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Supplementary text 1: Modifications made based on ORCHIDEE r8240

1.1 NPP allocation

This ORCHIDEE version (r8240) is not well calibrated in the tropical region. Previous
study mainly focuses on the calibration of NEE or GPP, but ignore the carbon allocation
(Bastrikov et al., 2018; Raoult et al., 2024). The NPP allocation scheme in the
ORCHIDEE model follows the pipe model theory (Shinozaki et al., 1964; Naudts et al.,
2015), which assumes that the production of one unit of leaf mass requires a
proportional amount of sapwood for water transport from roots to leaves, along with a
corresponding proportion of roots for water uptake from the soil. The pipe model

follows the following formulas (Naudts et al., 2015):

X M
M, = f“d— (s1)
h
M
M, = ——— (52)
ksar X dh

where Mi, Ms and M; are leaf, sapwood, and root carbon mass, dn is the tree height, fxr
is the scaling factor to convert sapwood mass into leaf mass, ksar 1s the scaling factor to

convert sapwood mass into root mass. fkr and ksar are calculated as:

_ klsmin + ngap X (klsmax - klsmin)
KF—
ksla X kps X ftree

(s3)
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k k
ksar = \/(krcon> X (kTS) X kps (s4)
scon Tr

where Kismin 1S the minimum observed leaf area to sapwood area ratio, Kismax is the
maximum observed leaf area to sapwood area ratio, fpgap is the gap fraction calculated
from the gap model, kicon 1s the hydraulic conductivity of roots, kscon 1s the hydraulic

conductivity of sapwood, ks is the longevity of sapwood, and k« is the root longevity.

Because of the different turnover rates in different biomass pools at each time step, the
NPP allocation first ensures that the model adheres to the allometric relationships. The
remaining NPP is then allocated for vegetation growth. To achieve the appropriate NPP
allocation fraction for each biomass pool, we adjusted both the turnover rates and the

allometric relationships.

Chave et al. (2010) collected leaf litterfall data from 81 sites across South America.
Aftering excluding data from short-statured, montane, and secondary tropical forests,
we used the remaining 61 sites to calibrate the leaf turnover parameter in the model.
Leaf turnover (AMc)) is calculated at each time step (At) as a function of leaf age
(Krinner et al., 2005):

4
B . At (kg
AM.; = M.; X min| 0.99, f;; X k_z X k_z (s5)
T T

where kia is the mean leaf age, kq is the critical leaf age, and fy is an empirical
coefficient. After calibrating the model with the leaf litterfall data, the parameter fy
changed from 1 to 16. We also modified the relationship between leaf efficiency and

leaf age following Chen et al. (2020).

We further adjusted the pipe model parameters to match the observed fractions of NPP
allocation to leaves and wood from Yang et al. (2021). They developed a data
assimilation model CAT (Carbon Assimilation in the Tropics) based on Bayesian
formalism, which estimated NPP allocation fractions to leaves and wood, constrained

by NPP, LAI, biomass, and SLA from both satellite and inventory data.
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Initially, the modeled fraction of NPP allocated to leaves from ORCHIDEE model was
13.7% £0.3% (mean =xstandard deviation), which was underestimated compared to
observations (27.9% +3.1%, Figure S6a). This underestimation is primarily due to the
model's low estimation of leaf litterfall, with observed values of 3.0 £0.5 MgC/ha
compared to 1.0 £0.2 MgC/ha in the ORCHIDEE model (Figure S6b). After calibration,
the modeled leaf litterfall increased to 3.1 0.2 MgC/ha, aligning more closely with
observations. Meanwhile, the modeled fraction of NPP allocated to leaves also
increased to 29.2% =+2.6%, close to the observation level. The modeled fraction of NPP
allocated to wood remained consistent with observations, both before and after

adjustment (Figure S6c). All adjustments of parameters are summarized in Table S1.
1.2 Wood density

In ORCHIDEE model, wood density is a prescribed variable used to calculate biomass
carbon for each PFT, along with tree height and basal area. Previously, the model
applied a uniform wood density value for each PFT across all land areas. However, in
the Amazon rainforest, wood density varies considerably, ranging from 0.4 gC/cm? to
0.8 gC/cm?® (Mitchard et al., 2014). To account for this variation, we updated the model
by incorporating a spatially explicit wood density map at a 1 km resolution, derived
from four machine learning models, using the largest available wood density

measurements (Yang et al., 2024).
1.3 Hydraulic architecture and drought mortality

We merged ORCHIDEE-CAN-NHA 17236 into ORCHIDEE r8240. ORCHIDEE-
CAN-NHA r7236 includes a plant hydraulic module that simulates leaf, stem, and root
water potential for each circumference class, and models tree mortality due to hydraulic
failure by explicitly simulating the percentage loss of conductance (Yao et al., 2022).
Although this drought-induced tree mortality differs from self-thinning mortality,
during 2011-2020, it only impacted 25.2% of the grids in our analysis, leading to a 6.1%

reduction in where it lowered the average biomass and a 10.1% reduction in mortality
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rates in these areas by 6.1% and 10.1%, respectively (Figure S2). Overall, the AGB and
biomass mortality rates are still predominantly controlled by a rather than drought-

induced mortality during our study period.

