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Introduction 15 

This supporting information contains details on how we construct and evaluate a data-driven surrogate 

model for the Lorenz 63 (L63) and Lorenz 84 (L84) systems (Text S1), and how we assess the short-term 

forecast accuracy of the surrogate dynamics using polynomial ridge regression. Supporting figures (Figures 

S1–S7) illustrate the accuracy of surrogate models (S1–S2), successful control of the L63 trajectory in 2D 

(S3), the impact of LLE thresholds on control effectiveness and energy cost (S4), the relationship between 20 

eddy amplitude and instability (S5), spatial localization of high eddy activity in the L84 attractor (S6), and 

the control-to-total energy ratio over time in the L84 scenario (S7). 

  



 2 

Text S1. Surrogate Model Construction 

To approximate the Lorenz dynamical systems, we construct a surrogate model using polynomial feature 25 

expansion and ridge regression, trained on trajectory data generated from the Lorenz 63 (L63) and Lorenz 

84 (L84) models. Trajectory data were generated using a 4th-order Runge-Kutta with a time step of Δt=0.01, 

yielding both system states and their time derivatives. Specifically, we use second-degree polynomial ridge 

regression to approximate the local vector field, i.e., the time derivative of the system state. The polynomial 

terms capture key nonlinear interactions among the state variables, while ridge regularization mitigates 30 

overfitting to local noise and high-frequency fluctuations. The surrogate model takes the form: 

 
where Φ(x) is the second-degree polynomial feature vector and W

∗
 is obtained by minimizing the 

regularized squared loss: 

 35 
with regularization parameter α = 10

−6
. This surrogate is then used to propagate future states using a 4th-

order Runge-Kutta scheme, enabling fast forecasting and gradient-based control optimization. 

  

 

Figure S1. Comparison between the true L63 trajectory and the surrogate model trajectory over a 100-step 40 

forecast horizon. Gaussian noise was added to the forecast at each step. The mean squared error (MSE) 

between the true and surrogate trajectories is 0.003. Our typical forecast window for control experiments is 

approximately 10 steps, indicating that the surrogate model achieves sufficient accuracy for short-term 

prediction tasks. 

  45 
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Figure S2. Comparison between the true L84 trajectory and the surrogate model trajectory over a 100-step 

forecast horizon. Gaussian noise was added to the forecast at each step. The mean squared error (MSE) 

between the true and surrogate trajectories is 0.0002. Our typical forecast window for control experiments 

is approximately 10 steps, indicating that the surrogate model achieves sufficient accuracy for short-term 50 

prediction tasks. 

 

 

 

Figure S3. 2D projection of controlled and natural trajectories of the L63 model in the x, y, z axis with time 55 

steps. The controlled trajectory remains confined to one side of the attractor, demonstrating suppression of 

regime shifts. 
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Figure S4. Trade-off between total control energy (blue, left axis) and percentage of time steps with control 60 

applied (orange, right axis) as a function of LLE threshold. 

 

 

Figure S5. Time series of combined eddy amplitude (|Y|+|Z|, blue) and local Lyapunov exponent (LLE, 

red dashed) over simulation time steps for the L63 system. The horizontal dashed gray line marks the 90th 65 

percentile threshold of |Y|+|Z|, used to identify high eddy activity. The plot illustrates the temporal 

correspondence between elevated eddy amplitudes and local instability, supporting the control strategy 

based on eddy suppression. 
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Figure S6. Multiple views of the L84 trajectory, with high eddy activity highlighted in red. The gray line 

represents the full trajectory, while red markers indicate time steps where the combined eddy amplitude 

(|Y|+|Z|) exceeds a prescribed threshold. Subfigures show different perspectives:(a) default 3D view, (b) 

view in the x-y plane, (c) view in the y-z plane, and (d) an alternate 3D perspective. These views help 

visualize the spatial distribution and localization of high eddy regions within the attractor. 75 

 

 

 

Figure S7. Ratio of control energy to total system energy over time in the L84 control scenario. 


