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Abstract. Uncertainty in the dynamics of Amazon rainforest poses a critical challenge for accurately modeling the global 20 

carbon cycle. Current dynamic global vegetation models (DGVMs), which use one or two plant functional types for tropical 

rainforests, fail to capture observed biomass and mortality gradients in this region, raising concerns about their ability to predict 

forest responses to global change drivers. Here we assess the importance of spatially varying parameters to resolve ecosystem 

spatial heterogeneity in the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) DGVM. Using satellite 

observations of tree aboveground biomass (AGB), gross primary productivity (GPP), and biomass mortality rates, we 25 

optimized two key parameters: the alpha self-thinning (α), which controls tree mortality induced by light competition, and the 

nitrogen use efficiency of photosynthesis (η), which regulates GPP. The model incorporating spatially optimized α and η 

parameters successfully reproduces the spatial variability of AGB (R2=0.82), GPP (R2=0.79), and biomass mortality rates 

(R2=0.73) when compared to remote sensing observations in intact Amazon rainforests, whereas the model using spatially 

constant parameters has R2 values lower than 0.04 for all observations. Furthermore, the relationships between the optimized 30 

parameters and ecosystem traits, as well as climate variables were evaluated using random forest regression. We found that 

wood density emerges as the most important determinant of α, which is in line with existing theory, while water deficit 

conditions significantly impact η. This study presents an efficient and accurate approach to enhancing the simulation of 

Amazonian carbon pools and fluxes in DGVMs by assimilating existing observational data, offering valuable insights for 

future model development and parameterization. 35 
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1 Introduction 

More than half of the global rainforests are located in the Amazon basin, storing approximately 140 PgC in their living biomass 

(Pan et al., 2011; Vancutsem et al., 2021). They constitute an important carbon sink in intact forests, but deforestation and 

forest degradation can turn these areas into a carbon source (Brienen et al., 2015; Gatti et al., 2021). The Amazon rainforest is 

characterized by high levels of biodiversity, rainfall variability, and soil diversity (Malhi et al., 2004; ter Steege et al., 2006; 40 

Flores. et al., 2010; Quesada et al., 2010; Castanho et al., 2013). These factors are only partly resolved in dynamic global 

vegetation models (DGVMs), which are widely used to predict vegetation responses to global environmental changes (Prentice 

et al., 2007). Therefore, current DGVMs can hardly capture continental-scale carbon fluxes and stock spatial gradients 

(Johnson et al., 2016), leading to even higher uncertainty in projecting future carbon dynamics in the Amazon rainforests. 

The factors driving the spatial variability of carbon fluxes and stocks in the Amazon rainforests are complex and remain largely 45 

unresolved (Johnson et al., 2016; Muller-Landau et al., 2021). Field forest plots reveal a clear aboveground biomass (AGB) 

gradient: higher AGB in the northeast over the Guiana Shield, where nitrogen-fixing, large-seeded legumes trees with lower 

growth rates are dominant, and lower AGB in the drier southwest, where non-legume trees thrive (ter Steege et al., 2006; Malhi 

et al., 2006; Mitchard et al., 2014). The biomass gradient results from the balance between the spatial variation in woody 

productivity and carbon losses, mainly through tree mortality. Field observations suggest a strong association between the 50 

spatial variation of tree mortality and the gradients of AGB (Malhi et al., 2015; Johnson et al., 2016). In western and southern 

regions, where natural disturbances are more frequent, dominant species tend to have higher growth rates, lower wood density, 

and higher mortality rates, supporting the “grow fast, die young” life history strategy, and maintaining stable biomass (Baker 

et al., 2004; Malhi et al., 2006; Keeling and Phillips, 2007; Esquivel-Muelbert et al., 2020; Brienen et al., 2020). Woody net 

primary productivity (NPP) is influenced by both climate conditions and soil fertility, particularly total soil phosphorus content 55 

which is higher in the western region. The mortality rate could be driven by the intensity of forest disturbances, particularly 

windthrow and drought. In the western region, windstorms are the primary cause of tree death, while in the east-central and 

southern regions, drought is the dominant driver (Esquivel-Muelbert et al., 2020). Soil physical properties including soil depth, 

soil structure, topography, and anoxic conditions also influence tree mortality (Malhi et al., 2004; Quesada et al., 2012; Sousa 

et al., 2022; Feng et al., 2023). 60 

Current DGVMs cannot capture the spatial heterogeneity in productivity, biomass, and mortality rates in the Amazon. While 

most models include detailed photosynthetic modules, they often ignore nutrient constraints on plant growth (e.g. phosphorus; 

Reed et al., 2015), and they simplify varied life history strategies to a few plant functional types with static parameters (e.g. 

mortality rates; Johnson et al., 2016). Although an increasing number of models have incorporated phosphorus cycles (Goll et 

al., 2012; Wang et al., 2010), simplified tree demography (Moorcroft et al., 2001; Rödig et al., 2017; Koven et al., 2020; 65 

Naudts et al., 2015), and drought-induced mortality (Yao et al., 2022), their capability to capture these spatial heterogeneities 

remain limited. More importantly, most models generally use one or two plant functional types (PFTs) with uniform parameters 

across the entire Amazon forest. Building upon these setups, in DGVMs, variations in biomass carbon pools across different 
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locations are primarily driven by differences in climate forcing and soil properties. However, biomass variability in the Amazon 

rainforests cannot be fully explained by climate factors alone, and soil properties are inadequately represented in DGVMs due 70 

to the coarse resolution and simplified processes (Quesada et al., 2012; Galbraith et al., 2013; Saatchi et al., 2015; Joetzjer et 

al., 2022). Given the availability of various data for parameter estimations, applying a single set of PFT-specific parameters 

uniformly across the entire basin is no longer justifiable (Butler et al., 2017).  

