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Abstract. Extreme weather events present growing challenges as climate changes. “Weather Jiu-Jitsu” is a proposal 

to nudge atmospheric circulation to redirect or defuse these extreme events by leveraging the sensitivity of chaotic 

atmospheric dynamics to initial conditions. We demonstrate an optimal control strategy to stabilize two low-order 10 

models of atmospheric dynamics, the Lorenz 63 (L63) and Lorenz 84 (L84). Estimated local Lyapunov exponents 

(LLE) are used to decide when to apply control. In L63, regime transitions are treated as model analogs of persistent 

circulation states of concern, while in L84, large eddy amplitudes serve as conceptual surrogates for synoptic-scale 

moisture transport events such as atmospheric rivers. The timing and amplitude of nudges is solved over a forecast 

horizon to minimize the total energy applied, while ensuring that the trajectory remains within predefined bounds to 15 

avert undesirable consequences. We explicitly incorporate multiplicative noise, randomly selecting a trajectory from 

an ensemble forecast to apply control, thus reflecting the mismatch between model and reality that would arise in 

operational applications. 

1 Introduction 

Climate change is intensifying extreme events such as droughts, floods, heat waves, and freezes, causing severe global 20 

socio-economic impacts (Robinson et al., 2021). These effects are further exacerbated by growing populations and 

increasing economic activity (Mario et al., 2024). While current strategies or policies such as decarbonization and the 

energy transition can reduce greenhouse gas emissions, they do not directly mitigate the immediate risks posed by 

extreme weather events (Zhao, 2025). Approaches like weather modification and geoengineering require vast amounts 

of energy and are hindered by significant technical and ethical concerns (Sugiyama et al., 2025; Yeh, 2025). 25 

Meanwhile, scaling aging and inadequate physical, financial, and social infrastructure to enhance resilience remains 

a formidable challenge (Hwang and Lall, 2024). These challenges are complicated by the difficulty in predicting the 

underlying atmospheric processes that drive extreme weather, particularly persistent atmospheric blocking patterns 

associated with anomalous jet stream behaviour and synoptic scale eddies in the mid-latitudes (Nabizadeh et al., 2019; 

Han and Singh, 2021; Aemisegger et al., 2021; Kim et al., 2024). 30 

 

We propose an initiative (Huang et al., 2025) we call “Weather Jiu-Jitsu” to mitigate weather extremes by defusing or 

redirecting atmospheric circulation trajectories using recurrent nudging with small perturbations that leverages the 
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underlying nonlinear dynamics to amplify the effect of the nudges. For our purposes, we view Lorenz 63 model regime 

shifts as conceptual analogs of persistent circulation anomalies, while in Lorenz 84 model we associate high eddy 35 

amplitudes with surrogates of synoptic-scale features such as atmospheric rivers. These are not meteorological 

extremes, but they provide testbeds for asking whether such states can be suppressed or redirected in a controlled 

setting. This differs from prior chaos control studies, which typically focused on trajectory stabilization without 

reference to physically motivated extreme states. 

 40 

The Lorenz 63 (L63) model, emerged from a collaboration between Edward Lorenz and Barry Saltzman and is a 

notable conceptual example in chaos theory and atmospheric dynamics (Saltzman, 1959; Lorenz, 1963; Saltzman, 

1957). L63 exhibits sensitive dependence to initial conditions, and given the shape of its attractor, it led to the well-

known expression “butterfly effect” (Lorenz, 1963; Glasner and Weiss, 1993).  

 45 

The Lorenz 84 (L84) model represents mid-latitude atmospheric circulation under external forcing by the equator to 

pole temperature gradient and land ocean temperature contrast. The forcing can consider seasonal variability and El 

Nino Southern Oscillation (ENSO) dynamics (Lorenz, 1984; Broer et al., 2002; Karamperidou et al., 2012). It captures 

certain features of atmospheric behaviour that underlie extreme weather, including jet stream oscillations and eddy 

dynamics (Madonna et al., 2017; Lorenz, 1990; Faranda et al., 2019). These models serve as conceptual testbeds for 50 

understanding how weather and climate system can shift into hazardous states and how targeted interventions might 

delay or deflect such shifts (Palmer, 2006; Macmynowski, 2010; Shen et al., 2021; Saiki and Yorke, 2023).  

