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Abstract. Wildfire management strategies increasingly demand accurate predictive models that integrate real-time intervention
measures. Despite advances in machine learning (ML) for wildfire modelling, existing approaches largely overlook the role
of firebreak placement. In this work, we present the first deep learning-based predictive model for simulating spatio-temporal
wildfire propagation with dynamic firebreaks. Utilizing a Convolutional Long Short-Term Memory (ConvLSTM) architecture,
5 the model captures both the spatial and temporal complexities of wildfire spread while incorporating data on firebreak posi-
tioning and effectiveness. Our training dataset, derived from Cellular Automata (CA) simulations, integrates key geophysical
parameters and human intervention strategies, including temporary and permanent firebreaks. Model validation across three
major wildfire events in California demonstrates robust performance, with significant accuracy gains in scenarios involving
strategic firebreak placement. This integration of movable firebreak placement into a wildfire spread model provides a tool for

10 improving real-time wildfire management efforts.
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Main Notations

Main Notations

Notation Description

Cellular Automata Simulator

Pourn Probability that a cell that can be burned but not ignited (State 2) ignites if a neighbouring cell
is burning.

Rburned_down Probability that a burning cell (State 3) transitions to a burned-down state (State 4).

Ry Suppression rate for cells in a permanent firebreak (State 5).

Potb_burn Probability that a cell in a permanent firebreak burns, calculated as (1 — Rpb) Pourn-

Ph Base burning probability.

Dveg Factor accounting for local vegetation density.

Pden Factor accounting for canopy cover.

s Slope effect on fire spread, modelled as ps = exp (afs).

0s Slope angle between adjacent or diagonal cells.

Pw Wind effect on fire spread, modelled as p., = exp (¢1 V) f.

Vi Wind speed in meters per second.

0w Angle between wind direction and potential fire spread direction.

c1,C2 Tunable coefficients for wind effect.

ConvLSTM Model

feomLST™M The ConvLSTM predictive model.

w Learnable weight matrix of filter parameters.

o Sigmoid activation function.

ftyit, 0t Activations of the LSTM forget, input, and output gates, respectively.

C, Candidate cell state value at time ¢.

Cy Actual cell state at time ¢.

N xM Dimensions of the field being processed, where N is the number of rows and M is the number
of columns.

b Batch size for model training and prediction.

S Set of possible pixel states or classes.

Xt Burnt area at time ¢ of dimension N x M, generated by the CA simulator.

Z¢ Model output at time ¢, representing a hidden state feature matrix that predicts the next frame

of wildfire progression in an N x M grid format.
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1 Introduction

In recent years, extreme fires have become more frequent, driven by ongoing climate change (UNEP, 2022; Cunningham et al.,
2024). There is a growing literature on management strategies to prevent or minimise fires (Spadoni et al., 2023; Oliveras Menor
et al., 2025; Neidermeier et al., 2023). However, it is also important to develop effective strategies to reduce the impact of fires
when they occur. One measure that is frequently used is the creation of temporary firebreaks, through the use of fire retardants
(Gimenez et al., 2004; Altamimi et al., 2022; Goldberg, 2022). The effectiveness of such a measure is substantially affected by
uncertainties in the propagation of an individual fire caused by short-term variability in both meteorological conditions and fire
behaviour (Hilton et al., 2015). Thus, the accurate prediction of fire spread in near-real time and how this would be affected by
potential management actions would be a useful tool for proactive fire reduction.

In recent years, machine learning (ML) techniques have gained significant attention in the analysis of dynamic systems,
particularly in wildfire prediction (Jain et al., 2020; Xu et al., 2024). These techniques are recognized as invaluable tools for
spatio-temporal forecasting due to their ability to efficiently process large datasets and uncover complex patterns within his-
torical data. Various approaches have been explored in wildfire modelling, such as convolutional autoencoders (Huot et al.,
2022; Cheng et al., 2022a), recurrent neural networks (RNNs) (Natekar et al., 2021; Cheng et al., 2022b), and, more recently,
transformer-based models (Miao et al., 2023; Masrur et al., 2024). Given the inherent temporal dynamics of wildfire spread,
Long Short-Term Memory (LSTM) networks — an advanced form of RNN designed to capture time-sequential patterns —
have been widely used to model the progression of fire over time (Cheng et al., 2022b; Liu et al., 2022; Liang et al., 2019;
Natekar et al., 2021). In particluar, Kondylatos et al. (2022) have shown that deep learning (DL) techniques, including LSTM
and Convolutional Long Short-Term Memory (ConvLSTM), are more effective than shallow ML methods like Random Forest
and XGBoost in predicting wildfires in the Mediterranean region. While incorporating advanced RNN architectures signifi-
cantly enhances predictive accuracy in wildfire modelling, the integration of human actions in these models requires further
exploration.