Supplementary test 2: Active nitrogen content in the leaves

Given the limited observations available for accurately calibrating the nitrogen cycle in
the Amazon rainforest, and the fact that tropical forests are generally not nitrogen-
limited (Brookshire et al., 2012), we prescribed a leaf C/N ratio (ren) of 25 (Sitch et al.,
2003). We assumed that 10% of this nitrogen is allocated to structural tissues that do
not contribute to Vemax, and that the leaf nitrogen concentration profile within the

canopy follows the distribution of light. The My aciive is calculated as:

, M
M = My = M = EL— M x 0496 (56)
c/n

where My is the leaf nitrogen mass (gN m2), M, is the leaf carbon mass (gC m), and

M;%¢ (gC m™) is the structural leaf nitrogen mass.
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Figure S2 Spatial pattern of AGB (a) and biomass mortality rates (b) difference
between simulations with and without drought mortality. 25.2% of grids are shown in

the figure where the difference in AGB exceeds 1 MgC ha™'.
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Figure S3 Five different GPP products in the Amazon basin (a) and their Pearson
correlation coefficients (b). Red dashed lines represent GPP observations (Table S4) in
Amazon forest from Marthews et al. (2012) and Malhi et al. (2015). Sites with
temperature lower than 18°C and annual mean precipitation below 1,500 mm were

excluded from the GPP observations to be consistent with our study area.
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Figure S4 Relationship between above ground biomass (AGB) from field observations
and AGB from remote sensing data at the resolution of 0.1° based on (a) Yu et al. (2023);
(b) Santoro and Cartus (2023); (c) Avitabile et al. (2016); (d) Baccini et al. (2012). The
size of the dots indicates the plot area. The dashed red line is the 1:1 line. The black
solid line is the best fit between remote sensing data and observations weighted by plot

area.
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Figure S8 The schematic diagram for the interpolation method. We first collected the
results of modeled AGB, GPP and mortality rates based on the simulations from 20 sets
of parameter values. Then we did the interpolation using quadratic splines over the
whole parameter space. We finally found the optimal a and 1 based on the results from

the interpolation and a loss function.
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Figure S9 Maps of 8 explanatory variables at its original resolution. (a) Temperature;

(b) precipitation; (c) maximum cumulative water deficit (MCWD); (d) downward

shortwave radiation (SWdown); (e) wood density; (f) clay fraction; (g) total available

phosphorous; (h) water table depth. The detailed information for each variable is listed

in Table S3.
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Figure S12 Comparison of model-simulated AGB, GPP, and biomass mortality rates
with observations. Results from model simulation with spatially varying a and spatially
constant 1 (a-c), and model with spatially varying n and spatially constant a (d-f). The
dashed red line is the 1:1 line. The black solid line is the best fit between modeled
results and observations. The color of the dots represents the value of MCWD to show

its correlation with AGB, GPP, and biomass mortality rates.
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forest regression to run the ORCHIDEE model.
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optimization. (a, f, k) Same as figure 2d-2f; (b, g, 1) optimization results using
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best fit between modeled results and observations.
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Figure S22 Impact of clay fraction on runoff. (a) Correlation between clay fraction and
precipitation. (b) Correlation between clay fraction and the fraction of runoff relative

to precipitation.
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Figure S23 Relationship between total available phosphorus from CRUJRA and GPP
from GOSIF.
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Supplementary table

