoon” has been removed in the revised 

manuscript.  

 

Line 109: The study develops an innovative machine-learning framework for attribution analysis, 

including an extension to climate change. This is a key contribution, but I suggest adding more 

technical details, such as a conceptual diagram of the methodology, to improve clarity and 

accessibility for readers. 

Response: We sincerely appreciate the reviewer’s positive recognition of our machine-learning-based 

analytical framework. To improve the clarity and accessibility of the methodology, we have added a 

conceptual diagram (Figure 1) that outlines the overall workflow of the framework and its application 

to trend attribution and climate change impact assessment. This addition visually summarizes the key 

analytical steps and enhances the reader’s understanding of the underlying processes and logical 

structure of the study. 



 

Figure 1. Schematic framework of data analysis and methodology. This study integrates multi-

dimensional datasets, including ground-based observations, meteorological reanalysis, and satellite 

remote sensing. A fixed emission approximation (FEA) approach, developed based on the random 

forest (RF) model, is employed to quantitatively disentangle the contributions of meteorological 

conditions (MET) and anthropogenic emissions (ANT) to ozone trend variations, and its performance 

is compared with the conventional meteorological normalization method. The SHAP technique is 

further applied to assess the influence of extreme weather events, such as heatwaves (HW) and 

extreme precipitation (PR). The satellite-derived formaldehyde-to-nitrogen dioxide ratio (FNR) is 

used to diagnose ozone production sensitivity, to explain and verify the impact of extreme weather 

and anthropogenic emissions on ozone. Finally, the FEA framework is extended to evaluate the long-

term impacts of climate change on ozone trends since 1970. 
 

Line 114: The role of time variables requires clarification. Were the diurnal and seasonal/monthly 

variables included to remove short-term and seasonal variability, leaving the long-term trend for 

quantitative attribution? Please explain explicitly. 

Response: We thank the reviewer for this insightful comment. Yes, the diurnal and seasonal/monthly 

variables were incorporated as proxies for short-term, periodic variations in emissions and 

meteorological conditions. Their inclusion allows the model to effectively separate these regular 
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temporal patterns from the long-term interannual trends that are the main focus of our quantitative 

attribution analysis. The revised manuscript now clarifies this point, and the relevant text has been 

updated to read as follows:  

The time variables – hour (hour of day) and month (month of year) – are used as emission 

surrogates to capture regular diurnal and seasonal variations in anthropogenic activity. A similar 

strategy is widely applied in previous studies about long-term trends in air pollutants (e.g., Grange 

et al., 2018; Vu et al., 2019) to separate short-term cyclical emission variability from long-term trends. 

These temporal emission surrogates, including month and hour, represent short-term regular 

emission patterns (e.g., diurnal cycles), thereby enabling the model to isolate the long-term emission-

driven component of ozone changes (Grange et al., 2018; Meng et al., 2025; Shi et al., 2021; Vu et 

al., 2019). 

 

Line 125: Why was the modeling performed separately for each city, rather than by grouping cities 

into regions? Please explain the rationale. 

Response: Thank you for this valuable comment. We conducted the modeling separately for each 

city to minimize uncertainties arising from surface and emission heterogeneity within broader regions. 

Cities across China exhibit distinct characteristics in terms of land use patterns, emission structures, 

local meteorology, and boundary-layer dynamics, all of which can strongly influence ozone formation 

and variability. Modeling at the city level allows the framework to better capture these localized 

processes and maintain higher fidelity in attribution analysis. We have revised the manuscript to 

clarify this rationale, as follows: 

Our modeling strategy involves building and predicting models for individual cities and for each 

year from 2015 to 2023, which helps in minimizing the uncertainty caused by surface heterogeneity.  

