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Spatially varying parameters improve carbon cycle modeling in the
Amazon rainforest with ORCHIDEE r8849
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Abstract. Uncertainty in the dynamics of Amazon rainforest poses a critical challenge for accurately modeling the global
carbon cycle. Current dynamic global vegetation models (DGVMs), which use one or two plant functional types for tropical
rainforests, fail to capture observed biomass and mortality gradients in this region, raising concerns about their ability to predict
forest responses to global change drivers. Here we assess the importance of spatially varying parameters to resolve ecosystem
spatial heterogeneity in the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) DGV M. Using satellite
observations of tree aboveground biomass (AGB), gross primary productivity (GPP), and biomass mortality rates, we
optimized two key parameters: the alpha self-thinning (o), which controls tree mortality induced by light competition, and the
nitrogen use efficiency of photosynthesis (1), which regulates GPP. The model incorporating spatially optimized o and n
parameters successfully reproduces the spatial variability of AGB (R?=0.82), GPP (R?=0.79), and biomass mortality rates
(R?=0.73) when compared to remote sensing observations in intact Amazon rainforests, whereas the model using spatially
constant parameters has R? values lower than 0.04 for all observations. Furthermore, the relationships between the optimized
parameters and ecosystem traits, as well as climate variables were evaluated using random forest regression. We found that
wood density emerges as the most important determinant of a, which is in line with existing theory, while water deficit
conditions significantly impact n. This study presents an efficient and accurate approach to enhancing the simulation of
Amazonian carbon pools and fluxes in DGVMs by assimilating existing observational data, offering valuable insights for

future model development and parameterization.
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1 Introduction

More than half of the global rainforests are located in the Amazon basin, storing approximately 140 PgC in their living biomass
(Pan et al., 2011; Vancutsem et al., 2021). They constitute an important carbon sink in intact forests, but deforestation and
forest degradation can turn these areas into a carbon source (Brienen et al., 2015; Gatti et al., 2021). The Amazon rainforest is
characterized by high levels of biodiversity, rainfall variability, and soil diversity (Malhi et al., 2004; ter Steege et al., 2006;
Flores. et al., 2010; Quesada et al., 2010; Castanho et al., 2013). These factors are only partly resolved in dynamic global
vegetation models (DGVMs), which are widely used to predict vegetation responses to global environmental changes (Prentice
et al., 2007). Therefore, current DGVMs can hardly capture continental-scale carbon fluxes and stock spatial gradients
(Johnson et al., 2016), leading to even higher uncertainty in projecting future carbon dynamics in the Amazon rainforests.

The factors driving the spatial variability of carbon fluxes and stocks in the Amazon rainforests are complex and remain largely
unresolved (Johnson et al., 2016; Muller-Landau et al., 2021). Field forest plots reveal a clear aboveground biomass (AGB)
gradient: higher AGB in the northeast over the Guiana Shield, where nitrogen-fixing, large-seeded legumes trees with lower
growth rates are dominant, and lower AGB in the drier southwest, where non-legume trees thrive (ter Steege et al., 2006; Malhi
et al., 2006; Mitchard et al., 2014). The biomass gradient results from the balance between the spatial variation in woody
productivity and carbon losses, mainly through tree mortality. Field observations suggest a strong association between the
spatial variation of tree mortality and the gradients of AGB (Malhi et al., 2015; Johnson et al., 2016). In western and southern
regions, where natural disturbances are more frequent, dominant species tend to have higher growth rates, lower wood density,
and higher mortality rates, supporting the “grow fast, die young” life history strategy, and maintaining stable biomass (Baker
et al., 2004; Malhi et al., 2006; Keeling and Phillips, 2007; Esquivel-Muelbert et al., 2020; Brienen et al., 2020). Woody net
primary productivity (NPP) is influenced by both climate conditions and soil fertility, particularly total soil phosphorus content

which is higher in the western region. The mortality rate could be driven by the intensity of forest disturbances, particularly

windthrow and drought. In the western region, windstorms are the primary cause of tree death, while in the east-central and

southern regions, drought is the dominant driver (Esquivel-Muelbert et al., 2020). Soil physical properties including soil depth,

soil structure, topography, and anoxic conditions also influence tree mortality (Malhi et al., 2004; Quesada et al., 2012; Sousa
et al., 2022; Feng et al., 2023).

Current DGVMs cannot capture the spatial heterogeneity in productivity, biomass, and mortality rates in the Amazon. While
most models include detailed photosynthetic modules, they often ignore nutrient constraints on plant growth (e.g. phosphorus;
Reed et al., 2015), and they simplify varied life history strategies to a few plant functional types with static parameters (e.g.
mortality rates; Johnson et al., 2016). Although an increasing number of models have incorporated phosphorus cycles (Goll et
al., 2012; Wang et al., 2010), simplified tree demography (Moorcroft et al., 2001; Rddig et al., 2017; Koven et al., 2020;
Naudts et al., 2015), and drought-induced mortality (Yao et al., 2022), their capability to capture these spatial heterogeneities
remain limited. More importantly, most models generally use one or two plant functional types (PFTs) with uniform parameters

across the entire Amazon forest. Building upon these setups, in DGVMs, variations in biomass carbon pools across different
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locations are primarily driven by differences in climate forcing and soil properties. However, biomass variability in the Amazon
rainforests cannot be fully explained by climate factors alone, and soil properties are inadequately represented in DGVMs due
to the coarse resolution and simplified processes (Quesada et al., 2012; Galbraith et al., 2013; Saatchi et al., 2015; Joetzjer et
al., 2022). Given the availability of various data for parameter estimations, applying a single set of PFT-specific parameters
uniformly across the entire basin is no longer justifiable (Butler et al., 2017).