Table S1 Modified parameters in the model

Symbol in the text

Default After
(Symbol in Unit Description Reference
value modification
ORCHIDEE model)
8.944E- Belowground (roots + soil) specific
Kreon (k_belowgroud) — m’/kg/s/Mpa 4E-07 Yang et al., 2021
08 conductivity
Kismin (k_latosa _min) - 7500 10000 Minimum leaf-to-sapwood area ratio Yang et al., 2021
Empirical coefficient for leaf
fu (turnover C3) - 1 16 Chave et al., 2010
turnover
Santoro et al.,
o spatially Coefficient of the self-thinning 2023; Li et al.,
m 1941
(alpha_self thinning) varying map relationship 2019; Yu et al.,
2024
Santoro et al.,
spatially 2023; Li et al.,
1 (nue_opt) umolCO»/gN/s  14.08 Nitrogen use efficiency of Vemax
varying map 2019; Yu et al.,
2024
Wood density spatially
gC/m’ 287458 Wood density Yang et al., 2024
(pipe_density) varying map
Iem (cn_leaf) gC/gN 16-45.5 25 CN ratio of leaves Sitch et al., 2003
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Table S2 Look-up table for 12 soil class properties defined by United States

Department of Agriculture (USDA). Ks: hydraulic conductivity at saturation; VG_n:

Van Genuchten coeficients n; VG _a: Van Genuchten coeficients a; mcr: residual

volumetric water content; mcs: saturated volumetric water content.

Clay Silt Sand Ks VG VG a mcr mcs
(%) (%) (%) (mmd") n() (mm') @m’) (' m?)
Sand 3 4 93 7128.0 2.68  0.0145 0.045 0.43
Loamy Sand 6 13 81 3501.6 228  0.0124 0.057 0.41
Sandy Loam 11 26 63 1060.8 1.89  0.0075 0.065 0.41
Silt Loam 19 64 17 108.0  1.41  0.0020 0.067 0.45
Silt 10 84 6 60.0 1.37  0.0016 0.034 0.46
Loam 20 40 40 249.6 156  0.0036 0.078 0.43
Sandy Clay
27 19 54 3144 148 0.0059 0.1 0.39
Loam
Silty Clay
33 59 8 16.8 1.23  0.0010 0.089 0.43
Loam
Clay Loam 33 37 30 62.4 1.31  0.0019 0.095 0.41
Sandy Clay 41 11 48 28.8 1.23  0.0027 0.1 0.38
Silty Clay 46 48 6 4.8 1.09  0.0005 0.07 0.36
Clay 55 30 15 48.0 1.09  0.0008 0.068 0.38
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Table S3 List of the independent variables

Variable name Unit Original Time Data source
Resolution

Mean annual temperature K 0.5° 2001- CRUJRA2 4

(MAT) 2020

Mean annual mm 0.5° 2001- CRUJRA2 4

precipitation (MAP) 2020

Maximum cumulative mm 0.5° 2001- CRUJRA2 4

water deficit (MCWD) 2020

Downward shortwave W/m? 0.5° 2001- CRUJRA2 .4

radiation (SWdown) 2020

Wood density gC/em® =1 km Historical ~ Yang et al., 2024

Clay fraction % ~1 km Historical HWSD2

Soil total phosphorus mg/kg =10 km Historical Darela-Filho et
al., 2024

Water table depth m ~1 km Historical Fanetal., 2013
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Table S4 List of the GPP observations values used in Figure S3

Site name GPP Latitude Longitude Data source
(MgC ha-1 yr-1)
San Pedro plot 1 30.03 13°2' 56.89" 71°32"12.6" W Marthews et
(SPD-01) S al., 2012
San Pedro plot 2 38.31 13°2'56.89"  71°32'12.6"W  Marthews et
(SPD-02) S al., 2012
Tambopata plot 3 37.11 12°50'18.59"  69°17'45.65” W Marthews et
(TAM-05) S al., 2012
Tambopata plot 4 34.69 12°50'18.59"  69°17'45.65” W Marthews et
(TAM-06) S al., 2012
Manaus, K34 Tower 30.4 2°3521.08" S 60°6'53.63"W Marthews et
al., 2012
Caxiuana Tower plot 38.2 1°43'11.26" S 51°27'29.45 W Marthews et
(CAX-06) al., 2012
Caxiuana Tower plot 33.0 1°43'11.26" S 51°27'29.45 W Marthews et
(CAX-06) al., 2012
Caxiuana Tower plot  32.0 1°43'11.26" S 51°27'29.45 W Marthews et
(CAX-06) al., 2012
Allpahuayo A 39.05 3°57'0" S 73°26'0" W Malhi et al.,
(ALP11/ALP12) 2015
Allpahuayo C 41.88 3°57'15.48" S 73°25'36.12"W  Malhiet al.,
(ALP30) 2015
Caxiuana Control 34.37 1°42'57.60" S 51°27'25.20"W  Malhi et al.,
plot (CAX-04) 2015
Reference

Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G.
P., Armston, J., Ashton, P. S., Banin, L. F., Bayol, N., Berry, N. J., Boeckx, P., de
Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-
Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie,
L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V.,
Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., Asthon, P., Banin,
L. F,, Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin,
C. A. ], Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y.,
Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Slik,
F., Sunderland, T., Vaglio Laurin, G., Valentini, R., Verbeeck, H., Wijaya, A., and
Willcock, S.: An integrated pan-tropical biomass map using multiple reference
datasets, Global Change Biology, 22, 1406-1420, 10.1111/gcb.13139, 2016.

Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D.,

31



Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton,
R. A.: Estimated carbon dioxide emissions from tropical deforestation improved
by carbon-density maps, Nature Climate Change, 2, 182-185,
10.1038/nclimate1354, 2012.

Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., and Peylin, P.: Land
surface model parameter optimisation using in situ flux data: comparison of
gradient-based versus random search algorithms (a case study using ORCHIDEE
v1.9.5.2), Geosci. Model Dev., 11, 4739-4754, 10.5194/gmd-11-4739-2018, 2018.

Brookshire, E. N. J., Gerber, S., Menge, D. N. L., and Hedin, L. O.: Large losses of
inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation,
Ecology Letters, 15, 9-16, https://doi.org/10.1111/5.1461-0248.2011.01701.x,
2012.

Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragdo, L. E. O. C,, Bonal, D.,
Chatelet, P., Silva-Espejo, J. E., Goret, J. Y., von Hildebrand, P., Jiménez, E.,
Patifio, S., Peniuela, M. C., Phillips, O. L., Stevenson, P., and Malhi, Y.: Regional
and seasonal patterns of litterfall in tropical South America, Biogeosciences, 7, 43-
55, 10.5194/bg-7-43-2010, 2010.

Chen, X., Maignan, F., Viovy, N., Bastos, A., Goll, D., Wu, J., Liu, L., Yue, C., Peng,
S., Yuan, W., da Concei¢ao, A. C., O'Sullivan, M., and Ciais, P.: Novel
Representation of Leaf Phenology Improves Simulation of Amazonian Evergreen

Forest Photosynthesis in a Land Surface Model, Journal of Advances in Modeling
Earth Systems, 12, €2018MS001565, https://doi.org/10.1029/2018MS001565,
2020.

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P.,
Ciais, P., Sitch, S., and Prentice, 1. C.: A dynamic global vegetation model for
studies of the coupled atmosphere-biosphere system, Global Biogeochemical
Cycles, 19, 10.1029/2003GB002199, 2005.

Malhi, Y., Doughty, C. E., Goldsmith, G. R., Metcalfe, D. B., Girardin, C. A. J.,
Marthews, T. R., del Aguila-Pasquel, J., Aragdo, L. E. O. C., Araujo-Murakami,
A., Brando, P., da Costa, A. C. L., Silva-Espejo, J. E., Farfan Amézquita, F.,
Galbraith, D. R., Quesada, C. A., Rocha, W., Salinas-Revilla, N., Silvério, D., Meir,
P., and Phillips, O. L.: The linkages between photosynthesis, productivity, growth
and biomass in lowland Amazonian forests, Global Change Biology, 21, 2283-
2295, https://doi.org/10.1111/gcb.12859, 2015.

Marthews, T. R., Malhi, Y., Girardin, C. A. J., Silva Espejo, J. E., Aragdo, L. E. O. C.,
Metcalfe, D. B., Rapp, J. M., Mercado, L. M., Fisher, R. A., Galbraith, D. R.,
Fisher, J. B., Salinas-Revilla, N., Friend, A. D., Restrepo-Coupe, N., and Williams,
R. J.: Simulating forest productivity along a neotropical elevational transect:

temperature variation and carbon use efficiency, Global Change Biology, 18,
2882-2898, https://doi.org/10.1111/1.1365-2486.2012.02728 x, 2012.
Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G.,
Monteagudo, A., Baker, T. R., Lewis, S. L., Lloyd, J., Quesada, C. A., Gloor, M.,
32



https://doi.org/10.1111/j.1461-0248.2011.01701.x
https://doi.org/10.1029/2018MS001565
https://doi.org/10.1111/gcb.12859
https://doi.org/10.1111/j.1365-2486.2012.02728.x