Despite significant advances in ML models and the availability of numerous open-access benchmarking datasets (Huot et al.,
2022; Kondylatos et al., 2023; Singla et al., 2020) for performance evaluation, no existing ML predictive or surrogate model
explicitly addresses the impact of real-time firebreak placement. Mutthulakshmi et al. (2020) outline two main firefighting
strategies: temporary holding firebreaks (e.g., water or chemical firebreaks deployed by aircraft) and permanent firebreaks
(e.g., cleared or fuel-poor areas constructed using machinery) and emphasizes that the strategic positioning and selection of
firebreaks can optimize the management of the burning area. Experimental findings from Alexandridis et al. (2011) show that
the number of burning cells can be decreased by 56 % with adequate resources. However, simulating fire propagation with
suppression, given the complexity of geophysical parameters, presents a substantial computational challenge. The high com-
putational costs often prevent real-time prediction, which is essential for timely intervention. The Mutthulakshmi et al. (2020)
fire-suppression model using Cellular Automata (CA), for example, simulates fire spread with human interventions but has
significant memory and time demands—especially for large areas—which limits its usefulness. Similarly, the Discrete Event

System Specification (DEVS) (Ntaimo et al., 2004) struggles to meet real-time requirements when updating fire parameters
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based on previous states. Recent work (e.g., Murray et al. (2024); Altamimi et al. (2022)) has used reinforcement learning for
optimal firebreak placement. Pan et al. (2024) presents a framework that integrates convex neural network-based fire spread
prediction with optimization methods to coordinate drone swarms for active wildfire suppression. Meng et al. (2023) introduces
a 3D visualization approach based on CA for simulating fire spread with the inclusion of temporal firebreaks. However, the
forward predictive models in these approaches are often simulation-based, which limits them to somewhat simplified wildfire
scenarios due to computational costs.

In this paper, we develop a computationally efficient fire propagation surrogate model that accounts for both permanent and
temporary firebreaks. Using a CA framework, we simulate fire dynamics under various environmental conditions across three
wildfire-affected locations. The model incorporates firebreak data along with local geophysical parameters such as vegetation,
slope, and wind speed. We then train a DL surrogate model based on the ConvLSTM algorithm to predict fire spread. The

model is validated using test data from the CA simulations.

2 Data and Methods

Maps for each of the study areas were processed using remote sensing images of the Moderate Resolution Imaging Spectrora-
diometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite which are available at the Interagency Fuel
Treatment Decision Support System (IFTDSS) (Drury et al., 2016). We used three wildfire events in California : the ’Chimney’
fire in 2016 (Chimney 2016) !, the *Ferguson’ fire in 2018 (Ferguson 2018) 2 and the *Bear’ fire in 2020 (Bear 2020) 3 (Fig. 1).

2.1 Cellular Automata Fire Simulation

We build upon the CA model that was validated through the simulation of the Spetses wildfire in Greece in 1990 (Alexandridis
et al., 2008), to generate the data sets used for training and testing our DL surrogate model. This CA model utilizes square
meshes to simulate the stochastic spatial spread of wildfires in a computationally efficient way. By dividing a two-dimensional
terrain into 3 x 3 grids, the model allows fire propagation in eight possible directions determined by evaluating the state of
a central cell based on the states of its neighbouring cells (Alexandridis et al., 2011). The accuracy of the model when fire
suppression strategies were included was validated by using the 2014 Dumai forest fire over a 14-day period (Mutthulakshmi
et al., 2020).

Our CA model incorporates local environmental parameters such as forest information, vegetation density, slope, and me-
teorological data such as wind speed and wind direction to simulate fire dynamics. Training datasets were derived from three
recent fires in California. Various firebreak placement scenarios were evaluated to assess their impact on fire spread. Specifi-
cally, we implemented new states in the CA model to represent permanent and temporary firebreaks. For temporary firebreaks,
we developed an approach that encodes their remaining duration, allowing the model to track their effectiveness over time. The

states of each cell within the grid evolve through discrete time steps as follows:

Uhttps://wildfiretoday.com/tag/chimney- fire/
Zhttps://wildfiretoday.com/tag/ferguson-fire/
3https://wildfiretoday.com/tag/bear-fire/
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Figure 1. The Ferguson 2018 fire landscape presents information in slope, vegetation density, and canopy cover (Fig.(a), (b), (c), (d)).

