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Abstract. Sediment characteristics and grain-size distribution are crucial for understanding natural hazards, hydrologic con-

ditions, and ecosystems. However, traditional methods for collecting this information are costly, labor-intensive, and time-

consuming. To address this, we present OrthoSAM, a workflow leveraging the Segment Anything Model (SAM) for automated

delineation of densely packed pebbles in high-resolution orthomosaics. Our framework consists of a tiling scheme, improved

seed (input) point generation, and a multi-scale resampling scheme. Validation using synthetic images shows high precision5

close to 1, a recall above 0.9, with a mean IoU above 0.9. Using a large synthetic dataset, we show that the two-sample

Kolmogorov-Smirnov test confirms the accuracy of the grain size distribution. We identified a size detection limit of 30 pix-

els; pebbles with a diameter below this limit are not reliably detected. Applying OrthoSAM to orthomosaics from the Ravi

River in India, we delineated 6087 pebbles with high precision (0.93) and recall (0.94). The resulting grain statistics includes

area, axis lengths, perimeter, RGB statistics, and smoothness measurements, providing valuable insights for further analysis in10

geomorphology and ecosystem studies.

1 Introduction

In Earth sciences, grain size analysis is a crucial technique used to study the physical characteristics of sediments, soils, and

rocks (e.g., Parker, 1991; Rice et al., 2001; Rice and Church, 1998). The primary aim of grain-size analysis is to determine the

distribution of particle sizes within a sample or for a specific area in the field, which can provide valuable information about15

the sediment’s origin, transport history, and depositional environment.

Traditional approaches such as the “Wolman Pebble Count” (Wolman, 1954; Leopold, 1970) require that a trained observer

with a metric ruler record pebble sizes along streams. Pebble counts can be made using grids, transects, or random step-toe

procedures to provide statistical averages of grain sizes. While this approach is precise and accurate, it is time-consuming

and usually does not provide a large number of grain-size measurements. But counts over a few hundred pebbles are required20

to successfully delineate grain-size distributions and link geomorphic processes (e.g., Purinton and Bookhagen, 2021; Eaton

et al., 2019; Sklar, 2024).

The advancement of digital photography and 3D structural data over the past 20 years has enabled the development of

alternative pebble-counting methods. We collectively refer to these methods as photo-sieving approaches without specify-

ing a methodological approach, but with a common goal to derive grain-size distributions. Methods to estimate grain-size25
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distributions are diverse and range from lag autocorrelation analysis (Rubin, 2004), two-dimensional spectral decomposition

(Buscombe et al., 2010), image-roughness estimations (Carbonneau et al., 2005), deterministic algorithms to extract individual

grains and measure diameter or a- and b-axes of pebbles (Purinton and Bookhagen, 2019; Carbonneau et al., 2018), machine-

learning approaches to estimate distributions directly (Buscombe, 2020) or perform grain segmentation (Mair et al., 2022),

and delineate pebbles from 3D mesh or point-cloud data (Steer et al., 2022; Rheinwalt et al., 2025). Radar-based studies have30

attempted to use the scattering signal of C- and L-band data (e.g., Purinton and Bookhagen, 2020). Satellite or airborne images

often rely on image texture and semi-variance or related property and field calibration to derive grain-size distribution without

counting individual pebbles (Carbonneau et al., 2004; Butler et al., 2001; Ibbeken and Schleyer, 1986). Recent advancements in

UAV-based data acquisition allow the generation of higher-resolution imagery that can be used for individual pebble segmenta-

tion, although there is a limit on the smallest pebble sizes due to image resolution (Lang et al., 2021; Purinton and Bookhagen,35

2019). Part of the attraction to using remote-sensing approaches is to achieve observations at scales ranging from the meter

(often referred to as patches) to the kilometer scale (entire drainage basins). In addition, it is also possible to sample a larger

number of grains and to include a larger range of grain sizes. A new motivation is to extract pebble roughness or roundness

metrics, such as the isoperimetric parameter (e.g., Pokhrel et al., 2023; Quick et al., 2019).

Object delineation in material and biological sciences has long been applied and has been fine-tuned to specific approaches.40

One of the most widely used convolutional neural network approaches for image segmentation, U-Net, has been motivated by

biomedical research and was initially developed for cell delineation (Ronneberger et al., 2015). Other deep-learning research

has focused on the detection of tree crowns (e.g., Chen et al., 2025; Weinstein et al., 2020). Although these approaches are

creative and highly optimized, they are not directly applicable to pebble counting in fluvial environments. First, the grain size

distribution of a mountain river is large, with the smallest sizes in the (sub-)mm range to meter-sized boulders. This large45

size range requires different approaches to counting similarly sized spherical objects. Second, fluvial pebbles have a variety of

shapes and colors that complicate detection. The changing shadows and lighting conditions make this particularly challenging

for a deterministic approach (Cattapan et al., 2024; Purinton and Bookhagen, 2019).

Despite or because of these challenges, deep-learning approaches have become increasingly popular in the delineation of

pebbles from imagery (e.g., Mortl et al., 2022; Mair et al., 2024; Soloy et al., 2020). They provide the ability to automate50

measurements, improve reproducibility and scalability, and increase the number of observations. Deep learning can overcome

some of the limitations of traditional methods for measuring grain size, especially when considering processing speed and de-

lineating images with high complexity. The drawback of using deep-learning approaches is that they require large, high-quality

training data. Deep-learning models can overfit the training data, and their results can be difficult to interpret. Measurement

of small grains can be challenging for deep learning methods. The scale and resolution of input images to some deep-learning55

models can be limited by GPU memory and model complexity, and deep-learning models generally require higher computing

resources. One of the likely more relevant drawbacks is that current segmentation techniques are prone to biases that result

from under- or over-segmentation and 2D projection effects of 3D structures.

In a previous effort, the Segmenteverygrain project Sylvester et al. (2025) leverages the Segment Anything Model to delin-

eate grains in images. This approach adopts a two-pass pipeline combining a pre-trained U-Net with SAM. In the first pass, a60
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U-Net model performs semantic segmentation to distinguish grains from non-grain objects. In the second pass, SAM is applied

to perform instance segmentation only on the grains identified in the previous step. This approach benefits from effectively

filtering out irrelevant objects, but it introduces dependency on the U-Net.

A successful workflow for an application of a deep-learning approach in sedimentary research requires model adoptions,

for example, a tiling approach that allows the input of large orthomosaics and a statistical analysis of a model’s output to65

assess uncertainties of the segmented image. In this study, we explore the capabilities of the Segment Anything Model (SAM)

for pebble segmentation, describe the model in detail with its benefits and caveats, and develop a workflow that allows the

delineation of complex images with a specific focus on fluvial pebbles. We use a synthetic pebble image as input to SAM to

first identify minimum and maximum object sizes and perform statistical analysis with a large number of pebbles. In the second

step, we apply SAM to three characteristic field examples from the Ravi River in the western Himalaya.70

2 The Segment Anything Model (SAM)

The Segment Anything Model (SAM) is an efficient and adaptable model for image segmentation. It was trained with over

1 billion masks in 11 million licensed and privacy-respecting images and generates excellent segmentation results without

additional training (Kirillov et al., 2023). SAM enables segmentation of a broad set of use cases and can be used out of the box

on new image domains without additional training, including scientific images such as cell microscopy or pebble images (Na75

et al., 2024; Israel et al., 2023). Our analysis relies on SAM v1 (Kirillov et al., 2023), and we have not tested SAM v2 (Ravi

et al., 2024).

SAM has a unique ability to segment images with complex lighting conditions and conglomeratic boulders. This stems

from SAM’s very good zero-shot inference. SAM can accurately segment images without prior specific training, a task that

traditionally requires tailored models. It can be controlled through multiple inputs such as user queries, points, polygons, or80

text input. The model’s architecture consists of three decoupled components: an image encoder, a prompt encoder, and a mask

decoder, which provide an efficient framework for performing multiple tasks on an encoded image.

However, SAM has limitations when it comes to detecting densely packed objects such as pebbles or sand in high-resolution

images. The input data for the delineation of the pebbles are usually large orthomosaics generated from hand-held cameras (e.g.