Ter Steege, H., Meir, P., Alvarez, E., Araujo-Murakami, A., Aragdo, L. E. O. C.,
Arroyo, L., Aymard, G., Banki, O., Bonal, D., Brown, S., Brown, F. L., Ceron, C.
E., Chama Moscoso, V., Chave, J., Comiskey, J. A., Cornejo, F., Corrales Medina,
M., Da Costa, L., Costa, F. R. C., Di Fiore, A., Domingues, T. F., Erwin, T. L.,
Frederickson, T., Higuchi, N., Honorio Coronado, E. N., Killeen, T. J., Laurance,
W. F., Levis, C., Magnusson, W. E., Marimon, B. S., Marimon Junior, B. H.,
Mendoza Polo, 1., Mishra, P., Nascimento, M. T., Neill, D., Nufez Vargas, M. P.,
Palacios, W. A., Parada, A., Pardo Molina, G., Pefia-Claros, M., Pitman, N., Peres,
C. A., Poorter, L., Prieto, A., Ramirez-Angulo, H., Restrepo Correa, Z., Roopsind,
A., Roucoux, K. H., Rudas, A., Salomao, R. P., Schietti, J., Silveira, M., de Souza,
P. F., Steininger, M. K., Stropp, J., Terborgh, J., Thomas, R., Toledo, M., Torres-
Lezama, A., van Andel, T. R., van der Heijden, G. M. F., Vieira, 1. C. G., Vieira,
S., Vilanova-Torre, E., Vos, V. A., Wang, O., Zartman, C. E., Malhi, Y., and Phillips,
O. L.: Markedly divergent estimates of Amazon forest carbon density from ground
plots and satellites, Global ecology and biogeography : a journal of macroecology,
23, 935-946, 10.1111/geb.12168, 2014.

Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V.,
Berhongaray, G., Bonisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd,
V., Kattge, J., MacBean, N., Maignan, F., Merild, P., Penuelas, J., Peylin, P., Pinty,
B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert,
S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and
the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8,
2035-2065, 10.5194/gmd-8-2035-2015, 2015.

Raoult, N., Beylat, S., Salter, J. M., Hourdin, F., Bastrikov, V., Ottl¢, C., and Peylin, P.:
Exploring the potential of history matching for land surface model calibration,
Geosci. Model Dev., 17, 5779-5801, 10.5194/gmd-17-5779-2024, 2024.

Santoro, M. and Cartus, O.: ESA Biomass Climate Change Initiative (Biomass_cci):
Global datasets of forest above-ground biomass for the years 2010, 2017, 2018,
2019 and 2020, v4. NERC EDS Centre for Environmental Data Analysis,
10.5285/5331¢418e9f4935b8eb1b836f8a91b8, 2023.

Shinozaki, K. K. Y., Hozumi, K., and Kira, T.: A quantitative analysis of plant form—
the pipe model theory. I. Basic analysis, Jpn.j.ecol, 1964.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O.,
Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of
ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ
dynamic global vegetation model, Global Change Biology, 9, 161-185,
10.1046/j.1365-2486.2003.00569.x, 2003.

Yang, H., Ciais, P., Wang, Y., Huang, Y., Wigneron, J.-P., Bastos, A., Chave, J., Chang,
J., E. Doughty, C., Fan, L., Goll, D., Joetzjer, E., Li, W., Lucas, R., Quegan, S., Le
Toan, T., and Yu, K.: Variations of carbon allocation and turnover time across
tropical forests, Global Ecology and Biogeography, 30, 1271-1285,
https://doi.org/10.1111/geb.13302, 2021.

33



https://doi.org/10.1111/geb.13302

Yang, H., Wang, S., Son, R., Lee, H., Benson, V., Zhang, W., Zhang, Y., Zhang, Y.,
Kattge, J., Boenisch, G., Schepaschenko, D., Karaszewski, Z., Sterenczak, K.,
Moreno-Martinez, A., Nabais, C., Birnbaum, P., Vieilledent, G., Weber, U., and
Carvalhais, N.: Global patterns of tree wood density, Global Change Biology, 30,
el17224, https://doi.org/10.1111/gcb.17224, 2024.

Yao, Y., Joetzjer, E., Ciais, P., Viovy, N., Cresto Aleina, F., Chave, J., Sack, L., Bartlett,
M., Meir, P., Fisher, R., and Luyssaert, S.: Forest fluxes and mortality response to
drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the
Caxiuana drought experiment, Geosci. Model Dev., 15, 7809-7833, 10.5194/gmd-
15-7809-2022, 2022.

Yu, Y., Saatchi, S., Yang, Y., Xu, L., and Meyer, V.: Mapping Global Live Woody
Vegetation Biomass at Optimum Spatial Resolutions,
https://doi.org/10.5281/zenodo.7583611, 2023.

34


https://doi.org/10.1111/gcb.17224
https://doi.org/10.5281/zenodo.7583611