Several studies have attempted to simulate the spatial variations of biomass and GPP in the Amazon forest by linking different 

processes or forcing the model with observed parameters. In models that apply a constant tree mortality rate, higher NPP is 75 

typically associated with higher biomass (Keeling and Phillips, 2007). Delbart et al. (2010) demonstrated that linking higher 

tree mortality rates to higher NPP in a DGVM can improve the simulation of spatial biomass variations, but may fail to capture 

current biomass sinks in pristine tropical forests (Brienen et al., 2015). Castanho et al. (2013) forced another DGVM with an 

interpolated map of observed woody biomass residence times and correlated maximum carboxylation rate (Vcmax) with a soil 

total phosphorus map. While this study successfully reproduced site-level woody NPP and AGB, the use of interpolated woody 80 

biomass residence times and soil phosphorus data, based on limited observations, remains questionable (Saatchi et al., 2015; 

He et al., 2023). 

The increasing availability of remote sensing data provides wall-to-wall observations of key forest properties such as AGB, 

GPP, tree height, leaf area index (LAI), and normalized difference vegetation index (NDVI), which all remain underutilized 

for parameterizing and evaluating models. Rödig et al. (2017) developed an individual-based model, using a remote-sensing 85 

canopy height map as a constraint, and linked mortality rates to soil clay fraction and precipitation to simulate the spatial 

gradient of biomass. Ma et al. (2024) incorporated more observations from satellites including GPP, LAI, AGB, and forest 

age, and applied a stepwise calibration at the global scale. Despite these advancements, few studies have simultaneously 

employed multiple remote sensing datasets to optimize their models in the Amazon forest. 

In this study, we aim to improve the modeled spatial gradient of biomass, productivity, and mortality across the intact Amazon 90 

rainforest in the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) model. This model simulates 

forest demography based on tree cohorts and incorporates tree mortality mechanisms, including self-thinning and drought-

induced mortality (Yao et al., 2022). We assessed whether spatial variation in model parameters can improve the ability of the 

ORCHIDEE model to simultaneously reproduce multiple observed patterns, including AGB, GPP, and biomass mortality rates 

derived from remote sensing data. Finally, we discuss mechanistic links between environmental factors and spatial gradients 95 

in model parameters by exploring the results of an explainable machine-learning method, in order to guide future model 

developments. 

2 Materials and methods 

In this study, we describe the optimization of the model parameters for the Amazon forest (Plant functional type: tropical 

broadleaf evergreen tree) using remote sensing data. We first set a baseline model with optimal, but spatially constant 100 
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parameters at the Amazon basin scale. Next, we allowed parameters to vary in space with a spatial resolution of 1°×1°. Finally, 

we used a random forest model to derive relationships between the potential influencing factors and the optimal spatially 

varying parameters. This approach enabled us to explain the emerging spatial variations of the parameters across the Amazon 

basin and prescribe their spatial variability in the model (Fig. 1). 

 105 

Figure 1. Flowchart for the parameter optimization. η: nitrogen use efficiency; α: alpha self-thinning; LHS: Latin hypercube 

sampling; GPP: gross primary productivity. 

2.1 Study area 

This study focuses on the Amazon basin (79°W-43°W, 18°S-10°N), predominantly covered by old-growth, intact tropical 

evergreen rainforest (Flores et al., 2024). We excluded regions based on the following criteria: 1. areas with mean annual 110 

precipitation below 1,500 mm and mean annual temperature below 18 °C based on CRUJRA v2.4 from 1901-1920 (Climatic 

Research Unit and Japanese Reanalysis data; Harris et al., 2020) to keep the focus on the warm and humid tropics; 2. grid cells 

(1°×1°) with less than 10% forest cover, based on forest pixels that are labeled as “undisturbed tropical moist forest” in TMF 

(Tropical Moist Forest; Vancutsem et al., 2021) to exclude the pixels that were likely to be regrowing or degraded.  

2.2 The ORCHIDEE model 115 

ORCHIDEE is a global terrestrial ecosystem model that simulates energy, water, and carbon cycles (Krinner et al., 2005; 

Naudts et al., 2015; Vuichard et al., 2019). In this study, we used ORCHIDEE r8240 and further incorporated soil-tree-leaves 

hydraulics and drought-induced tree mortality (Yao et al., 2022). We also adjusted the NPP allocation parameters and forced 

the model with a spatially explicit wood density map (See Supplementary Text 1, Table S1; Chave et al., 2010; Yang et al., 

2024; Chen et al., 2020; Yang et al., 2021). These developments collectively constitute the new ORCHIDEE version r8849. 120 

The input data for the ORCHIDEE model include soil texture and meteorological forcing (air temperature, precipitation, 

shortwave downward radiation, longwave downward radiation, specific humidity, wind speed, and atmospheric pressure). We 

used CRUJRA v2.4 with a 6-hour temporal resolution as the source of meteorological forcing (Harris et al., 2020). To reduce 
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computational time, we resampled the original CRUJRA data from a resolution of 0.5°×0.5° to 1°×1°. Consequently, all results 

are presented at 1°×1°resolution. For soil texture data, we used the Harmonized World Soils Database version 2.0 (HWSD2; 125 

Fig. S1; FAO and IIASA, 2023), a comprehensive global soil database that includes various national datasets at a resolution 

of 1 km. In the ORCHIDEE model, soil texture determines the fractions of clay, silt, and sand, with other soil properties 

derived from a lookup table (Table S2) that controls soil hydraulic conductivity and soil water holding capacity. Soil depth is 

prescribed as 2 m in the model. Given that more than 99% forest in our study area is tropical broad-leaved evergreen trees 

(Harper et al., 2023), we forced the model with only tropical broad-leaved evergreen trees PFT in each pixel. Here, we provide 130 

a summary of the model processes. All changed parameters are summarized in Table S1. 