 

Nonetheless, we acknowledge that this approach may also introduce certain limitations. Specifically, 

the current implementation does not explicitly resolve grid-scale spatial heterogeneity, vegetation 

activity, or land-use dynamics, which may influence local ozone formation. To address this, we have 

included additional discussion in the conclusion section as follows:  

Nonetheless, some limitations remain. The current implementation did not explicitly resolve 

grid-scale spatial heterogeneity, vegetation, or land-use dynamics, which may influence ozone 

formation. Moreover, potential sensitivities to spatial resolution warrant further investigation through 

coupled applications of machine learning and chemical transport models. 

 

Lines 152-161: The uncertainty analysis, particularly for the Fixed Emission Approximation (FEA) 



method, is highly valuable. I strongly recommend moving these results (currently Figure S3) into the 

main text. 

Response: We fully agree with the reviewer that the uncertainty analysis of the Fixed Emission 

Approximation (FEA) method represents a key component of the study. To improve its visibility and 

enhance the transparency of our methodological evaluation, we have moved these results from the 

Supplementary Information (previously Figure S3) to the main text as the new Figure 2. This 

adjustment allows readers to more directly assess the robustness and reliability of the FEA framework, 

thereby strengthening the methodological clarity and scientific rigor of the paper. 

 

Lines 202-205: The manuscript highlights several regions in China. Please explain why these regions 

were emphasized and include a map showing their geographic distribution for better context. 

Response: We thank the reviewer for this valuable comment. The selected regions – BTH, YRD, 

FWP, SCB, and PRD – were chosen because they are representative urban clusters of different parts 

of China and capture the diversity in emission characteristics and atmospheric conditions. For 

example, the BTH region represents northern inland cities dominated by anthropogenic emissions, 

while the PRD region represents southern coastal cities with substantial biogenic emissions. The YRD 

exhibits strong anthropogenic emissions influenced by southern biogenic sources, and SCB reflects 

the pollution characteristics of central and southwestern China. These regional divisions are 

consistent with prior studies and provide a meaningful framework for analyzing ozone variability 

across China. To enhance clarity, we have added a new map illustrating the geographic distribution 

of these regions, now included as Figure 3 in the revised manuscript. This addition allows readers to 

easily contextualize the regional analyses. The relevant text has been updated to read as follows: 

Figure 3 presents the spatial distribution of the average summertime (2018-2023) maximum 

daily 8-hour average (MDA8) ozone, surface NO2, and TROPOMI NO2, HCHO column 

concentrations across China, along with the locations of the country’s five major city clusters: 

Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Yangtze River Delta (YRD), Sichuan Basin (SCB), 

and Pearl River Delta (PRD). Across these five major city clusters, the average summer ozone 

concentrations ranged from 88.9 to 161.3 μg m⁻3 – substantially exceeding the 43.0 μg m⁻3 threshold 

associated with ecosystem productivity loss (Gong et al., 2021) and the World Health Organization 

(WHO, 2021)-recommended peak seasonal average of 60 μg m⁻3. TROPOMI satellite observations of 

NO2 column concentration show notably elevated concentrations over the five major city clusters, 

particularly in the BTH, YRD, and FWP, which align with surface NO2 distribution patterns and 



confirm the scale of anthropogenic NOx emissions in these regions (Zheng et al.,2021). TROPOMI 

satellite observations of HCHO column concentrations similarly reveal these city clusters as hotspots 

for VOC emissions (Fig. 3d). These concurrent high levels of NO2 and HCHO suggest a strong 

photochemical ozone pollution potential, as the abundant precursors in these urban clusters could 

drive substantial ozone production during the summer months. This highlights the significant risks 

posed by summertime ozone in China’s most urbanized and industrialized regions, with implications 

for both human and ecosystem health. 