Several studies have attempted to simulate the spatial variations of biomass and GPP in the Amazon forest by linking different
processes or forcing the model with observed parameters. In models that apply a constant tree mortality rate, higher NPP is
typically associated with higher biomass (Keeling and Phillips, 2007). Delbart et al. (2010) demonstrated that linking higher
tree mortality rates to higher NPP in a DGVM can improve the simulation of spatial biomass variations, but may fail to capture
current biomass sinks in pristine tropical forests (Brienen et al., 2015). Castanho et al. (2013) forced another DGVM with an
interpolated map of observed woody biomass residence times and correlated maximum carboxylation rate (V cmax) With a soil
total phosphorus map. While this study successfully reproduced site-level woody NPP and AGB, the use of interpolated woody
biomass residence times and soil phosphorus data, based on limited observations, remains questionable (Saatchi et al., 2015;
He et al., 2023).

The increasing availability of remote sensing data provides wall-to-wall observations of key forest properties such as AGB,
GPP, tree height, leaf area index (LAI), and normalized difference vegetation index (NDVI), which all remain underutilized
for parameterizing and evaluating models. Réiig et al. (2017) developed an individual-based model, using a remote-sensing
canopy height map as a constraint, and linked mortality rates to soil clay fraction and precipitation to simulate the spatial
gradient of biomass. Ma et al. (2024) incorporated more observations from satellites including GPP, LAI, AGB, and forest
age, and applied a stepwise calibration at the global scale. Despite these advancements, few studies have simultaneously
employed multiple remote sensing datasets to optimize their models in the Amazon forest.

In this study, we aim to improve the modeled spatial gradient of biomass, productivity, and mortality across the intact Amazon
rainforest in the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) model. This model simulates
forest demography based on tree cohorts and incorporates tree mortality mechanisms, including self-thinning and drought-
induced mortality (Yao et al., 2022). We assessed whether spatial variation in model parameters can improve the ability of the
ORCHIDEE model to simultaneously reproduce multiple observed patterns, including AGB, GPP, and biomass mortality rates
derived from remote sensing data. Finally, we discuss mechanistic links between environmental factors and spatial gradients
in model parameters by exploring the results of an explainable machine-learning method, in order to guide future model

developments.

2 Materials and methods

In this study, we describe the optimization of the model parameters for the Amazon forest (Plant functional type: tropical

broadleaf evergreen tree) using remote sensing data. We first set a baseline model with optimal, but spatially constant
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parameters at the Amazon basin scale. Next, we allowed parameters to vary in space with a spatial resolution of 11 < Finally,
we used a random forest model to derive relationships between the potential influencing factors and the optimal spatially
varying parameters. This approach enabled us to explain the emerging spatial variations of the parameters across the Amazon

basin and prescribe their spatial variability in the model (Fig. 1).

Methods Results
Initial parameters ORCHIDEE @ optimized
20 values from LHS Mortality spatially constant n a
20 Biomass parameters
i i GPP
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Interpolation o
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Climate forcime from remote Bigmass
Latitude sensing data GPP. Influencing factors

Figure 1. Flowchart for the parameter optimization. n: nitrogen use efficiency; a: alpha self-thinning; LHS: Latin hypercube
sampling; GPP: gross primary productivity.

2.1 Study area

This study focuses on the Amazon basin (79 W-43<W, 18<5-10N), predominantly covered by old-growth, intact tropical
evergreen rainforest (Flores et al., 2024). We excluded regions based on the following criteria: 1. areas with mean annual
precipitation below 1,500 mm and mean annual temperature below 18 <C based on CRUJRA v2.4 from 1901-1920 (Climatic
Research Unit and Japanese Reanalysis data; Harris et al., 2020) to keep the focus on the warm and humid tropics; 2. grid cells
(1°x1°) with less than 10% forest cover, based on forest pixels that are labeled as “undisturbed tropical moist forest” in TMF

(Tropical Moist Forest; Vancutsem et al., 2021) to exclude the pixels that were likely to be regrowing or degraded.

2.2 The ORCHIDEE model

ORCHIDEE is a global terrestrial ecosystem model that simulates energy, water, and carbon cycles (Krinner et al., 2005;
Naudts et al., 2015; Vuichard et al., 2019). In this study, we used ORCHIDEE r8240 and further incorporated soil-tree-leaves
hydraulics and drought-induced tree mortality (Yao et al., 2022). We also adjusted the NPP allocation parameters and forced
the model with a spatially explicit wood density map (See Supplementary Text 1, Table S1; Chave et al., 2010; Yang et al.,
2024; Chen et al., 2020; Yang et al., 2021). These developments collectively constitute the new ORCHIDEE version r8849.

The input data for the ORCHIDEE model include soil texture and meteorological forcing (air temperature, precipitation,
shortwave downward radiation, longwave downward radiation, specific humidity, wind speed, and atmospheric pressure). We

used CRUJRA v2.4 with a 6-hour temporal resolution as the source of meteorological forcing (Harris et al., 2020). To reduce

4
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computational time, we resampled the original CRUJRA data from a resolution of 0.50.5<to 11 < Consequently, all results
are presented at 1 <1 Fesolution. For soil texture data, we used the Harmonized World Soils Database version 2.0 (HWSD2;
Fig. S1; FAO and IIASA, 2023), a comprehensive global soil database that includes various national datasets at a resolution
of 1 km. In the ORCHIDEE model, soil texture determines the fractions of clay, silt, and sand, with other soil properties
derived from a lookup table (Table S2) that controls soil hydraulic conductivity and soil water holding capacity. Soil depth is
prescribed as 2 m in the model. Given that more than 99% forest in our study area is tropical broad-leaved evergreen trees
(Harper et al., 2023), we forced the model with only tropical broad-leaved evergreen trees PFT in each pixel. Here, we provide

a summary of the model processes. All changed parameters are summarized in Table S1.