Similarly, the Bear 2020 fire depict distinct topographical and ecological features, including slope, vegetation density, and canopy distribution

(Fig.(e), (), (g), (h)). Fig (a,e) are from © Google wildfire product.

— State 1: The cell contains no fuel and cannot burn.

— State 2: The cell contains fuel but has not yet ignited.

— State 3: The cell contains fuel and is actively burning.

— State 4: The cell has burned out and can no longer ignite.
80 — State 5: The cell is part of a permanent firebreak.

— States 15 — 6: The cell is part of a temporary firebreak that will transit from state 15 to state 6 over 10 time steps, before

reverting to its original state.

The transition between CA states evolves over time (Fig. 2), and the cells that are either non-burnable (State 1) or have
already burned (State 4) do not change state. Burnable cells (State 2) have a probability P, of igniting if one or more of
85 their neighbouring cells are burning. Fire spreads to adjacent cells through stochastic transitions from State 2 to State 3, with

the ignition probability determined by a probabilistic rule defined in Equation 1:
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Figure 2. State transition pipeline of CA when the neighbouring cell is burning

Pourn = P (1+pveg) (1+pden)pspwa ey

where p;, denotes the base burning probability, while pyeg, Pden, Ps, and p,, correspond to local environmental factors such
as vegetation density, canopy cover, slope, wind speed and wind direction, respectively. These parameters are sourced from the
90 IFTDSS (Drury et al., 2016). The influence of slope on fire spread is modelled following Weise and Biging (1997), with the

slope effect p, given as:

Ps = €xXp (aas) 2)

where a is a dimensionless constant, and the slope angle 6 is calculated using the following expressions:
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tan~! (227E2) | for adjacent cells
s = 3)

tan—1 ( % ) . for diagonal cells

Here, F; and E> denote the elevations of the respective cells, and [ represents the cell length. The wind effect is modelled

following the method proposed in Alexandridis et al. (2008), where:

pw =exp(c1Vy) fr, fi =exp(Viyca (cos(fy,) —1)). )

V.» represents the wind speed in meters per second, and 6,, is the angle between the wind direction and the potential fire
spread direction (Equation (4)). The coefficients ¢; and ¢y are tunable parameters that modulate the wind’s effect on fire
propagation (Alexandridis et al., 2008). Wind data, including both speed and direction, were taken from Hersbach et al. (2017).
Wind conditions were assumed to be spatially constant over a 27km x 27km grid, and the burned area state were resized to
128x128 pixels. Each CA simulation time step corresponds to approximately 6 hours (Cheng et al., 2022b).

The operational parameters py,, a, ¢1, and ¢y significantly influence fire spread predictions. In Alexandridis et al. (2008),

these values are calibrated as follows:

ph=0.58, a=0.078, c1=0.045 co=0.131

These values are derived by minimizing a cost function that fits observed fire spread data from specific wildfire events, and
are used as initial values in the parameter identification process. Finally, burning cells (State 3) transit to a burned state (State
4) with a fixed probability Rpurned_down = 0.4 throughout the entire simulation.

Our CA model incorporates both temporary and permanent firebreaks. Temporary firebreaks are flexible in their placement
and provide complete fire suppression for a limited duration of 10 time steps, equivalent to approximately 3 days (with each
time step representing 6 hours in real time). In contrast, permanent firebreaks require a minimum distance of 1 km (equivalent
to 5 pixels in the CA model) from the fire front and offer a suppression rate of about 90 % (Plucinski et al., 2007). Both types
of firebreaks are subject to resource constraints, limiting their maximum extent (in our model that is limited to 50 pixels for
each type of firebreak).

For cells affected by a permanent firebreak (State 5), the suppression rate (Rm,) is 90%. The probability that a cell under

the influence of a permanent firebreak will still burn, Py, purn, 18 given by:

prb_burn - (1 - Rpfb)Pburn (5)

where P, is the standard burning probability, calculated using Equation (1).
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Temporary firebreaks (States 15 to 6) are assumed to provide 100 % fire suppression for an effective period of approximately
3 days. In the CA simulator, these temporary firebreaks remain effective for 10 time steps before reverting to their original state,
allowing fire spread to resume if conditions permit.

