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Abstract. Arctic methane (CH4) budgets are uncertain because field measurements often capture only fragments of the wet-to-

dry gradient that control tundra CH4 fluxes. Wet hotspots are over-represented, while dry, net-sink sites are under-sampled. We 

paired over 13,000 chamber flux measurements during peak growing season in July (2019-2024) from Trail Valley Creek in the 15 

western Canadian Arctic with co-registered remotely sensed predictor variables to test how spatial resolution (1 m vs. 10 m) and 

choice of machine-learning algorithm shape upscaled CH4 flux maps over our 3.1 km2 study domain. Four algorithms for CH4 

flux scaling (Random Forest (RF), Gradient Boosting Machine (GBM), Generalised Additive Model (GAM), and Support Vector 

Regression (SVR)) were tuned using the same stack of multispectral indices, terrain derivatives and a six-class landscape 

classification. Tree-based models such as RF and GBM offered the best balance of 10-fold cross-validated R² (≤ 0.75) and errors, 20 

so RF and GBM were used in a subsequent step for upscaling to the study area. With 1 m resolution, GBM captured the full 

range of microtopographic extremes and predicted a mean July flux of 99 mg CH4 m-2 month-1. In contrast, RF, which smoothed 

local extremes, yielded an average flux of 519 mg CH4 m-2 month-1. The disagreement between flux estimates using GBM and 

RF correlated mainly with the Normalized Difference Water Index (NDWI), a moisture proxy, and was most pronounced in 

waterlogged, low-lying areas. Aggregating predictors to 10 m averaged the sharp metre-scale flux highs in hollows and lows on 25 

ridges, narrowing the GBM-RF difference to ~75 mg CH4 m-2 month-1 while broadening the overall flux distribution with more 

intermediate values. At 1 m, microtopography is the main driver. At 10 m, moisture proxies explained about half of the variance. 

Our results demonstrate that: (i) sub‑metre predictors are indispensable for capturing the wet-dry microtopography and its CH4 

signals, (ii) upscaling algorithm selection strongly controls prediction spread and uncertainty once that microrelief is resolved, 

and (iii) coarser grids smooth local microtopographic details, resulting in flattened CH4 flux peaks and wider distribution. All 30 

factors combined lead to potentially large differences in scaled CH4 flux budgets, calling for a careful selection of scaling 

approaches, spatial predictor layers (e.g., vegetation, moisture, topography), and grid resolution. Future work should couple 

ultra-high-resolution imagery with temporally dynamic indices to reduce upscaling bias along Arctic wetness gradients. 

1 Introduction 

The Arctic is warming nearly four times faster than the global average due to Arctic amplification feedbacks (Previdi et al., 2021; 35 

AMAP, 2021; Rantanen et al., 2022; Ballinger et al., 2020). This rapid warming is of particular concern due to the substantial 

quantities of organic carbon stored in wetland ecosystems of the circumpolar permafrost region (Hugelius et al., 2014; Schuur 

et al., 2015; Turetsky et al., 2020; Olefeldt et al., 2016). Thaw exposure may mobilize part of the previously frozen carbon as 

methane (CH4), a greenhouse gas 28-34 times more potent than CO2 over 100 years (Koven et al., 2011; Etminan et al., 2016; 

Nisbet et al., 2019; Saunois et al., 2020). Rising temperatures, therefore, risk to trigger a positive feedback in which permafrost 40 

degradation elevates CH4 emissions, further intensifying warming (Schuur et al., 2015; Walter Anthony et al., 2018; Turetsky et 

al., 2020; Natali et al., 2021). 
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High-resolution CH4 flux measurements in tundra ecosystems remain sparse even during the growing season due to the Arctic's 

remoteness, harsh climate, and logistical challenges (e.g., lengthy travel times, high fieldwork costs, sparse infrastructure, and 

challenging equipment maintenance), which limits the number of long-term monitoring sites. The primary tools for plot- to 45 

ecosystem scale CH4 flux observations are flux chambers (Subke et al., 2021) and eddy covariance techniques, respectively 

(Matthes et al., 2014; Baldocchi, 2003); however, the time window to conduct growing season chamber campaigns is usually 

limited to a few months between June and September, and locations in the Arctic featuring eddy covariance towers are few (Vogt 

et al., 2025). As a consequence, most synthesis studies aiming at constraining CH4 budgets in the high northern latitudes must 

rely on a limited database biased toward high-emitting sites near research stations and often overlooking areas with net CH4 50 

uptake (Mastepanov et al., 2013; Varner et al., 2021; Kuhn et al., 2021; Voigt et al., 2023c). Most tundra chamber campaigns 

collect data only for short intervals, typically from a single day up to a few weeks during the growing season, and many are 

conducted in just one growing season without repeated multi-year sampling or covering winter fluxes, which limits their value 

for model benchmarking and interannual analysis (Varner et al., 2021; Kuhn et al., 2021; Räsänen et al., 2021; Mastepanov et 

al., 2013; Treat et al., 2018). 55 

Even where flux data exist, CH₄ fluxes can shift within metres because the relative position and seasonal movement of the water 

table and the frost table create mosaics of anoxic (CH4 - producing) and oxic (CH4 - oxidising) soil (Frolking et al., 2011). These 

redox contrasts are further modulated by microtopography, plant functional type, and surface moisture (Mastepanov et al., 2013; 

Pirk et al., 2015; Olefeldt et al., 2021). Because the water table and frost table rarely coincide at the same depth across tundra 

microtopography, neighbouring microsites can experience very different oxic–anoxic conditions. Across the Arctic tundra, 60 

surface types range from water-saturated zones, such as sedge fens, polygon centres, troughs and thaw slumps, to better-drained 

features like hummocky ridges, palsas and gravelly uplands. These elements cover the entire CH4 flux range, with 

microtopographically lower, wetter zones acting as strong sources and microtopographically elevated, better-aerated zones often 

functioning as net sinks (Räsänen et al., 2021; Bao et al., 2021; Yuan et al., 2024). Such small-scale heterogeneity frequently 

occurs within a single 10 m pixel, so coarse maps or remote-sensing data products can combine zones of strong CH4 emission 65 

and neighbouring areas that act as net CH4 sinks (Knox et al., 2019; Treat et al., 2018). Without spatially explicit methods that 

resolve this fine-scale heterogeneity, upscaling can introduce systematic biases. It may overestimate CH4 emissions when dry 

areas that act as sinks are overlooked or underestimate them when narrow wet trenches surrounding dry patches are missed 

(Räsänen et al., 2021; Treat et al., 2018). 

Ultra-high-resolution (~1 m) imagery from drones or commercial satellites can directly resolve fine-scale vegetation patterns and 70 

microtopographic features (e.g., hummocks and hollows) in heterogeneous tundra landscapes, for example mapping plant 

communities on dry polygon rims versus wet sedge hollows and other microrelief features that correspond to CH4 “hotspots” 

and “cold spots”, respectively. Studies show that 1 m data products capture these plot-scale variations and can reveal flux 

heterogeneity at meter scales (Wangari et al., 2023; Ludwig et al., 2024; Lehmann et al., 2016; Ström et al., 2005; Davidson et 

al., 2017; Becker et al., 2008). However, working with spatially ultra-high-resolution data presents significant challenges. The 75 

acquisition and processing of sub-meter imagery through drones or advanced satellites and LiDAR are both costly and labour-

intensive; such datasets are rarely available as dense, multi-date image stacks and cannot be easily collected over large areas 

(Scheller et al., 2022; Karim et al., 2024; Anderson & Gaston, 2013). Moreover, ultra-high resolution can even introduce noise 

and not necessarily lead to a better representation of environmental conditions (Riihimäki et al., 2021). 

By contrast, high resolution (~10 m) predictors such as Sentinel-2 multispectral imagery and ArcticDEM terrain products are 80 

freely available and cover the entire Arctic with regular revisits with a standardized approach (Drusch et al., 2012; Porter et al., 

2023). However, the coarse 10 m resolution has a clear disadvantage because individual microtopographic features (e.g., 

hummocks, hollows) and landforms (e.g., dry palsas, wet trenches, etc.) that control small-scale variability in CH4 fluxes are 

aggregated into single pixels, blurring the fine-scale patterns of emission and uptake (Räsänen & Virtanen, 2019).  
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Machine-learning (ML) models such as random forests (RF), gradient-boosting machines (GBM), generalized additive models 85 

(GAM), and support-vector regression (SVR) can integrate predictors derived from remote sensing products with flux 

measurements to upscale CH4 from plot- and ecosystem- to landscape scales (Yuan et al., 2024; Chen et al., 2024; Zhang et al., 

2020, Ying et al. 2025). Tree ensembles (RF, GBM) are particularly well suited for capturing complex interactions and handle 

multicollinearity, while GAMs have the advantage of yielding interpretable smooth functions, and SVR excels with limited 

nonlinear data (Wood, 2017; Smola & Schölkopf, 2004; Zhang et al., 2019). Model choice, predictor resolution and limited 90 

training data still generate large spreads in upscaled Arctic tundra CH4 fluxes, with ensemble estimates differing by roughly 25–

50 % of the mean depending on the study (Peltola et al., 2019; McNicol et al., 2023; Chen et al., 2024; Räsänen et al., 2021). 

Quantifying and reducing these uncertainties are essential for robust CH4 budgets. 