2.2.1 GPP 

In the ORCHIDEE model, GPP is calculated based on the leaf scale model of Farquhar et al. (1980) further simplified by Yin 

and Struik (2009). The key parameters driving the photosynthesis process are Vcmax (µmol CO2 m-2 s-1) and Jmax (the maximum 

electron transport rate, µmol CO2 m-2 s-1), with Jmax typically assumed to be proportional to Vcmax.  In the ORCHIDEE model, 135 

Vcmax is dynamically calculated as follows: 

𝑉𝑐𝑚𝑎𝑥 =
𝜂×𝑀𝑛,𝑙

𝑎𝑐𝑡𝑖𝑣𝑒

∑ ((1-0.7×(1-Light𝑖))×𝐿𝐴𝐼𝑖)𝑛
𝑖=1

 (1)                                  

where 𝑀𝑛,𝑙
𝑎𝑐𝑡𝑖𝑣𝑒  (gN m-2) is the active nitrogen content in the leaves, Lighti is the fraction of cumulative light transmitted to 

canopy level i, and LAIi (m2 m-2) is the leaf area index at level i. The ORCHIDEE model utilizes a dynamic three-dimensional 

canopy structure model to simulate gap probability (Haverd et al., 2012). The crown is divided into n levels (n=10). At each 140 

level, the model calculates the leaf volume based on tree crown morphology and density. LAIi is then calculated by leaf mass, 

specific leaf area (SLA=0.0153 m2 gC-1), and leaf volume for this layer. The canopy gap is calculated based on LAI i, tree 

height, tree density, and solar altitude angle. Lighti decreases progressively from 100% at the top level to the gap fraction at 

the bottom level. Given the limited observations available to constrain the nitrogen cycle in the Amazon forest and prevailing 

limitation by geogenic soil nutrients like P or K, we instead prescribe leaf nitrogen concentration for the whole Amazon forest 145 

(Sitch et al., 2003). In addition, we deactivate nitrogen controls on ecosystem processes and associated soil-plant feedbacks 

(Supplementary Text 2).  

2.2.2 Biomass mortality rates 

We defined biomass mortality rates as the ratio of biomass loss to the total biomass. The ORCHIDEE model incorporates 20 

circumference tree size classes within each forest PFT (Naudts et al., 2015), thus facilitating the representation of annual 150 

recruitment of young individual trees, and tree mortality driven by light competition (i.e. self-thinning). Self-thinning-induced 

tree mortality is calculated as Eq. (2): 

𝑁𝑚𝑎𝑥 = (
𝐷𝑔

𝛼
)

1
𝛽

  (2)  
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where Nmax is the maximum number of trees per hectare for a given quadratic mean tree diameter (Dg, cm), α (cm), and β are 

the self-thinning parameters. The model calculates the relative density index (RDI) as the ratio of the number of trees to Nmax. 155 

When the RDI exceeds the upper threshold of RDI (RDIupper), the excess trees are removed through mortality evenly in each 

circumference class, until the RDI reaches the lower threshold of RDI (RDIlower). Both RDIupper and RDIlower are cubic functions 

of Dg, with user-defined parameters. This self-thinning Eq. (2) indicates that the growth of some trees occurs at the expense of 

others, which die due to competition for limited resources such as water, light, or nutrients (Yu et al., 2024). The power-law 

function assumed in the model has been widely observed in the field plots (Enquist and Niklas, 2001; Muller-Landau et al., 160 

2006). Higher values of α and β suggest greater environmental carrying capacity and lower biomass mortality rates. In the 

model, the default value for β is -0.73, which is close to the average value reported by Yu et al. (2024) for tropical forests. 

However, the default value for α has not been evaluated and to our knowledge, no empirical estimates for α have been provided 

in previous studies. We thus estimate the α based on field forest inventory data and find the average value is 1941 cm (Brienen 

et al., 2015). 165 

The model also incorporates a drought-induced tree mortality module (Yao et al., 2022) to resolve periodic increases in 

mortality associated with droughts. When drought-induced mortality exceeds the mortality from the self-thinning process, the 

model assigns the total mortality rate to the drought-induced value; otherwise, it defaults to the self-thinning mortality rate. 

The drought mortality parameters were calibrated previously for the drought experiments in Caxiuanã National Forest  (Yao 

et al., 2022). Although drought-induced mortality can reduce biomass periodically in addition to self-thinning, AGB and 170 

biomass mortality rates are predominantly controlled by α rather than drought-induced mortality at the basin scale during our 

study period (Supplementary Text 1.3; Fig. S2). Considering that self-thinning is the dominant and regularly occurring 

mortality process, we treat self-thinning mortality as background mortality driven by resource competition among trees in this 

study. 

2.2.3 Aboveground biomass 175 

ORCHIDEE model has nine biomass pools: aboveground sapwood (Sapab), belowground sapwood, aboveground heartwood 

(Heartab), belowground heartwood, leaves, fruits, labile carbohydrate (Carbolab), and reserved carbohydrate (Carbores). The 

modeled aboveground biomass is calculated as follows: 

𝐴𝐺𝐵 = 𝑆𝑎𝑝𝑎𝑏 + 𝐻𝑒𝑎𝑟𝑡𝑎𝑏 + 𝐿𝑒𝑎𝑓 + 𝐹𝑟𝑢𝑖𝑡 +
𝐶𝑎𝑟𝑏𝑜𝑙𝑎𝑏 + 𝐶𝑎𝑟𝑏𝑜𝑟𝑒𝑠

2
  (3)  

2.3 Observational data 180 

We used GPP observations from GOSIF for data assimilation at the grid scale (Li and Xiao, 2019). GOSIF products estimated 

GPP using sun-induced chlorophyll fluorescence (SIF) from GOSAT, GOME-2, and OCO-2 at a 0.05° resolution from 2001 

to 2022. Given the high uncertainty in GPP estimates, particularly in tropical forests where GPP observations are scarce, we 

also evaluated other GPP products derived from flux tower upscaling (FLUXCOM_RS and FLUXCOM_RS_METEO) and 
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process-based models (BESSv2 and FORMIND) as part of our sensitivity tests (Jung et al., 2020; Li et al., 2023; Rödig et al., 185 

2019). Across these datasets, the average GPP values for the Amazon basin range from 24.0 to 33.4 MgC/ha/yr. Although 

GOSIF provides the highest estimation, it appears to be more consistent with observed GPP values (Fig. S3, Marthews et al., 

2012; Malhi et al., 2015). We compared GPP products with model outputs from 2001 to 2015 for GOSIF, FLUXCOM_RS, 

FLUXCOM_RS_METEO, and BESSv2. For FORMIND, the GPP represents average values from 2003 to 2006. 