Purinton and Bookhagen, 2021) or UAV images (Mair et al., 2022). SAM rescales all input images to 1024 x 1024 pixels to fit85

the transformer architecture - a large image with several thousand pixels in width and length will be rescaled when processed

by SAM. The prompt encoder requires input points to identify objects. Input points can be thought of as a coarser raster draped

over the input image to identify points of interest: The finer the scale of this raster, the more grains can be detected (Figure

1). The standard SAM model applies 32 x 32 equally spaced input points in the standard, automated detection scheme. The

transformer and prompt encoder were optimized for a limited number of objects, not hundreds to thousands of objects per90

image, as would be the case for pebbles on a large orthomosaic. The performance of the model is further limited by hardware

resources, and it may require strategies such as tiling, resampling, or manual input to detect all objects in an image (Figure
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Figure 1. SamAutomaticMaskGenerator segmentation result of a 3 x 3 (A) and 12 x 12 (B) point grid. The segmentation was per-

formed with the default parameters. The number of input points determines the number of objects that can be segmented. SamAutomatic-

MaskGenerator includes several post-processing steps to remove duplicated masks. With the use of more input points, there is a higher

likelihood of generating under-segmentation (masking multiple objects) or over-segmentation (masking only part of an object). These masks

cannot be easily removed by the built-in post-processing steps, as they are not simple duplications. However, with too few input points, many

pebbles are missed and not segmented at all.

A1). Despite these limitations, SAM has the potential to be a powerful tool for image segmentation in various fields, including

geology and environmental science. Additional details and background information about SAM can be found in Appendix A.

3 Data95

We validate our approach with two different datasets: (1) a synthetic pebble generator with a variety of noise and shadowing

settings; (2) a semi-manually labeled dataset of an orthomosaic for a complex pebble setting derived from the Ravi River in

India in the northwestern Himalaya. Validation through real-world orthomosaics is limited because it requires large ground-

truth data. We are not aware of reliable, large-scale instance segmentation datasets with several hundred to thousands of

delineated pebbles. Hence, we put forward a synthetic pebble-generation approach for quantitative, rigorous testing, and the100

semi-manually labeled Ravi river data for a proof-of-concept application.
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Figure 2. Example of a noise-free, shadowed, and colored synthetic test scene with n = 2336 pebbles. The parameters for generating this

scene are: rmin = 12; rmax = 1500; σ = 0. The size distribution of the pebbles is shown on the right and is highly skewed.

3.1 Validation with Synthetic Images

Synthetic scenes were generated at a resolution of 10,000 x 10,000 pixels with solid circles of random sizes placed randomly.

The placement process ensured that the circles did not overlap, with at least one pixel distance between them. This process was

repeated 5,000 times to create up to 5,000 circles per image (Figure 2).105

Synthetic images were generated in four settings: black and white (B&W), colored, colored with noise, and colored with

shadows (colored images had random colors). Noise was introduced to colored images using Gaussian noise with a controlled

standard deviation ranging from 3 to 192 for each 8-bit channel. This allowed for the assessment of SAM’s performance on

various image types and its robustness against noise. The parameters used to generate the synthetic scenes are listed in A1.

Additional information about the synthetic pebble generation is found in Appendix B.110

To simulate a more realistic setting, we have further introduced shadows into the synthetic images. Each circular object is

modeled as a hemispherical dome, and shadows are simulated based on geometric occlusion. Specifically, cross-shadowing

is implemented, allowing shadows from one object to be cast onto others, under the assumption of a directional light source

at infinity. This ensures a uniform lighting direction across the entire scene. To reduce computational complexity, diffusion,

diffraction, and reflection effects are not modeled. Instead, shadows are applied as uniform attenuation, with adjustable strength115

to approximate soft shadowing behavior.

3.2 Ravi Orthomosiacs

Three characteristic examples from the western Himalayas (Ravi River) in India are used to illustrate the workflow (Figure 3).

The orthomosaics were scaled with 24 markers on four A4 panels. The photos were processed with Agisoft Metashape 2.1.2.

For model Ravi2, we used 467 photos, Ravi3 is based on 708 photos, and Ravi4 on 716 photos. We used a Sony 7RM3A with120

a fixed 55 mm lens (F1.8) with 41 MP (7952 x 5304 pixels). The orthomosaics have a spatial resolution of 0.2 mm.
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Figure 3. Three orthomosaics from the Ravi River, western Himalaya: (A) Ravi2 (20,171 x 22,055 pixels); (B) Ravi3 (28,382 x 32,563

pixels); (C) Ravi4 (17,592 x 21,739 pixels). All three images have a resolution of 0.2 mm/pixel.

In order to generate the manual validation dataset, we also used a digital elevation model with 0.5 mm resolution generated

from the 3D point cloud. The DEM was subsampled to match the orthomosaic resolution. We used the DEM hillshade to assist

in manual checking and visualization of validation points.

4 Methodology: OrthoSAM125

Our tiling and resampling scheme, referred to as OrthoSAM, consists of three main components: tiling, the generation of

improved input points, and resolution passes (Figure 4). Additional details can be found in Appendix C to E, and the parameters

used for segmenting the Ravi orthomosaics are listed in Table A2.

4.1 Tiling of Input Image

The SAM model rescales and pads input images to 1024 x 1024 pixels, which can lead to a loss of information for larger130

images. For example, a 24 MP image (6000 x 4000 pixels) would be reduced to approximately 0.7 MP, which may not be

sufficient for segmenting small objects like pebbles in large orthomosaics. After rescaling, small objects may be overlooked or

larger objects may have reduced mask quality (Figure 5). To address this, a tiling approach is necessary for large images with

many objects.

To process large images, we tile them into 1024 x 1024 pixel patches with a definable overlap. This helps reduce the135

likelihood of overlooking objects, but can also lead to artificially over-segmented pebbles along tile edges. To mitigate this, we

discard masks that touch the window border and use a rectangle box to filter out masks that do not meet the criterion of having

at least 50% of masked pixels inside the box. The processed patches are then combined into a 2D-labeled mask (see Appendix

C).
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Figure 4. Flow diagram of the OrthoSAM approach. We rely on multiple resolutions of the input image to segment pebbles at various scales.

In theory, multiple resolutions can be used and merged – but here we only show two resolutions (A and B). A complete segmentation of the

entire image at a given resolution is referred to as a pass. Segments from earlier passes take priority over those from later passes during the

merging process. We usually use the original resolution as the first step, as resampling to a coarser resolution inherently leads to information

loss. In most cases, a fine, initial resolution is followed by a coarser resolution to process objects that are too large to fit within a single tile

with a finer resolution.

Figure 5. Comparison of segmentation quality. (A) The full-resolution image of 28,382 x 32,563 pixels was provided to the encoder, and

the encoder downscales the image to 1024x1024 ; (B) a 1024 x 1024 crop around the target was provided to the encoder. Both images have

the same resolution, but image A was rescaled by SAM. Segmentation was performed with identical input points and parameters using the

standard SAM approach. Results differ because of the encoder resampling.
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4.2 Improved Input Point Generation and Segmentation140

SAM can deliver high-quality results, but is not ideal for delineating pebbles from large orthomosaics. To improve this, we

developed an approach that generates input points more effectively. Our method involves an initial pass to extract all possible

objects using a modified version of the SamAutomaticMaskGenerator (see Apendix D). We use a parameter npps to

define the number of input points per side, in order to maximize the probability that every object will get at least one input point.

The trade-off is an increase in computational cost and processing time. We also consider the minor-axis length of the smallest145

object expected and adjust to define the number of input points per side. If hardware limits are reached, we can increase tile

overlap or resample the image to a finer resolution to increase the input point density. Once the point grid is generated, each

point serves as an input prompt for the SAM, which generates three mask predictions (see Appendix C and Figure A1). We

select the mask with the highest predicted IoU score as the final output, after a centroid-based masking step (see Appendix D

and Figure A2).150

4.3 Merging Segmentation Passes at Multiple Resolutions

The SAM approach has a limitation in that the detectable size is artificially capped due to the window size and maximum

window coverage. To address this, segmentation can be performed at multiple resolutions, with each resolution corresponding

to objects up to a certain size. The final results can be merged to ensure that objects of all sizes are delineated (Figure 6).