The training data set generated by the CA simulator (Fig. 3) uses data from each landscape: *Chimney 2016, *Ferguson
2018’, and ’Bear 2020°. Each dataset was generated with random wind directions, randomly positioned fire ignition field,
three temporal firebreaks and one permanent firebreak positioned around the ignition field and the CA model simulates fire
propagation for 26 time steps, approximately 7 days in real time. Firefighting strategies typically involve placing firebreaks
along the active fire front to slow or stop the spread. However, due to the unpredictable and often rapid progression of wildfires,
it is not always possible to deploy firebreaks in optimal locations. In our study, we used randomly positioned firebreaks to

evaluate whether the DL model can still accurately predict fire propagation under less controlled conditions.

(B (Step3) B (Step6) (o)B(Step.Q) OB (Step12) @B (Step15) (0B (Step18)

Figure 3. The fire propagation simulation of 16 time steps using CA on C (’Chimney 2016’), F ("Ferguson 2018’) and B ("Bear 2020’) with

three temporary firebreaks (purple) and one permanent firebreak (blue) .

2.2 ConvLSTM Model

We construct a DL surrogate model trained exclusively on datasets generated by the CA simulations. By learning from the
CA model’s outputs, the DL model captures the underlying spatio-temporal dynamics and serves as a data-driven approxima-
tion of the CA-based wildfire propagation process with significantly improved computational efficiency by leveraging GPU

acceleration.
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RNNS, a subclass of DL models, are highly suitable for capturing complex temporal patterns . However, encoding inputs
into low-dimensional representations could distort essential spatial details. The ConvLSTM architecture, introduced by Shi
et al. (2015), addresses this by integrating Convolutional Neural Network and LSTM components into a unified model, and
thus effectively retaining spatial information while simultaneously modelling temporal dynamics. This design optimizes com-
putational efficiency by leveraging parameter sharing and sparse connectivity.

In the ConvLSTM framework, the input, forget, and output gates, as well as the cell states, are represented as 3-dimensional
tensors. The state update mechanism employs convolution operations, thereby maintaining the spatial structure of the data. The

equations governing these processes are:

it =0 (Wai @%¢ + Whi @24 + b)),
fr=0(Was @4+ Wiy @24+ by),

Ot:U(Wwo®Xt+Who®zt+b0)7 (6)
ét = tanh(Wm ®Xt + th ®Zt + bs)a

Cip1= [0 +i; 0 Cy,

zi41 = 0y © tanh(Ciyy),

where x; € RN*M denotes burnt area at time ¢ that is generated by the CA simulator and used as the model input. This image
represents a wildfire-affected area in an N x M grid format, enhanced with data from human interactions. Each pixel in x; can
assume any value from the set S. z;,; € RNV*M represents the model’s output at time ¢ + 1, serving as a hidden state feature
matrix that predicts the next frame of wildfire progression. Similar to x;, each pixel of z;,; can assume any value from the set
S. ® demotes the convolution operation, o denotes the sigmoid activation function, and tanh is the hyperbolic tangent function.
The variables i, f;, and o; correspond to the input, forget, and output gates, respectively, which regulate the information flow
within the memory cell. The term C‘t represents the candidate cell state, C is the current cell state, and z, is the hidden state
or output of the ConvLSTM cell. Convolutional kernels Wo;, Wy ¢, Wy, and W, are applied to the input feature landscape
x¢, while kernels Wy;, Wy ¢, Wi, and W, are applied to the previous hidden state z;. The bias terms b;, by, b,, and b, are
associated with the input, forget, output gates, and cell state candidate, respectively. For brevity, the prediction length is set to
one time step in Equation (6).

Our ConvLSTM model is designed for a 3-to-3 prediction task, as outlined in Algorithm 1. To simplify processing, the burned
area data are resized to 128x128 pixels. The model takes three consecutive 128x128 matrices as input, each representing a time
step in the fire progression sequence. These matrices encode fire dynamics based on the state definitions of the ConvLSTM
model.

The state definitions differ slightly from those in the CA model. Using this multi-class approach, we identify both burning

cells and track the duration of temporary firebreaks. The states are defined as follows:

— State 0: Unburned cells
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Algorithm 1 ConvLSTM Model Training

1: Hyperparameters:
2: Learning rate: o = 3¢~ *
3: Number of iterations: Iter =5
4: Batch size: b= 16
5: Sequence length: [ =3
6: Channel set: S ={0,1,2,...,12}
7: Size of each frame: N x M = 128 x 128
8: ConvLSTM model with parameters 6: f5°™LS™
9: Training Procedure:
10: Initialize ConvLSTM model parameters
11: iter —0
12: while iter < Iter do
13:  for k=1,...,epochs do
14: {X¢—3,X¢—2,Xt—1,X¢t,Xt+1,X¢+2} {Sample from the training dataset}
15: input < {x¢—3,%x¢—2,%¢—1} {Use first 3 time steps as input}
16: target < {x¢,X¢+1,Xe+2} {Use next 3 time steps as target }
17: {24,241, 242} — fo™"S™({x;_3,%s—2,%:—1}) {Output predicted time steps}
18: go < CrossEntropyLoss({z¢, 241, %12}, {X¢,X¢+1,Xe42}) {Calculate loss}
19: 0 — 6 — a- Adam(6, go) {Update model parameters using Adam}
20:  end for{Next Epoch}
21:  iter < iter + 1 {Next Iteration}
22: end while