2.2.1 GPP

In the ORCHIDEE model, GPP is calculated based on the leaf scale model of Farquhar et al. (1980) further simplified by Yin
and Struik (2009). The key parameters driving the photosynthesis process are Vemax (umol CO2 m2 s1) and Jmax (the maximum
electron transport rate, pmol CO, m s1), with Jmax typically assumed to be proportional to Vemax. In the ORCHIDEE model,

Vemax 1S dynamically calculated as follows:

active
77XMn,l

Vemax = P (1-0.7% (1-Light;)XLAIL})

€y

where MZ2"¢ (gN m?) is the active nitrogen content in the leaves, Light; is the fraction of cumulative light transmitted to
canopy level i, and LAI; (m? m?) is the leaf area index at level i. The ORCHIDEE model utilizes a dynamic three-dimensional
canopy structure model to simulate gap probability (Haverd et al., 2012). The crown is divided into n levels (n=10). At each
level, the model calculates the leaf volume based on tree crown morphology and density. LAI; is then calculated by leaf mass,
specific leaf area (SLA=0.0153 m? gC™), and leaf volume for this layer. The canopy gap is calculated based on LAI;, tree
height, tree density, and solar altitude angle. Light; decreases progressively from 100% at the top level to the gap fraction at
the bottom level. Given the limited observations available to constrain the nitrogen cycle in the Amazon forest and prevailing
limitation by geogenic soil nutrients like P or K, we instead prescribe leaf nitrogen concentration for the whole Amazon forest
(Sitch et al., 2003). In addition, we deactivate nitrogen controls on ecosystem processes and associated soil-plant feedbacks

(Supplementary Text 2).

2.2.2 Biomass mortality rates

We defined biomass mortality rates as the ratio of biomass loss to the total biomass. The ORCHIDEE model incorporates 20
circumference tree size classes within each forest PFT (Naudts et al., 2015), thus facilitating the representation of annual
recruitment of young individual trees, and tree mortality driven by light competition (i.e. self-thinning). Self-thinning-induced

tree mortality is calculated as Eq. (2):

Nonax = (&)% @
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where Nmax is the maximum number of trees per hectare for a given quadratic mean tree diameter (Dg, cm), a (cm), and B are
the self-thinning parameters. The model calculates the relative density index (RDI) as the ratio of the number of trees to Nmax.
When the RDI exceeds the upper threshold of RDI (RDIgper), the excess trees are removed through mortality evenly in each
circumference class, until the RDI reaches the lower threshold of RDI (RDlower). Both RDlygper and RDliower are cubic functions
of Dy, with user-defined parameters. This self-thinning Eqg. (2) indicates that the growth of some trees occurs at the expense of
others, which die due to competition for limited resources such as water, light, or nutrients (Yu et al., 2024). The power-law
function assumed in the model has been widely observed in the field plots (Enquist and Niklas, 2001; Muller-Landau et al.,
2006). Higher values of a and B suggest greater environmental carrying capacity and lower biomass mortality rates. In the
model, the default value for B is -0.73, which is close to the average value reported by Yu et al. (2024) for tropical forests.
However, the default value for o has not been evaluated and to our knowledge, no empirical estimates for a have been provided
in previous studies. We thus estimate the a based on field forest inventory data and find the average value is 1941 cm (Brienen
etal., 2015).

The model also incorporates a drought-induced tree mortality module (Yao et al., 2022) to resolve periodic increases in
mortality associated with droughts. When drought-induced mortality exceeds the mortality from the self-thinning process, the
model assigns the total mortality rate to the drought-induced value; otherwise, it defaults to the self-thinning mortality rate.
The drought mortality parameters were calibrated previously for the drought experiments in Caxiuan&National Forest (Yao
et al., 2022). Although drought-induced mortality can reduce biomass periodically in addition to self-thinning, AGB and
biomass mortality rates are predominantly controlled by a rather than drought-induced mortality at the basin scale during our

study period (Supplementary Text 1.3; Fig. S2). Considering that self-thinning is the dominant and regularly occurring

mortality process, we treat self-thinning mortality as background mortality driven by resource competition among trees in this

study.

2.2.3 Aboveground biomass

ORCHIDEE model has nine biomass pools: aboveground sapwood (Sapas), belowground sapwood, aboveground heartwood
(Hearta), belowground heartwood, leaves, fruits, labile carbohydrate (Carboia), and reserved carbohydrate (Carbores). The
modeled aboveground biomass is calculated as follows:

Carboy,, + Carbo, .

AGB = Sapgy, + Hearty, + Leaf + Fruit + >

3)

2.3 Observational data

We used GPP observations from GOSIF for data assimilation at the grid scale (Li and Xiao, 2019). GOSIF products estimated
GPP using sun-induced chlorophyll fluorescence (SIF) from GOSAT, GOME-2, and OCO-2 at a 0.05 “resolution from 2001
to 2022. Given the high uncertainty in GPP estimates, particularly in tropical forests where GPP observations are scarce, we
also evaluated other GPP products derived from flux tower upscaling (FLUXCOM_RS and FLUXCOM_RS_METEO) and
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process-based models (BESSv2 and FORMIND) as part of our sensitivity tests (Jung et al., 2020; Li et al., 2023; Ralig et al.,
2019). Across these datasets, the average GPP values for the Amazon basin range from 24.0 to 33.4 MgC/ha/yr. Although
GOSIF provides the highest estimation, it appears to be more consistent with observed GPP values (Fig. S3, Marthews et al.,
2012; Malhi et al., 2015). We compared GPP products with model outputs from 2001 to 2015 for GOSIF, FLUXCOM_RS,
FLUXCOM_RS METEO, and BESSv2. For FORMIND, the GPP represents average values from 2003 to 2006.