The merging process involves identifying areas where no mask was found in the first resolution pass and comparing them155

with masks from the second resolution pass (see Appendix D). Masks are only merged into the final result if they do not overlap

with masks from the first resolution. This approach can be used with any resolution order, with the order setting the priority in

the merging process.

Using multiple resolution passes can help reduce aliasing effects and preserve segmentation quality for larger objects. A fine-

coarse combination can reduce the reduction of mask quality due to aliasing, while a coarse-fine combination can minimize160

over-segmentation. Additional intermediate resolution passes can be introduced to handle images with a wide range of object

sizes, although this increases processing time (Text S5).

4.4 Validating OrthoSAM

We evaluate the segmentation of synthetic pebble images in three aspects. First, we assess detection quality, which refers to

whether OrthoSAM identifies all objects and whether the detected objects are true objects. Second, we examine the mask165

quality by how accurately objects are segmented. Finally, we analyze the measured size distribution to determine whether it

accurately preserves the true size distribution.

We evaluate the detection quality by matching masks to labels based on their centroids. A mask is assigned to the label on

which its centroid falls. When a mask is paired to a label that has not yet been paired with any other mask, it is counted as a

true positive (TP). If a mask is assigned to a label that has already been matched with another mask, it is considered a false170

positive (FP). If a mask does not match any label, it is also counted as a false positive. Since these are synthetic images, the
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Figure 6. Characteristic example showing the merging of two different resolutions. The original image has 28,382 x 32,563 pixels with

a resolution of 0.2 mm/pixel. The first, fine-resolution segmentation, identified 5441 masks. The coarser resolution (1135 x 1303 pixels),

downsampled by a factor of 25, results in 187 masks. The coarser masks only segment larger pebbles and include the boulders that are

excluded in the first step because they cover more than 40% of the tile. The proposed and described merging step uses all masks from the fine

resolution (first step) and adds masks from the second step in the remaining space. The resulting merged image highlights the masks from

the first step in blue and the second step in orange.
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total number of actual positives (the label count nl) is known. Using the true positives, the number of false negatives (FN) can

be determined. With TP, FP, and FN values, precision and recall can be calculated to assess overall detection quality.

We use two sets of synthetic models: A black-and-white (B&W) setting to evaluate the size detection limit and a colored

model with shadows to illustrate varying lighting conditions (see Appendix B). A total of 48 synthetic images with varying175

parameters were generated and segmented (see Table A2).

5 Results

In this section, we first present the segmentation statistics of the synthetic pebble images and analyze the limitations of Or-

thoSAM. In a second step, we present statistics for real-world scenarios.

5.1 Synthetic Pebble Images and Segmentation Statistics180

Using 1872 synthetic B&W pebbles, we obtain an overall recall of 0.87, a precision of 1.0, and a mean IoU of 0.98. Using

27,528 synthetic colored pebbles with shadows, OrthoSAM segmentation achieved a recall of 0.94, a precision of 0.98, and a

mean IoU of 0.91 (Table A3 and A4).

To analyze the limits of OrthoSAM, our approach was two-fold: We used B&W synthetic pebble models to identify a size

threshold. Second, we used colored models with shadows to illustrate the impact of changing lighting conditions.185

The 1872 synthetic B&W pebbles were binned by their sizes, and for each bin, we determined precision and recall (Figure 7).

We observe that bins with smaller pebble diameters have a lower recall (Figure 7c). We attribute the low precision at small

pebble sizes to an object detection limit of SAM. Our analysis suggests a detection limit of 30 pixels in diameter (∼700 pixels

in area, assuming a circular object) to obtain a recall of 0.9. We do not observe a strict threshold, but rather a transition area in

which object detection changes from a low recall of 0.2 to higher values with increasing circle diameters.190

Precision and recall metrics are used to quantify object detection. In order to quantify the accuracy of the detected pebbles or

the mask quality, we use IoU on each detected object. A consistently high IoU above 0.9 is only achieved for pebble diameters

greater than 20 pixels (Figure 8). To ensure that an object is both detected and well-segmented, we identify the size detection

limit at 30 pixels. We only used the B&W pebbles for measuring the detection limit because we wanted to exclude obscuring

conditions such as color variability or shadowing.195

The 27,528 synthetic colored pebbles with shadows were also binned to determine their precision, recall, and IoU. In general,

results are consistent with the B&W scene. For objects with a diameter above 30 pixels, recall consistently exceeds 0.9. With

precision, we see a weak decreasing trend starting from a diameter of 100 pixels. The IoU consistently reveals median values

above 0.9, but the IQR shows substantial variability, particularly in the lower quartile. Using colored scenes with shadowing

shows that OrthoSAM is capable of reliably segmenting densely packed objects in a relatively large orthomosaic.200
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Figure 7. Binned precision and recall of the B&W synthetic scene (n=1872 pebbles) without shadows and the colored synthetic scene

(n=27,528 pebbles) with shadowing. Labels are grouped by diameter into logarithmic bins to compute precision and recall within each

bin. Precision (a) and recall (c) of objects with a diameter below 75 pixels to highlight the size-detection limit. Recall drops below 0.9 for

diameters less than 30 pixels. Precision (b) and recall (d) for the entire size range of synthetic pebbles show an overall high level of precision.

The precision variability at higher diameters is discussed in the text and is related to pebbles partly in shadow at tile boundaries.

5.2 Grain-Size Distributions

We present grain-size distributions because this provides the link to field-based analysis. With the synthetic colored shadow

scenes, we observe a close alignment with the ground truth data (Figure 9). A two-sample Kolmogorov-Smirnov test for

goodness of fit (K-S) was applied (Hodges, 1958). With p < 0.01 (Figure 9), the null hypothesis cannot be rejected, and the

difference between the size distribution calculated from the OrthoSAM segments and the ground-truth size distribution of the205

objects is not statistically significant. Additional statistics for each experiment can be found in Table A4.

Through synthetic images, we have demonstrated that, in most situations, OrthoSAM effectively detects densely packed

objects in large orthomosaics. It consistently produces high-quality masks (IoU > 0.9) for objects with a diameter greater

than 20 pixels. Additionally, the segment size distribution accurately represents the actual size distribution for objects with a

diameter greater than 30 pixels. After evaluating detection quality, mask quality, and segment size distribution, we conclude210

that OrthoSAM is capable of generating valid results, taking into account size limitations.
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Figure 8. IoU statistics to measure mask quality. Labels are sorted by size and binned every 100 objects to calculate the median and IQR of

IoU. The shaded area indicates the IQR. (a) Binned median IoU of the B&W scene shows high IoU with an average of 0.98. We note that

objects with a diameter below ∼20 pixels generally have an IoU below 0.9. (b) Colored synthetic pebbles with shadow show an average Iou

of 0.91. The variability of the IQR stems from pebbles partly in shadows.

5.3 Ravi orthomosaics

Applying OrthoSAM, 973 objects were identified in Ravi2, 3231 in Ravi3, and 1880 in Ravi4 (Figure 10). Grain-size distribu-

tions were computed with area, a-axis length, and b-axis length (Figure A3). Across all measurements, Ravi3 and Ravi4 share

a similar grain size distribution, whereas Ravi2 differs significantly from both.215

Due to the lack of precise ground-truth masks, IoU cannot be calculated for the Ravi datasets. Instead, predicted masks were

manually screened to identify true and false positives based on whether the masked object was a pebble or not. Pebbles without

a mask were classified as false negatives. The hillshade generated from the DEM was used to aid in manual validation. With

false positives, true positives, and false negatives, precision and recall were calculated to assess performance (Table A5). The

precision for all pebbles is 0.93, and the recall is 0.94.220

6 Discussion

In this section, we first discuss the size detection limit, noise tolerance, and the impact of shadows. Second, we will highlight

typical problems and limitations of OrthoSAM. Finally, we discuss hardware requirements.
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Figure 9. Cumulative probability distribution of ground-truth (black) and segmented (red) size distribution for n=27,528 synthetic pebbles

from colored scenes with shadows. Images were generated from a common base image with radius range [rmin, rmax] = [12, 1500] pixels,

varying only the light source’s azimuth and inclination. Out of 27,528 objects, OrthoSAM segmented 26,404 labels.

