I reviewed the paper entitled "Fatbox: the fault analysis toolbox" by Gayrin et al. The paper presents a python software using image analysis methods to automatically extract faults from DEMs, numerical and analogue models in two dimensions. In addition to reconstruct a fault network, the software can perform a time evolution analysis to characterize fault evolution in time and space. Although limited to 2D applications, as well discussed by the authors in the limitation section, the method looks good and the presented applications demonstrate well that it is promising.

Thank you for taking the time to review our paper and for your very constructive comments.

Here are some comments and remarks:

The paper presents the results of applying a sequence of methods and functions to treat the data and obtain a fault network. Although the results look good, I think it would be nice to provide more details about these functionalities and illustrate the effect of the functions applied at each step from the raw data to the final fault network. While some steps are shown for the DEMs fault extraction, we do not see it for the numerical model to reconstruct a fault network from the raw plastic strain output. The jupyter notebooks illustrate this more, but I think it would be good to have these steps in the paper.

Agreed. To illustrate the fault extraction steps, new panels have been added to figure 4 for the numerical model application, and to figure 7 for the analogue application.

You made the choice to structure the paper using applications which leads to a lot of redundancy as some methods are the same across the applications e.g., the DEM and analogue model share the same automatic topographic analysis while the numerical and analogue models share the same approach to use strain and characterize fault evolution over time and space. I suggest that instead of structuring the section 3 by application you could structure it by approach or functionality and present how a functionality is used for each application. At the beginning of section 3 you could present the applications, and then describe your functionalities, how they work, what they do, when to use them etc. with some nice illustrations.

The paper presents a tool that can be used by three communities who don't necessarily interact. We adopted this structure to allow readers to focus on the applications most relevant to them without missing essential information. This approach indeed introduces some redundancy, which we consider beneficial for clarity and accessibility.

There is a problem with the references across the paper. I don't know how this occurred but there are a lot of citations in the text that are not in the reference list. You should double check that before re-submitting the article.

Thanks for finding this issue. There was a glitch in the reference manager use. The missing references have been added.

Finally, because the paper is very oriented about the Python package, it is referred several times and its content is described, I had a closer look to it. I have some suggestions that I think could benefit its spread and use but I do not think that the authors need to address them for the paper to be published.

Line by line comments:

L107: "Each component of the network consists of nodes (points defined by location x- and y-coordinates) and edges (connections between nodes)"

This sentence seems appropriate to introduce here that this (nodes + edges) is called a graph, particularly because it is the title of the subsection and that you use the term graph at line 112. Manuscript modified as suggested by the reviewer.

L137: I am sorry, but I do not understand what "edit the network" means in this context. This sentence refers to the functions from the *edits.py* module that allows to modify the structure of the graph (example: removing nodes, removing triple junctions, label components) or compare graph between them (example: find common component). The manuscript has been modified to clarify this sentence.

L185-187: What is actually detected by the Canny algorithm? In the jupyter notebook we can see that the method is conveniently implemented in the scikit library but the actual quantity and approach utilized to detect "edges" and what it means in the physical world is not clear to me. It is a very important step of the method presented here, and even if it is not implemented by the authors, it would be nice to have an overview of the approach.

When applied to topography data, the "edges" align with strong changes of topography ie. slopes. Manuscript modified to clarify this step.

L188-189: "non-fault-related components exhibit distinct geometric signatures; they are subsequently filtered out in using dedicated functions based on curvature and length" Interesting! However, there are no real details in the manuscript on how this important step is taken. Looking into the jupyter notebook tutorial we can see that the scikit method called "remove_small_objects" is used, with a parameter "min_size=30" pixels. This value sounds arbitrary. Is there a generic way to choose it? If the surface of the covered ground or the

resolution of the DEM was different, would that value change? L215: "a virtual cross section is drawn perpendicular to the fault axis until reaching a predefined maximum distance" How is that predefined maximum distance chosen? In the notebook it is set to d=12 (no units indicated so I assume it is also in pixels?), same question than in the previous comment: will that value change if the surface and/or resolution of the DEM changes? How can you be confident enough that using a constant value for all faults may not lead to crossing another fault depending on where you are performing the analysis?

These parameters are defined by the user to best reflect the characteristics of the study area and its geological context. A new Section 2.3 has been added to the manuscript to describe the parameter settings and provide guidance on selecting appropriate user-defined values.

L271: "In the following, we use a relative threshold optimized to highlight fault structures." Could you please provide a bit more details of how the optimized relative threshold is chosen? The optimum threshold is chosen by the user, depending on the level of detail wanted. Manuscript modified to detail this step.