Here, we address these methodological challenges in a study aiming at upscaling CH4 emissions in a heterogeneous tundra 

landscape in the western Canadian Arctic by pairing >13,000 peak growing season (July) chamber measurements collected over 95 

five years with matched 1 m and 10 m remote sensing predictors and training four ML algorithms (RF, GBM, GAM, SVR). Our 

overarching aim is to reduce uncertainties in peak-season (July) CH₄ budgets for the 3.1 km² heterogeneous tundra around the 

Trail Valley Creek Research Station. We address this aim through four specific questions: 

o Which remotely-sensed vegetation, moisture, and topographic characteristics best explain July CH4 fluxes across a wet-

to-dry micro-site gradient? 100 

o Does replacing freely available 10 m data (Sentinel-2, ArcticDEM) with sub-metre imagery from drones and airborne 

lidar lead to a detectable improvement in prediction accuracy and spatial detail? 

o How do the four ML algorithms differ in predicted net flux magnitudes and spatial patterns? 

o How do model choice, grid resolution, and their interaction shape the spatial patterns and uncertainty of our upscaled 

CH4 flux maps? 105 

Optimizing a data-driven upscaling approach based on these questions allows us to produce July CH4 flux maps with pixel-level 

uncertainty, improving peak-season emission estimates and guiding where additional measurements or higher-resolution imagery 

would most reduce prediction error. 

2 Materials and Methods 

2.1 Study site 110 

The study site is the undulating tundra landscape of the Trail Valley Creek (TVC) Research Station, about 55 km north of the 

town of Inuvik, NT, in the western Canadian Arctic east of the Mackenzie River Delta (Fig. 1). TVC lies in the Southern Arctic 

ecozone and contains continuous permafrost, with thickness ranging from 100 to 150 m (Marsh et al., 2008). Our analyses focus 

on a ~3.1 km² section of this 57 km2 basin with elevations ranging from 41 to 102 m a.s.l. The 1991 - 2020 climate normals for 

Inuvik are a mean annual air temperature of –7 °C, mean annual precipitation of ~250 mm, and a frost-free period (the interval 115 

with minimum air temperatures above 0 °C) of roughly 78 days (Environment and Climate Change Canada, 2024). The 

vegetation at TVC is highly diverse, reflecting the microtopography and moisture gradients. Isolated patches of white and black 

spruce (Picea glauca, P. mariana) occur in valley bottoms and on slopes. Tall shrub tundra, dominated by green alder (Alnus 

alnobetula) and featuring scattered willows and dwarf birch, can be found on hill slopes and alongside streams. Riparian zones 

feature dense willow thickets reaching up to 2 metres in height. Upland areas support dwarf shrub tundra with dense stands of 120 

dwarf birch (Betula glandulosa), Labrador tea (Ledum palustre) and mountain cranberry (Vaccinium vitis-idaea), interspersed 

with mosses and lichens. Flat, poorly drained areas are dominated by tussock-forming sedges (Eriophorum and Carex), alongside 

moss and scattered shrubs. Exposed uplands and polygon rims are covered by lichen mats and low dwarf shrubs. Mosses, 

especially Sphagnum and Polytrichum species, are prevalent in wetter microhabitats. Snow depth and winter soil temperatures 
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are highest in the tall shrub and tussock zones and lowest in the lichen tundra (Grünberg et al., 2020; Marsh et al., 2010).125 

 
Figure 1. Map of the study area showing the location of the area of interest (outlined with white polygon), with CH4 flux measurement 
locations marked with yellow circles. The inset map in the upper left corner highlights the region in which the Trail Valley Creek 
(TVC) research station is located (marked with a yellow triangle on the overview map and a white triangle on the detailed map). 
Background satellite imagery sources: © Maxar 2025, provided by Esri, acquired on 12 July 2024. Area of interest aerial imagery: 130 
Rettelbach et al., 2024. 

 2.2 Data sources 

2.2.1 CH4 flux data 

We used a combination of continuous and campaign-based CH4 flux measurements to capture spatial and temporal variability in 

CH4. The dataset includes previously published automated chamber observations made in 2019 and 2021 (Voigt et al., 2023a), 135 

and campaign-based manual chamber observations made in 2019 (Voigt et al., 2023b) and in 2022 to 2024 (Ivanova et al., 2025). 

Manual chamber measurements from 2022 to 2024 were collected as part of this study. The main measurement protocols, 

chamber specifications, instrumentation, and flux calculation methods for each campaign are summarized in Table 1. 

 
Table 1. Summary of CH₄ flux measurement protocols and instrumentation used at TVC, 2019–2024. 140 

Year  2019, 2021 2019 2022–2024  
 Method   Automated   Manual   Manual  
 Number of microsites 18 13 37 
 Chamber size and shape  30-45 L, hemispherical  17 L, cylindrical 17 L, cylindrical 

 Gas analyzer  

Los Gatos Research  Enhanced 
Performance Greenhouse Gas 
Analyser (Rackmount GGA-
24EP 911-0010, Los Gatos) 

Picarro G4301 
GasScouter (Picarro, 
Inc., Santa Clara, CA, 
USA) 

LI-COR LI-7810 Trace Gas 
Analyzer (LI-COR 
Biosciences, Lincoln, NE, 
USA) 

 Measurement frequency   1 Hz   1 Hz   1 Hz  
 Enclosure time   3 min   5 min   2–4 min  

Flux calculation method Linear regression (default); 
exponential fit for large fluxes 

Linear or nonlinear 
regression with the Math 
Works Inc., Natick, MA, 
USA) 

Linear regression with 
bootstrapping (R) 

Reference Voigt et al., 2023a Voigt et al., 2023b Ivanova & Göckede, 2025 
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The complete dataset included 13,384 CH4 flux measurements collected between 1 July and 31 July (2019-2024) under both 

light and dark conditions. Of these, 1,093 fluxes were measured manually using closed chambers, while 12,291 were collected 

using an automated chamber system (Fig. 1). For each flux measurement, ancillary data recorded include coordinates, PAR 

(measured as photosynthetic photon flux density (PPFD; μmol m-2 s-1), air temperature, land cover type, and time of day (when 145 

available). 

2.2.2 Climatic data 

Air temperature (AT) data were obtained from the Trail Valley Creek meteorological station operated by Environment and 

Climate Change Canada – Meteorological Service of Canada (ECCC, 2024). The station is located within the study area at 

68°44′46.8″ N, 133°30′06.4″ W, at an elevation of 85 m a.s.l. (Climate ID: 220N005; WMO ID: 71683; TC ID: XTV). The 150 

original data were recorded at hourly resolution and were downsampled to 3-hour intervals to match the temporal resolution of 

the model predictions. 

2.2.3 Remotely sensed data 

We assembled two separate but equivalent predictor stacks, one with a cell size of 1 m and one with 10 m. Both cover the same 

area of interest (AOI, Fig. 1), use the same map projection, and pass through the same preprocessing code (Ivanova et al., 2025). 155 

We defined the AOI along natural drainage lines on three sides and the Inuvik-Tuktoyaktuk Highway that forms its western 

border. An image stack is a set of co-registered raster layers (multispectral indices and terrain derivatives) that share the same 

grid and extent. The 1 m stack is based on the RGB + NIR orthomosaic captured on 22 August 2018 by Rettelbach et al. (2024) 

and on the 1 m LiDAR-derived digital terrain model (DTM) from Lange et al. (2021). From these layers we derived the 

Normalized Difference Vegetation Index (NDVI, Rouse 1974) and the Normalized Difference Water Index (NDWI, Gao, 1996; 160 

McFeeters, 1996) as proxies for biomass and surface moisture, respectively. Sentinel‑2 index extraction of NDVI and NDWI 

was implemented in Google Earth Engine (Gorelick et al., 2017). Slope, aspect, the topographic position index (TPI, 30 m 

window), and the topographic wetness index (TWI) were calculated with Whitebox Tools (Lindsay, 2016). The 10 m stack 

contains the same set of variables but at coarser resolution. It contains data from Sentinel-2 Level-2A scenes collected between 

2015 and 2024 (Copernicus, 2024). ArcticDEM (2 m) was resampled to 10 m to match this grid. All cloud-free Sentinel-2 scenes 165 

from July – August 2018 were averaged to create a composite that aligns with the 2018 drone campaign. A complete overview 

of all predictor variables, including data descriptions, resolution, temporal variability, and references, is provided in Appendix 

Table A1.  

Based on these predictors (multispectral indices and terrain derivatives), we produced a site-specific landscape classification 

map at both 1 m and 10 m resolution using a Random Forest approach (Breiman, 2001). The same training dataset and 170 

classification parameters were applied to both resolutions to ensure comparability. The classification is based on six land cover 

types in Grünberg et al. (2020) and includes: Water, Lichens, Tussock, Dwarf shrubs, Tall shrubs + trees, and Sedges. Reference 

points for training were selected using a combination of our own field observations. At 1 m resolution, the Tall shrubs + trees 

class was merged with Dwarf shrubs due to the absence of chamber measurements within that class, resulting in five effective 

classes at 1 m and six at 10 m. Water pixels were masked prior to analysis, and all statistical comparisons were restricted to 175 

terrestrial classes. A full description of the classification workflow is provided in Text A1 and Table A2. Same as for NDVI and 

NDWI, Sentinel‑2 index extraction for landscape classification was implemented in Google Earth Engine. 