Figure 10. Segmentation results of the three Ravi River orthomosaics. Masks are randomly colored to distinguish individual objects. (A) 973

objects were segmented in Ravi2; (B) 3231 objects were segmented in Ravi3; (C) 1880 objects were segmented in Ravi4.
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6.1 Noise Tolerance and Detection Limit of OrthoSAM

In section 5.2, we have identified a lower detection limit of 30 pixels in diameter using the B&W scene. Above this limit,225

objects can be reliably detected and accurately segmented.

We have further investigated this limit by introducing noise and color. The results (Table A4 and Figure A4) show that

precision decreases with increasing noise (σ). The overall precision remains above 0.9 under moderate noise (σ < 48). When

exposed to strong noise (σ = 96), the diameter of the object must exceed 40 pixels to achieve a precision of 0.9 (Figure A5).

Recall, on the other hand, does not show a clear correlation with σ, showing no statistically significant differences between230

noisy scenes and the baseline scene (σ=0). Suggesting that although false detection is significantly more likely with strong

noise, the presence of noise does not overall impact OrthoSAM’s ability to correctly detect objects.

For mask quality, the binned IoU was calculated and visualized for 3 different noise levels σ (Figure A6). As the level of

noise (σ) increases, we see a decrease in median IoU and an increase in IoU IQR. When exposed to extreme noise (σ = 192),

the minimum diameter to ensure that IoU is greater than 0.9 increases from 20 to 30 pixels.235

In summary, the detection limit of 30 pixels in diameter remains valid, given that noise is relatively moderate (σ < 48).

However, a high level of noise affects the accuracy and quality of the segmentation. Therefore, it is recommended to keep

the ISO settings in a reasonable range during data collection to limit the noise. We emphasize that natural pebbles can exhibit

large color variability as a result of different mineral specimens and lithology. In our synthetic examples, noise is introduced

randomly, and there is a higher likelihood that noisy pixels will cluster into more coherent patches, particularly with a high240

sigma value. This can mimic the natural textural complexity of the pebbles. Through the Ravi orthomosaics, we observed

that OrthoSAM is generally capable of handling this complexity; however, it is not flawless. The synthetic results support this

observation: patches of noisy pixels within objects are sometimes misidentified as distinct objects, leading to an increased false

positive count. This remains a common challenge in pebble delineation. Although the overall segmentation performance with

the Ravi orthomosaics is satisfactory, this issue undeniably persists.245

So far, our focus has been on the lower detection limit and noise, without addressing whether there is an upper limit. In

principle, there is no upper detection limit as the image can always be resampled to resize the object. There is a trade-off

between strong resampling that will cause pixelation and lead to less accurate object boundaries, but doing so allows large

objects to be segmented because they will fit into a single tile. However, we note that the tiling approach poses limitations on

the object size (Figure A7).250

6.2 The impact of Shadows on Pebble Segmentation

In section 5.2, we presented the segmentation assessment of synthetic scenes with and without shadows. We observed increased

variability in mask quality with larger object sizes, mainly due to a decrease in the lower quartile (Figure 8). This is also

reflected in the precision (Figure 7), suggesting that larger shadows are more frequently misidentified as an object. Although

it seems counter-intuitive, it may be related to the tiling of the image. As the object size increases, the likelihood that it spans255

multiple tiles also increases, increasing the chance that the object intersects with tile borders. When this occurs, the full object
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mask is often discarded because of the intersection. Masks of shadow may remain, as it is likely to be smaller than the full

object and more likely to be fully contained within a single tile. While coarser resolution layers, which likely involve stronger

resampling, may successfully capture the complete object, these masks are typically excluded from the final output due to the

prioritization of earlier layers (finer resolution in a fine-coarse setup as used in this study). In scenarios where strong and sharp260

shadows are expected, it may be advantageous to perform segmentation first at a coarser resolution before using a higher or

original resolution.

Furthermore, we found that the extent of shadowing plays a significant role in model performance. Based on the proportion of

an object’s area covered by shadow, we categorized the objects into two groups: completely in shadow and partially in shadow.

An object is considered completely in shadow if at least 90% of its area is covered. We then repeat the previous analyses265

for each group separately. Interestingly, the model performed comparable to the shadow-free condition when evaluating only

objects completely in shadow (Figures A8 and A9). In contrast, objects partially in shadow were primarily responsible for the

drop in precision and IoU observed in Figure 7 and Figure 8. This suggests that the stark contrast between the illuminated and

shadowed regions within a single object may introduce ambiguity, making it more difficult for the model to segment the object

accurately.270

These findings indicate that the incorporation of appropriate preprocessing techniques could help mitigate this issue. Al-

though we experimented with Contrast Limited Adaptive Histogram Equalization (CLAHE) on the Ravi orthomosaics and

found that it did not lead to a significant improvement in our case, exploring alternative preprocessing methods remains a

promising direction for enhancing performance under challenging lighting conditions.

6.3 OrthoSAM Limitations275

In this study, OrthoSAM was applied to three characteristic examples of the western Himalaya (Ravi River), which were

referred to as Ravi2, Ravi3, and Ravi4. In general, the pebbles in the three orthomosaics exhibit a similar size composition

(Figure A3). With the only exception that Ravi2 does contain a higher number of larger pebbles.

The predicted masks were manually inspected and assessed due to the lack of ground truth data. Overall, we see good

precision and recall (Table A5). However, there are a few caveats to consider.280

First, manual validation is inevitably prone to subjectivity and human error, leading to potential biases and inconsistencies.

Therefore, the validation of the proposed method and the assessment of mask quality mainly rely on synthetic images, for

which ground-truth data is available.

Second, it is important to keep in mind that SAM only performs instance segmentation. OrthoSAM is a workflow designed to

assist SAM in delineating densely packed objects in large, high-resolution images. However, it does not incorporate any object285

classification algorithm or semantic segmentation model, although this could be explored in future improvements. As a result,

non-pebble objects are also delineated. In the Ravi orthomosaics, various non-pebble elements, such as A4 marker panels and

wooden branches, were also segmented (Figure 11). Measurements, metrics, or statistics calculated without first removing the

corresponding masks could lead to inaccuracies. The significance of this issue depends on the abundance of irrelevant objects.

Simple filtering steps based on color or a/b axis ratio may remove these masks.290
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Figure 11. Four examples of common segmentation issues taken from Ravi3. The blue area indicates the masked area. (A) segmentation is

correctly performed but the segmented object is not a pebble; (B) shadow and background mistakenly segmented as an object; (C) Structure

from Motion artifacts due to image mosaicing issues that can be mistaken as an object; (D) aliasing effect cause by resampling a segmentation

completed at a coarser resolution back to the original resolution.

In addition to these limitations, false detections due to structure-from-motion (SfM) artifacts, image distortions, and shadows

were also observed in the final segmentation results of the Ravi orthomosaics (Figure 11). Ravi orthomosaics are 2D projections

of the 3D reconstruction created with Metashape through SfM. This allows us to create a high-resolution orthomosaic of

a large area. The issue with orthomosaics is that there can be artifacts caused by image fusion issues such as mismatched

pixels, insufficient image coverage, moving objects, or changes in lighting. This issue is particularly noticeable at the edges295

of the orthomosaic, where insufficient image coverage prevents an accurate 3D reconstruction. With the most updated SAM

checkpoint, these artifacts would still interfere with segmentation, and they can be mistaken for an object.

6.4 Application

The core motivation of this study is to create a SAM-based workflow that allows efficient and automated photo-sieving and the

processing of large sample sets. The segmentation results allow us to extract grain size data and calculate various measurements300

and statistics that can be used for grain size analysis. To demonstrate the potential application, several measurements and

statistics were calculated. As an example, the normalized isoperimetric ratio (IRn) (e.g. Pokhrel et al., 2023) was calculated to

provide an evaluation of pebble roundness (Figure A10). For the Ravi orthomosaics, IRn shows that all three orthomosaics are

composed of pebbles with consistent roundness.

We strive to provide a tool that allows rapid generation of multiple metrics relevant for grain-size analysis. We include305

common grain size measurements such as area, a- and b-axis lengths, perimeter, and mean and median R, G, B values (Table
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A6). The output is generated as a dataframe and can be stored in a transferable format for further processing, such as clustering

analysis using the RGB statistics.