— State 1: Burning or burned cells
— State 2: Permanent firebreaks

— States 12 — 3: Temporary firebreaks, which degrade over time and disappear after 10 time steps

The model is trained using data generated by the CA model. It takes the first three time steps of fire progression, with or

without firebreaks, as input and predicts the next three time steps. This 3-to-3 prediction approach is formalized in Equation 7.

ConvLSTMtrain

{x¢—3,X¢—2,X¢—1} {2(,2141,2142}. @)

The model employs the Cross Entropy loss function to evaluate training performance. In multi-class classification tasks (e.g.,
State 1 to 16 in this application), Cross Entropy measures the dissimilarity between the predicted probability distribution and

the true class distribution, penalizing incorrect classifications more heavily. The model outputs represent the states of each cell,

10
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Figure 4. Data generation and training pipeline

170 positioning the ConvLSTM model as performing a multi-class classification task at each pixel and time-step. The structure of
our model is detailed in Table 1.
The input tensor has a shape of (b,3,2,N, M), where b represents the batch size and N x M denotes the spatial dimensions of
the input field. This structure indicates that we have 3 sequential frames and 2 channels. One channel encodes fire information
(a matrix where 0 indicates that the pixel has not been affected by fire, 1 indicates that a pixel is either currently burning or has
175 burned and other is for the firebreak states which is from 2 to 12). The second channel was originally designed to include land-
scape data; however, integrating such detailed information requires a comprehensive dataset, which is not currently available.
Consequently, this channel is zero-filled in the current implementation. Therefore, the current ConvLSTM implementation is
tailored to the three landscapes used in the CA simulation, each corresponding to a distinct training dataset.
For the ConvLSTM layers, each unit maintains a hidden state and a current state, with 128 feature channels and a sequence

180 length of 3. Thus, the ConvLSTM output tensor has a shape of (b,3,2,128 N, M). After passing through the subsequent 3D

11
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Component Layer Output Shape Activation
Encoder
Input - (6,3,2,N,M) -

ConvLSTM 128 channels, 3 x 3 kernel (b,3,2,128,N,M)  Sigmoid, Tanh
ConvLSTM 128 channels, 3 x 3 kernel (v,3,2,128,N,M)  Sigmoid, Tanh

Decoder

Input - (b,3,2,128,N, M) -
ConvLSTM 128 channels, 3 x 3 kernel (b,3,2,128,N,M)  Sigmoid, Tanh
ConvLSTM 128 channels, 3 x 3 kernel (6,3,2,128,N,M)  Sigmoid, Tanh

Convolution
Input - (v,3,2,128, N, M) -
Conv3d 16 channels, 1 x 3 x 3 kernel (b,3,16,N,M) -

Table 1. ConvLSTM Model Summary

convolutional layers, the final output of the model has a shape of (b,3,16,N, M), where the sequence length is 3 (correspond-
ing to 3 consecutive frames) and 16 represents the number of prediction categories (e.g., different fire spread states or fire

suppression strategies).

Dataset Firebreak Type  Firebreak Placement Time # CA Simulations  # Snapshots
Train 3T1P T:2,4,6;P: 3 1000 26000
Validation 3TIP T:2,4,6;P: 3 100 2600
3T1P T:2,4,6;P: 3 100 2600
3T T:2,4,6; P: — 100 2600
Test
2P T:—;P:3,5 100 2600
None T. — P:. — 100 2600

Table 2. Summary of dataset distribution and characteristics for training, validation, and testing for each model, categorized by landscapes:
’Bear 2020, ’Chimney 2016’, and *Ferguson 2018’. The column ’# CA Simulation’ indicates the number of CA simulations (with different
fire ignitions) that generated the datasets, with each simulation producing '# Snapshots’ representing the number of CA time-steps. The
model’s parameters are based on each landscape’s local geological characteristics, including vegetation, slope, wind speed, and other factors.
"T” represents temporary firebreak placement times, and P’ represents permanent firebreak placement times. For each simulation, the ignited

field is randomly selected, and the firebreak is randomly positioned around the ignited field.