We use the biomass map from Yu et al. (2023) to benchmark AGB in the ORCHIDEE model in 2020 (hereafter, Yu-Biomass).
The Yu-Biomass map is based on a large number of lidar-biomass models, field plot data, and L-band radar data, with an
original resolution of 100 m. Several other biomass maps are available for this region (Santoro and Cartus, 2024; Avitabile et
al., 2016; Baccini et al., 2012). These maps generally incorporate field observation data and multiple remote sensing datasets,
including radar backscatter, LIiDAR, and optical indices. Among these maps, Yu-Biomass map shows the highest correlation
with independent airborne LiDAR estimates in the Amazon forest (Longo et al., 2016; Yu et al., 2023). We also validated
these datasets using field observations (Mitchard et al., 2014) and found that the Yu-Biomass map captures the biomass
gradient more accurately than the others (Fig. S4).

We optimized the modeled biomass mortality rates using biomass mortality data derived from Planet data (Dalagnol et al.,
2023; Dalagnol et al., 2021). This dataset estimates forest gaps based on very high-resolution (about 4-5 m) remote sensing
and airborne lidar scanning data processed through deep learning methods. The identified gaps are then converted to biomass
mortality estimates. The dataset provides annual biomass mortality data from 2016 to 2019 aggregated at a 1 km resolution.
Given that this study focuses on background mortality, to minimize the potential influence of the 2015/16 El Nifb drought,
we excluded the year 2016 and used the average from 2017 to 2019. Biomass mortality rates were derived by dividing biomass
mortality by total aboveground biomass from Yu-Biomass. We also compared the remote sensing-based biomass mortality
rates to stem mortality rates from 189 long-term RAINFOR forest plots, with data primarily collected between 1981 and 2010
(Esquivel-Muelbert et al., 2020). This comparison yielded an R=of 0.39 and an RMSE of 0.53% (Fig. S5).

2.4 Simulation protocol

We began with a spin-up simulation to bring the vegetation biomass carbon pool to equilibrium, i.e., linear trend in vegetation
carbon over 40 years of < 0.03 MgC/ha/yr for 99% of pixels. We recycled the climate forcing from CRUJRA from 1901-1920

for 600 years with a constant CO; concentration of 296.8 ppm (i.e. the CO2 concentration in 1901). The equilibration of the

soil biogeochemistry was calculated by an analytical solution (Vuichard et al., 2019). Starting from this equilibrium state, we

proceeded with the transient simulation using climate forcing and CO; concentration data for the period 1901-2020. We did

not account for land cover change, as our analysis is limited to undisturbed forests. Model parameters remain unchanged during

the spin-up and transient simulations. Each time parameters are modified, we re-run the spin-up from the beginning to maintain

consistency. This simulation protocol is widely used in previous model optimization studies (Ma et al., 2024; Peylin et al.,

2016).
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2.5 Optimization processes

Based on the description of the ORCHIDEE processes in 2.2, we conducted a sensitivity analysis of various model parameters
on AGB, GPP, and biomass mortality rates using a one-at-a-time approach. This method is widely used for sensitivity analysis,
where each parameter is varied individually while keeping the others unchanged (Liu et al., 2015). We define the VP; (variation
percentage, %) as an indicator for the sensitivity of model output variables i (i.e. AGB, GPP, and biomass mortality rates).

Following a previous study (Liu et al., 2015), we varied each parameter by #10%, and VP is calculated as follows:

VP = |7un. 199 — TUN_109]

x 100 4
TUNyer )

where run, gy, and run_ g, are the model results with +10% and —10% variations in a given parameter while fixing other
parameters, run,..r is the reference model result with default parameters. We selected parameters related to self-thinning,
photosynthesis, carbon allocation, and turnover rate in the model. AGB and the mortality rate are the most sensitive to B, a,
and n, while GPP is most sensitive to 1, SLA, and Kismin (Table 1).

Table 1 Variation percentage (VP) of AGB, GPP, and mortality rate for different parameters

Parameters  Description VPacB VPerp  VPwmor
a Coefficient of the self-thinning relationship 26.70% 1.08%  45.53%
Coefficient of the self-thinning relationship 124.29% 9.52%  248.05%
n Nitrogen use efficiency of Vcmax 16.81% 34.22% 36.20%
SLA Specific leaf area 7.64% 23.28% 16.13%
Krcon Hydraulic conductivity of roots 3.25% 3.71% 6.77%
Kscon Hydraulic conductivity of sapwood 3.23% 3.69% 6.77%
Kismin minimum observed leaf area to sapwood area ratio  5.75% 16.64% 9.87%
Kismax maximum observed leaf area to sapwood area ratio  0.88% 2.59%  1.54%
K longevity of sapwood 0.74% 8.48%  0.97%
K longevity of leaf 3.07% 3.59%  6.39%
Ker longevity of root 0.39% 0.45%  0.84%

To optimize the model parameters for matching the spatial pattern of GPP, AGB, and biomass mortality rates, we constructed
a loss function to optimize two key parameters: o and n. We chose the two parameters for the following reasons: 1) although
B is more sensitive to AGB and mortality rate than a, o has a wider range of values compared to parameter 3 (Brienen et al.,
2015; Yu et al., 2024). Regardless of which parameter is optimized, the observations can be matched. To avoid the issue of
equifinality when optimizing both parameters, we chose to adjust a while keeping B fixed at its default value, considering that
a is less constrained than B in previous studies (Yu et al., 2024). 2) 1 has the highest sensitivity to GPP in the model and is
found to be highly variable within the moist tropical biome (Kattge et al., 2009; Ellsworth et al., 2022). 3) we do not try to
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optimize more parameters because the number of optimized parameters should not exceed the number of observations (GPP,
AGB, and biomass mortality rates) to avoid the equifinality issue.