 
Figure 3. Spatial distribution of summertime MDA8 ozone, surface NO2, and TROPOMI NO2, 

HCHO across major city clusters in China. The panels represent the average MDA8 ozone, surface 

NO2, and TROPOMI NO2, HCHO column concentrations for 354 cities in China during the 

summertime (June–August) from 2018 to 2023. The corresponding five regions includes BTH (37°–

41°N, 114°–118°E); YRD (30°–33°N, 118.2°–122°E); SCB (28.5°–31.5°N, 103.5°–107°E); PRD 

(21.5°–24°N, 112°–115.5°E) and FWP (106.25–111.25°E, 33–35°N, and 108.75–113.75°E, 35–37°N). 

 
Line 227: The references here primarily address ecological impacts, yet the text mentions “both 

human and ecological health.” Please provide more references specific to human health. Also, revise 

“ecological health” to “ecosystem health.” 

Response: We thank the reviewer for this helpful suggestion. In response, we have added references 

specifically addressing the impacts of tropospheric ozone on human health, including respiratory and 

cardiovascular outcomes. Additionally, we have revised the terminology from “ecological health” to 

“ecosystem health” throughout the manuscript to ensure precision. The modified text now reads: 
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Across these five major city clusters, the average summer ozone concentrations ranged from 

88.9 to 161.3 μg m⁻3 – substantially exceeding the 43.0 μg m⁻3 threshold associated with ecosystem 

productivity loss (Gong et al., 2021) and the World Health Organization (WHO, 2021)-recommended 

peak seasonal average of 60 μg m⁻3.   

This highlights the significant risks posed by summertime ozone in China’s most urbanized and 

industrialized regions, with implications for both human and ecosystem health. 
 

Line 229: The phrase “reflecting initial policy effectiveness” is unclear. Please rephrase for precision.  

Response: We thank the reviewer for pointing this out. To avoid potential confusion, we have 

removed the phrase entirely, as Fig. S1 focuses solely on observed concentration changes rather than 

explicitly quantifying policy impacts. This modification enhances clarity and precision in the text. 

 

Lines 230-232: The conclusion drawn here seems overstated, as the evidence provided is insufficient. 

This section mainly discusses temporal and spatial ozone concentration trends. A more cautious 

interpretation is recommended: instead of attributing trends directly to policy effectiveness, the 

authors could note that observed trends occurred under varying emission control backgrounds, while 

meteorology also played an important role. 

Response: We appreciate the reviewer’s suggestion. The text has been revised to adopt a more 

cautious interpretation, emphasizing that the observed temporal and spatial ozone trends occurred 

under varying emission control contexts and were influenced by meteorological variability. The 

revised sentence now reads: 

Spatially, ozone hotspot regions expanded between 2013 and 2017 (Fig. S1 a-e), followed by 

contraction during 2018-2020 (Fig. S1 f-i). However, this progress stalled in 2021. A sharp reversal 

was observed in 2022, with widespread increases in MDA8 ozone (Fig. S1 k). These changes could 

be closely linked to emission control measures and meteorological conditions, which will be further 

discussed in Sections 3.2 and 3.3. 

 

Line 243: Please define the parameters τ and p shown in Figure 1. 

Response: We thank the reviewer for this suggestion. τ is a statistic used in the Mann-Kendall trend 

test to measure the correlation between data points in a sequence, but it is rarely used. The p-value is 

a statistic used to assess the statistical significance of the trend. We have now removed τ and explicitly 

defined the parameter p in the figure caption of Figure. 

 



Line 276: Correct “Emission-driven” to “emission-driven.” 

Response: Thank you for pointing this out. We have corrected the capitalization, changing 

“Emission-driven” to “emission-driven” in the revised manuscript. 

 

Lines 279-281: The logic here is confusing. The discussion first emphasizes the role of anthropogenic 

emissions, but then suggests that changes in emissions highlight the role of meteorology. Please 

clarify or restructure this argument. 

Response: Thank you for your comment, and sorry for the confusion. We have restructured the 

argument for clarity. The revised text now reads: 

These results indicate that while emission control policies initially produced substantial benefits, 

their effectiveness has gradually diminished, suggesting that ozone responses to further emission 

reductions may have reached a saturation point. 