12
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The ConvLSTM model is trained using Cross Entropy Loss on the training dataset for Chimney 2016°, *Bear 2020°, and
"Ferguson 2018’ fires (Table 2) and validated on a distinct validation dataset using three metrics: Mean Squared Error (MSE),
Structural Similarity Index Measure (SSIM), and Relative Prediction Error (RPE).

The MSE measures the average squared difference between the predicted (z;) and observed (x;) values. This metric evaluates

the overall prediction accuracy of the model, with a lower MSE value indicating better performance.

b
1
MSE(z;,%x;) = EZHXt_Zt||2 (8)

t=1
The SSIM evaluates the structural similarity between the predicted and true images by considering luminance, contrast, and

structural information. It ranges from -1 to 1, where a value close to 1 indicates a high degree of similarity.

(2:u’xt Mzt + cl) (2sxtzt + 62)
(%, + 42, +1) (5%, +52, +¢2)

SSIM(Zt,Xt> = (9)

The RPE is defined as the ratio of mismatched pixels between the predicted and observed fire spread landscapes, relative to
the total number of pixels (N x M). This metric provides an intuitive measure of the model’s ability to correctly classify the

fire spread.

RPE(z,%,) = % (10)

where #{x; # z; } represent the number of mismatched pixels.

Label Label

Output

Output

Output

Label : Output from CA Model

: Output from ConvLSTM Model
t
¥
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: Compare using Test Metrics Output

: Directly use as

Figure 5. Autoregressive fire spread predictions and compare to CA generated data.
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To assess the predictive capabilities and computational performance of our model, several wildfire datasets with different
configurations were used to set up four test scenarios: (a) Fire Propagation without Firebreaks: For this test scenario, a random
ignition field was selected on the landscape, and fire propagation was simulated by using a CA simulator. (b) Fire propagation
simulation with artificial firebreaks, where artificial firebreaks were randomly placed around a randomly chosen ignition point.
The cases studied include the following configurations: two permanent firebreaks (2P), three temporary firebreaks (3T), and
three temporary firebreaks combined with one permanent firebreak (3T1P). (c) Autoregressive fire spread predictions, to test
the long-term predictive horizon and stability of the model in successive iterations. Given three time steps as initial input from
the fire propagation simulation, the model generates the next three time steps. These outputs are then fed recursively back into
the model as inputs for the next sequence. This process was repeated until the forecast extended to fifteen time steps beyond
the initial input set (Fig. 5). (d) Comparative computational efficiency. To compare the computational efficiency of our model
and CA approaches, a parallel analysis of execution time and resource consumption was performed at six different spatial
resolutions: 128 x 128, 256 x 256, 384 x 384, 512 x 512, 640 x 640, and 768 x 768.

For the three landscapes considered, each model was tested with data derived from four distinct scenarios (Table 2): (1)
three temporary firebreaks combined with one permanent firebreak (3T1P), (2) three temporary firebreaks (3T), (3) two per-
manent firebreaks (2P), and (4) no firebreak (None). The testing data were generated using the CA simulator and matched the
configurations used during model training.

To evaluate the computational efficiency of our three ConvLSTM models, we compared their efficiency with that of the CA
model across varying landscape resolutions. A series of experiments was conducted using simulated wildfires, each running
for 150 time steps on landscapes of increasing size (from 128 x 128 to 768 x 768). For each landscape resolution, the runtime
to predict three consecutive time steps—corresponding to a single ConvLSTM inference—was recorded. To ensure stability
and consistency in the results, the average runtime was computed over the full 150-step simulation period. The goal was to
evaluate the models’ speed and their ability to handle large-scale landscapes, which is essential for real-world wildfire datasets

that require high-resolution simulations to capture intricate spatial details.

3 Results
3.1 Model Performance

Analysis of the Chimney 2016, Ferguson 2018 and Bear 2020 simulations show that all metrics converge to acceptable levels:
the Cross Entropy Loss during training phases (Fig. 6(a)), remains below 0.02, the MSE (Fig. 6(b)), remains below 0.01, RPE
(Fig. 6(c)) stabilizes around 25 % and SSIM for the validation phase (Fig. 6(d)) is consistently higher than 0.9. These results
show that the model is not only learning effectively but is also achieving strong performance on unseen data. The consistent
validation metrics suggest that the model generalizes well and is robust against over-fitting.