We used the Latin hypercube sampling (LHS) method to select the initial parameter values, a technique widely used in model
parameterization (McKay et al., 2000; Yan et al., 2023). LHS can subdivide full parameter space evenly to generate
representative parameter values. This procedure ensures an efficient sampling of the parameter distribution with a suitable
amount of parameter samples, thus avoiding impracticable computational efforts due to numerous model simulations (McKay
et al., 2000). The recommended number of sampled points is typically 10 times the number of dimensions (Loeppky et al.,
2009). Accordingly, we used 20 samples as the initial parameter values, generated using LHS. The default n value is 14.08
umolCO2/gN/s based on the biome average of trait data for tropical forests on highly weathered soils (Kattge et al., 2009) and
the o value is 1941 cm (Brienen et al., 2015). In this study, the initial uniform prior distribution ranges for a and n were set to
1000-2800 cm and 8-18 umolCO2/gN/s, respectively, to ensure that all optimized values fell within these boundaries (Fig. S7).
After the initial ORCHIDEE run based on the 20 sets of parameter values, we interpolated the results for GPP, AGB, and
biomass mortality rates over the whole domain using quadratic splines (Fig. S8), considering that these variables change
monotonously and continuously with o and 1. The interpolation achieved R? values of 0.99, 0.98, and 0.93 for AGB, GPP, and
biomass mortality rates, respectively, based on leave-one-out validation, where 19 simulations were used for interpolation and
the remaining one for validation.

Next, for each 1°x1° grid cell, we constructed a quadratic loss function to identify the best estimates of a and 1 that minimize

the loss (Groenendijk et al., 2021), defined as:

AGBsim (CZ, 77) - AGBobs
Lossggp(a,m) = ( ACB. ..
obs

) )

GPPsim(a' TI) - GPPobs
GPP,

)? (6)

Lossgpp(a,n) = (

Morsim(a'n) - MOTobs

)? (7

Lossyor(a,m) = ( Mor .
obs

Lossqgp(a,m)  Lossgp,(a,m)  LoSSper(a,n)
CVAGB CVGPP CVmor

where AGBsim(a, 1), GPPsim(a, 1), and Morsim(a, 1) are the AGB, GPP, and biomass mortality rates simulated by ORCHIDEE

Loss(a,n) = )]

model after interpolation; AGBws, GPPops, and Morps are the AGB, GPP, and biomass mortality rates from the observations;

AGB,ys, GPP,,,¢ and Mor,,,, are the spatial mean AGB, GPP, and biomass mortality rates for the whole basin; CVacs, CVarep,
and CVwmor are the coefficients of variation for AGB, GPP, and biomass mortality rates from the observations. We used
coefficients of variation as the weight to balance different Losses from AGB, GPP, and biomass mortality rates at the regional
scale. We selected the o and 1 values that minimized Loss(a, 1) for each grid cell and generated spatial maps of both parameters

across the entire Amazon region. Then, we re-ran the ORCHIDEE model forced by the a and 1 spatial maps obtained from the
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optimization. For comparison, we also performed the same optimization using regional mean AGB, GPP, and biomass

mortality rates from both the observations and the simulations to derive spatially constant o and n values across the entire

Amazon region as a baseline (Fig. 1).

2.6 Analyze the influencing variables

Previous empirical studies have found that GPP/NPP and mortality rates are influenced by various factors including climate
conditions, wood density, water table depth, and soil properties such as soil texture and soil fertility (Malhi et al., 2004;
Quesada et al., 2012; Vicca et al., 2012; Castanho et al., 2013; Campioli et al., 2015; Sousa et al., 2022). We thus selected
eight variables to explain the spatial distribution of the optimal o and 1 values (Fig. S9, Table S3). Mean annual temperature
(MAT), mean annual precipitation (MAP), and downward shortwave radiation (SWdown) are obtained from CRUJRA v2.4
(Harris et al., 2020). Maximum cumulative water deficit (MCWD) is a proxy for climatic water supply and indicates the
intensity of drought. MCWD is calculated as:
P, —E;, if ,<100mmandt=1
CWD, = {CWD,_; + P, — E,, if P, <100mmand t > 1 9)
0, if P, =100 mm
MCWD = min(CWD,) (10)