We use the biomass map from Yu et al. (2023) to benchmark AGB in the ORCHIDEE model in 2020 (hereafter, Yu-Biomass). 190 

The Yu-Biomass map is based on a large number of lidar-biomass models, field plot data, and L-band radar data, with an 

original resolution of 100 m. Several other biomass maps are available for this region (Santoro and Cartus, 2024; Avitabile et 

al., 2016; Baccini et al., 2012). These maps generally incorporate field observation data and multiple remote sensing datasets, 

including radar backscatter, LiDAR, and optical indices. Among these maps, Yu-Biomass map shows the highest correlation 

with independent airborne LiDAR estimates in the Amazon forest (Longo et al., 2016; Yu et al., 2023). We also validated 195 

these datasets using field observations (Mitchard et al., 2014) and found that the Yu-Biomass map captures the biomass 

gradient more accurately than the others (Fig. S4).  

We optimized the modeled biomass mortality rates using biomass mortality data derived from Planet data (Dalagnol et al., 

2023; Dalagnol et al., 2021). This dataset estimates forest gaps based on very high-resolution (about 4-5 m) remote sensing 

and airborne lidar scanning data processed through deep learning methods. The identified gaps are then converted to biomass 200 

mortality estimates. The dataset provides annual biomass mortality data from 2016 to 2019 aggregated at a 1 km resolution. 

Given that this study focuses on background mortality, to minimize the potential influence of the 2015/16 El Niño drought, 

we excluded the year 2016 and used the average from 2017 to 2019. Biomass mortality rates were derived by dividing biomass 

mortality by total aboveground biomass from Yu-Biomass. We also compared the remote sensing-based biomass mortality 

rates to stem mortality rates from 189 long-term RAINFOR forest plots, with data primarily collected between 1981 and 2010 205 

(Esquivel-Muelbert et al., 2020). This comparison yielded an R² of 0.39 and an RMSE of 0.53% (Fig. S5).  

2.4 Simulation protocol 

We began with a spin-up simulation to bring the vegetation biomass carbon pool to equilibrium, i.e., linear trend in vegetation 

carbon over 40 years of < 0.03 MgC/ha/yr for 99% of pixels. We recycled the climate forcing from CRUJRA from 1901-1920 

for 600 years with a constant CO2 concentration of 296.8 ppm (i.e. the CO2 concentration in 1901).  The equilibration of the 210 

soil biogeochemistry was calculated by an analytical solution (Vuichard et al., 2019). Starting from this equilibrium state, we 

proceeded with the transient simulation using climate forcing and CO2 concentration data for the period 1901-2020. We did 

not account for land cover change, as our analysis is limited to undisturbed forests. Model parameters remain unchanged during 

the spin-up and transient simulations. Each time parameters are modified, we re-run the spin-up from the beginning to maintain 

consistency. This simulation protocol is widely used in previous model optimization studies (Ma et al., 2024; Peylin et al., 215 

2016). 
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2.5 Optimization processes 

Based on the description of the ORCHIDEE processes in 2.2, we conducted a sensitivity analysis of various model parameters 

on AGB, GPP, and biomass mortality rates using a one-at-a-time approach. This method is widely used for sensitivity analysis, 

where each parameter is varied individually while keeping the others unchanged (Liu et al., 2015). We define the VPi (variation 220 

percentage, %) as an indicator for the sensitivity of model output variables i (i.e. AGB, GPP, and biomass mortality rates). 

Following a previous study (Liu et al., 2015), we varied each parameter by ±10%, and VP is calculated as follows: 

𝑉𝑃 =
|𝑟𝑢𝑛+10% − 𝑟𝑢𝑛−10%|

𝑟𝑢𝑛𝑟𝑒𝑓

× 100  (4) 

where 𝑟𝑢𝑛+10% and 𝑟𝑢𝑛−10% are the model results with +10% and −10% variations in a given parameter while fixing other 

parameters, 𝑟𝑢𝑛𝑟𝑒𝑓  is the reference model result with default parameters. We selected parameters related to self-thinning, 225 

photosynthesis, carbon allocation, and turnover rate in the model. AGB and the mortality rate are the most sensitive to β, α, 

and η, while GPP is most sensitive to η, SLA, and klsmin (Table 1). 

Table 1 Variation percentage (VP) of AGB, GPP, and mortality rate for different parameters 

Parameters Description VPAGB VPGPP VPMor 

α Coefficient of the self-thinning relationship 26.70% 1.08% 45.53% 

β Coefficient of the self-thinning relationship 124.29% 9.52% 248.05% 

η Nitrogen use efficiency of Vcmax 16.81% 34.22% 36.20% 

SLA Specific leaf area 7.64% 23.28% 16.13% 

krcon Hydraulic conductivity of roots 3.25% 3.71% 6.77% 

kscon Hydraulic conductivity of sapwood 3.23% 3.69% 6.77% 

klsmin minimum observed leaf area to sapwood area ratio 5.75% 16.64% 9.87% 

klsmax maximum observed leaf area to sapwood area ratio 0.88% 2.59% 1.54% 

kτs longevity of sapwood 0.74% 8.48% 0.97% 

kτl longevity of leaf 3.07% 3.59% 6.39% 

kτr longevity of root 0.39% 0.45% 0.84% 

To optimize the model parameters for matching the spatial pattern of GPP, AGB, and biomass mortality rates, we constructed 

a loss function to optimize two key parameters: α and η. We chose the two parameters for the following reasons: 1) although 230 

β is more sensitive to AGB and mortality rate than α, α has a wider range of values compared to parameter β (Brienen et al., 

2015; Yu et al., 2024). Regardless of which parameter is optimized, the observations can be matched. To avoid the issue of 

equifinality when optimizing both parameters, we chose to adjust α while keeping β fixed at its default value, considering that 

α is less constrained than β in previous studies (Yu et al., 2024). 2) η has the highest sensitivity to GPP in the model and is 

found to be highly variable within the moist tropical biome (Kattge et al., 2009; Ellsworth et al., 2022). 3) we do not try to 235 
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optimize more parameters because the number of optimized parameters should not exceed the number of observations (GPP, 

AGB, and biomass mortality rates) to avoid the equifinality issue. 