All models demonstrated comparable performance across different configurations (Fig. 7):. Scenarios with firebreaks (3T1P,
3T and 2P) had higher prediction accuracy than those without (None). This improved performance can be attributed to the

controlled conditions provided by firebreaks, which limit fire spread, reduce system randomness, and enhance prediction re-
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Figure 6. Metric values during the training process.

liability. The absence of constraints on fire spread in the scenarios with no firebreaks introduces greater randomness in the
CA simulation. The two-permanent-firebreak (2P) scenario had higher uncertainty than the other firebreak scenarios because
the 90 % suppression rate introduced additional stochastic factors. Although both the no firebreak (None) and the two perma-
nent firebreaks (2P) scenarios had poorer performance and higher standard deviations, nevertheless the results remain within
acceptable limits.

Although iterative testing inevitably results in error accumulation over time, the models retained strong predictive accuracy
even after multiple iterations. The average MSE was below 0.01 for the first three time steps, and remained under 0.03 across
the entire 15-step sequence (Fig. 7(a), 7(d), 7(g)). The mean RPE was under 0.75 % for the first nine time steps, and stayed
below 1.5 % for the full sequence (Fig. 7(b), 7(e), 7(h)). The mean SSIM value exceeded 0.99 for the first six time steps and
remained above 0.97 throughout the entire sequence (Fig. 7(c), 7(f), 7(i)), indicating strong structural similarity between the
predicted and actual fire spread.

Although there is an inherent challenge of cumulative errors in iterative modelling, the error maps (Fig. 8, B1, B2, B3),
show only small deviations between the predicted and target values even after five loops. Thus, the models effectively maintain

accuracy under iterative testing conditions and have successfully learned the dynamics associated with both temporary and
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Figure 7. Testing models on metric MSE, RPE and SSIM with different configurations. The solid line is the mean of the data after filter

outliers and the shadow represent the standard deviation.

permanent firebreaks. Specifically, the models recognize that temporary firebreaks disappear after ten time steps, achieving a
suppression rate nearing 100 % while permanent firebreaks do not disappear but have a lower suppression rate. The CA model

provides comparable accuracy to the DL model (Table 3). However, the DL model is significantly faster.
3.2 Inference Speed Evaluation

The ConvLSTM model, executed on an NVIDIA A100 PCIE GPU, completed simulations of 3 time steps for all resolutions
from 128 x 128 to 768 x 768 in under 0.2 seconds (Fig. 9). The ConvLSTM’s computation time increased linearly with landscape
size, whereas the CA model, executed on a CPU, showed significantly higher computational costs overall and computation
time increased exponentially with larger landscape sizes. For the maximum resolution of 768 x 768, the CA model required
nearly 50 seconds to predict three time steps, approximately 250 times longer than the ConvLSTM model. The faster speed
of the ConvLSTM models arises partly from the efficiency of the model architecture but also from the advantages of GPU

acceleration.
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_ Metrics
Firebreak Type Landscape Model

MSE| RPE| SSIM?
DL  0.0043 0.0037 09916

Bear 2020
CA 0.0884  0.0046  0.9945
DL 0.0064  0.0036  0.9915
3T1P Chimney 2016
CA 0.0924  0.0050  0.9948
DL 0.0076  0.0053  0.9890
Ferguson 2018
CA 0.0780  0.0036  0.9952
DL 0.0061  0.0050  0.9885
Bear 2020
CA 0.0633  0.0025  0.9993
DL 0.0064  0.0034  0.9925
3T Chimney 2016
CA 0.0923  0.0049  0.9943
DL 0.0075  0.0044  0.9908
Ferguson 2018
CA 0.0785 0.0043  0.9956
DL 0.0022  0.0022  0.9941
Bear 2020
CA 0.3633  0.0040  0.9906
DL 0.0037  0.0037 0.9914
2P Chimney 2016

CA 0.2428 0.0016  0.9960
DL 0.0027  0.0027  0.9931
CA 0.1456  0.0011  0.9969
DL 0.0030  0.0029  0.9919

Ferguson 2018

Bear 2020
CA 0.9947 0.0108  0.9804
DL 0.0055 0.0055 0.9876
None Chimney 2016
CA 0.9897 0.0071  0.9840
DL 0.0021  0.0020  0.9939
Ferguson 2018

CA 0.9499 0.0101  0.9804
Table 3. Comparison of Metrics Across Different Fire Suppression Strategies, Landscapes, and Models. For the DL model, the values

represent the mean of the metric of the middle three time-steps’ (sixth, seventh, eighth) tested on 100 CA simulations each has 26 CA time-
steps (Table 2). For the CA model, the values represent the mean metric calculated over three time steps, using the same initial conditions

across four separate simulations.