In addition, we also explored the potential of two datasets that are particularly relevant for Arctic-scale applications. The 

Circumarctic Land cover Units (CALU) (Bartsch et al., 2024) provides a 10 m classification of vegetation physiognomy and soil 

moisture regimes across the circumpolar Arctic tundra. The data product is based on the fusion of Sentinel‑1 and Sentinel‑2 180 

imagery and was calibrated using over 3,500 field samples of soil and vegetation properties. One of the key strengths of CALU 

is that it captures spatial gradients in surface wetness while using a consistent classification scheme across all Arctic regions. 
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This makes it possible to directly compare classes between distant sites across the Arctic, which is rarely achievable with site-

specific classifications. 20 of 23 land cover units are found across the AOI, but only 5 of those were covered by CH4 

measurements. The complete legend of CALU classes used in this study, including definitions, their occurrence within the AOI, 185 

and whether CH4 flux measurements are available for each class, is presented in Table A3. Additionally, we considered a radar 

interferometric (InSAR) dataset derived from Sentinel‑1 data for 2018 - 2023 (Widhalm et al. 2025), which captures seasonal 

ground subsidence rates in thawing degree days domain associated with thaw table (the uppermost soil that freezes and thaws 

each year). The magnitude of the subsidence rates reflects soil moisture gradients (Widhalm et al. 2025).  

Finally, we assessed the benefit of incorporating time-specific spectral indices (NDVI and NDWI) extracted from Sentinel-2 190 

scenes close to each chamber measurement. We compared the effect of using these time-matched indices versus a seasonal 

composite (July – August 2018) to test whether short-term variability in vegetation and moisture status improves model skill. 

Although this approach relies on satellite scenes taken within a limited time window and may not align perfectly with the exact 

in situ measurement date, it still offers a more detailed representation of changes in surface conditions than seasonal averages. 

All four of the additional predictors (CALU, InSAR, and temporal NDVI and NDWI) were included in sensitivity tests to 195 

evaluate their predictive power. However, they were not included in the main upscaling workflow or resolution comparison, as 

they are only available at a single resolution and would thus bias inter-resolution comparisons. 

To isolate the effects of scale, we selected 1 m and 10 m resolutions, as chamber fluxes represent sub-metre patches, whereas 

most Arctic land cover products have coarser resolutions (>10 m) (Bartsch et al., 2016). By keeping the processing steps identical 

and changing only the grid size, we were able to compare the results directly. As shown in Fig. 2, narrow, wet features such as 200 

polygonal trenches are captured at 1 m but blended at 10 m, which alters both the NDVI and the landscape classification. Since 

many high CH4 fluxes originate from these small wet zones, aggregation at a coarser resolution obscures their contribution. Some 

of the remaining model disagreement may also be due to the limited representation of extremely wet or complex terrain in the 

training data, which reduces the model's generalisability. 

 205 
Figure 2. Site-specific landscape classification (LC) and Normalized Difference Vegetation Index (NDVI) at two spatial resolutions: 
1 m (panels A and C) and 10 m (panels B and D). Panels A and B show LC maps, while panels C and D show NDVI. Each panel includes 
a black-framed inset highlighting a representative polygonal mire. Narrow, waterlogged microtopographic features such as wet 
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trenches remain distinct at 1 m resolution but blend into mixed pixels at 10 m. Background imagery: © Google Satellite Hybrid (Maxar, 
2025). 210 

2.3 Statistical analyses 

The statistical analysis was structured into five sequential stages: (1) data preparation, (2) model training and evaluation, (3) 

spatial prediction, (4) temporal aggregation and interpretation, and (5) variable importance analysis (Figure 3). All steps were 

applied identically to the 1 m and 10 m datasets to enable direct comparison of model behaviour and prediction outcomes across 

spatial resolutions. The overall workflow is summarized in Fig. 3. The analysis was implemented in R 4.3.2 (R Core Team, 2024).  215 

The first step consisted in the preparation of the predictor datasets to explain spatio-temporal variability in CH4 fluxes. In total 

ten predictors were used: air temperature (AT), photosynthetically go radiation (PAR), cumulative thawing‑degree‑days (TDD), 

NDVI, NDWI, slope, aspect, the 30 m topographic position index, the topographic wetness index (TWI) and a six‑class landscape 

classification (see Appendix Table A1 for details). 

Second, we evaluated four modelling families for their ability to predict CH4 fluxes: random forests (RF), gradient-boosting 220 

machines (GBM), generalized additive models (GAM), and support-vector regression (SVR). RF is a ML algorithm that builds 

multiple decision trees on bootstrapped data. The mean of their outputs is then calculated. The averaging reduces noise and the 

method reports easy-to-read variable-importance scores (Breiman 2001; Prasad et al. 2006). GBM also uses trees but adds them 

one after another. Each new tree learns from the errors of the current ensemble, which often reduces bias but requires careful 

tuning to avoid over-fitting (Friedman 2001; Elith et al. 2008). Similar RF, GBM handles mixed predictor types, outliers, missing 225 

values, and nonlinear relationships without preprocessing (Elith et al., 2008). GAM is a statistical technique that fits a smooth 

curve to each predictor and then combines these curves to create a composite curve. The curves demonstrate how CH4 changes 

with each driver and provide reliable predictions beyond the training range (Hastie & Tibshirani 1990; Wood 2017). SVR is a 

ML algorithm that fits a flexible line or surface that best follows the data while allowing small errors within a defined range. It 

uses a mathematical function called a kernel to handle weak non-linear patterns, and is particularly effective when the dataset is 230 

small or the relationships are not strongly linear (Cortes & Vapnik 1995; Smola & Schölkopf 2004). Each model was 

implemented using the caret package in R (Kuhn 2008) for tuning and evaluation via stratified 10-fold cross-validation. We 

used the R-packages ranger for RF (Wright & Ziegler 2017), gbm for GBM (Greenwell et al. 2022), kernlab for SVR 

(Karatzoglou et al. 2004), and mgcv for GAM (Wood 2017). Root‑mean‑square error (RMSE) between measured and predicted 

CH4 fluxes was the primary comparison metric because it penalizes large deviations more strongly than a mean‑absolute error 235 

(Chai & Draxler 2014). 

Models were also trained with additional predictors, including CALU land cover, InSAR-derived subsidence, and temporally 

dynamic NDVI and NDWI extracted close to the CH₄ flux measurement dates.  

Third, two best-performing models (RF and GBM) were applied to a complete spatial predictor stack, a multi-layer raster 

covering the entire study area without gaps. The stack included two types of layers. Static layers, such as NDVI, NDWI, slope, 240 

aspect, TPI 30 m, TWI, and land cover, remained unchanged throughout July. In contrast, the meteorological layers (AT, TDD, 

PAR) were spatially uniform but temporally dynamic. A temporal loop progressed from 1 July at 00:00 to 31 July at 23:59 in 

three-hour steps. At each time step, the corresponding values of AT, PAR, and TDD were inserted into their respective layers in 

the stack. The model then generated an instantaneous CH4 flux raster in mg CH4 m-2 h-1 using the terra package (Hijmans 2023). 

This routine resulted in 248 flux rasters for the whole month of July, produced per year and spatial resolution. To ensure 245 

consistency, areas with missing input values (e.g., water bodies) were excluded from predictions. In total, 5,952 CH4 flux rasters 

were generated (248 time steps × 2 models × 2 resolutions × 6 years). 

Fourth, the predicted raster time series was aggregated using arithmetic operations in the terra package. Averaging over all time 

steps resulted in July mean flux maps, while summing and multiplying by three converted instantaneous rates into cumulative 

monthly fluxes. Six-year means and interannual variation (2019 to 2024) were calculated. Spatial mismatches due to scale effects 250 

were examined by differencing the 1 m and 10 m mean-flux maps cell by cell. Similarly, differences between model families 
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were mapped to capture structural uncertainty. To interpret these mismatches, we calculated Pearson correlations between flux 

difference maps (resolution-based or model-based) and individual predictor layers.  

Fifth, we conducted a separate variable importance analysis to identify the most influential predictors in each model. Variable 

importance scores were extracted from the tuned RF and GBM models using permutation importance (ranger package; Wright 255 

& Ziegler, 2017) and relative influence (gbm package; Greenwell et al., 2022), respectively. These scores were used to assess 

the consistency of predictor relevance across models and spatial resolutions. 

 
Figure 3. Workflow for modelling and upscaling CH4 fluxes in the designated study area. The analysis was performed separately for 
1 m and 10 m spatial resolutions and comprised five primary stages: (1) Predictor preparation. (2) The training and tuning of models. 260 
(3) Spatial prediction. (4) Temporal aggregation and evaluation. (5) Variable importance. 

3 Results and Discussion 

3.1 Correlation between observed CH4 fluxes and single remote sensing parameters 

This exploratory analysis examined how observed July CH4 fluxes correlate with individual environmental variables at two 

spatial scales (1 m and 10 m) to identify significant controls of CH4 flux and how spatial resolution affects their predictive power. 265 

Although the observed associations were generally weak, several clear patterns emerged across landscape classes and 

environmental gradients. 

Seasonal subsidence showed the strongest positive correlation, underscoring the explanatory power of this parameter for moisture 

availability and related enhancements in CH4 fluxes (Table 2). This is in line with observations linking InSAR-derived 

subsidence to elevated CH4 fluxes in Arctic ecosystems (Sjögersten et al., 2023). Several moisture-related indices (NDWI, TWI, 270 

TPI) show higher correlations at 10 m than at 1 m, because 10 m aggregation smooths microtopographic noise while 1 m retains 

over-detailed, heterogeneous signals. This indicates that coarser resolution better captures landscape-scale hydrological 

gradients. This finding is supported by Ruhoff et al. (2011), who demonstrated that TWI values stabilize and become more 

spatially coherent at coarser resolutions, and by Riihimäki et al. (2021), who showed that TWI’s ability to predict soil moisture 
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improves when derived from coarser DEMs (e.g., 10-30 m). Conversely, the correlation with aspect weakened at 10 m, compared 275 

to 1 m resolution, likely due to the loss of microtopographic detail when pixels are aggregated, as shown previously (Schoorl et 

al., 2000; Vaze et al., 2010).  