 

Lines 299-300: Please rephrase the sentence. The term “near-baseline” is ambiguous and requires 

clarification. 

Response: Thank you for pointing this out. We have rephrased the sentence for clarity: 

By 2023, HCHO concentrations had returned to pre-heatwave levels. 

 

Line 342: There is an editorial error that needs correction. 

Response: Thank you for your comment. We have identified the editorial error and corrected it. The 

revised text now reads: 

Ozone decreases attributable to meteorology reached –14.4 ± 3.0 μg m⁻3 in the FWP, –15.9 ± 

3.8 μg m⁻3 in the YRD, and –11.1 ± 2.4 μg m⁻3 in the SCB, explaining 58 ± 12%, 77 ± 18%, and 80 ± 

17% of the total ozone decline, respectively. 

 

Line 390: I recommend revising the y-axis labels for greater accuracy. For instance, in panel (a), the 

label currently suggests “extreme weather,” but it actually represents only “extreme heatwave”. In 

contrast, panel (b) provides a more specific description. The labeling should be made consistent and 

precise to avoid potential misinterpretation. 

Response: Thank you for pointing this out. We have revised the y-axis labels to improve clarity and 

consistency. Specifically, panel (a) now explicitly indicates “Extreme Heatwave (HW),” while panel 

(b) retains the more specific description of pluvial events. This ensures accurate representation and 

avoids potential misinterpretation. The updated figure has been included in the revised manuscript. 



 
Figure 7. Meteorological impact on predicted ozone concentrations under heatwave and rainy 

weather conditions. (a) Differences in SHAP values (ΔSHAP) between heatwave and non-heatwave 

periods in the Yangtze-Huaihe region during summer 2022. (b) Differences in SHAP values (ΔSHAP) 

between prolonged rainfall periods and non-prolonged rainfall periods in the same region from 2015 

to 2023. Box plots show the distribution of ΔSHAP across cities; the center line indicates the median, 

boxes denote the interquartile range (25th-75th percentiles), and whisker line extends to one standard 

deviation. 

 

The title of this section should be revised, since the authors are not reconstructing the ozone trend per 

se. A more accurate option could be “Reshaping distributions of ozone controlled by a warming 

climate.” This section is indeed interesting and methodologically innovative. However, the 

manuscript should elaborate more clearly on which specific factors are included in the climate-

change-driven trend, especially considering the constraints posed by the limited length and coverage 

of historical observational records. 

Response: Thank you for your insightful comments and suggestions. We have revised the title to 

“Reshaping distributions of ozone controlled by a warming climate” to more accurately reflect the 

content. Additionally, we have clarified the factors included in the climate-change-driven trend. 

Specifically, the trend incorporates temperature increases. We also note the constraints imposed by 

the limited length and spatial coverage of historical observational records, which are acknowledged 

in the discussion.  

 

Line 331 (Figure 3): Ensure the map format is consistent with that in the Supplementary Figures. 

Response: Thank you for your comment. In the revised manuscript, we have replaced the 

corresponding Figure with a map showing the trend of ozone sensitivity intervals across the five 

major city clusters of China from 2018 to 2023. Additionally, the map in the supplementary material 

has also been updated to reflect the latitude and longitude range corresponding to the five major city 
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clusters. The related modification is shown as Fig. 6 and Fig. S11. 

 

Lines 374-376: Since the SHAP interpreter is a key tool used to analyze predictor contributions, it 

should be briefly described in the Methods section. 

Response: Thank you for your comment. We have moved the relevant description of the SHAP 

interpreter from the supplementary material to the main body of the manuscript. The updated content 

can now be found in Section 2.4. 

 

Line 437: In Figure 5, the authors present both climate-change-driven and emission-driven trends. I 

am curious about how the results from the proposed FEA method compare with those from other 

widely used machine-learning approaches for trend analysis, such as de-weather. A comparison 

between different methods would not only be interesting but also serve as a useful validation of the 

robustness of the proposed framework. 