We make the following suggestions for field-data collection efforts: Due to the significant difference in performance, it

is recommended to consider the detection limit during data collection. The image resolution or camera distance should be310

selected to ensure that the smallest pebble size to be detected has at least a diameter of 30 pixels. As every camera and sensor

has different noise performance, it is recommended to generate a noise image and take a series of testing photos at different

ISO settings to determine the corresponding ISO value that will lead to high noise levels. However, most modern cameras

provide excellent (low) noise levels even at higher ISO values. Reliance on RGB information for segmentation implies that

strong contrast, changes in lighting conditions, and processing artifacts can influence the result of segmentation. During data315

collection, these factors should be taken into account.

6.5 Hardware Requirements

As a vision transformer-based model, SAM heavily relies on GPU computing power and memory (Yu et al., 2023). Our

approach was developed and tested on an NVIDIA Quadro RTX 5000 GPU with 16 GB of memory, a powerful but costly GPU

that may not be accessible to all potential users. Without a powerful GPU, the processing of segmentation will take longer.320

In addition, insufficient GPU memory can significantly degrade performance. As discussed in section 4.2, each delineated

object must retain its own binary mask throughout the process until the untiling step. This requires storing up to the number

of input points x 3 layers of 1024 x 1024 boolean arrays (assuming the tile size is 1024 x 1024 pixels) in GPU memory. The

memory demand thus scales non-linearly with the number of input points (Figure A11). However, the number of input points

is a critical parameter as it determines the number of discoverable objects in the initial step at each resolution layer. Therefore,325

the performance is ultimately constrained by the availability of GPU memory.

7 Conclusion

We present a novel tiling and merging approach, including a new input point generator for the Segment Anything Model

(SAM) to process large orthomosaics. We refer to this workflow as OrthoSAM. Our approach enables users to perform grain-

size analysis on virtual outcrops with a large number of pebbles (>10,000 objects). We carefully validated our methodology330

with synthetic pebble images and hand-clicked orthomosaics from field images.

Fluvial pebbles exhibit a wide range of sizes that exceeds the original purpose of SAM. Large pebbles may not be able to fit

into a standard 1024 x 1024 pixel tile at the original image resolution. We developed a multi-resolution approach that enables

OrthoSAM to handle different size ranges through rescaling (or resampling). For example, the down-sampling or coarsening

step allows larger boulders that do not fit into a standard tile to be identified.335

We identified a lower detection limit of 30 pixels in diameter. That is ∼700 pixels or 28 mm2 with a spatial resolution of 0.2

mm/pixel, assuming a circular object. With a spatial resolution of 1 mm/pixel, the size limit in metric units will increase to 7
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cm2. For grains with a diameter above the limit, we expect the recall and average IoU to be above 0.9, and the segment size

distribution to reflect the actual size distribution.

A validation effort using synthetic images with 27,528 colored circles and shadows shows that OrthoSAM has achieved a340

precision of 0.98, a recall of 0.94, and an average IoU of 0.91. The synthetic orthomosaic reveals the impact of shadowing

on segmentation performance. Specifically, synthetic objects that are partially covered by shadows exhibit lower precision and

IoU due to the boundary between the lit and shadow sides. In contrast, those completely covered by shadow are consistently

and accurately segmented, suggesting the importance of uniform lighting conditions during data collection. Appropriate pre-

processing techniques could mitigate this issue.345

OrthoSAM was applied to three orthomosaics from the western Himalaya with a wide range of grain size. Validation shows

an average precision of 0.92 and an average recall of 0.95. In total, 6087 pebbles were delineated. The projected area ranges

from 10 cm2 to 927 cm2.

We developed a Python-based software pipeline (https://github.com/UP-RS-ESP/OrthoSAM) that generates a table (dataframe)

with relevant metrics for further grain-size analysis.350

Code and data availability. The orthomosaics of Ravi River used for segmentation in the study are available on Zenodo https://doi.org/10.

5281/zenodo.16567549 with MIT license. OrthoSAM, available via Apache-2.0 license, is developed openly on GitHub https://github.com/

UP-RS-ESP/OrthoSAM.

Appendix A: The Segment Anything Model (SAM)

The Segment Anything Model (SAM) is an efficient and promptable model for image segmentation. SAM was trained with355

over 1 billion masks in 11M licensed and privacy-respecting images and generates good segmentation results without additional

training (Kirillov et al., 2023). SAM allows segmentation of a broad set of use cases and can be applied out of the box on new

image domains without additional training, including scientific images such as cell microscopy or pebble images (Na et al.,

2024; Israel et al., 2023). This capability is referred to as zero-shot transfer. Thus, SAM’s zero-shot performance is often

competitive with or superior to prior fully supervised results. SAM has been developed as an image segmentation tool that360

allows input through multiple prompts, such as user queries through clicking, outlining polygons, or text input. A typical

application is to cut an object (e.g., a person) from the foreground of an image and replace the background. Other applications

take advantage of SAM’s recognition quality, such as “identify all cats in this image”. None of these use cases is directly

applicable to fluvial pebble segmentation, but the trained SAM model provides unique capabilities to segment pebbles in

images with shadows or complex lighting. We leverage SAM because of its unique ability to segment a wide range of image365

types, including complex lightning conditions and conglomeratic boulders. Specific, custom-trained deep-learning models may

perform excellently for the settings they have been trained for, but often perform weaker when boundary conditions such as

light, color, size, and shape of pebbles change. The wide range of fluvial sediment shapes and their size range stretching
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over several orders of magnitude from mm (sand) to m-sized boulders provides a challenging training environment. To our

knowledge, no such training dataset exists, and it will be difficult to generate this given the complex lithologies and processes370

of mountain rivers.

SAM’s unique ability lies in its zero-shot inference. This means that SAM can accurately segment images without prior

specific training, a task that traditionally requires tailored models. This has been achieved by training the model with a large

number of images and generating a large number of parameters. In addition, a new model architecture with three decoupled

components: image encoder, prompt encoder, and mask decoder, provide an efficient framework where multiple tasks can be375

performed on an encoded image. The image encoder is responsible for processing and transforming input images into a com-

prehensive set of features. The encoder compresses the images into a dense feature array. This array forms the base from which

the model identifies various image elements and is the core output of the learning approach. The prompt encoder interprets

various forms of input prompts, such as text based, points, polygon masks, or a combination thereof. This encoder translates

the prompts into an embedding that guides the segmentation process. For example, a prompt can be a point that is clicked on a380

pebble that is then delineated. The density of points determines the number of objects that are segmented. The prompt encoder

enables the model to focus on specific areas or objects within an image. The mask decoder performs the actual segmentation

steps, and it synthesizes the information from both the image and the prompt encoders to produce a segmentation mask. Both

Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs) play an important role in the capabil-

ities of SAM. Although CNNs provide a robust method for feature extraction and initial image analysis, GANs are used to385

generate accurate and realistic segmentations.

A1 SAM: Workflow, Limits, and Strategies

This framework allows SAM to understand a wide array of visual inputs and respond with high precision. There are several

important boundary conditions to note when using SAM to process images for fluvial pebble segmentation. The input data for390

the delineation of the pebbles are usually large orthomosaics generated from hand-held cameras (e.g. Purinton and Bookhagen,

2021) or UAV images (Mair et al., 2022). SAM rescales all input images to 1024 x 1024 pixels to fit the transformer architecture

- a large image with several thousand pixels in width and length will be rescaled when processed by SAM. The prompt encoder

requires input points to identify objects. Input points can be thought of as a coarser raster draped over the input image to

identify points of interest: The finer the scale of this raster, the more grains may be detected (Figure 1). The standard SAM395

model applies 32 x 32 equally spaced input points in the standard, automated detection scheme. The transformer and prompt

encoder were optimized for a limited number of objects, not hundreds to thousands of objects per image, as would be the case

for pebbles on a large orthomosaic. A hardware limiting factor for the spacing of input points is GPU memory because high

input point densities (i.e. a closely spaced grid) will require a large amount of GPU memory (Figure A11). For example, a 1024

x 1024 image allows for a maximum of 73 points for each length and width (total of 5329 input points) with a 16 GB GPU.400

The reason for the high memory usage is that every input point results in three masks (whole, part, and subpart) at the original

input image resolution. This generates up to 15,987 masks if no filtering is applied, and SamAutomaticMaskGenerator
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needs to retain all generated masks in memory for post-processing steps. This multi-masks output (whole, part, and subpart)

is a SAM mechanism developed to tackle the ambiguity of defining an object (Figure 1). The input point density is thus a

limiting factor for densely packed object delineation. Only large and currently expensive GPUs (in the year 2025) can perform405

calculations with higher input point spacing, but detecting patches with multiple small object sizes will remain a challenge

with this approach.