Temporally matched NDVI and NDWI show weaker correlation with CH₄ fluxes compared to static indices. The reason may be 

the limited effective temporal resolution of Sentinel-2: although the constellation has a nominal 5-day revisit, persistent Arctic 

cloud cover often stretches the cloud-free gap well beyond 10 days (Runge & Grosse, 2019), producing a temporal mismatch 280 

with chamber measurements. 

 
Table 2. Spearman rank-correlation coefficients (ρ) between July CH₄ flux and environmental predictors at 1 m and 10 m spatial 
resolution. Positive values indicate that higher predictor values coincide with higher CH₄ emissions, negative values indicate the 
opposite. For vegetation and surface wetness predictors (NDVI, NDWI), both static (July 2018) and temporally matched values 285 
(Sentinel-2 scenes within ±10 days of each chamber measurement) are shown. The column "10 m, temporal" reflects those temporally 
matched predictors. For predictors derived from static landscape characteristics (e.g., TWI, Slope, TPI, Subsidence), 10 m and 10 m-
temporal columns are merged as they do not vary in time. Significance levels: **p < 0.01, ***p < 0.001. 

Group Predictor 1 m 10 m 10 m, temporal 

Vegetation NDVI -0.289*** -0.295*** -0.082** 

Surface wetness and soil 
moisture 

NDWI 0.141*** 0.24*** -0.013 

TWI 0.027** 0.235*** 

Topography 

Slope -0.187*** -0.238*** 

Aspect 0.14*** 0.035*** 

TPI -0.162*** -0.327*** 

Ground subsidence Cumulative seasonal 
subsidence  0.534*** 

 

We examined CH₄ flux variation across the landscape classes and CALU units (Fig. 4A and Table B1). For example, sedge-290 

dominated landscape classes had the highest mean CH4 flux (0.87 – 0.94 mg CH4 m-2 h-1). Elevated fluxes in these systems are 

likely driven by plant transport through aerenchymatous tissue during which CH4 produced at depth bypasses the oxic zones, 

and enhanced CH₄ production resulting from high plant productivity and increased substrate availability via root exudates 

(Olefeldt et al., 2013; Kwon et al., 2017). Tussock areas displayed the lowest flux values, with on average minor uptake of CH4 

(-0.02 mg CH4 m-2 h-1). These patterns were consistent with observations by Voigt et al. (2023c).	295 

All pairwise differences between CH4 flux distributions for the 1 m and 10 m products were statistically significant (Wilcoxon 

rank-sum test, p < 0.0001). However, this result should be interpreted with caution due to the large sample sizes (even subtle 

differences can appear significant). This also applies to the correlations reported in Table 2. In some cases, the differences in 

median fluxes were small (e.g., sedges), while in others, the resolution shift results in more substantial changes (e.g., dwarf 

shrubs: median increased from 0.05 to 0.19 mg CH4 m-2 h-1). In some cases, the flux sign even changed, for instance, lichen-300 

dominated areas shift from weak uptake to weak emission. These shifts likely reflect the effects of aggregation, where coarser 
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resolution mixes surface types or blends microsites with different flux patterns.

 
Figure 4. Comparison of observed CH4 fluxes across site-specific landscape classification at two spatial resolutions and CALU 
vegetation classes. Panel A: CH4 fluxes across five site-specific landscape classes with existing CH4 flux measurements. Measurements 305 
were aggregated separately for 1 m and 10 m spatial resolution. Panel B: CH4 fluxes grouped by CALU (Circumarctic Land cover 
Units) classes. CH4 fluxes differed significantly between most CALU classes (p < 0.001, pairwise Wilcoxon test), except classes 10 and 
3 (wetlands), where no significant difference was observed (p = 0.054). Boxplots show the distribution of fluxes for each group. 
horizontal lines represent medians, boxes indicate the interquartile range, and whiskers extend to 1.5× the IQR. The red dashed lines 
indicate zero fluxes.  310 

To test whether a published pan-Arctic vegetation scheme would yield similar flux stratification, we overlaid our measurements 

on the CALU map (Fig. 4B). CALU vegetation classes differed significantly in CH4 flux, except between moist moss tundra, 

abundant moss, prostrate to low shrubs (class 10) and permanent wetlands (class 3) (Fig. 4B, Table B2). Within CALU classes, 

average CH4 fluxes ranged from slight uptake in wetland class (-0.09 mg CH4 m-2 h-1) to moderate emissions in moist tundra, 

abundant moss, dwarf and low shrubs (CALU 11) (0.46 mg CH4 m-2 h-1). Unexpectedly, the permanent wetland class showed the 315 

CH4 uptake. This category only included one area, where dry lichen areas dominate most of the area. Moreover, the 10 m 

resolution of CALU likely leads to mixed pixels, where wetter spots were averaged with drier surroundings, reducing the 

apparent CH₄ emissions. In contrast, many wet areas at our site were too small to be resolved as wetlands in CALU and were 

instead classified into other categories. 

Overlay analysis (Fig. 5) showed that each of our landscape classes included 6-11 CALU classes (with coverage > 1 %), typically 320 

dominated by moist tundra, abundant moss, dwarf and low shrubs (CALU 11). This reflects differences in classification 

approaches: CALU aimed at representing vegetation diversity and wetness gradients across the entire Arctic (Bartsch et al., 

2024), whereas the site-specific landscape classification was explicitly built for CH4 flux modelling and therefore integrates fine-

scale microtopography, surface-moisture patterns, and local vegetation. 
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 325 
Figure 5. Pixel-wise cross-comparison between two 10 m land-cover products for the TVC study area. LC 10 m (this study): a site-
specific Sentinel-2 + ArcticDEM classification built (see SI Text 1). CALU (Circumarctic Land cover Units): published pan-Arctic 
landcover units (full legend in Table A3). Each tile shows the fraction of pixels of a given CALU class that fall into that LC 10 m class; 
row totals, therefore, equal 100 %. Values ≥ 0.5 % are printed inside the tiles. Tiles that are coloured but unlabelled occur (< 0.5 %), 
while blank tiles indicate class pairs that do not intersect within the AOI. 330 

However, even within each CALU or LC class, flux variance remained high, underlining that vegetation type alone cannot 

capture the full pattern of CH4 fluxes without considering microtopography and moisture indices. Similar to the pan-Arctic 

synthesis by Olefeldt et al. (2013), our findings support the view that the effects of key environmental parameters on CH₄ flux 

should be considered jointly rather than independently. 

3.2 Evaluation of Model Accuracy 335 

Due to the relatively low mean CH4 flux across all sites (0.102 mg CH4 m-2 h-1), the emphasis of our model evaluation was placed 

on absolute errors (MAE) rather than the fraction of explained variance (Table 2). Our cross-validated modelling framework 

achieved predictive performance (R2 from 0.53 to 0.87, Table 2) comparable to recent CH4 upscaling studies in the Arctic-boreal 

region, including both chamber- (e.g., Virkkala et al., 2023; Räsänen et al., 2021) and eddy covariance-based studies (e.g., 

McNicol et al., 2023; Chen et al., 2024; Peltola et al., 2019; Tramontana et al., 2016). 340 

Model evaluation at 1 m resolution revealed that SVR achieved the highest R² of 0.87, indicating strong predictive power. 

However, this was accompanied by substantial errors (RMSE = 115 %, MAE = 21.5 % of mean CH4 flux), suggesting high 

sensitivity to skewed distributions and outliers, a known limitation of SVR when modelling non-Gaussian ecological data (Smola 

& Schölkopf, 2004). In contrast, RF showed both high accuracy and robustness, combining high R² with the lowest errors among 

tested algorithms. This confirms the algorithm’s strength in capturing nonlinear interactions while being less sensitive to noise 345 

and overfitting, as highlighted in ecological applications (Belgiu & Drăguț, 2016; Räsänen et al., 2021; Cutler et al., 2007). GBM 

also showed strong performance, with low errors and consistent R² values, reflecting its capability to efficiently leverage key 

predictors (Kämäräinen et al., 2023; Natekin & Knoll, 2013). GAM, in contrast, had the weakest performance among all models 

at 1 m resolution, with the lowest R² (0.62), highest RMSE (0.077), and highest MAE (0.025). This likely reflects the model’s 

limited ability to capture sharp spatial variability in CH₄ fluxes when localized structure is strong. GAMs rely on detecting 350 

smooth nonlinear effects, but when predictors become noisy or spatially complex, the fitted splines lack the detail needed for 

accurate prediction (Wood, 2017). 
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At 10 m resolution, RF not only achieved the lowest mean absolute and root‐mean‐square errors, but its R² and error metrics also 

changed the least when we varied resolution or added temporally dynamic predictors, indicating the most consistent performance 

in our experiments (Table 3). 355 

GBM showed similarly low errors but a slightly lower R² (0.57). SVR achieved the highest R² (0.68), but this was offset by 

much higher prediction errors, indicating poor generalization despite high apparent fit. GAM performed worst, with the lowest 

R² (0.53) and the highest RMSE (0.13). 