We used the Latin hypercube sampling (LHS) method to select the initial parameter values, a technique widely used in model 

parameterization (McKay et al., 2000; Yan et al., 2023). LHS can subdivide full parameter space evenly to generate 

representative parameter values. This procedure ensures an efficient sampling of the parameter distribution with a suitable 240 

amount of parameter samples, thus avoiding impracticable computational efforts due to numerous model simulations (McKay 

et al., 2000). The recommended number of sampled points is typically 10 times the number of dimensions (Loeppky et al., 

2009). Accordingly, we used 20 samples as the initial parameter values, generated using LHS. The default η value is 14.08 

μmolCO2/gN/s based on the biome average of trait data for tropical forests on highly weathered soils (Kattge et al., 2009) and 

the α value is 1941 cm (Brienen et al., 2015). In this study, the initial uniform prior distribution ranges for α and η were set to 245 

1000-2800 cm and 8-18 μmolCO2/gN/s, respectively, to ensure that all optimized values fell within these boundaries (Fig. S7).  

After the initial ORCHIDEE run based on the 20 sets of parameter values, we interpolated the results for GPP, AGB, and 

biomass mortality rates over the whole domain using quadratic splines (Fig. S8), considering that these variables change 

monotonously and continuously with α and η. The interpolation achieved R2 values of 0.99, 0.98, and 0.93 for AGB, GPP, and 

biomass mortality rates, respectively, based on leave-one-out validation, where 19 simulations were used for interpolation and 250 

the remaining one for validation.  

Next, for each 1°×1° grid cell, we constructed a quadratic loss function to identify the best estimates of α and η that minimize 

the loss (Groenendijk et al., 2021), defined as: 

𝐿𝑜𝑠𝑠𝑎𝑔𝑏(𝛼, 𝜂) = (
𝐴𝐺𝐵𝑠𝑖𝑚(𝛼, 𝜂) − 𝐴𝐺𝐵𝑜𝑏𝑠

𝐴𝐺𝐵𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)2  (5) 

𝐿𝑜𝑠𝑠𝑔𝑝𝑝(𝛼, 𝜂) = (
𝐺𝑃𝑃𝑠𝑖𝑚(𝛼, 𝜂) − 𝐺𝑃𝑃𝑜𝑏𝑠

𝐺𝑃𝑃𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅

)2 (6) 255 

𝐿𝑜𝑠𝑠𝑚𝑜𝑟(𝛼, 𝜂) = (
𝑀𝑜𝑟𝑠𝑖𝑚(𝛼, 𝜂) − 𝑀𝑜𝑟𝑜𝑏𝑠

𝑀𝑜𝑟𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅

)2  (7) 

𝐿𝑜𝑠𝑠(𝛼, 𝜂) =
𝐿𝑜𝑠𝑠𝑎𝑔𝑏(𝛼, 𝜂)

𝐶𝑉𝐴𝐺𝐵

+
𝐿𝑜𝑠𝑠𝑔𝑝𝑝(𝛼, 𝜂)

𝐶𝑉𝐺𝑃𝑃

+
𝐿𝑜𝑠𝑠𝑚𝑜𝑟(𝛼, 𝜂)

𝐶𝑉𝑚𝑜𝑟

 (8) 

where AGBsim(α, η), GPPsim(α, η), and Morsim(α, η) are the AGB, GPP, and biomass mortality rates simulated by ORCHIDEE 

model after interpolation; AGBobs, GPPobs, and Morobs are the AGB, GPP, and biomass mortality rates from the observations; 

AGBobs
̅̅ ̅̅ ̅̅ ̅̅ ̅, GPPobs

̅̅ ̅̅ ̅̅ ̅̅ ̅ and Morobs
̅̅ ̅̅ ̅̅ ̅̅ ̅ are the spatial mean AGB, GPP, and biomass mortality rates for the whole basin; CVAGB, CVGPP, 260 

and CVMor are the coefficients of variation for AGB, GPP, and biomass mortality rates from the observations. We used 

coefficients of variation as the weight to balance different Losses from AGB, GPP, and biomass mortality rates at the regional 

scale. We selected the α and η values that minimized Loss(α, η) for each grid cell and generated spatial maps of both parameters 

across the entire Amazon region. Then, we re-ran the ORCHIDEE model forced by the α and η spatial maps obtained from the 
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optimization. For comparison, we also performed the same optimization using regional mean AGB, GPP, and biomass 265 

mortality rates from both the observations and the simulations to derive spatially constant α and η values across the entire 

Amazon region as a baseline (Fig. 1). 

2.6 Analyze the influencing variables 

Previous empirical studies have found that GPP/NPP and mortality rates are influenced by various factors including climate 

conditions, wood density, water table depth, and soil properties such as soil texture and soil fertility (Malhi et al., 2004; 270 

Quesada et al., 2012; Vicca et al., 2012; Castanho et al., 2013; Campioli et al., 2015; Sousa et al., 2022). We thus selected 

eight variables to explain the spatial distribution of the optimal α and η values (Fig. S9, Table S3). Mean annual temperature 

(MAT), mean annual precipitation (MAP), and downward shortwave radiation (SWdown) are obtained from CRUJRA v2.4 

(Harris et al., 2020). Maximum cumulative water deficit (MCWD) is a proxy for climatic water supply and indicates the 

intensity of drought. MCWD is calculated as: 275 

𝐶𝑊𝐷𝑡 =  {

𝑃𝑡 − 𝐸𝑡 ,   𝑖𝑓 𝑃𝑡 < 100 𝑚𝑚 𝑎𝑛𝑑 𝑡 = 1
𝐶𝑊𝐷𝑡−1 + 𝑃𝑡 − 𝐸𝑡 ,   𝑖𝑓 𝑃𝑡 < 100 𝑚𝑚 𝑎𝑛𝑑 𝑡 > 1