with t being the month 1, ..., 12, P is the precipitation for month t calculated from CRUJRA-v2.4, and E; is the monthly
evapotranspiration, which is fixed at 100 mm (Arag&o et al., 2007). MCWD was calculated based on the hydrological year,
which begins in May (t=1) and ends in April (t=12) of the following year (Chen et al., 2024). Wood density was sourced from
Yang et al. (2024). Clay fraction from HWSD?2 serves as a proxy for soil texture (FAO and IIASA, 2023). Soil total phosphorus
content, a key indicator of soil fertility, was derived from Darela-Filho et al. (2024). Water table depth, representing both
anoxic conditions and additional water availability beyond precipitation, was obtained from Fan et al. (2013). To avoid
multicollinearity, precipitation was excluded from the analysis due to its high correlation with MCWD (Fig. S10).
We used random forest regression to analyze the potential influences of the eight variables on o and m. Random forest
regression is a widely used machine learning algorithm that builds multiple decision trees to improve prediction accuracy
(Breiman, 2001). We randomly selected 75% of the data to train the model, leaving the remaining 25% for validation. The
random forest model was optimized with the following parameters for both o and n: ntree=100, max_depth=3. We constructed
50 models using different random seeds and averaged their outputs to derive the final results.
SHAP (SHapley Additive exPlanations) values were used to evaluate the contribution of each explanatory variable in the
random forest regression (Lundberg et al., 2020). Based on Shapley values in game theory, SHAP values represent the marginal
contribution of each variable, considering all possible combinations of feature values (Shapley, 1953). A SHAP value, whether

positive or negative, indicates a corresponding positive or negative effect on the model's output. This method offers an
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interpretable insight into how individual features impact model predictions. We built the random forest model using the Python

package “sklearn” and computed SHAP values with the Python package “shap”.

3. Results
3.1 Simulations with optimal spatially constant parameters

The optimal spatially constant parameter values for a and n are 1898 cm and 12.14 umolCO./gN/s, respectively, to match the
AGB, GPP, and biomass mortality rates from observations. Basin-scale averaged values of AGB, GPP, and biomass mortality
rates closely aligned with observations (126 £7 MgC/ha, 33 =3 MgC/ha/yr, and 2.2 +0.2 % vs. 127 +29 MgC/ha and 33 2
MgC/halyr and 2.0 0.6 %, respectively). However, simulations failed to capture spatial heterogeneity, such as the higher
biomass in the Guiana Shield or the higher biomass mortality rates in the southeastern Amazon (Fig. 2). The R? values between
the simulated AGB, GPP, and observations data were less than 0.04, and the correlation between simulated biomass mortality
rates and observations was even negative (Fig. 3a-3c). Climate forcing, wood density, and soil texture had a limited impact on
the modeled spatial variation of AGB, resulting in flat gradients of forest AGB and biomass mortality rates. In the ORCHIDEE
model, higher MCWD is generally associated with higher GPP (Fig. 3b), but in reality, GPP doesn't vary significantly across
the entire Amazon region (Fig. 2b). On the contrary, MCWD has little influence on modeled tree mortality, despite its observed
association with higher mortality rates (Fig. 3c). These discrepancies suggest that spatially varying parameters are necessary

to better match the modeled AGB, GPP, and mortality rates with observational data.
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Figure 2. Spatial patterns of AGB, GPP, and biomass mortality rates from the observations (a-c), from the model with spatially
constant parameters (d-f), and from the model with spatially varying parameters (g-i).
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315 Figure 3. Comparison of model-simulated AGB, GPP, and mortality rates with observations. Results from model simulation with
spatially constant parameters (a-c) and model with spatially varying parameters (d-f). The dashed red line is the 1:1 line. The black
solid line is the best fit between modeled results and observations. The color of the dots represents the value of MCWD to show its
correlation with AGB, GPP, and biomass mortality rates.
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regions (Fig. S11).

3.2 Simulation with optimal spatially varying parameters

13

The model with optimal spatially varying parameters successfully captured the spatial patterns of AGB, GPP, and mortality
rates, including the higher biomass in the Guiana Shield, the lower GPP in the northwestern Amazon, and the higher mortality
in the southern Amazon (Fig. 2). The R=®values between the observed data and model-simulated AGB, GPP, and mortality
rates improved substantially, increasing from near zero to 0.82, 0.79, and 0.73, respectively (Fig. 3). The spatially varying a

values were higher in the northeast and lower in the southeast, while n values were higher in both the northeast and southern

Optimizing both a and 1) is necessary. When only a is optimized, the model-simulated AGB and mortality rates improved a lot
compared with observations, but GPP shows a weak correlation with observed GPP (R=0.01, Fig. S12a-c). This is mainly
because GPP is not sensitive to o (Table 1). Similarly, VP of 1) is larger for GPP and biomass mortality rates than AGB (Table
1). Optimizing only 1 results in no correlation between model-simulated AGB and observed AGB (R=0.0, Fig. S12d-f),
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although simulated GPP and mortality rates had a stronger correlation with the observations. The spatial pattern of o shows a
strong positive correlation with Yu-Biomass and a negative correlation with observed mortality rates. In contrast, 1) is positively

correlated with GOSIF GPP and mortality rate data (Fig. S13).

3.3 Spatial Correlation between the optimal parameter maps and influencing factors

We further applied explainable machine learning (i.e., random forest regression and SHAP) to find the influence of various
factors on the spatial pattern of optimal parameters. The seven variables explained 45% of the variation in o and 48% inm on
testing data. The Shapley results show non-linear relationships between the optimal parameters and influencing factors,
including climatic, plant, and edaphic properties. For example, when MCWD is below -300 mm, a increases sharply with
rising MCWD, but once MCWD exceeds -300 mm, its impact on o becomes minimal. Similarly, the negative impact of MCWD
on 1 becomes positive when MCWD falls below -100 mm (Fig. 4b). Clay fraction has a greater impact on | when it exceeds
40%, particularly in soils classified as clay or silty clay, which accounts for 35% of all grids (Fig. 4e; Fig. S1; Table S2). Wood
density shows a strong positive correlation with o when it exceeds 0.61 gC/cm?® (Fig. 4d), while the effect of water table depth
on o follows a dome-shaped pattern, where both deep and shallow water table depths reduce a (Fig. 4g). Wood density shows
the highest feature importance for o, based on mean absolute SHAP values (Fig. 5a). Additionally, MCWD emerges as the
most important feature for 1 (Fig. 5b).