 

Chaos control techniques have been applied across various fields, including weather and climate systems (Hoffman, 

2002; Miyoshi and Sun, 2022). For example, Control Simulation Experiments (CSE) and Model Predictive Control 55 

(MPC), coupled with data assimilation, have been developed to keep the L63 system confined to one wing of the 

butterfly attractor with control and optimization algorithms, demonstrating successful control outcomes (Ogorzałek, 

1994; Ouyang et al., 2023; Kawasaki and Kotsuki, 2024; Nagai et al., 2024; Mitsui et al., 2025). One of the first 

methods is the Ott-Grebogi-Yorke (OGY) method, which stabilizes chaotic trajectories by applying small 

perturbations to system parameters when the system naturally approaches an unstable periodic orbit embedded within 60 

the chaotic attractor (Ott et al., 1990; Grebogi and Lai, 1997). Adaptive targeting methods guide chaotic systems 

toward desired states using observed trajectories and feedback perturbations (Boccaletti et al., 1997; Bollt, 2003). 

Time-delayed Feedback Control stabilizes unstable periodic behaviour by applying a correction based on the 

difference between the system’s current state and its own state at a previous time (Pyragas and Pyragas, 2006; 

Postlethwaite and Silber, 2007; Purewal et al., 2016; Ding and Lei, 2023). Sliding Mode Control approach has also 65 

been applied to the L63 model. It forces the system’s state to reach and stay on a predefined surface in the state space 

(Yu, 1996; Yang et al., 2002; Yau and Yan, 2004).  

 

The past work signals the potential for ‘Weather Jiu-Jitsu’. Here, we benchmark an approach that considers an 

ensemble of trajectory evolution, and the role of “dynamical” noise and thus account for stochastic aspects. These 70 

https://doi.org/10.5194/egusphere-2025-3997
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 3 

considerations allow a more realistic assessment of an adaptive control strategy than has been done in prior work on 

idealized models. Instead of applying persistent interventions at every time step, we introduce a method that activates 

control only when a potential regime shift is detected, using real-time evaluation of the stability of the state space, as 

measured by local Lyapunov exponents (LLE) (Eckhardt and Yao, 1993; Guégan and Leroux, 2009). Once triggered 

by a LLE that exceeds a specified threshold, we solve a constrained optimization problem over a specified forecast 75 

horizon, to solve for minimal energy perturbations required to direct the system into a desired regime. The strategy is 

implemented and then re-evaluated at each forward time step, randomly choosing a trajectory from the ensemble 

generated upon implementation. This approach not only ensures efficient use of control energy resources but also 

enhances realism by respecting physical limits and maintaining the system’s inherent variability. 

2 Methods 80 

Our approach is developed and demonstrated on both Lorenz models, though with slightly different objectives. With 

the L63 model, we consider a goal to keep the trajectories confined to one wing of the butterfly, representing regime 

control. The intention was to show that our approach is effective, even in the presence of noise. With the L84 model, 

we consider that strong eddies would represent potentially extreme tropical moisture exports or atmospheric rivers 

and seek to limit their amplitude by perturbation. This is a more complex forced system, and this experiment gets a 85 

little closer to the idea of controlling weather extremes in an idealized environment.  