Pebble detection through SAM is therefore limited by hardware resources. SAM has not been designed to detect densely

packed objects such as pebbles or sand in high-resolution images. A common strategy for image analysis with SAM is to

generate an input point grid that delineates objects at the input point location. In a second iteration, the point grid can be410

shifted to detect missed objects. An alternative strategy is to subset the original image. For example, a tiling approach allows

for increasing the number of objects detected: A 1024 x 1024 pixel image tiled into four 512 x 512 pixel images and then each

upscaled to 1024 x 1024 to fit the encoder will result in a denser spacing given the same original input point spacing. A third

strategy is to use an alternative method, such as manually clicking on the input point location, to identify a specific section

within the pebble. Manually clicked input points anywhere within a pebble will lead SAM to extract each pebble. This will415

turn SAM into a successful region-growing tool. Similar semi-automatic approaches were suggested by Purinton and Bookha-

gen (2019). Although this will significantly speed up pebble delineation as compared to manually delineating pebbles, it is an

unsatisfactory approach that does not take full advantage of automation procedures. In the presented approach, we develop a

tiling and resampling scheme to ensure that all parts of the image are covered and that pebbles are detected on various image

scales.420

Appendix B: Synthetic Pebble Generator

Synthetic scenes are generated at a resolution of 10,000 x 10,000 pixels to achieve a scale comparable to that of real-world

orthomosaics. Within these images, solid circles of random sizes are placed randomly. The placement process begins by

determining the size of each circle, where the radius (r) is randomly sampled from a uniform distribution over a predefined425

range [rmin, rmax]. Once the size is set, a random point in the image is selected as the centroid. Before placing the circle, we

check for potential overlap with existing circles to ensure that no circle will directly touch a neighboring circle (at least one

pixel distance). Without this gap, two touching circles of the same color would be indistinguishable, making it impossible to

segment them correctly as separate objects. If this requirement is not met, a new location is randomly selected. This process

continues until a valid placement is found or until 100 attempts have been made. If no valid placement is found after 100430

attempts, the circle is discarded. This process is repeated 5,000 times, which creates up to 5,000 solid circles. Due to the

randomized placement strategy, synthetic images generated with the same set of parameters may contain a different number of

circles. This approach ensures diversity in the dataset while maintaining a controlled testing environment.

Synthetic images were generated in B&W, colored, colored with noise settings, and shadowed settings. B&W scenes consist

of black backgrounds and white solid circles; they were created to determine the range of object sizes that can be accurately435
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segmented by SAM. The simplicity of B&W images allows us to isolate size as a key factor, minimizing the influence of

other variables. Filling solid circles with random colors provides us with noise-free colored synthetic scenes, which better

approximate reality. Based on the noise-free colored synthetic scene, we can further introduce different levels of Gaussian

noise to simulate digital noise. The level of noise introduced was controlled through the standard deviation parameter (σ) with

the mean set to 0. The introduction of noise creates a more realistic image, which enables us to assess the robustness against440

noise.

Examples of the synthetic pebble generator are shown in Figures 2 and S6. The source code of the synthetic pebble generator

is included in the github repository (https://github.com/UP-RS-ESP/OrthoSAM).

Appendix C: Methodology: Tiling of Input Images445

Internally, the SAM model will always rescale and pad the input images to a 1024 x 1024 pixel resolution. For images larger

than 1024 x 1024, such an operation will inevitably lead to a loss of information. For a 24 MP camera commonly found today,

the images typically have a resolution of approximately 6000 x 4000 pixels. To fit this image into a 1024 x 1024 box without

altering its aspect ratio will drastically reduce the megapixel count from 24 to roughly 0.7. A resolution of 0.7 MP is generally

sufficient for segmentation, especially considering that photos taken in daily life often feature clear, well-defined objects that450

occupy a significant portion of the image. This is no longer the case when we consider large orthomosaics with thousands or

more individual pebbles. A pebble of 100 x 100 pixels on a 20,000 x 20,000 pixels image will only occupy a 5 x 5 pixels

large box after rescaling the image to 1024 x 1024 pixels. As a consequence, smaller objects are more likely to be overlooked,

and larger objects may suffer from reduced masked quality (Figure 5). Even if we are willing to accept these compromises,

the image size also poses limitations on the number of detectable objects. A tiling approach is necessary for large images and455

images that contain a large number of objects.

Let w be the window size. By default, we tile images into 1024 x 1024 pixel patches, matching the input resolution of the

transformer. Tiling will inevitably cut through the samples (pebbles). Thus, between each adjacent tile, there is an overlap of B

pixels. This offers the additional advantage of a higher input point density, reducing the probability of overlooking objects. The

issue is that, unless there is a considerable amount of overlap, it is almost certain that window borders will cut through at least460

some pebbles. The result is a trace of artificially over-segmented pebbles along the tiling edges. To avoid this from happening,

masks will be discarded if they touch the window border. Additionally, a valid box was introduced for filtering to ensure that

only one mask would be generated for each sample. The valid box is a 1024−B x 1024−B window located in the center of

the tiles, so it should always be B
2 pixels away from the window edge. A mask will only be kept if at least 50% of the masked

pixels can be found inside the valid box. This can effectively avoid duplicating masks due to the overlap of windows at the cost465

that fairly sized samples may not be segmented at all. In Section 4.3, we will present how this issue can be solved.

Once tiled, each patch will be processed further. The final product will then be untiled and combined into a 2D-labeled mask.

21

https://doi.org/10.5194/egusphere-2025-4003
Preprint. Discussion started: 29 August 2025
c© Author(s) 2025. CC BY 4.0 License.



SAM is capable of delivering high-quality results straight out of the box, but it is also obvious that SAM was not intended

to delineate pebbles from large orthomosaics. A photo taken for photo-sieving differs from everyday photos in various ways.

Compared to everyday photos, it lacks a clear main subject, as most of the things captured in the image are the main subjects. It470

contains more objects than usual, which may be more densely packed and vary significantly in size. This leads to the challenge

of coming up with an input point grid that is capable of picking up all objects that we are interested in. A fine grid minimizes

the risk of missing smaller objects. However, it also causes larger objects to receive an excessive amount of input points. This

leads to a high number of duplicate masks. While this issue can be addressed using non-maximum suppression, this also leads

to an increased probability of over-/ under-segmentation. The increased likelihood of over-segmentation is a problem that non-475

maximum suppression cannot resolve. This issue stems from how SAM resolves the ambiguity of objects, which is to predict

three masks at three different levels (whole, part, and subpart). Although this tactic to tackle the ambiguity of objects is ef-

fective in handling objects with multiple layers, it also increases the likelihood of errors when segmenting single-layer objects

like pebbles. The placement of input points further contributes to this variability in the segmentation results. For example, if

we have a partially shadowed pebble where a third is in a shadow and the rest is properly lit, the differences in lighting will480

create a strong contrast. SAM may over-segment the pebble if the input point lands around the center of either part. With more

input points landing on the pebble, the likelihood of generating an over-segmented mask increases. In contrast, using a coarser

input point grid can mitigate this issue, but it will also increase the risk of missing smaller objects. For an experienced user,

it may be possible to identify the best or perfect point grid for a specific image based on the objects’ positions, sizes, and the

extent of variation between them. This is not favorable due to the time demands and human resources required. To achieve a485

higher level of automation, we developed an approach that improves the generation of input points.

Appendix D: Methodology: Improving Input Point Generation

With our approach, the first pass serves as an initial guess to extract all possible objects (Figure A1). This is accomplished

using the SamAutomaticMaskGenerator. We have slightly modified this function by removing several filtering steps to490

retain as many generated masks as possible. In this step, a key parameter to define is the number of input points per side npps.