0,   𝑖𝑓 𝑃𝑡 ≥ 100 𝑚𝑚
 (9) 

𝑀𝐶𝑊𝐷 = min(𝐶𝑊𝐷𝑡) (10) 

with t being the month 1, …, 12, Pt is the precipitation for month t calculated from CRUJRA-v2.4, and Et is the monthly 

evapotranspiration, which is fixed at 100 mm (Aragão et al., 2007). MCWD was calculated based on the hydrological year, 

which begins in May (t=1) and ends in April (t=12) of the following year (Chen et al., 2024). Wood density was sourced from 280 

Yang et al. (2024). Clay fraction from HWSD2 serves as a proxy for soil texture (FAO and IIASA, 2023). Soil total phosphorus 

content, a key indicator of soil fertility, was derived from Darela-Filho et al. (2024). Water table depth, representing both 

anoxic conditions and additional water availability beyond precipitation, was obtained from Fan et al. (2013). To avoid 

multicollinearity, precipitation was excluded from the analysis due to its high correlation with MCWD (Fig. S10). 

We used random forest regression to analyze the potential influences of the eight variables on α and η. Random forest 285 

regression is a widely used machine learning algorithm that builds multiple decision trees to improve prediction accuracy 

(Breiman, 2001). We randomly selected 75% of the data to train the model, leaving the remaining 25% for validation. The 

random forest model was optimized with the following parameters for both α and η: ntree=100, max_depth=3. We constructed 

50 models using different random seeds and averaged their outputs to derive the final results.  

SHAP (SHapley Additive exPlanations) values were used to evaluate the contribution of each explanatory variable in the 290 

random forest regression (Lundberg et al., 2020). Based on Shapley values in game theory, SHAP values represent the marginal 

contribution of each variable, considering all possible combinations of feature values (Shapley, 1953). A SHAP value, whether 

positive or negative, indicates a corresponding positive or negative effect on the model's output. This method offers an 
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interpretable insight into how individual features impact model predictions. We built the random forest model using the Python 

package “sklearn” and computed SHAP values with the Python package “shap”. 295 

3. Results 

3.1 Simulations with optimal spatially constant parameters 

The optimal spatially constant parameter values for α and η are 1898 cm and 12.14 μmolCO2/gN/s, respectively, to match the 

AGB, GPP, and biomass mortality rates from observations. Basin-scale averaged values of AGB, GPP, and biomass mortality 

rates closely aligned with observations (126 ± 7 MgC/ha, 33 ± 3 MgC/ha/yr, and 2.2 ± 0.2 % vs. 127 ± 29 MgC/ha and 33 ± 2 300 

MgC/ha/yr and 2.0 ± 0.6 %, respectively). However, simulations failed to capture spatial heterogeneity, such as the higher 

biomass in the Guiana Shield or the higher biomass mortality rates in the southeastern Amazon (Fig. 2). The R2 values between 

the simulated AGB, GPP, and observations data were less than 0.04, and the correlation between simulated biomass mortality 

rates and observations was even negative (Fig. 3a-3c). Climate forcing, wood density, and soil texture had a limited impact on 

the modeled spatial variation of AGB, resulting in flat gradients of forest AGB and biomass mortality rates. In the ORCHIDEE 305 

model, higher MCWD is generally associated with higher GPP (Fig. 3b), but in reality, GPP doesn't vary significantly across 

the entire Amazon region (Fig. 2b). On the contrary, MCWD has little influence on modeled tree mortality, despite its observed 

association with higher mortality rates (Fig. 3c). These discrepancies suggest that spatially varying parameters are necessary 

to better match the modeled AGB, GPP, and mortality rates with observational data. 
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 310 

Figure 2. Spatial patterns of AGB, GPP, and biomass mortality rates from the observations (a-c), from the model with spatially 

constant parameters (d-f), and from the model with spatially varying parameters (g-i). 
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Figure 3. Comparison of model-simulated AGB, GPP, and mortality rates with observations. Results from model simulation with 315 
spatially constant parameters (a-c) and model with spatially varying parameters (d-f). The dashed red line is the 1:1 line. The black 

solid line is the best fit between modeled results and observations. The color of the dots represents the value of MCWD to show its 

correlation with AGB, GPP, and biomass mortality rates. 

3.2 Simulation with optimal spatially varying parameters 

The model with optimal spatially varying parameters successfully captured the spatial patterns of AGB, GPP, and mortality 320 

rates, including the higher biomass in the Guiana Shield, the lower GPP in the northwestern Amazon, and the higher mortality 

in the southern Amazon (Fig. 2). The R² values between the observed data and model-simulated AGB, GPP, and mortality 

rates improved substantially, increasing from near zero to 0.82, 0.79, and 0.73, respectively (Fig. 3). The spatially varying α 

values were higher in the northeast and lower in the southeast, while η values were higher in both the northeast and southern 

regions (Fig. S11).  325 

Optimizing both α and η is necessary. When only α is optimized, the model-simulated AGB and mortality rates improved a lot 

compared with observations, but GPP shows a weak correlation with observed GPP (R²=0.01, Fig. S12a-c). This is mainly 

because GPP is not sensitive to α (Table 1).  Similarly, VP of η is larger for GPP and biomass mortality rates than AGB (Table 

1). Optimizing only η results in no correlation between model-simulated AGB and observed AGB (R²=0.0, Fig. S12d-f), 
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although simulated GPP and mortality rates had a stronger correlation with the observations.  The spatial pattern of α shows a 330 

strong positive correlation with Yu-Biomass and a negative correlation with observed mortality rates. In contrast, η is positively 

correlated with GOSIF GPP and mortality rate data (Fig. S13).  