Response: We thank the reviewer for this valuable suggestion. To address this, we have incorporated 

an analysis using the widely used “weather normalization” method and compared the results with 

those obtained from our FEA framework. The comparison shows that the trends derived from both 

approaches are highly consistent, demonstrating the robustness and reliability of our proposed FEA 

methodology. The inter-comparison results have been added to the revised manuscript for 

transparency and validation. The relevant text has been updated to read as follows: 

2.3 Weather normalization analysis 

To compare the FEA method with other commonly used statistical approaches, we also applied 

the widely adopted meteorological normalization technique based on the RF algorithm. This 

approach constructs a regression model that relates air pollutant concentrations to meteorological 

parameters and emission surrogate indicators (i.e., time variables such as unix time, day of year, day 

of month, and hour of day) (Grange et al., 2018; Vu et al., 2019). Once the model is trained, pollutant 

concentrations are predicted by randomly resampling meteorological variables from long-term 

historical meteorological datasets, thereby generating a new ensemble of predictions (Vu et al., 2019). 

These predictions are made under consistent meteorological conditions, enabling the isolation of 

meteorological influences from anthropogenic emission effects on air pollutant trends. The resulting 

weather-normalized pollutant concentrations (Fig. 1) represent the levels expected under average 

meteorological conditions, thus reflecting the impact of emission changes alone. This approach, first 

proposed by Grange et al. (2018), has been widely applied in the long-term attribution of air pollution 

trends and in assessing short-term emission reduction effects (Shi et al., 2021; Vu et al., 2019). In this 

study, the meteorological normalization follows this established framework, with meteorological 



variables randomly sampled from the long-term dataset spanning 1970-2023. Each normalization 

process involves 1,000 iterations, and the arithmetic mean of these iterations' simulated values is 

adopted as the final normalized result. The alignment between FEA-based and weather-normalized 

trends (Fig. S4) affirms the robustness of the FEA framework. 

Supplement: 

 

Figure S4. Trends in the average summertime ozone concentration changes from 2015 to 2023, 

driven by anthropogenic emission control. The figure compares the ozone trend variations for six 

representative cities in key regions, based on both the FEA method and weather normalization method. 

 

Line 445 (Conclusion): The conclusion is overly lengthy. Please condense and refine this section for 

clarity and impact. 

Response: Thank you for your suggestion. We have revised the conclusion to make it more concise 

and impactful, emphasizing the key findings and implications of our study. 

-21

-14

-7

0

7

14

21

32098765

80

78

76

74

72

70

68

Xian
b

-12

-6

0

6

12

20
23

20
22

20
21

20
20

20
19

20
18

20
17

20
16

20
15

75

74

73

72

71

70

Hangzhou
e

-20

-16

-12

-8

-4

0

4

8

12

20
23

20
22

20
21

20
20

20
19

20
18

20
17

20
16

20
15

63

60

57

54

51

O
zone trend affected by

em
issions (D

ew
ether) (μg m

−3)

Chongqing
f

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

O
zo

ne
 tr

en
d 

af
fe

ct
ed

 b
y

em
is

si
on

s 
(F

EA
) (

μg
 m

−3
)

32098765

100

90

80

70

60

50

40

Shijiazhuang
a

 Fixed Emission 
         Approximation

 Weather- 
        Normalization

-15

-10

-5

0

5

10

15

O
zo

ne
 tr

en
d 

af
fe

ct
ed

 b
y

em
is

si
on

s 
(F

EA
) (

μg
 m

−3
)

20
23

20
22

20
21

20
20

20
19

20
18

20
17

20
16

20
15

90

88

86

84

82

80

78

Shanghai
d

-28

-21

-14

-7

0

7

14

32098765

90

88

86

84

82

80

78

O
zone trend affected by

em
issions (D

ew
ether) (μg m

−3)

Luoyang
c