2.1 Lorenz Systems 

The Lorenz 1963 (L63) model (Lorenz, 1963) was originally developed to represent atmospheric convection and 

comprises the following three equations: 

𝑑𝑥

𝑑𝑡
=  𝜎(𝑦 −  𝑥) ,           (1) 90 

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦          (2) 

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 − 𝛽𝑧 ,           (3) 

Here, x corresponds to the intensity of convective motion, while y and z represent horizontal and vertical temperature 

differences. The parameters 𝜎, ⍴, and β govern the strength of coupling and dissipative processes. The system exhibits 

a distinctive butterfly-shaped attractor, with trajectories chaotically switching between two "wings," each 95 

corresponding to quasi-stable atmospheric regimes. These regime switches iconify transitions between different 

climate or weather patterns. The L63 model is widely used in chaos control research, allowing benchmarking of control 

strategies. 

 

We consider the two wings of the attractor as two climate regimes and implement a control strategy that steers the 100 

system's trajectory toward one desired regime. This represents a form of anticipatory intervention to avoid undesirable 

futures, such as the onset of extreme weather scenarios. The L63 trajectories are simulated with a fourth-order Runge-
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Kutta scheme with a fixed time step of Δt=0.01, and standard parameter values (𝜎 = 10.0, ⍴ = 28.0, β = 8/3). For the 

initial experiment, the initial state [8.20747939, 10.0860429, 23.86324441] is taken from a previous paper (Miyoshi 

and Sun, 2022), which is selected for its relatively stable behaviour at early stages. We constrain the active state space 105 

to be (x, y, z) ∈ [(0, 10), (0, 20), (0, 30)]. For each experiment, we consider a total evolution of 2000 time steps from 

the initial condition. 

 

The Lorenz 1984 (L84) model is a truncated representation of large-scale atmospheric dynamics at mid-latitudes 

(Lorenz, 1984; Van Veen, 2003; Freire et al., 2008), with the dynamics defined by the following sets of ordinary 110 

differential equations. 

𝑑𝑋

𝑑𝑡
= −𝑌2  − 𝑍2 − 𝑎𝑋 +  𝑎𝐹 ,         (4) 

𝑑𝑌

𝑑𝑡
 =  𝑋𝑌 − 𝑏𝑋𝑍 − 𝑌 +  𝐺         (5) 

𝑑𝑍

𝑑𝑡
=  𝑏𝑋𝑌 + 𝑋𝑍 − 𝑍,          (6) 

Here, X represents the strength of the zonal jet stream, Y and Z describe the amplitudes of the cosine and sine phases 115 

of eddies. Nonlinear interaction terms (XY, XZ) represent the amplification of eddies through energy exchange with 

the jet stream, while –Y² and –Z² in the X-equation indicate energy loss from the jet due to this amplification. The 

terms –bXZ and bXY represent the advection or displacement of the eddies by the mean flow, with b > 1 implying 

faster displacement than amplification. Linear damping terms reflect mechanical and thermal dissipation, with time 

scaled so that the eddy damping rate is unity and the zonal flow damping rate is scaled by a factor a < 1. This non-120 

autonomous model includes two external forcing parameters: the equator to pole temperature gradient (F), and the 

land–ocean temperature contrast (G). These can be allowed to vary in time to represent seasonality of forcing, and can 

also be coupled to ENSO models to reflect the atmospheric forcing due to different ENSO phases (Karamperidou et 

al., 2012). In the present work, we considered them to be particular seasonal condition.  

 125 

Synoptic and low-frequency eddies are the primary drivers of ocean-to-land moisture transport in the extratropics with 

Atmospheric Rivers (ARs) representing concentrated channels of such transport largely formed by synoptic eddies 

(Zhu and Newell, 1998; Newman et al., 2012). Motivated by this, we implement a control strategy in the L84 model 

by constraining the combined eddy amplitude, measured as the sum of the absolute values of Y and Z to remain below 

a prescribed threshold, as described in Section 3.4. This approach aims to mimic the suppression of excessive eddy 130 

activity that may lead to ARs. The L84 trajectories are also simulated with a fourth-order Runge-Kutta scheme with a 

fixed time step of Δt=0.01, employing standard parameter values (F=8.0, a=0.25, b=4.0, G=1.0). 