14



2950 2975 300.0 -400 200
Temperature (K) MCWD (mm)
d e
0550 0575 0600 0.625 20 40

Wood density (gC cm_B) Clay fraction (%)

0 10 20 30 40

345 Water table depth (m)

175 200 225 250
SWdown (W m ")

200 300 400 500
Total available phosphrus(mg kg_1)

Figure 4. SHAP values of a and n for 7 explanatory variables: (a) temperature; (b) maximum cumulative water deficit (MCWD);
(c) downward shortwave radiation (SWdown); (d) wood density; (e) clay fraction; (f) total available phosphorus; (g) water table
depth. The shaded area indicates the standard deviation of SHAP values. The grey bars represent the distributions of explanatory

variables.
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Figure 5. Variable importance characterized by the mean SHAP values of 7 explanatory variables affecting a (a) and 1 (b).

4. Discussion
4.1 Implications from the inconsistency between model results and observations.

By incorporating spatially varying parameters, the simulation shows much better agreement with the observations. However,

some grid cells still exhibit underestimation or overestimation of AGB, GPP, or biomass mortality rates (Fig. S14), reflecting

trade-offs made during the optimization of the loss function. In the ORCHIDEE model, GPP, biomass, and mortality rates are

tightly coupled. The amount of dead woody biomass is determined by both biomass and mortality rates, which should equal
the fraction of NPP allocated to wood under an equilibrium state. While carbon use efficiency (CUE=NPP/GPP: 33.7% %1.2%)
and the woody NPP fraction (fnep: 30.8 + 1.1%) don’t vary a lot in the model, a grid with low biomass and low mortality rate
should exhibit a correspondingly low GPP (Fig. S15). When observations are inconsistent with each other (e.g., low biomass,
low biomass mortality rate but high GPP from observations), optimizing o and ) alone is insufficient to accurately simulate
AGB, GPP, and biomass mortality rates simultaneously.

There are two potential reasons for the remaining model-observation inconsistency. First, the model may overlook important
processes. For instance, the model currently only accounts for woody biomass loss through tree mortality. However, Zuleta et
al. (2023) found that 42% of woody biomass loss occurs due to damage to living trees, such as branch falls, trunk breakage,
and wood decay. In the ORCHIDEE model, aboveground woody biomass is divided into two pools: sapwood and heartwood.
To improve the accuracy of biomass mortality estimates, a separate biomass pool for branches should be incorporated in future
model developments to better account for biomass losses from branches. Besides, while CUE and fypep fall within observed

ranges, the variability of these factors may be underestimated. Some studies suggest that CUE ranges from 23% to 45%
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(Doughty et al., 2018), whereas our model estimates it at 32% to 42%. Similarly, the spatial standard deviation of observed
fnee (2.9%) exceeds that of our modeled results (1.1%; Yang et al., 2021).

Second, the observational data may contain inherent biases. Mortality rates derived from field observations may be
overestimated because field plots are often located near roads and rivers, where disturbances are more frequent (Saatchi et al.,
2015). Additionally, satellite AGB may be underestimated in dense forests due to sensor saturation (Yu et al., 2023). GPP data
carries the greatest uncertainty, largely due to the limited observations in the Amazon basin. We compared five GPP datasets
across the Amazon basin (see Methods). While GOSIF and FLUXCOM _RS datasets show higher GPP in the southwestern
Amazon and lower GPP in the central region, the spatial patterns differ across other regions and datasets (Fig. S16). The
highest correlation coefficient between the GPP datasets is 0.46, observed between GOSIF and FLUXCOM_RS, while
correlations among the other datasets are generally weaker (Fig. S3b).

We conducted sensitivity tests using additional GPP and biomass datasets. Four other GPP datasets were used to optimize the
parameters o and 1. After optimization, both AGB and GPP showed strong agreement between the model and observations,
demonstrating the robustness of our approach (Fig. S17). The linear correlations between the eight influencing factors and the
optimal parameters are generally consistent with previous results (Fig. S18, S19), with only a few exceptions. For example,
when using GPP data from FLUXCOM_RS+METEO, MCWD, and wood density are positively correlated with n, which is
different when using GOSIF and other GPP datasets.

4.2 Implications for the ORCHIDEE model from the random forest regression

The uncertainties in simulated carbon stocks and fluxes arise from model structure, parameterization, and forcing data (Bonan
and Doney, 2018). During the optimization of a and 1, we assumed that all uncertainties stem from parameterization. By
analyzing the correlation between the optimal parameters and influencing factors, our results showed great consistency with
existing knowledge and highlighted important processes that are either missing or poorly represented in the ORCHIDEE model
when simulating the Amazon forest.

For instance, a threshold of -300 mm in MCWD was identified in the partial dependence analysis between oo and MCWD.
When MCWD drops below -300 mm, further decreases lead to lower a, indicating higher mortality (Fig. 4b). This result aligns
with previous findings showing a negative correlation between AGB mortality rates and MCWD only when MCWD is
particularly low (Sousa et al., 2022). Although our model incorporates drought-induced tree mortality, the higher tree mortality
under lower MCWD conditions is likely underestimated. The dome-shaped relationship between water table depth and a is
also in line with earlier studies (Fig. 4g). Shallow water table depths are associated with low biomass, as excessive water can
limit oxygen flow to roots, restricting plant growth (Costa et al., 2023). In waterlogged conditions, weakened root systems and
reduced soil cohesion increase the risk of tree falls (Ferry et al., 2010). Conversely, deeper water table depths elevate the risk
of drought-induced mortality, thereby increasing mortality rates (Chen et al., 2024). However, water table depth is not
explicitly represented in our model. We also found that higher wood density is associated with higher a, which is in line with

previous findings that forests with higher wood density tend to have lower mortality rates and higher biomass (Fig. 4d; Keeling
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and Phillips, 2007; Brienen et al., 2020). However, our model does not account for the feedback between wood density and
tree mortality rates.