Given npps, the SamAutomaticMaskGenerator generates an evenly spaced grid of npps x npps input points. Ideally, we

aim to have as many input points as the hardware allows. This can maximize the probability that every single object gets at

least one input point. The only trade-off is the increased computational cost and processing time. npps can be adjusted on the

basis of the minor axis length 2b of the smallest object expected. Let dmax be the maximum diagonal spacing between input495

points; dmax < 2bmin would guarantee that every object has at least one input point. Fewer input points are needed if objects

are sufficiently large or the image resolution is sufficiently high. For example, assuming that we have a 1024 x 1024 image

and the finest input point grid supported by the hardware is an evenly spaced 48 x 48 point grid, the minimum dmax will be

approximately 30 pixels. If objects with a minor axis length smaller than 30 pixels are neither expected nor of interest, a 48 ×

48 point grid is sufficient.500
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However, in practice, we are more likely to encounter the opposite situation, where small objects are also relevant. A finer

point grid will then be necessary to ensure that all objects will be captured. That said, using a finer point grid requires more

GPU memory, which might exceed available resources. When hardware limits are reached, increasing tile overlap can be a

viable solution to further increase input point density. Within the overlapping regions, the number of input points increases

in proportion to the number of overlapping tiles, effectively increasing the density of the input points, provided that b is not505

a multiple of the grid spacing s. When b is a multiple of the grid spacing s, it can result in overlapping input points, which

will not increase the actual number of effective input points. As an alternative, resampling the image to a finer resolution can

enlarge objects, reducing the likelihood that objects fall through the gaps between input points.

Once the point grid is generated, each point on the grid serves as an input prompt for SAM. SAM will then generate 3

mask predictions at each point. Among them, the mask with the highest predicted quality score is selected as the final product510

if it meets the following requirement: the percentage of the tile covered by the selected mask must not exceed the threshold

tmax_coverage.

By default, tmax_coverage is 0.4, meaning that a mask must not cover more than 40% of the tile. This constraint helps to filter

out background regions. If the mask with the highest quality score exceeds tmax_coverage, the mask with the next highest quality

score that meets the requirement will be selected instead. Afterward, all selected masks will go through 2 additional filtering515

steps to filter out masks generated in areas without values and masks smaller than the minimum size threshold tmin_size. With a

sufficiently fine grid, the initial guess provides us with all the masks SAM can see within the tile. At this stage, most generated

masks should already align well with the actual object boundaries. However, not all are likely to be. Identifying and filtering

these errors is challenging.

Through testing, we observed that the mask with the highest quality score frequently provides the most accurate segmentation520

for objects with simple structures such as pebbles. This tendency provides the opportunity to assess the regional uncertainty of

segmentation. The first step is to stack all remaining masks together to group the overlapping masks. A minimum intersection

threshold tmin_intersec can be defined to prevent grouping masks that merely touch. By default, tmin_intersec is set to 1000

pixels. Each remaining group will then be concatenated depth-wise and averaged pixel-wise. The result is a 2D array with

values ranging from 0 to 1. This value can be seen as the uncertainty of segmentation, as it represents how certain SAM is525

of this pixel. With the assumption that under- and over-segmentations are minor cases, this value allows us to merge over-

segmentation and disconnect under-segmentation.

To explain this point, envision two settings: one with under-segmentation and one with over-segmentation. For the under-

segmentation, a smaller object neighbors a larger object. Due to the under-segmented mask, which identified both objects as a

single object, they were grouped. In this situation, the larger object will likely have a higher confidence value because it has530

more space for more input points. Thresholding the confidence value would then allow us to separate the high-confidence area

and the low-confidence area. In the ideal case, the 2 objects will be nicely separated.

Now, let us consider a second case where we observe over-segmentation. As long as over-segmented masks do not largely

outnumber accurately segmented masks, over-segmented masks will be outvoted by properly segmented masks. Certainly,

exceptions may exist. Thus, we do not use these regions as masks directly. Instead, they serve as the basis for refining the535
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input points. Specifically, we use the centroid of each region as a new input point to prompt SAM. Among the 3 output masks

generated at each new input point, we again select the one with the highest quality score, provided that the window coverage

does not exceed tmax_coverage and the size exceeds tmin_size. The results of the second-pass segmentation will be combined

with masks from the first pass that do not overlap with any other mask. Although unlikely, non-maximal suppression will be

applied again afterward to ensure that there are no duplicate masks. In Figure A1, we show the comparison between the initial540

guess and the refined input points. In this example, we applied a confidence threshold of 0.5.

Appendix E: Methodology: Segmentation Passes at Multiple Resolutions

By design, this approach has an inherent limitation, which is that the detectable size is artificially capped. Here, two variables

play a role. Firstly, the window size w limits the maximum size that can be fully captured in a tile. Secondly, the maximum545

window coverage tmax_coverage limits the maximum size of a mask that can be deemed valid. Furthermore, even if an object

can fit inside the w x w window, depending on the location of the object and the amount of overlap between tiles, it is possible

that there is not a single tile that fully captures it. Although these measures were introduced to ensure the quality of the results,

they also impose an upper limit on detectable sizes.

Since tmax_coverage is defined as the maximum percentage of the window that a mask is allowed to cover, the primary550

factor determining the range of detectable sizes is ultimately w, which should ideally remain fixed at 1024. Because the actual

physical size of the objects cannot be changed, resampling is the only viable solution to scale the object to a smaller pixel size.

Thus, this limitation can be addressed by performing segmentations at multiple resolutions. Each resolution would correspond

to objects up to a certain size. The final results can then be merged to ensure that objects of all sizes were delineated (Figure

4). Each full segmentation of the entire image at a given resolution is referred to as a pass.555

During the merging of two resolution passes, we first identify areas where no mask was found in the first resolution pass.

These areas are compared with masks from the second resolution pass. The masks within these areas will only be merged into

the final result if at least 85% of them do not overlap with the masks of the first resolution (Figure 6). While this effectively pre-

vents duplication, it also gives earlier resolution passes priority over later resolution passes. Thus, we imply that the resolution

of the first pass is the most relevant.560

Consider the two resolution passes to be fine resolutions and coarse resolutions. With a fine-coarse combination, the mask

generated using fine resolution will align better with the actual object boundary than the coarse-resolution mask due to aliasing.

Small- to medium-sized objects can be accurately delineated in the fine-resolution pass, but objects above the size cap will be

discarded. During the coarse resolution pass, medium- to large-sized objects can be fully captured, and the mask can be

retained. Some objects may be found in both passes. In such cases, masks generated at earlier passes will be given priority and565

kept in the final result. Due to this prioritization, with a fine-coarse setting, the reduction of mask quality due to aliasing can be

reduced.
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Table A1. Summary of parameters used to generate three sets of synthetic images with 10,000 x 10,000 pixels each.

Purpose rmin rmax Color σ (Inclination, azimuth) No. of images

Detection limit 2, 4, 8, 32, 64 3000 B&W — — 5

Detection limit 1 10, 100, 1000 B&W — — 3

Noise - standard 2 1500 Colored
0, 3, 12, 24, 48,

96, 128, 192
— 8

Noise - small sample 1 10 Colored
0, 3, 12, 24, 48,

96, 128, 192
— 8

Shadow 12 1500 Colored —

(50°, 0°), (50°, 90°), (50°, 180°), (60°,

0°), (60°, 90°), (60°, 180°), ((70°, 0°),

(70°, 90°), (70°, 180°), ((80°, 0°), (80°,

90°), (80°, 180°)

24

We emphasize that this approach is not restricted to reducing resolution (a fine-coarse combination). By design, it can

accommodate any resolution order. The key is that the order sets the priority in the merging of different resolution passes.

In a coarse-fine setting, the mask generated in the coarse resolution pass will instead be kept in the final result. As a side570

product, blurring will be introduced when resampling to a coarser resolution. It will smooth the texture and reduce the chance

of over-segmentation. Thus, the advantage of a coarse-fine combination is to further minimize over-segmentation.

Although two resolution passes should be sufficient for most common scenarios, additional layers can be introduced to han-

dle an image with a wide range of object sizes. While this will increase the processing time, it mitigates the aliasing effects

that arise from resampling coarse-resolution masks back to the original resolution. Intermediate resolution passes can thus help575

preserve segmentation quality for larger objects.
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Table A2. Summary of OrthoSAM parameters used for the segmentation of synthetic images and Ravi orthomosaics.