L277: "In some cases, interpolation to a regular grid is necessary, particularly when the model dataset has variable resolution"

Why is that step necessary? If the object used in the first place is an image, the pixel grid is already regular even if the model's mesh is not, isn't it? Can you please provide an example for which that step is required and illustrate why?

In our example, we needed to interpolate to an evenly spaced grid because ASPECT uses adaptive mesh refinement with spatially variable resolution. To overcome this, we first load the variable grid from ASPECT and then interpolate this onto an evenly spaced grid of pixels before applying the next steps (e.g., thresholding, skeletonization). Manuscript modified to clarify this step.

L280: "Our library provides functions to address these issues"

This is interesting, but unfortunately, we miss details here. What are these functions? Could you be more specific about which function addresses which issue and how? It would help the readers to know what functions they should use depending on their case.

Manuscript modified to address this step. Examples have been added.

L282-284: "To optimize the network, a filtering function removes selected internal nodes (based on user-defined parameters), reducing density while preserving realistic geometric orientations." Could you please elaborate on that function? What does it actually do?

Manuscript updated to reflect this issue. During classification, the algorithm places a node in every pixel. This high density is usually not necessary, it only leads to a slower workflow. The filtering function removes a node every X nodes (user-chosen value), keeping the significant geometry while ensuring faster execution.

L290-291: "the program compares each fault at time 1 with each fault at time 2 and vice versa" If I understand correctly, you mean that you compare two consecutive timesteps, right? If this is the case, I suggest to use "time n" and "time n+1" instead of "1" and "2" to better emphasize that it is between two consecutive steps, whatever their numbering.

There are several levels of correlation. In the case of a level 1 correlation, the program compares each fault at time n with each fault at time n + 1 (forward) and vice versa: each fault from time n+1 with each fault from time n (backward). The level of the correlation is defined by the user. It is therefore possible to combine a correlation between time n and n + 1, with a correlation from time n and n + 2, and even more correlations. This choice is made according to the time resolution and the complexity of the network evolution. We explain this better in the revised manuscript.

L292-293: "we calculate the minimum distance between each node of a fault and each node of the neighbours and then average these distances"

I do not understand what is the "distance of each node of the neighbours". Neighbour is not defined and thus ambiguous. Could you please be more precise about the distance between what and what is computed?

The correlation step looks at every node of a component and computes the distance between each of them and all the other nodes of the graph at a given timestep, and then adds the computed distances to a similarity matrix. The comparison between the average distances of two faults defines their global similarity. Manuscript modified to clarify this step.

L299-300: "The article (Neuharth et al., 2022) provide a detailed study of fault system evolution in the 2D numerical models discussed earlier"

I think that it is a bit unfortunate that the illustration of the method presented in this paper is actually not in this paper but in another. You could maybe showcase some of the possibilities of the method presented here in a figure to provide the readers with examples of what they could expect from your software especially what you describe lines 302-303

Agreed. The figure 4 has been modified to illustrate the structural analysis performed using the numerical model.

L339-350: Section 3.3.2 roughly contains the same information than section 3.1.2. I suggest that you could remove this section.

As this paper targets three different communities, some redundancy is desired to make every application section understandable and stand-alone. However, we will consider reducing the level of detail in Section 3.3.2 and instead referring readers to Section 3.1.2 for overlapping material.

L355: "strain threshold to distinguish active faults"

Is strain correctly employed here? It sounds strange to use strain to identify active faults. Strain-

rate would be a better quantity because strain also contains inactive faults.

We agree, the sentence was misleading. Strain is used to identify active and inactive faults alike, while strain rate allows active faults detection. The manuscript has been corrected to clarify this point.

L357: "data are binarized"

I suggest to introduce the term binarized in section 3.2.2 where the procedure is first described. Manuscript modified to clarify the vocabulary as suggested by the reviewer.

L356-360: This paragraph is also a redundant information with a previous section. I suggest to remove it.

Similar to the DEM extraction paragraph, some redundancy is desired to make every application section understandable and stand-alone.

L362-365: Is this procedure different than the one described at lines 195-197? If not, I suggest to group them, if yes, I suggest to provide more details at lines 195-197 and then explain why here the procedure is different.

The employed function is the same. The manuscript has been modified according to the reviewer suggestion.

L387-388: "The Canny edge detection is based on this topography gradient criterion." While the fact that the Canny edge detection uses topography gradient can be reminded in the discussion, I think it would be nice to introduce much earlier, at lines 185-187, what the Canny algorithm actually does and what type of quantity it uses. For example, the use of topography gradient criterion was not mentioned before the discussion.

Agreed. We better defined what the Canny algorithm detects when it's first introduced.

Section 4.1 Fatbox options for defining a fault:

I feel like there could be more information about how to choose some parameters for each identification criterion. While the DEM analysis is slightly more detailed, the strain or strain-rate approach is summarized in a single sentence. The last paragraph is good, it states what type of choices can be made. Aren't there more like this that you could elaborate upon to provide more insights about your toolbox and what we could do with it?