Furthermore, we observed that 1 increases when MCWD falls below -100 mm. In the model, reduced water availability limits
transpiration, leading to a decrease in GPP (Yao et al., 2022). However, the observed GPP exhibits a weak negative correlation
with MCWD (Fig. S20). This suggests that grid cells with more negative MCWD require a higher 1 to simulate higher GPP.
Given the unclear mechanisms driving the correlation between MCWD and GPP in the Amazon forest, it remains uncertain
whether 1 should increase as MCWD decreases. We also found that 1) increases when the clay fraction exceeds 40%. Although
precipitation is distributed evenly across soil types with varying clay fractions, the runoff fraction increases sharply when the
clay fraction surpasses 40% (Fig. S21), due to the very low hydraulic conductivity of clay soils (Table S2). Besides, while
available phosphorus is thought to influence woody production (Quesada et al., 2012), total phosphorus does not seem to be a
critical factor in explaining the variation in optimal o and n (Fig. 5). In fact, the correlation between total available phosphorus
and GPP is quite weak (R=0.05), and the correlations with AGB or mortality rates are even weaker (Fig. S22). This may be
due to uncertainties in the GPP data (Fig. S3, S16).

Our random forest model results show that the seven selected variables explained 45% of the variation in o and 48% in n on

testing data. The limited explanatory power of the random forest model may be attributed to the uncertainties in the current

environmental driver datasets. When we re-ran the model using parameters predicted by the random forest regression, it still

captured the spatial gradients of carbon pools and fluxes, but with reduced accuracy compared to the optimized results. The

modeled AGB, GPP, and mortality rates with spatially varying parameters from the random forest, explain 47%, 25%, and 22%

of the spatial variation in the observations, respectively (Fig. S23). In the future, by including more relevant and accurate

influencing factors, we may be able to enhance the explanatory power of the random forest model and improve the ORCHIDEE

by using the random forest algorithm to predict parameter variation across space, rather than relying on prescribed parameter

maps. Ultimately, linking environmental drivers directly to model parameters in ORCHIDEE could enable a more mechanistic

parameterization.

4.3 Strengths of the optimization method

In this study, we significantly improved the simulations of spatial gradients and mean values of AGB, GPP, and biomass
mortality rates in the Amazon forest by optimizing two key parameters related to photosynthesis and self-thinning. Our method
accounted for parameter variations within a PFT (tropical broad-leaved evergreen trees), an important factor that has largely
been overlooked in other models (Butler et al., 2017). Besides, unlike previous studies that optimized numerous parameters
simultaneously, our approach provided an efficient parameterization framework by focusing on the sensitive parameters for
each pixel. In the future, we can incorporate additional observations, such as LAI and tree height, as their accuracy improves.
This method is also applicable to other DGVMs. Except for optimizing the parameters, this approach also helps identify the

missing or under-represented processes in the model. We also tried to link the optimal parameters with other plant traits or
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environmental factors. By doing this, we may eventually improve the model by incorporating relationships between different

traits (e.g., linking wood density to o).

4.4 Limitations for this work

Our parameter optimization framework does not aim to optimize temporal variation or long-term trends (See Supplementary
Text 3). Besides, the input datasets used for model calibration carry significant uncertainties. More importantly, even with
accurate observation data, our optimized parameter could be incorrect, as the mismatch between model results and observations
can arise from the model structure and forcing data (Bonan and Doney, 2018).

In addition to the missing processes mentioned earlier, this version of the ORCHIDEE model also lacks several key processes,
such as phosphorus carbon interactions and specie-based functional groups diversity (Reed et al., 2015; Sun et al., 2021; Riger
et al., 2020). We ignored the spatial variability of leaf nitrogen content by fixing it uniformly across the Amazon forest.
However, Vemax depends on both 1 and the leaf C/N ratio, the latter also exhibiting significant variability (Ellsworth et al.,
2022).

In the context of climate change, the Amazon forest is increasingly exposed to disturbances such as droughts, fires, and
windthrow events (Chen et al., 2024; Flores et al., 2024; Feng et al., 2023). Although the model accounts for drought-induced
mortality, it does not include other disturbances like fire, windthrow, and logging in the Amazon basin. In this study, we
focused exclusively on intact forests, as defined by TMF data (Vancutsem et al., 2021). Incorporating natural and
anthropogenic disturbances into this ORCHIDEE version is underway (Naudts et al., 2015; Yue et al., 2014; Marie et al., 2024;
Chen et al., 2018) and might turn out to be essential in future work to fully capture the complexity of ecosystem dynamics

across the entire Amazon rainforest.

5. Conclusion

Our study developed an efficient parameter optimization framework that integrates observation-based data for AGB, GPP, and
mortality rates to optimize the spatial variation of parameters in the ORCHIDEE model. By incorporating spatially varying
parameters, the model effectively simulates the spatial variation of AGB, GPP, and mortality rates. The spatial patterns of the
optimal parameters are generally reasonable, revealing previously under-represented processes in the model. Given the
complexity of the Amazon forest and the practical limits on model complexity, applying spatially varying parameters can help

accurately represent its spatial variability.
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