2.2 Local Lyapunov Exponents 

The solution space of Lorenz models can be considered as a nonlinear dynamical map, where the future state depends 

in a complex and sensitive way on the current one. We develop a surrogate dynamical map to approximate both the 135 

L63 and L84 dynamics (see Supporting Information S1).  
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Forecasts of chaotic systems are characterized by the exponential divergence of nearby trajectories. The rate of this 

divergence is quantified by the Lyapunov Exponent (LE) (Liapounoff, 1907; Wolf et al., 1985). A positive LE 

indicates that nearby trajectories will diverge with time, while 0 or negative values reflect stability. We focus on the 140 

local Lyapunov exponent (LLE), which evaluates divergence rates over short time intervals and localized regions of 

the state space, enabling the detection of transient instability and regime shifts in real time (Eckhardt and Yao, 1993; 

Guégan and Leroux, 2009). If the LLE is positive an appropriately placed perturbation may amplify in the desired 

direction, while if the LLE is 0 or negative, changing the trajectory by perturbation may require substantial energy 

input. Further, in the positive LLE situation, even after perturbation the trajectories are wont to diverge so tracking 145 

the actual trajectory that emerges over an operational forecast and control horizon and refocusing it becomes 

necessary.  

 

Metrics such as the finite-size Lyapunov exponent (FSLE) and finite-time Lyapunov exponent (FTLE) have been 

developed to quantify predictability over spatial scales or finite durations respectively (Lapeyre, 2002; Aurell et al., 150 

1997). These would be useful once we consider spatially extended systems.  

 

To assess local instability, we compute the LLE using the Jacobian matrix of the surrogate system represented by the 

map. For a dynamical system of the form ẋ = f(𝑥(t)), where 𝑥∈𝑅𝑛 is the state vector and f is a nonlinear vector field, 

the Jacobian matrix 𝐽(𝑥) is defined as: 155 

𝐽(𝑥) =
∂𝑓

∂x
=  

[
 
 
 
∂𝑓1

∂x1
⋯

∂𝑓1

∂x𝑛

⋮ ⋱ ⋮
∂𝑓𝑛

∂x1
⋯

∂𝑓𝑛

∂x𝑛]
 
 
 

          (7) 

To detect instability, we compute the largest real part of the eigenvalues of the Jacobian as LLE: 

𝜆(𝑥) =  𝑚𝑎𝑥(ℜ(𝑒𝑖𝑔𝑣𝑎𝑙𝑠(𝐽(𝑥))))          (8) 

2.3 Experiment Design 

The overall workflow (Figure 1) follows a structured pipeline consisting of state evolution, instability detection, 160 

control optimization, and performance assessment. 

 

We first calculate the LLE of the current state. If the LLE remains below a prescribed threshold, no control is exercised. 

If the LLE goes above the threshold, the control mechanism is triggered. We generate 50 ensemble members adding 

Gaussian noise, in order to account for uncertainty in both the system evolution and model predictions. From this 165 

ensemble, one member is randomly selected as the control target, and the optimization algorithm for control is applied 

to it. The optimization seeks to minimize the total energy used for control by selecting a bounded perturbation 

sequence. The trajectory is evolved using the sequence, with a random member of the ensemble picked at every time 

step, and the LLE criteria checked at every step to decide if the optimization should be performed again.  
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 170 

The white noise amplitude is proportional to the output of the map as the current state, to account for model 

imperfections and observational uncertainty. Before applying the control, the resulting trajectory is re-evaluated over 

a short verification horizon. If the trajectory remains within the specified bounds, the control is accepted and applied. 