 
Table 3. Performance of four models at 1 m and 10 m spatial resolutions. Metrics include R² (coefficient of determination), MAE (mean 360 
absolute error), and RMSE (root mean square error). Bold values represent the best score for each metric within each resolution. The 
“10 m” scenario includes models with temporally stable normalized difference vegetation index (NDVI) and normalized difference 
water index (NDWI), while “10 m_temporal” refers to models using temporally dynamic indices, matched to the closest available date 
of in-field CH₄ flux measurements. 

Model Type Resolution R2 MAE RMSE 

GAM 

1 m 0.616 0.025 0.077 

10 m 0.527 0.027 0.126 

10 m_temporal 0.645 0.022 0.084 

GBM 

1 m 0.625 0.008 0.012 

10 m 0.570 0.008 0.013 

10 m_temporal 0.689 0.117 0.024 

RF 

1 m 0.744 0.006 0.010 

10 m 0.650 0.007 0.012 

10 m_temporal 0.751 0.016 0.105 

SVR 

1 m 0.868 0.019 0.078 

10 m 0.682 0.022 0.117 

10 m_temporal 0.668 0.022 0.124 

 365 

The observed drop in SVR and GAM performance at 10 m resolution reflects the Modifiable Areal Unit Problem (MAUP; Dark 

& Bram, 2007). This MAUP effect increased within-pixel heterogeneity as resolution coarsens and smooths fine-scale ecological 

signals. SVR, which is designed to fit narrow margins around nonlinear data patterns, becomes unstable when the training data 

lacks localized structure (Smola & Schölkopf, 2004). Similarly, GAM relies on the ability to detect smooth nonlinear effects in 

the predictors. When predictor distributions become more centralized and less variable, as often observed under coarser spatial 370 

resolutions (Riihimäki et al., 2019), GAM loses explanatory power because the fitted splines have insufficient detail to represent 

the underlying relationships (Wood, 2017). These scale-induced effects lead to higher errors and reduced R², particularly for 

models that depend on localized relationships. RF and GBM remained more stable across resolutions. The RF algorithm is less 

affected by noisy or imbalanced training data and overfitting, due to its ensemble structure combining multiple decision trees 

trained on bootstrapped subsets of data and predictor variables (Belgiu and Drăguț, 2016). Based on these results, we selected 375 

RF and GBM for further analysis as the most reliable combination of accuracy and cross-resolution stability. 

Including the temporal variability of the NDVI and NDWI values led to an average increase in R² of approximately 0.11 for the 

GAM, GBM and RF models at a resolution of 10 m (Table 3). SVR was the exception, showing a slight decrease in R2 with no 

reduction in errors. For the GAM model, this increase in explanatory power was accompanied by lower RMSE and MAE values, 

indicating more accurate and robust performance. In contrast, both RF and GBM showed a higher R2, but also exhibited increased 380 

absolute errors, which may indicate overfitting to temporally dynamic predictors. This likely reflects the tendency of ensemble 

models to capture noise in dynamic inputs when training data is limited (Barry and Elith, 2006; Chollet Ramampiandra et al., 

2023; Reichstein et al., 2019). Similar behaviour has been observed in other ecosystem carbon flux modelling studies, for 
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example, in neural network models that overfit to lagged meteorological inputs (Papale & Valentini, 2003). The GAM model 

likely benefited from its ability to represent gradual ecological shifts through penalised smoothers, which reduces sensitivity to 385 

noise (Berbesi & Pritchard, 2023). The limited improvement in performance for SVR may be due to its sensitivity to data 

structure and lower flexibility when modelling smooth temporal trends in ecological datasets (Smola & Schölkopf, 2004). 

3.3 Impact of model and resolution selection on CH4 flux predictions 

Different ML models can produce distinct spatial predictions even when trained on the same input data. Although well-

documented, most ML models are not easily interpretable. We therefore compare their spatial predictions and simple diagnostics 390 

to assess reliability and guide model choice for CH4 upscaling. Our comparison of upscaled CH4 flux fields produced by the RF 

and GBM models showed that algorithm choice remained an important influence on spatial variability in predicted CH4 fluxes 

(Fig. 6). The GBM model generated higher local contrast and more pronounced extremes, especially at 1 m resolution, with 

pronounced peaks in wet, topographically complex areas, reflecting its greater sensitivity to extreme values and local predictor 

variation. RF produced smoother, noise-resistant distributions, aligning with its known strength in generalizing across 395 

heterogeneous landscapes (Räsänen et al., 2021; Cutler et al., 2007). Although RF performs robustly and is widely used (Cutler 

et al., 2007), our results show that different algorithms can yield substantially different spatial patterns. This highlights the value 

of including multiple model types, not only for optimizing performance, but also for quantifying model-driven uncertainty in 

CH₄ flux upscaling. 

 400 
Figure 6. Predicted mean monthly CH₄ fluxes (mg CH₄ m-2 month-1) for July (averaged over 2019–2024), generated by two machine-
learning models: Random Forest (RF, panels A and B) and Gradient Boosting Machine (GBM, panels C and D). The panels A and C 
shows predictions at 1 m resolution, and panels B and D right column at 10 m resolution. Each panel contains a black-framed zoom 
window, which enlarges a representative section of the polygonal mire. Visual comparison of the two insets illustrates how the fine 
wet-to-dry microtopography resolved at 1 m is smoothed when aggregated to 10 m. Background imagery: © Google Satellite Hybrid 405 
(Maxar, 2025). 

Interestingly, although GBM exhibited more spatial flux variability, the mean fluxes predicted by GBM were consistently lower 

than those of RF. At 1 m, GBM averages 98.7 mg CH4 m-2 month-1, whereas RF averages 518.6 mg; at 10 m the values rise to 
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608.8 mg and 683.4 mg, respectively (Fig. 7A). Net-sink pixels accounted for 10.0 % (RF) and 9.5 % (GBM) of the 1 m domain, 

but only 4.9 % (RF) and 4.4 % (GBM) at 10 m. CH4 sink areas were spatially limited and highly sensitive to scale. Pixels acting 410 

as net CH₄ sinks (i.e. with negative monthly fluxes) were located on well-drained polygon rims and other lichen-dominated 

uplands where oxygen remained available throughout the summer. This allowed highly efficient methanotrophs to oxidise 

CH4 faster than it was produced (Biasi et al., 2008). Resolving these units at a scale of 1 m showed that they covered around 10% 

of the scene and significantly reduced the landscape-mean flux. However, coarsening to 10 m mixed the aerobic patches with 

adjacent wet hollows, reducing their mapped extent to approximately 4.5% and erasing many uptake pixels. A comparable effect 415 

has been observed when chamber data were averaged across broader physiographic units, shifting site-level balances from weak 

sinks to slight sources (Zona et al., 2016). This pronounced scale effect is consistent with pan-Arctic syntheses, indicating that, 

although they cover only a small fraction of the surface, aerated uplands can offset a significant proportion of wetland emissions, 

yet they are often obscured in coarse products and regional budgets (Olefeldt et al., 2013; Kuhn et al., 2021). Our findings support 

recent assessments that retaining metre-scale information on microtopography, vegetation, and soil moisture is essential for 420 

capturing sink behaviour and ultimately for refining carbon budgets in permafrost regions, which currently indicate a small 

terrestrial CO₂ sink and a wetland CH4 source (Treat et al., 2024). 

Minimum and maximum fluxes remain similar between models at each resolution, indicating disagreement mainly in 

intermediate values. The residual model disagreement is driven less by the number of sink pixels than by their intensity. 

Minimum fluxes predicted by GBM were consistently more negative than those from RF, with extremes of -147 mg CH4 m-2 425 

month -1 (1 m) and -330 mg CH₄ m-² month-¹ (10 m), compared to -45 and -33 mg CH4 m-2 month -1 in RF, respectively. This 

suggests that GBM may emphasize CH₄ sink strength more than RF, even though the spatial extent of sinks is similar across 

models. 

At 1 m, GBM often responds more strongly to localized environmental extremes. These include areas with much higher soil 

moisture, surface temperature spikes, or abrupt changed in microtopography that may only occur at the meter scale. This is due 430 

to its sequential learning process, which can emphasize subtle but high-impact predictors. RF, in contrast, smooths local extremes 

and yields more conservative area means. Because GBM-1 m produced a markedly lower AOI mean than RF, we treat this 

behaviour as a potential systematic bias toward stronger sinks and hotspots. We therefore use RF-1 m as the reference budget 

estimate and retain GBM-1 m as a sensitivity case to bracket structural uncertainty. At 10 m, aggregation reduces fine-scale 

contrasts and the RF-GBM predictions converge. Pixel‑wise standard deviations (Fig. 7B) reveal that RF is temporally more 435 

stable, while GBM is more sensitive to inter‑annual variation, particularly in wet or geomorphically complex areas. 