3.3 Spatial Correlation between the optimal parameter maps and influencing factors 

We further applied explainable machine learning (i.e., random forest regression and SHAP) to find the influence of various 

factors on the spatial pattern of optimal parameters. The seven variables explained 45% of the variation in α and 48% in η on 335 

testing data. The Shapley results show non-linear relationships between the optimal parameters and influencing factors, 

including climatic, plant, and edaphic properties. For example, when MCWD is below -300 mm, α increases sharply with 

rising MCWD, but once MCWD exceeds -300 mm, its impact on α becomes minimal. Similarly, the negative impact of MCWD 

on η becomes positive when MCWD falls below -100 mm (Fig. 4b). Clay fraction has a greater impact on η when it exceeds 

40%, particularly in soils classified as clay or silty clay, which accounts for 35% of all grids (Fig. 4e; Fig. S1; Table S2). Wood 340 

density shows a strong positive correlation with α when it exceeds 0.61 gC/cm3 (Fig. 4d), while the effect of water table depth 

on α follows a dome-shaped pattern, where both deep and shallow water table depths reduce α (Fig. 4g). Wood density shows 

the highest feature importance for α, based on mean absolute SHAP values (Fig. 5a). Additionally, MCWD emerges as the 

most important feature for η (Fig. 5b).  
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 345 

Figure 4. SHAP values of α and η for 7 explanatory variables: (a) temperature; (b) maximum cumulative water deficit (MCWD); 

(c) downward shortwave radiation (SWdown); (d) wood density; (e) clay fraction; (f) total available phosphorus; (g) water table 

depth. The shaded area indicates the standard deviation of SHAP values. The grey bars represent the distributions of explanatory 

variables. 

 350 
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Figure 5. Variable importance characterized by the mean SHAP values of 7 explanatory variables affecting α (a) and η (b). 

4. Discussion 

4.1 Implications from the inconsistency between model results and observations. 

By incorporating spatially varying parameters, the simulation shows much better agreement with the observations. However, 355 

some grid cells still exhibit underestimation or overestimation of AGB, GPP, or biomass mortality rates (Fig. S14), reflecting 

trade-offs made during the optimization of the loss function. In the ORCHIDEE model, GPP, biomass, and mortality rates are 

tightly coupled. The amount of dead woody biomass is determined by both biomass and mortality rates, which should equal 

the fraction of NPP allocated to wood under an equilibrium state. While carbon use efficiency (CUE=NPP/GPP: 33.7% ± 1.2%) 

and the woody NPP fraction (fNPP: 30.8 ± 1.1%) don’t vary a lot in the model, a grid with low biomass and low mortality rate 360 

should exhibit a correspondingly low GPP (Fig. S15). When observations are inconsistent with each other (e.g., low biomass, 

low biomass mortality rate but high GPP from observations), optimizing α and η alone is insufficient to accurately simulate 

AGB, GPP, and biomass mortality rates simultaneously. 

There are two potential reasons for the remaining model-observation inconsistency. First, the model may overlook important 

processes. For instance, the model currently only accounts for woody biomass loss through tree mortality. However, Zuleta et 365 

al. (2023) found that 42% of woody biomass loss occurs due to damage to living trees, such as branch falls, trunk breakage, 

and wood decay. In the ORCHIDEE model, aboveground woody biomass is divided into two pools: sapwood and heartwood. 

To improve the accuracy of biomass mortality estimates, a separate biomass pool for branches should be incorporated in future 

model developments to better account for biomass losses from branches. Besides, while CUE and fNPP fall within observed 

ranges, the variability of these factors may be underestimated. Some studies suggest that CUE ranges from 23% to 45% 370 
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(Doughty et al., 2018), whereas our model estimates it at 32% to 42%. Similarly, the spatial standard deviation of observed 

fNPP (2.9%) exceeds that of our modeled results (1.1%; Yang et al., 2021). 

Second, the observational data may contain inherent biases. Mortality rates derived from field observations may be 

overestimated because field plots are often located near roads and rivers, where disturbances are more frequent (Saatchi et al., 

2015). Additionally, satellite AGB may be underestimated in dense forests due to sensor saturation (Yu et al., 2023). GPP data 375 

carries the greatest uncertainty, largely due to the limited observations in the Amazon basin. We compared five GPP datasets 

across the Amazon basin (see Methods). While GOSIF and FLUXCOM_RS datasets show higher GPP in the southwestern 

Amazon and lower GPP in the central region, the spatial patterns differ across other regions and datasets (Fig. S16). The 

highest correlation coefficient between the GPP datasets is 0.46, observed between GOSIF and FLUXCOM_RS, while 

correlations among the other datasets are generally weaker (Fig. S3b).  380 

We conducted sensitivity tests using additional GPP and biomass datasets. Four other GPP datasets were used to optimize the 

parameters α and η. After optimization, both AGB and GPP showed strong agreement between the model and observations, 

demonstrating the robustness of our approach (Fig. S17). The linear correlations between the eight influencing factors and the 

optimal parameters are generally consistent with previous results (Fig. S18, S19), with only a few exceptions. For example, 

when using GPP data from FLUXCOM_RS+METEO, MCWD, and wood density are positively correlated with η, which is 385 

different when using GOSIF and other GPP datasets.  

4.2 Implications for the ORCHIDEE model from the random forest regression 

The uncertainties in simulated carbon stocks and fluxes arise from model structure, parameterization, and forcing data (Bonan 

and Doney, 2018). During the optimization of α and η, we assumed that all uncertainties stem from parameterization. By 

analyzing the correlation between the optimal parameters and influencing factors, our results showed great consistency with 390 

existing knowledge and highlighted important processes that are either missing or poorly represented in the ORCHIDEE model 

when simulating the Amazon forest.  

For instance, a threshold of -300 mm in MCWD was identified in the partial dependence analysis between α and MCWD. 