Agreed. The manuscript has been modified according to the reviewer suggestion.

L420: "most steps can be parallelized"

What do you mean by "parallelized" in that context? Does it mean that your toolbox should run in parallel i.e., multiple mpi ranks/threads or that the steps of the procedure are independent of each other and thus you can perform each of them independently?

Because as I understood, there are steps or procedures that do not seem independent, like the time evolution and the correlation between time steps as each time step needs to be treated

sequentially.

Parallelization can be achieved by running the code on multiple CPU cores. While fault extraction is inherently sequential—since each step depends on the output of the previous one—different time steps and the filtering process can be computed in parallel. The correlation step, however, remains sequential. The structural analysis can also be parallelized, and the so-called "time evolution" simply represents the plotting of results derived from the structural analysis. Once these data are stored within the network structures, they can be quickly retrieved and visualized.

Section 4.3 limitations:

What about the limitations concerning the time correlation to identify faults over time, is it always succeeding or are there some cases for which it fails?

The correlation achieves high precision when an appropriate search radius is chosen. The variability in the results reflects the same ambiguities a human interpreter might face when visually comparing two fault networks and deciding whether faults are splitting or merging. The key difference is that, in our approach, these situations are distinguished using a fixed distance criterion, ensuring consistent and reproducible outcomes.

Although the 3 applications proposed are demonstrating several contexts in which the toolbox can be applied, they are all about rifts and extensional systems. What about convergent and strike-slip systems? Do they represent limitations? If yes which ones?

In this paper, we studied the case of extensional systems, but it would be interesting to see the toolbox applied in other settings. In principle, the library can be adapted to a range of tectonic contexts, as the underlying tools are versatile, though the workflow may require some modification depending on the type of data and the tectonic setting. Additional clarifications on this point have been incorporated into the manuscript.

Minor comments:

L82: Mattéo et al. (2021). The parenthesis should be in front of the M as the citation is not embedded in the sentence => (Mattéo et al. 2021).

Done.

L96: parenthesis missing before the 2)

Parenthesis added.

L249: there is a parenthesis that should be remove after the "e.g."

Done.

References:

All citations below have been reviewed and updated in the manuscript as suggested.

L85: T et al., 2025. It seems that there is a problem with this citation both in text and in the reference section (L615).

L260: References are required for the wet quartzite, wet anorthite and dry olivine flow laws. (Not Neuharth et al., 2022; the actual papers that published the parameters used in the model). L261: "Beneath the lithosphere lies a weak asthenospheric layer composed of wet olivine (Neuharth et al., 2022)"

Neuharth et al., 2022 is not the publication related to the wet olivine flow law. Here, Hirth & Kohlstedt, 2003 should be cited as this is the paper describing the wet olivine flow law used and cited in Neuharth et al., 2022.

Below are some references missing from the reference list (the one I noted, may not be exhaustive):

Panza et al., 2024

Purinton and Bookhagen, 2021

Baker and Wohlenberg, 1971

Canny, 1986

Guo and Hall, 1992

Shmela et al., 2021

Gassmöller et al., 2018

Glerum et al., 2018

Braun and Willett, 2013

Yuan et al., 2019

Saha et al., 2016

Strak and Schellart, 2016

Strak et al., 2011

Willingshofer and Sokoutis, 2009

Philippon et al., 2015

Schlagenhauf et al., 2008

Lathrop et al., 2022

Henza et al., 2010

Jourdon et al., 2025

Software/Code related remarks:

The following comments do not need a particular attention from the authors to publish the article but they could take them into account for future development to enhance code visibility, availability, reusability and collaboration.

While cloning the repository, I realized that the repo is 174 MB large, which I agree is not huge, but the code is only made of 6 Python files and a few jupyter notebooks. This size likely comes from the storage of the data used in the jupyter notebooks as tutorials/demonstration. In general, storing large data files in code repository is not recommended as it will impact users when they download, install or update the code from the repository. A better way would be to store those data in another storage place offering long time storage, and link to it to get access to the data.

This suggestion is very useful. The repository will be modified in order to improve the accessibility of the workflows.

In the README it is mentioned that the installation should be done using conda. I understand that it offers a simple way to install your package but it forces the users to use conda. Fortunately, your package can actually be installed without the use of conda, and except for earthpy which can also be installed without conda, there are not that much benefits of strictly restraining the installation to the use of conda. I don't say that you should get rid of it, but I

rather suggest to provide more options to the users. You could consider to add a setup.py to install using pip for instance.

The repository readme will be updated to give miniforge as alternative to Anaconda. Pip alternative will be offered to the user in the future.