Additional analysis of spatial differences between models (Fig. B1) showed that several predictors were moderately to strongly 

correlated with the differences between RF and GBM predictions. At 1 m resolution, the strongest correlation was observed for 

NDWI (-0.53), indicating that model disagreement was most pronounced in wetter areas. NDVI (0.49) and land-cover type (0.41) 

also showed strong positive correlations with model differences, suggesting greater divergence in vegetated zones and across 440 

cover transitions. For the 10 m products, aspect (0.43) became the only predictor for model differences above 0.4, implying that 

model choice matters most on directionally exposed terrain once fine micro-relief is lost. Across both resolutions, NDWI 

exhibited consistent negative correlations, implying that divergences are magnified in wetter and concave landforms that tend to 

accumulate water or thaw differently. These findings are in line with Tagesson et al. (2013), who showed that adding satellite-

derived NDWI improves CH4 flux modelling by capturing moisture-driven variability. 445 
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Figure 7. Mean CH₄ flux and interannual variability across the study area. (A) Mean monthly CH₄ flux predicted by RF and GBM 
models, averaged over the entire area of interest for the period July 2019 to 2024. (B) Pixel-wise interannual standard deviation of 
predicted CH₄ fluxes for July months from 2019 to 2024, calculated separately for each model and resolution. Each boxplot shows the 450 
distribution of values across all pixels: the box spans the interquartile range (IQR, 25th to 75th percentile), the horizontal line within 
the box indicates the median, and whiskers extend to 1.5×IQR. Points beyond the whiskers represent potential outliers. 

In addition, the observed difference in mean fluxes may be partly due to the limited representation of extremely wet or 

topographically complex areas in the training dataset, reducing the generalization of the models under these conditions. 

3.4 Parameters importance in CH4 flux prediction 455 

Analysis of the relative importance of the predictors revealed fundamental differences between the RF and GBM models, and 

how these differences change when moving from 1 m to 10 m resolution (Table B3). Significance was assessed using the 

permutation method for each model and scale combination. 

At the 1 m resolution, RF distributed importance fairly evenly across the topographic parameters. TPI (~22 %), Aspect (~21 %) 

and Slope (~18 %) show comparable high influence, followed by Landscape class (~16 %). All other predictors contributed less 460 

than 10 %, and meteorological drivers collectively stay under that level. This broad topography-centred profile is consistent with 

the tendency of random forests to spread importance across correlated terrain drivers because of their random feature-selection 

mechanism (Räsänen et al., 2021; Cutler et al., 2007). 

GBM showed a different pattern: again, no single parameter dominates, but five drivers spread across different input categories 

(Slope, Landscape class, AT, TDD and NDWI) each explained about 14-16 % of the total, and none exceeds 20 %. This flatter 465 

profile is based on the boosting process. Each new tree fixes the errors left by the previous one, so different predictors take turns 

improving the model (Friedman, 2001). When several drivers reduce error by a similar amount, the model splits importance 

among them (Kämäräinen et al., 2023). 

When the resolution was coarsened to 10 m, pixel aggregation smoothed micro-relief, and both algorithms shifted toward 

moisture-integrating drivers as primary explanatory influences. In RF, NDWI (~25 %) and Landscape class (~25 %) emerge as 470 

joint leaders, NDVI rises to ~12 %, and all topographic parameters drop below 8 %. In GBM, the re-organisation is even stronger: 
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the moisture indicators NDWI (~25 %) and TWI (~19 %) together explained almost half of the total importance, while landscape 

class follows at ~11 % and Slope and Aspect fall below 7 %. This pattern agrees with field evidence that moisture proxies 

dominate CH4-flux prediction at coarser resolution, where fine-scale topographic details are lost (Tagesson et al., 2013; Wangari 

et al., 2023). NDWI and TWI both integrate water content over several pixels, making them potential surrogates for local water-475 

table height and the extent of anoxic microsites that drive methanogenesis. NDWI is also sensitive to vegetation water and 

phenology, allowing it to track water-table depth in peatlands (Kalacska et al., 2018). TWI, which maps landscape-scale water 

accumulation and thus redox and gas-diffusion controls, aligns with syntheses showing that water-table fluctuations set the size 

of anoxic zones and largely govern CH4 production and emission (Kaiser et al., 2018; Cui et al., 2024). Landscape class and 

NDVI contributed complementary information on vegetation type and biomass, which modulate both substrate supply and 480 

methane oxidation. In practical terms, upscaling to 10 m can still capture landscape-scale CH4 patterns, but only if robust moisture 

indices such as NDWI and TWI were included; purely geometric terrain drivers lose most of their explanatory power once 

microtopography is averaged out. 

 
Figure 8 Mean relative importance (± SD) of environmental predictors for CH4 fluxes across two machine-learning models –Random 485 
Forest (RF) and Gradient Boosting Machine (GBM) – evaluated at 1 m and 10 m spatial resolutions. Importance was estimated by 
bootstrap resampling (n = 100) and is expressed as a percentage of total importance within each model. Predictors are grouped into 
four categories: Meteorological drivers (thawing degree days, air temperature, photosynthetically active radiation), 
Vegetation/Terrain (Normalized Difference Vegetation Index, landscape class), Topography (Topographic Position Index, aspect, 
slope), and Hydrology/Moisture (Topographic Wetness Index, Normalized Difference Water Index). Abbreviations: TDD – thawing 490 
degree days; PAR – photosynthetically active radiation; NDVI – Normalized Difference Vegetation Index; TPI – Topographic Position 
Index; TWI – Topographic Wetness Index; NDWI – Normalized Difference Water Index. 

3.5 Study limitations 

The study's limitations include unbalanced sampling across landscape types and under-representation of extremely wet or 

microtopographically complex areas. In particular, several landscape and CALU classes remain undersampled, which limits the 495 

model’s ability to predict fluxes across all types. Additionally, soil temperature and moisture, which are known to control CH4 

fluxes (Wille et al., 2008; Mastepanov et al., 2013), were not included, but are planned for integration in future model 

development. 

4 Conclusion 

Spatial resolution emerged as the important factor determining the predictive power data-driven upscaled CH4 flux patterns, 500 

exerting a stronger influence than model choice. At a resolution of 1 m, fine-scale heterogeneity was captured at a high degree 

of detail, making it possible for models to distinguish between local sources and sinks of CH4. At 10 m, micro features merge 

into mixed pixels, boosting mean fluxes and variability. This resulted in fine-scale sinks and hotspots disappearing, and in some 
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cases, fluxes being misclassified as a source of CH4 in dry areas. Consequently, 10 m models produced higher mean fluxes and 

broader flux distributions. However, some of these high values may be due to mixed-pixel artefacts rather than true local 505 

emissions. 

Although different models varied significantly in their estimates, RF and GBM provided the most consistent and reliable 

upscaling results. However, their robustness should be verified by targeted sensitivity analyses. Significance of model predictors 

was found to be strongly scale-dependent. At a resolution of 1 m, the models derived most of their explanatory power from 

microtopographic metrics, which capture the detailed elevation contrasts that distinguish between hummocks and hollows, as 510 

well as localising CH4 hotspots. However, after aggregation to 10 m, these relief cues were diluted, causing a change in ranking: 

moisture proxies NDWI and TWI became the principal drivers, together accounting for almost half of the explained variance. 

This transition from terrain- to moisture-controlled importance highlights the fact that fine-scale mapping requires detailed 

topographic data, whereas regional upscaling must prioritize robust hydrological indices. For AOI budgets we report RF-1 m as 

the reference and use GBM-1 m as a sensitivity bound due to its amplification of metre-scale extremes. 515 

Our study findings imply that resolution is not simply a case of ‘the higher, the better’, and similarly, more complex ML methods 

may not necessarily yield better predictions. Although 1 m models captured fine-scale heterogeneity, 10 m models with 

temporally dynamic predictors improve explanatory power but increase prediction errors, likely due to overfitting to short-term 

fluctuations. This suggests that, in some cases, high-resolution models can outperform ultra-high resolution ones, particularly 

when enhanced with well-timed spectral information – though caution is needed to balance fit with generalisability. 520 

Subsidence, derived from InSAR, showed the highest correlation with observed CH4 fluxes of all the tested predictors, 

emphasising its value as a spatial proxy for soil moisture. It should therefore be included directly in CH4 upscaling workflows, 

particularly in permafrost landscapes where moisture conditions were key drivers of emissions. 

Future work should expand sampling into underrepresented landscape and vegetation classes, high-emission zones, methane 

uptake regions, and winter fluxes, and incorporate temporally dynamic predictors. Integrating theory-guided time-series 525 

modelling approaches informed by ecological theory could enhance both the interpretability and accuracy of CH4 forecasts under 

complex seasonal dynamics, particularly when data availability is limited. 

 

Appendix A. Predictors from remote sensing and meteorological data 

Table A1. Overview of predictor variables used in the CH4 flux models. This table lists all environmental predictor variables considered 530 
in the modelling framework. For each parameter, the spatial resolution (for remote sensing layers), source, short description, and 
formulas for calculations are presented (where applicable). Parameters are grouped into six thematic categories: Meteorological 
Drivers (e.g., PAR, AT, TDD), Vegetation / Land Cover (e.g., NDVI, landscape classification, CALU), Hydrology / Moisture Indicators 
(e.g., NDWI, TWI), Topography (e.g., slope, aspect, TPI), and Surface Deformation (subsidence). Each variable is marked as either 
static (unchanging during the study period) or dynamic (time-specific). 535 

Parameter Resolution Derived from Description Temporal 
variability 

Parameter 
type 

Photosynthetically 
Active Radiation 
(PAR) 

1 km NASA Langley 
Research 
Center (2024) 

Extracted as a predictor variable for 
CH₄ flux models.  