If not, the optimization is repeated up to a maximum number of attempts. If no successful control is found, the one 

with the lowest cumulative constraint violation is applied as a fallback. 175 

 

Figure 1: Workflow of Control Framework  

The perturbation is quantified by ut, and the control energy is defined as ut
2. For performance assessment, we compute 

the ratio of control energy to total system energy at each time step. This ratio is given by: 

𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐸𝑡𝑜𝑡𝑎𝑙
= 

𝑑𝑥2 + 𝑑𝑦2+ 𝑑𝑧2

𝑋2+ 𝑌2+𝑍2           (9) 180 

where (dx, dy, dz) represents the control perturbation vector, and (X, Y, Z) is the system state at the moment of control 

application. This metric allows us to evaluate the efficiency and subtlety of the intervention. 

2.4 Optimized Control on Triggering 

The control objective is to minimize the total energy applied via perturbations over the control horizon (typically 

specified as 10 time steps). The decision variables are the magnitude of the state perturbations calculated as the 185 

Euclidean norm of the perturbation vector at time t. 

min
𝛿𝑋𝑡

∑ (𝑢𝑡
2  +  𝜆 ∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡,𝑗(𝑋𝑡

3
𝑗=1 ))𝑇

𝑡=1          (10) 

𝑢𝑡 = ‖𝛿𝑋𝑡‖2, 𝑡 = 1,… , 𝑇         (11) 
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For each time step over the control horizon, a random noise term is injected into the model dynamics with the 

magnitude of m. To maintain feasibility, the magnitude of the control input is also constrained by a maximum 190 

allowable perturbation magnitude Dmax to prevent unrealistically large perturbations. 

𝑋𝑡 = 𝑓(𝑋𝑡−1) +  𝜀𝑡 ,   𝜀𝑡 ~ 𝑁(0, 𝑚 ∙  |𝑋𝑡−1|)   ,       (12) 

𝑢𝑡  ≤  𝐷𝑚𝑎𝑥 , 𝑡 = 1,… , 𝑇          (13) 

The resulting trajectory is required to lie within prescribed bounds to effect control. A penalty is added for each 

component of the forecasted state that violates its respective safety range, defined by lower and upper limits, 𝑙𝑗 and ℎ𝑗. 195 

The penalty weight λ governs the trade-off between minimizing control effort and enforcing state constraints.  

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑡,𝑗 = {

𝑙𝑗 − 𝑥𝑡,𝑗 , 𝑖𝑓 𝑥𝑡,𝑗  <  𝑙𝑗
𝑥𝑡,𝑗 − ℎ𝑗 , 𝑖𝑓 𝑥𝑡,𝑗  >  ℎ𝑗

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ,        (14) 

This model is solved using the Sequential Least Squares Programming (SLSQP) optimization algorithm (Kraft, 1988). 

If needed, the re-optimization is executed up to 8 times at a particular time step..  

 200 

We do not consider data assimilation, but track the actual evolution of the system by randomly sampling a trajectory 

from the potential ensemble at each time step, and re-initiating the process from that condition. We have considered a 

chance constrained or probabilistic constraint set as an alternative, but decided to use the approach presented here 

since it allows us to directly mimic what may happen under sequential application of a strategy in practice.  

3 Results 205 

We present the application of the schema from the previous section to the L63 and L84 experiments.  

3.1 Control of L63 Effectively Suppresses Regime Transitions 

The proposed control framework confines the L63 trajectory to one wing of the attractor, eliminating transitions 

between regimes. In the uncontrolled simulation, the system frequently switches between the two wings of the Lorenz 

attractor, reflecting the inherent chaotic nature of the model. When the control strategy is applied, these transitions are 210 

suppressed, and the trajectory remains on a single wing for the duration of the 2000-step simulation (Figure 2 (a, b) 

and Supporting Information S3). Control interventions were triggered at only 201 time steps, with most perturbation 

magnitudes below 0.5. The control energy, measured as a percentage of total system energy, remained under 0.03% 

in nearly all cases (Figure 2 (c, d)). These results highlight the controller’s ability to maintain the system in a stable 

regime using minimal and optimized interventions. 215 
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Figure 2: Comparison of natural (a) and controlled (b) L63 trajectories. (c) shows the magnitude of perturbations applied 

at each step, and (d) displays the ratio of control energy to total system energy over time.  