Parameter Synthetic images Ravi2 Ravi3 Ravi4

SAM checkpoint sam_vit_h_4b8939 sam_vit_h_4b8939 sam_vit_h_4b8939 sam_vit_h_4b8939

Model ViT_Huge ViT_Huge ViT_Huge ViT_Huge

Tile size (w, pixels) 1024 1024 512 512

First resolution resample factor a 1 1
4

1
4

1
4

Second resolution resample factor a 1
12

1
10

1
25

1
10

Input points per side 30 30 30 30

Dilation kernel size (pixels) 15 15 15 15

Overlapping (B, pixels) 400 400 200 200

Stability score threshold (tstab) 0.85 0.85 0.85 0.85

Image resolution b (mm/pixel) 0.2 0.2 0.2 0.2

Expected minimum size (tmin_size, mm2) 0 100 100 100

Minimum radius 0 10 10 10

a Scale factor along both horizontal and vertical axes.
b For the synthetic images, resolution is used only to convert the expected minimum size from metric units to pixels.
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Table A3. Colored synthetic scenes and their OrthoSAM delineated object count using the described tiling and merging approach sorted by

their noise levels (σ).

OrthoSAM segment count (ns) sorted by noise level (σ)

Baseline scene Label count (nl) 0 3 12 24 48 96 128 192

small sample 5000 1620 1638 1879 2599 4280 8647 9739 9331

standard 2879 2297 2322 2408 2470 2653 3279 3551 3763
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Table A4. Detection quality evaluation of colored synthetic scene segmentation with two-sample Kolmogorov-Smirnov test (K-S) and mean

IoU. K-St is thresholded by the detection limit (diameter > 30 pixels). Small sample scene (SS): [rmin, rmax] = [01,10], nl = 5000. Standard

scene (ST): [rmin, rmax] = [01,10], nl = 2879. SS has no sample after thresholding.

Scene ID σ OrthoSAM TP FP FN Precision Recall F1 Mean IoU K-S D K-S p K-St D K-St p

SS000 0 1620 1605 15 3395 0.99 0.32 0.48 0.86 0.32 0.00 — —

SS003 3 1638 1611 27 3327 0.98 0.32 0.49 0.86 0.31 0.00 — —

SS012 12 1879 1673 206 3327 0.89 0.33 0.49 0.84 0.32 0.00 — —

SS024 24 2599 1658 941 3342 0.64 0.33 0.44 0.85 0.35 0.00 — —

SS048 48 4280 1632 2648 3368 0.38 0.33 0.35 0.85 0.34 0.00 — —

SS096 96 8647 1615 7032 3385 0.19 0.32 0.24 0.82 027 0.00 — —

SS128 128 9739 1679 8060 3375 0.17 0.34 0.23 0.78 0.27 0.00 — —

SS192 192 9331 1654 7677 3346 0.18 0.33 0.23 0.75 0.28 0.00 — —

ST000 0 2297 2290 7 589 0.99 0.80 0.88 0.97 0.14 0.00 0.03 0.50

ST003 3 2322 2308 14 571 0.99 0.80 0.89 0.98 0.14 0.00 0.03 0.55

ST012 12 2408 2389 19 493 0.99 0.83 0.87 0.97 0.13 0.00 0.02 0.66

ST024 24 2470 2401 69 478 0.97 0.83 0.87 0.97 0.12 0.00 0.03 0.50

ST048 48 2653 2405 248 474 0.91 0.84 0.87 0.97 0.10 0.00 0.03 0.31

ST096 96 3279 2416 865 493 0.74 0.84 0.79 0.96 0.09 0.00 0.04 0.03

ST128 128 3551 2386 1165 495 0.67 0.83 0.74 0.95 0.13 0.00 0.06 0.00

ST192 192 3763 2366 1397 513 0.63 0.82 0.71 0.92 0.15 0.00 0.08 0.00
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Table A5. Ravi image performance assessment with the number of detected pebbles.

Image OrthoSAM TP FP FN Precision Recall F1

Ravi2 974 826 148 27 0.85 0.97 0.90

Ravi3 3232 3059 173 215 0.95 0.93 0.94

Ravi4 1881 1797 84 113 0.96 0.94 0.95

All 6087 5682 405 355 0.93 0.94 0.94
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Table A6. Grain size data example output. The grain size dataframe contains the x and y coordinates of the centroid, the area (mm2), a-axis

length (mm), b-axis length (mm), perimeter (mm), normalized isoperimetric ratio (IRn), mean RGB values, and median RGB values. Instead

of RGB, color statistics can also be calculated for other color spaces by converting the input image.

ID centroid x centroid y Area a-axis length b-axis length Perimeter IRn Mean RGB Median RGB

1 270.48 9965.87 14059.52 249.08 84.78 812.69 0.40 [139.60, 139.02, 135.30] [143, 142, 139]

2 461.37 10350.90 11499.52 195.58 76.81 566.23 0.61 [99.22, 100.77, 100.94] [101, 103, 104]

3 615.32 10575.55 8488.96 142.13 83.13 501.76 0.47 [23.01, 28.38, 33.73] [21, 26, 32]

... ... ... ... ... ... ... ... ... ...
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Figure A1. Input point generation workflow. Using the SamAutomaticMaskGenerator (SAMG), the initial 48 x 48 equally spaced

input points (A) generate an output mask (C) with larger pebbles showing multiple masks; (B) The improved workflow refines the input point

to one input point per object to reduce mask count and optimize GPU memory usage. The number of multiple mask counts due to multiple

input points is greatly reduced through our modified approach. This is a prerequisite step to successfully apply SAM to large orthomosaics.
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Figure A2. A characteristic example using SAM’s capability to delineate a single pebble with a single input point. The image has 1024 x

1024 pixels with a resolution of 0.2 mm/pixel. SAM produces three output results termed masks (whole, part, and subpart masks). When a

single mask is desired, the SAM developer team recommended selecting the mask with the highest IoU prediction. The SamPredictor

has the option to output a single mask only (A), which will be the first mask predicted. As the single mask output option does not always

return the mask with the highest IoU score, it is recommended to use the multiple mask output option and select the mask with the highest

IoU score. This sample illustrates the variety of output masks generated by SAM for a single prompt point.
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Figure A3. Cumulative grain size distribution of the three Ravi scenes. (A) area distribution; (B) major axis distribution; (C) minor axis

distribution.
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Figure A4. Precision and recall of segmentation of the synthetic color scene. Small sample scene (nl = 5000): [rmin, rmax] = [01,10].

Standard scene (nl = 2879): [rmin, rmax] = [01,10]. The small sample scene is created to simulate densely packed small objects, and the

standard scene is created to simulate Ravi orthomosaics. σ describes the Gaussian noise level.
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Figure A5. Binned precision and recall for colored synthetic scenes with noise. Labels are grouped by diameter into 3-pixel bins to compute

recall within each range. a Precision; b Recall. Three level of noise were applied and visualized to provide a reference. c) Minimal noise:

σ = 3; d) Strong noise: σ = 96; e) Extreme noise: σ = 192.
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Figure A6. Effect of noise level σ on binned median IoU of colored scenes. IoU was sorted by label size and binned every 50 samples to

calculate the median and IQR. The symbol marks the mean area within the bin. The shadowed area indicates the IQR.
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Figure A7. Probability of valid detection assuming tile overlap of 100 pixels and maximum probability of valid detection assuming an object

radius equals tile overlap. Objects are assumed to be perfectly circular when calculating the probability.
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Figure A8. Binned precision and recall of synthetic objects partially and completely in shadows (n=27,528 pebbles). Labels are grouped by

diameter into logarithmic bins to compute precision and recall within each bin.
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Figure A9. IoU statistics to measure mask quality. Labels are separated into partially in shadow and completely in shadow, sorted by size,

and binned every 100 objects to calculate the median and IQR of IoU.
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Figure A10. Normalized isoperimetric ratio (IRn) of the three Ravi orthomosaics. IRn was sorted by label size and binned every 50 samples

to calculate the median and IQR. The points identify the mean area within the bin.
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Figure A11. Memory demand for 1024 x 1024 pixel image by the number of input points per side (npps) and the diagonal distance between

input points. This estimate is based on the memory required to store n2
pps x 3 binary masks in the memory. However, the actual memory

requirement may be higher due to additional overheads not accounted for in this calculation.
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