Supporting Information for ## The changing composition of the Gulf of St. Lawrence inflow waters observed from transient tracer measurements Lennart Gerke^{1,5}, Toste Tanhua¹, William A. Nesbitt², Samuel W. Stevens^{3,4}, Douglas W. R. Wallace² ¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, 24148, Germany ²Department of Oceanography, Dalhousie University, Halifax, B3H 4R2, Canada ³Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, V6T 1Z4, Canada ⁴Hakai Institute, Heriot Bay, British Columbia, V9W 0B7, Canada ⁵[C]Worthy, LLC, Boulder, CO, 80302, USA ## **Supplementary Materials** Figure S1: Atmospheric concentrations of the two transient tracers used in this study. CFC-12 (blue) with its by now decreasing atmospheric concentration and SF_6 (red) with steadily increasing concentrations since 1960. Both tracer concentrations are represented in ppt (parts per trillion) here. Figure S2: LCW fraction on the σ_{Θ} = 27.26 kg/m³ isopycnal deep water in the Laurentian Channel from θ and S_p observations plotted in a map. The red x's representing 0 % LCW fraction. Figure S3: Display of the TreX 2 and shifted TreX4 data of (a) CFC-12 concentrations and (b) SF₆ concentrations. Each with a zoom into the area around the $\sigma_\Theta = 27.26~kg/m^3$ isopycnal, showing a large amount of comparable datapoints. Figure S4: Display of the relationship between calculated and measured CFC-12 against PSF₆ concentrations using a ratio of Δ/Γ =1.8 for the calculation of the CFC-12 concentrations. Figure S5: Display of the relationship between calculated and measured CFC-12 against PSF₆ concentrations using a ratio of Δ/Γ =0.2 for the calculation of the CFC-12 concentrations.