3.2 Infeasible Control Given Initial Condition Scenario 

The initial state [1, 1, 1] lies near the boundary separating the two wings of the L63 attractor wings, a location known 220 

to be highly sensitive to perturbations. In this case, the natural trajectory exhibits rapid transitions between regimes, 

making stabilization difficult (Figure 3). The controller struggles to suppress this instability due to the constraint on 

maximum allowable perturbation. Control was triggered 214 times (compared to 201 in the baseline), with early 

perturbations often exceeding a magnitude of 1.0. The energy input also rose with control energy exceeding 0.5% of 

total system energy in the early time steps. However, once the system settled near one wing, both the magnitude and 225 

frequency of interventions decreased substantially. This behaviour illustrates the importance of an early state selection 

for intervention, since it is difficult to intervene close to regime transitions where the LLEs are very high.  
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Figure 3: Comparison of natural (a) and controlled (b) L63 trajectories under an unstable initial condition. (c) shows the 

magnitude of perturbations applied at each step, and (d) displays the ratio of control energy to total system energy over 230 

time. 

3.3 LLE Thresholds Trade-off Between Timeliness and Efficiency 

Tuning the LLE threshold allows for better balance between early intervention and total energy cost. By varying the 

threshold used to trigger control, we assess the sensitivity of the control strategy to instability detection (Supporting 

Information S4). High thresholds delay intervention, allowing the system to evolve further into chaotic regimes before 235 

correction. While this reduces the number of control actions, it also results in higher energy usage due to stronger 

perturbations being required. In contrast, very low thresholds (e.g., −1.0) lead to frequent interventions. Across tested 

values, thresholds between −0.5 and 0.0 provided the best balance, stabilizing the system efficiently while minimizing 

energy costs. These results suggest that optimizing the LLE threshold is useful for deploying energy-efficient control 

strategies in chaotic systems. 240 
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3.4 Control of Eddies in L84 

To determine an appropriate state space for specifying control of the eddy energy in the L84 model, we analyse the 

relationship between eddy magnitude, represented by |Y|+|Z|, and LLE value over 10,000 time steps. As shown in 

Supporting Information S5 and S6, both quantities exhibit strong temporal fluctuations, with higher LLE values 

generally coinciding with peaks in |Y|+|Z|. This reflects the fact that the system becomes more unstable and chaotic 245 

when eddy amplitudes grow large, consistent with physical intuition. We select the 90th percentile of |Y|+|Z| as a 

threshold, which corresponds to an LLE value of approximately 2.4. Recall that in this case our goal is to act in the 

short term to suppress eddy growth to very high values, unlike the L63 case where the goal was to exercise continuous 

time control over the system state.  

 250 

To assess the effectiveness of the control strategy applied to the L84 model, we compare the natural and controlled 

system trajectories (Figure 4). The natural trajectory exhibits strong variability and excursions beyond a threshold 

radius ∣Y∣+∣Z∣>2.4, indicating very active eddies. In contrast, the controlled trajectory remains well-contained within 

the inner region of the attractor. Supporting Information S7 quantifies the control effort, showing that the control 

energy remains below 2% of the total system energy for the majority of the simulation, with only occasional peaks 255 

when the system is at risk of transitioning to unstable behaviour. These results indicate that the applied control strategy 

can limit the extreme eddies in the L84 system. 