Dynamic 
 

Meteorological 
Drivers 

NDVI 1 m  Rettelbach et 
al. (2024) 

Ultra-high resolution NDVI derived 
from drone imagery. 
𝑁𝐷𝑉𝐼	 = 	!"#	%	#&'

!"#	(	#&'
 (A1) 

Static Vegetation 
/Terrain 

NDWI 1 m  Rettelbach et 
al. (2024) 

Ultra-high resolution NDWI derived 
from drone imagery.  
𝑁𝐷𝑊𝐼	 = 	 )*&&+	%	!"#

)*&&+	(	!"#
 (A2) 

Static Hydrology / 
Moisture 
Indicators  
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Parameter Resolution Derived from Description Temporal 
variability 

Parameter 
type 

Landscape 
classification  

1 m Rettelbach et 
al. (2024), 
Lange et al., 
2021 

Landscape classification performed 
using 1 m drone imagery & ALS-
derived DTM (Appendix B). 

Static Vegetation 
/Terrain 

NDVI 10 m Sentinel-2 
[2019 - 2024] 
(mean for July - 
August 2018). 

Extracted from the composite Sentinel-
2 image for July - August 2018. 
 
𝑁𝐷𝑉𝐼	 = 	!"#	%	#&'

!"#	(	#&'
 (A1) 

Static Vegetation 
/Terrain 

NDWI 10 m  Sentinel-2 
[2019 - 2024] 
(mean for July - 
August 2018). 

Extracted from the composite Sentinel-
2 image for July - August 2018. 
𝑁𝐷𝑊𝐼	 = 	 )*&&+	%	!"#

)*&&+	(	!"#
 (A2) 

Static Hydrology / 
Moisture 
Indicators  

NDVI 10 m Sentinel-2 
[2019 - 2024] 
(Single-date, 
closest to flux 
measurement). 

Extracted from single-date, closest to 
flux measurement. 
𝑁𝐷𝑉𝐼	 = 	!"#	%	#&'

!"#	(	#&'
 (A1) 

Dynamic Vegetation 
/Terrain 

NDWI 10 m  Sentinel-2 
[2019 - 2024] 
(Single-date, 
closest to flux 
measurement). 

Extracted from single-date, closest to 
flux measurement.  
𝑁𝐷𝑊𝐼	 = 	 )*&&+	%	!"#

)*&&+	(	!"#
 (A2) 

Dynamic Hydrology / 
Moisture 
Indicators  

Landscape 
classification 

10 m Copernicus 
Sentinel-2 data 
[2018], 
ArcticDEM v4 
(Porter et al., 
2023) 

Landscape classification performed 
using Sentinel-2 indices (2018) and 
terrain derivatives of ArcticDEM 
(Appendix B).  

Static Vegetation 
/Terrain 

Slope 1 m Lange et al., 
2021 
 

Measures the rate of change of elevation 
in the direction of steepest descent. It 
controls how gravity drives the 
movement of water and materials across 
the surface and through the soil. Slope 
affects surface and subsurface water 
flow, soil water content, erosion 
potential, and soil formation. It is a key 
factor in hydrological and 
geomorphological processes. 
 
Derived from DTM (Wilson & Gallant, 
2000). 

Static Topographical 
parameters 

Aspect 1 m Lange et al., 
2021 
 

Aspect is the compass direction that a 
slope faces. It is defined as the 
orientation of the line of steepest descent 
and is typically measured in degrees 
clockwise from north. Aspect affects 
local microclimate, radiation exposure, 
snowmelt timing, and vegetation 
structure, making it a common site 
descriptor in ecological and 
geomorphological studies. 
Derived from DTM (Wilson & Gallant, 
2000). 

Static Topographical 
parameters 
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Parameter Resolution Derived from Description Temporal 
variability 

Parameter 
type 

TWI 1 m Lange et al., 
2021 
 

TWI combines upslope catchment area 
and slope to model potential soil 
moisture accumulation. It is commonly 
used to identify areas potentially prone to 
saturation and water accumulation. 
 
𝑇𝑊𝐼	 = 	𝑙𝑛 ,

-,+	.
, 

- a = upslope contributing area per 
unit contour length  

- b = local slope angle 
 
Derived from DTM (Wilson & Gallant, 
2000). 

Static Topographical 
parameters 

TPI_30m 1 m Lange et al., 
2021 
 

The Topographic Position Index (TPI) 
quantifies the elevation of a cell relative 
to the mean elevation of surrounding 
cells, allowing differentiation between 
ridges, valleys, and flat areas. We 
computed TPI using a 30 m circular 
moving window, meaning that for each 
location, its elevation was compared to 
the average of all surrounding elevations 
within a 30 m radius. This window size 
smooths out small-scale variation and 
captures broader landform 
patterns.Derived from DTM (Weiss, 
2001). 
 

Static Topographical 
parameters 

Slope 10 m (from 
2 m) 
 

ArcticDEM v4 
(Porter et al., 
2023) 

Measures the rate of change of elevation 
in the direction of steepest descent. It 
controls how gravity drives the 
movement of water and materials across 
the surface and through the soil. Slope 
affects surface and subsurface water 
flow, soil water content, erosion 
potential, and soil formation. It is a key 
factor in hydrological and 
geomorphological processes. 
 
Derived from DTM (Wilson & Gallant, 
2000). 

Static Topographical 
parameters 

Aspect 10 m (from 
2 m) 
 
 

ArcticDEM v4 
(Porter et al., 
2023) 

Aspect is the compass direction that a 
slope faces. It is defined as the 
orientation of the line of steepest descent 
and is typically measured in degrees 
clockwise from north. Aspect affects 
local microclimate, radiation exposure, 
snowmelt timing, and vegetation 
structure, making it a common site 
descriptor in ecological and 
geomorphological studies. 
Derived from DTM (Wilson & Gallant, 
2000). 

Static Topographical 
parameters 

 

TWI 10 m (from 
2 m) 
 

ArcticDEM v4 
(Porter et al., 
2023) 

TWI combines upslope catchment area 
and slope to model potential soil 
moisture accumulation. It is commonly 

Static Topographical 
parameters 
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Parameter Resolution Derived from Description Temporal 
variability 

Parameter 
type 

used to identify areas potentially prone to 
saturation and water accumulation. 
 
𝑇𝑊𝐼	 = 	𝑙𝑛 ,

-,+	.
, (A3) 

- a = upslope contributing area per 
unit contour length  

- b = local slope angle 
 
Derived from DTM (Wilson & Gallant, 
2000). 

TPI_30m 10 m (from 
2 m) 
 
 

ArcticDEM v4 
(Porter et al., 
2023) 

The Topographic Position Index (TPI) 
quantifies the elevation of a cell relative 
to the mean elevation of surrounding 
cells, allowing differentiation between 
ridges, valleys, and flat areas. We 
computed TPI using a 30 m circular 
moving window, meaning that for each 
location, its elevation was compared to 
the average of all surrounding elevations 
within a 30 m radius. This window size 
smooths out small-scale variation and 
captures broader landform patterns. 
Derived from DTM (Weiss, 2001). 
 

Static Topographical 
parameters 

Subsidence 10 m  Copernicus 
Sentinel-1/2 
data  

Seasonal deformation has been derived 
from Sentinel-1 time series (2018 - 
2023) using SAR Interferometry. Six 
years have been averaged to reduce 
noise. The seasonal deformation rates 
in thawing degree days domain 
represent near surface soil moisture 
spatial patterns. (Widhalm et al., 2025) 

Static Surface 
Deformation 

CALU 10 m 
CALU 

(Bartsch et al., 
2024) 

The Circumarctic Landcover Units 
provide a consistent high-resolution 
land cover classification across the 
entire Arctic tundra. CALU defines 23 
units of similar reflectance derived 
from multispectral (Sentinel-2) and 
C-band SAR (Sentinel-1) data. The 
classification reflects wetness 
gradients, shrub density, moss 
abundance, and surface moisture 
(Bartsch et al., 2024).  

Static Vegetation 
/Terrain 

AT Point Trail Valley 
Creek 
meteorological 
station 
(Climate ID: 
220N005; 
WMO ID: 
71683; TC ID: 
XTV). 

Hourly air temperature measured at 
2 m above ground level. Used as a 
dynamic meteorological driver for 
CH₄ flux models. 

 

Dynamic 
 

Meteorological 
Drivers 
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Parameter Resolution Derived from Description Temporal 
variability 

Parameter 
type 

Thawing Degree 
Days (TDD) 
 

Point Trail Valley 
Creek 
meteorological 
station 
(Climate ID: 
220N005; 
WMO ID: 
71683; TC ID: 
XTV). 

Cumulative positive air temperature 
sum (above 0 °C) used as a proxy for 
thaw energy and season length. 
Calculated per flux measurement period 
based on air temperature from 
meteorological station. 