When MCWD drops below -300 mm, further decreases lead to lower α, indicating higher mortality (Fig. 4b). This result aligns 

with previous findings showing a negative correlation between AGB mortality rates and MCWD only when MCWD is 395 

particularly low (Sousa et al., 2022). Although our model incorporates drought-induced tree mortality, the higher tree mortality 

under lower MCWD conditions is likely underestimated. The dome-shaped relationship between water table depth and α is 

also in line with earlier studies (Fig. 4g). Shallow water table depths are associated with low biomass, as excessive water can 

limit oxygen flow to roots, restricting plant growth (Costa et al., 2023). In waterlogged conditions, weakened root systems and 

reduced soil cohesion increase the risk of tree falls (Ferry et al., 2010). Conversely, deeper water table depths elevate the risk 400 

of drought-induced mortality, thereby increasing mortality rates (Chen et al., 2024). However, water table depth is not 

explicitly represented in our model. We also found that higher wood density is associated with higher α, which is in line with 

previous findings that forests with higher wood density tend to have lower mortality rates and higher biomass (Fig. 4d; Keeling 
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and Phillips, 2007; Brienen et al., 2020). However, our model does not account for the feedback between wood density and 

tree mortality rates. 405 

Furthermore, we observed that η increases when MCWD falls below -100 mm. In the model, reduced water availability limits 

transpiration, leading to a decrease in GPP (Yao et al., 2022). However, the observed GPP exhibits a weak negative correlation 

with MCWD (Fig. S20). This suggests that grid cells with more negative MCWD require a higher η to simulate higher GPP. 

Given the unclear mechanisms driving the correlation between MCWD and GPP in the Amazon forest, it remains uncertain 

whether η should increase as MCWD decreases. We also found that η increases when the clay fraction exceeds 40%. Although 410 

precipitation is distributed evenly across soil types with varying clay fractions, the runoff fraction increases sharply when the 

clay fraction surpasses 40% (Fig. S21), due to the very low hydraulic conductivity of clay soils (Table S2). Besides, while 

available phosphorus is thought to influence woody production (Quesada et al., 2012), total phosphorus does not seem to be a 

critical factor in explaining the variation in optimal α and η (Fig. 5). In fact, the correlation between total available phosphorus 

and GPP is quite weak (R²=0.05), and the correlations with AGB or mortality rates are even weaker (Fig. S22). This may be 415 

due to uncertainties in the GPP data (Fig. S3, S16). 

Our random forest model results show that the seven selected variables explained 45% of the variation in α and 48% in η on 

testing data. The limited explanatory power of the random forest model may be attributed to the uncertainties in the current 

environmental driver datasets. When we re-ran the model using parameters predicted by the random forest regression, it still 

captured the spatial gradients of carbon pools and fluxes, but with reduced accuracy compared to the optimized results. The 420 

modeled AGB, GPP, and mortality rates with spatially varying parameters from the random forest, explain 47%, 25%, and 22% 

of the spatial variation in the observations, respectively (Fig. S23). In the future, by including more relevant and accurate 

influencing factors, we may be able to enhance the explanatory power of the random forest model and improve the ORCHIDEE 

by using the random forest algorithm to predict parameter variation across space, rather than relying on prescribed parameter 

maps. Ultimately, linking environmental drivers directly to model parameters in ORCHIDEE could enable a more mechanistic 425 

parameterization. 

4.3 Strengths of the optimization method 

In this study, we significantly improved the simulations of spatial gradients and mean values of AGB, GPP, and biomass 

mortality rates in the Amazon forest by optimizing two key parameters related to photosynthesis and self-thinning. Our method 

accounted for parameter variations within a PFT (tropical broad-leaved evergreen trees), an important factor that has largely 430 

been overlooked in other models (Butler et al., 2017). Besides, unlike previous studies that optimized numerous parameters 

simultaneously, our approach provided an efficient parameterization framework by focusing on the sensitive parameters for 

each pixel. In the future, we can incorporate additional observations, such as LAI and tree height, as their accuracy improves. 

This method is also applicable to other DGVMs. Except for optimizing the parameters, this approach also helps identify the 

missing or under-represented processes in the model. We also tried to link the optimal parameters with other plant traits or 435 
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environmental factors. By doing this, we may eventually improve the model by incorporating relationships between different 

traits (e.g., linking wood density to α).  

4.4 Limitations for this work 

Our parameter optimization framework does not aim to optimize temporal variation or long-term trends (See Supplementary 

Text 3). Besides, the input datasets used for model calibration carry significant uncertainties. More importantly, even with 440 

accurate observation data, our optimized parameter could be incorrect, as the mismatch between model results and observations 

can arise from the model structure and forcing data (Bonan and Doney, 2018). 

In addition to the missing processes mentioned earlier, this version of the ORCHIDEE model also lacks several key processes, 

such as phosphorus carbon interactions and specie-based functional groups diversity (Reed et al., 2015; Sun et al., 2021; Rüger 

et al., 2020). We ignored the spatial variability of leaf nitrogen content by fixing it uniformly across the Amazon forest. 445 

However, Vcmax depends on both η and the leaf C/N ratio, the latter also exhibiting significant variability (Ellsworth et al., 

2022).  

In the context of climate change, the Amazon forest is increasingly exposed to disturbances such as droughts, fires, and 

windthrow events (Chen et al., 2024; Flores et al., 2024; Feng et al., 2023). Although the model accounts for drought-induced 

mortality, it does not include other disturbances like fire, windthrow, and logging in the Amazon basin. In this study, we 450 

focused exclusively on intact forests, as defined by TMF data (Vancutsem et al., 2021). Incorporating natural and 

anthropogenic disturbances into this ORCHIDEE version is underway (Naudts et al., 2015; Yue et al., 2014; Marie et al., 2024; 

Chen et al., 2018) and might turn out to be essential in future work to fully capture the complexity of ecosystem dynamics 

across the entire Amazon rainforest. 

5. Conclusion 455 

Our study developed an efficient parameter optimization framework that integrates observation-based data for AGB, GPP, and 

mortality rates to optimize the spatial variation of parameters in the ORCHIDEE model. By incorporating spatially varying 

parameters, the model effectively simulates the spatial variation of AGB, GPP, and mortality rates. The spatial patterns of the 

optimal parameters are generally reasonable, revealing previously under-represented processes in the model. Given the 

complexity of the Amazon forest and the practical limits on model complexity, applying spatially varying parameters can help 460 

accurately represent its spatial variability. 
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