 

Figure 4: Coloured trajectory plots of L84 under natural (a, c) and controlled (b, d) conditions from two different viewing 

angles. Red dots in (c) and (d) indicate time steps where the combined eddy amplitude satisfies ∣Y∣+∣Z∣>2.4 260 
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3.5 Computational Aspects of the Control Method 

Each optimization step completes in under 0.1 seconds, enabling potential real-time or online applications. The 

selective control strategy relies on solving a constrained optimization problem at each intervention step using the 

SLSQP algorithm. Across 2000 time steps, the average runtime per optimization was approximately 0.09 seconds. For 

the L63 simulation, this resulted in a total runtime of ~80 seconds. In the L84 case, runtime increased to ~25 seconds 265 

due to the rare extreme scenario events. All simulations were executed in Python 3.11.3 on a system with an i386 

architecture, 2 physical cores (4 logical), using a single-threaded configuration. These results indicate that the control 

method is computationally feasible for the idealized models, and could be further accelerated through parallelization 

or compiled implementations. 

4 Discussion and Conclusions 270 

Our intent was to explore whether a practically motivated approach to simulation and adaptive control could be 

effective for two target idealized atmospheric models, with slightly different goals. We were able to demonstrate 

computational and operational feasibility and explore conditions that are challenging and sensitivity to parameter 

choices. Previous control approaches for chaotic systems, such as Sliding Mode Control (SMC), Time-delayed 

Feedback (TDF), and reinforcement learning (RL), offer useful frameworks but face limitations in practical weather 275 

applications. SMC is known for robustness but induces chattering, making it unsuitable for smooth, energy-efficient 

interventions (Yau and Yan, 2004; Yang et al., 2002; Vaidyanathan and Sampath, 2011). TDF control avoids full 

model dependence but relies heavily on past states, which is problematic in high-dimensional, chaotic systems like 

the atmosphere (Pyragas and Pyragas, 2006; Postlethwaite and Silber, 2007; Purewal et al., 2016). RL offers flexibility 

but often demands prohibitive computational resources (Ding and Lei, 2023). Japanese researchers are currently 280 

working with Japan’s Moonshot 8 project aiming to achieve controlling and modifying weather by 2050 (Miyoshi and 

Sun, 2022; Nakazawa, 2024). Their approach applies Control Simulation Experiments (CSE) and Model Predictive 

Control (MPC) to constrain L63 dynamics to one wing of the attractor, emphasizing data assimilation to select stable 

ensemble trajectories for potential real-world implementation. 

 285 

In contrast, we propose a predictive model-based strategy that can forecast future trajectories directly, potentially 

reducing computational demands. we target model-defined extreme states (regime shifts in L63 and large eddies in 

L84) rather than generic trajectory stabilization, linking the control problem to conceptually relevant meteorological 

phenomena. We explicitly incorporate noise to account for uncertainty in both model dynamics and observations. This 

allows us to evaluate control robustness under realistic variability. Instead of addressing energy efficiency and 290 

selective control activation as separate objectives, our method integrates both: it activates control only when instability 

is detected, while simultaneously minimizing energy use. The resulting framework operates efficiently, responds 

flexibly to emerging instability, and aligns with the philosophy of “Weather Jiu-Jitsu”: subtly redirecting rather than 

resisting chaotic dynamics. 

 295 
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To extend this concept to operational weather systems, we will integrate our control framework with recent advances 

in data-driven forecasting and real-time decision-making. Our ongoing work focuses on combining deep learning 

foundation models, such as Chronos, Aurora, Prithvi wXc and GenCast, extending the approach demonstrated here to 

a dramatically higher dimensional space. While the conceptual logic remains the same, the decision process must now 

address where and when to intervene, targeting specific spatio-temporal attributes of concern. Of course, these are still 300 

thought experiments, motivated by the very high potential value of disaster reduction, and one also needs to identify 

practical mechanisms for creating the perturbations. Some ideas in that regard are discussed in (Huang et al., 2025). 

These are challenging problems and we invite collaborations on all aspects of developing the ideas. 

5 Code/Data availability 

No new data were used in this study. All results are based on a theoretical model described in the manuscript. 305 

Therefore, no data or software are archived. All code can be provided by the corresponding authors upon request. 
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