4 Conclusion and Future directions

The ConvLSTM model has good performance in simulating wildfire propagation combined with firebreak deployment. It
accurately identifies different types of firebreaks, evaluates their efficiency, and predicts how long they last. In comparison
with the CA model, which is simple and highly interpretable but has a high computation cost, the speed of ConvLSTM model

across varying input sizes makes it useful for real-world, real-time applications.

17



https://doi.org/10.5194/egusphere-2025-4007
Preprint. Discussion started: 12 November 2025
(© Author(s) 2025. CC BY 4.0 License.

Target 2 Torget 4

XGe -,

Target 6 Target 8

rediction 8

s

Error 4

(a) Test example: Bear 2020

Target 4 get 6
o~ <

Target 8 Target 10

Error 4

s A0 PAS s

(b) Test example: Chimney 2016

Target 2 Torget 4 Target 6 Target 8 Target 10
ox vl = . o oy a e

- - o
3 4 I'4

(c) Test example: Ferguson 2018

Target10

Target 12

"~

EGUsphere\

Target 12 Target 14
3 P e

pre

diction 14
ey

Target 14

Error 14

&

Figure 8. Here we tested each landscape using a autoregressive testing approach, performing 5 iterative loops that will generate the following

15 time-steps and we plot the result for every 2 time-steps. For the error map, red means false negatives and blue means false positive.

Wildfire propagation is inherently stochastic, and the autoregressive approach amplifies prediction errors over time. The

task becomes more difficult in high-altitude regions where burning is less likely, especially since explicit landscape features
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Figure 9. Prediction time (in seconds) for completing 3 steps of simulation across various landscape resolutions (128 x 128 to 768 x 768).

The CA Model using CPU and the ConvLSTM Model using NVIDIA A100 PCIE GPU.

are not provided as model inputs. The absence of key drivers like wind speed and direction further limits predictive accuracy.
Despite these challenges, the model performs well, accurately capturing wildfire spread and firebreak behaviour across diverse
scenarios.

The model could be further improved by using detailed landscape data, including vegetation types, densities, moisture levels,
and topographical features, as model inputs. This would allow the development of a universal model that performs well across
various geographic regions, minimizing the need to tune the model for each fire event. Incorporating dynamic meteorological
information and wind patterns would also enhance prediction accuracy. More realistic characterisation of firebreak placement
and experiments to optimise placement under realistic conditions would also enhance the usefulness of the model and contribute

to more context-aware forecasting, benefiting wildfire management and containment strategies.

Code and data availability. The code and data used in this study are publicly available in a GitHub repository and have been archived
on Zenodo (Zheng, 2025). These resources are accessible under the terms of the MIT licence, which permits free use, modification and
redistribution. Data on landscape slope, vegetation density, and vegetation cover for each ecoregion are obtained from IFTDSS (Drury et al.,
2016).
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Appendix A: Acronyms

ML
RNN
LSTM
DL
ConvLSTM
CA
DEVS
MODIS
VIIRS
IFTDSS
MSE
SSIM
RPE

Machine Learning

Recurrent Neural Network

Long Short-Term Memory

Deep Learning

Convolutional Long Short-Term Memory
Cellular Automata

Discrete Event System Specification

Moderate Resolution Imaging Spectroradiometer
Visible Infrared Imaging Radiometer Suite
Interagency Fuel Treatment Decision Support System
Mean Squared Error

Structural Similarity Index Measure

Relative Prediction Error
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Appendix B: More test example
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Figure B1. Bear 2020 test example. In Fig. (a), (b), we performed 5 iterative loops, generating 15 time-steps, with the results plotted every
2 time-steps. In contrast, in Fig. (c), we conducted 7 iterative loops, generating 21 time-steps, and plotted the results every 3 time-steps. For

the error image, red indicates false negatives, while blue represents false positives.
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Figure B2. Chimney 2016 test example. In Fig. (a), (b), we performed 5 iterative loops, generating 15 time-steps, with the results plotted

every 2 time-steps. In contrast, in Fig. (c), we conducted 7 iterative loops, generating 21 time-steps, and plotted the results every 3 time-steps.

For the error image, red indicates false negatives, while blue represents false positives.
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Figure B3. Ferguson 2018 test example. In Fig. (a), (b), we performed 5 iterative loops, generating 15 time-steps, with the results plotted
every 2 time-steps. In contrast, in Fig. (c), we conducted 7 iterative loops, generating 21 time-steps, and plotted the results every 3 time-steps.

For the error image, red indicates false negatives, while blue represents false positives.
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