𝑇𝐷𝐷	 = 	∑+/	01 𝑚𝑎𝑥(𝑇2&,+,/ , 0) , 
(A4) 

● Tmean,i = mean daily air 
temperature on day i 

● n = number of days in the 
accumulation period 

● The max function ensures only 
temperatures above 0 °C are 
counted 

Dynamic 
 

Meteorological 
Drivers 
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Text A1. Landscape classification 537 

To classify land cover in the TVC area, we employed a supervised classification approach using multi-source remote sensing 538 

data at 1 m and 10 m resolutions. The classification process was implemented in Google Earth Engine (GEE), enabling large-539 

scale data processing. A Random Forest (RF) classifier was chosen due to its ability to handle high-dimensional data, its 540 

resistance to overfitting, and its suitability for land cover mapping. By applying a consistent classification framework at both 1 541 

m and 10 m resolutions, this study enables direct comparisons of classification performance across spatial scales,  542 

Training and Validation Data 543 

The classification was trained using manually collected validation points that were assigned to six distinct land cover classes: 544 

Dwarf Shrub, Tall Shrub, Sedges, Tussock, Lichen, and Water. To ensure statistical robustness, 80 % of the validation points 545 

were used for model training, while the remaining 20 % were reserved for accuracy assessment. 546 

Remote Sensing Data and Feature Extraction 547 

To optimize classification accuracy, we integrated spectral, texture, and topographic features derived from multiple remote 548 

sensing sources. Sentinel-2 optical imagery at 10 m resolution was used for broad-scale classification, with images acquired 549 

during the 2018 growing season (25 June–4 September 2018) to ensure that differences in land cover classification were due to 550 

spatial resolution rather than changing environmental conditions, matching the same summer period as the 1 m drone survey. 551 

Topographic features were extracted from ArcticDEM (2-m resolution) (Porter et al., 2023). At finer spatial scales, we 552 

incorporated ultra-high resolution drone imagery (1 m and 10 cm) from Rettelbach et al. (2024) and a digital terrain model 553 

(DTM) (Lange et al., 2021). 554 

To further enhance classification accuracy, we performed a Gray-Level Co-occurrence Matrix (GLCM) texture analysis of 555 

NDVI, allowing us to incorporate information on vegetation heterogeneity. A 2 × 2 kernel was used for 10 m classification, 556 

while a 20 × 20 kernel was applied at 1 m resolution to capture 20 m spatial patterns. 557 

 558 
Table A2. Parameters used for the landscape classification 559 

Parameter Description Formula (if applicable) Resolution  

NDVI Measures vegetation greenness 
𝑁𝐼𝑅	 − 	𝑅𝐸𝐷
	𝑁𝐼𝑅	 + 	𝑅𝐸𝐷 10 m, 1 m 

NDWI Identifies water and moisture content 
𝐺𝑟𝑒𝑒𝑛	 − 	𝑁𝐼𝑅
𝐺𝑟𝑒𝑒𝑛	 + 	𝑁𝐼𝑅 10 m, 1 m 

EVI Improves sensitivity to high biomass 2.5 ×
𝑁𝐼𝑅	 − 	𝑅𝐸𝐷

𝑁𝐼𝑅	 + 	6	 × 	𝑅𝐸𝐷	 − 	7.5 × 𝐵𝑙𝑢𝑒	 + 1 10 m, 1 m  

SAVI Reduces soil brightness effects 
(!"#	%	#56)	×	(1	(	9)

!"#	(	#56	(	9
, where 

L = 0.5 
10 m, 1 m  

GLCM Entropy 
Measures randomness in pixel 

intensity 
Derived from NDVI 10 m, 1 m  

GLCM Contrast Captures local texture variation Derived from NDVI 10 m, 1 m  

GLCM 

Homogeneity 

Measures uniformity in image 

texture 
Derived from NDVI 10 m, 1 m  

Slope Measures terrain steepness Derived from DEM 2 m, 1 m  

Aspect Identifies terrain orientation Derived from DEM 2 m, 1 m  

TPI 6m Detects local terrain position Elevation - Mean(Elevation within 6m radius) 2 m, 1 m  

TPI 30m Identifies broader-scale landforms Elevation - Mean(Elevation within 30m radius) 2 m, 1 m  

TWI Estimates soil moisture potential 𝑙𝑛( :
-,+	(;)

), where 2 m, 1 m  
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Parameter Description Formula (if applicable) Resolution  

A = specific contributing area 

𝛽 = slope in radians 

Band parameters 
Captures spectral variation in 

different wavelengths 

mean and sd for each pixel of RGB and NIR 

bands 
10 m 

Band parameters 
Captures spectral variation in 

different wavelengths 
pixel value of RGB and NIR bands 10 m 

Classification Model and Accuracy Assessment 560 

The Random Forest classifier was trained separately for 10 m Sentinel-2 data and 1 m drone-based data, with 200 decision trees 561 

used in both cases. The trained models were then applied to classify the entire dataset. The overall accuracy was 0.76 for 1 m 562 

resolution and 0.71 for 10 m resolution. 563 

Export 564 

Final classified maps at 10 m and 1 m resolutions were exported as GeoTIFF files for further analysis and comparison. 565 

 566 
Table A3. Description of Circumarctic Land Cover Units (CALU) present in the study area. Class names and definitions are taken 567 
from Bartsch et al. (2024). Additional columns indicate (i) whether the class is present within the area of interest (AOI), and (ii) whether 568 
CH4 flux measurements are available for this class. 569 

CALU 
class Description Present 

in AOI 
CH4 measurements 

available 

1 Water yes   

2 shallow water/abundant macrophytes yes   

3 wetland, permanent yes yes 

4 wet to aquatic tundra (seasonal), abundant moss yes   

5 moist to wet tundra, abundant moss, prostrate shrubs     

6 dry to moist tundra, partially barren, prostrate shrubs yes   

7 dry tundra, abundant lichen, prostrate shrubs     

8 dry to aquatic tundra, dwarf shrubs (& sparse tree cover along treeline) yes   

9 dry to moist tundra, prostrate to low shrubs yes yes 

10 moist tundra, abundant moss, prostrate to low shrubs yes yes 

11 moist tundra, abundant moss, dwarf and low shrubs yes yes 

12 moist tundra, dense dwarf and low shrubs (& sparse tree cover along treeline) yes   

13 moist to wet tundra, dense dwarf and low shrubs (& sparse tree cover along treeline) yes   

14 moist tundra, low shrubs yes   

15 dry to moist tundra, partially barren yes yes 

16 moist tundra, abundant forbs, dwarf to tall shrubs yes   

17 recently burned or flooded, partially barren yes   

18 forest (deciduous) with dwarf to tall shrubs yes   

19 forest (mixed) with dwarf to tall shrubs yes   

20 forest (needle leave) with dwarf and low shrubs yes   

21 partially barren yes   

22 snow/ice     

23 other (incl. shadow) yes   

570 

https://doi.org/10.5194/egusphere-2025-3968
Preprint. Discussion started: 28 August 2025
c© Author(s) 2025. CC BY 4.0 License.



24 
 

Appendix B. Results 

Table B1. Summary statistics of observed CH4 fluxes (mg CH4 m-2 h-1) across site-specific landscape classes at 1 m and 10 m spatial 
resolutions. The table reports the number of observations (n), mean, first quartile (Q1), third quartile (Q3), minimum, and maximum 
CH4 flux values for each landscape class at both resolutions. 

Landscape class  Resolution   n   Mean   Q1   Q3   Min   Max 

Lichen 
 1 m  1713 0.002 -0.02 0 -0.48 1.62 

 10 m  3690 -0.011 -0.02 0 -0.48 0.62 

Tussock 
 1 m  11372 -0.016 -0.03 -0.01 -0.24 2.41 

 10 m  9218 -0.020 -0.03 -0.01 -0.18 0.68 

Dwarf shrub  
 1 m  130 0.053 -0.02 0.06 -0.18 0.89 

 10 m  201 0.19 -0.01 0.13 -0.28 2.41 

Tall shrub   10 m  71 0.024 -0.02 0.05 -0.12 0.54 

Sedges  
 1 m  177 0.94 0.06 1.09 -0.02 6.39 

 10 m  204 0.87 0.05 1.07 -0.03 6.39 

 575 
Table B2. Summary statistics of observed CH4 fluxes (mg CH4 m-2 h-1) across CALU classes. The table reports the number of 
observations (n), mean, first quartile (Q1), third quartile (Q3), minimum, and maximum CH4 flux values for each landscape class at 
both resolutions. Class descriptions are available in Bartsch et al. (2024). 

CALU class  n   Mean   Q1   Q3   Min   Max 

3. Permanent wetland 11 -0.09 -0.09 0 -0.48 0 

9. Dry to moist tundra, prostrate to low shrubs, tussocks 6357 -0.01 -0.02 0 -0.19 0.61 

10. Moist tundra, abundant moss, prostrate to low shrubs, 
tussocks 6407 -0.02 -0.03 -0.01 -0.18 0.41 

11. Moist tundra, abundant moss, dwarf and low shrubs, 
tussocks 490 0.46 0.01 0.39 -0.28 6,39 

15. Moist to wet tundra, abundant lichen, in some cases 
partially barren (disturbed). 119 0 0 0.03 -0.24 0.06 

 
Figure B1. Pearson correlation between spatial differences in CH4 flux predictions and selected environmental predictors. The 580 
heatmap shows correlations between CH4 prediction differences and predictor variables, separately for: Model influence (left block): 
differences between RF and GBM predictions at the same resolution (1 m or 10 m), Resolution influence based on 1 m predictors 
(middle block): differences between 1 m and 10 m model predictions using predictors extracted from 1 m products, Resolution 
influence based on 10 m predictors (right block): differences between 1 m and 10 m model predictions using 10 m products. Each 
cell represents Pearson’s r between predictor values and flux differences across 30402 pixels for 10 m resolution and 3050788 pixels 585 
for 1 m resolution. Positive values indicate that higher predictor values are associated with greater CH4 prediction mismatches.
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Table B3. Relative importance [%] of environmental predictors for CH4 flux models across spatial resolutions and algorithms. The 
table shows the variable importance (in %) for each predictor derived from Random Forest (RF) and Gradient Boosted Machine 590 
(GBM) models at 1 m and 10 m spatial resolution. Predictors are grouped by thematic category (e.g., Meteorological, Topographic). 
Importance values reflect the mean contribution of each predictor to the model performance and standard deviations (± SD). 

 

Group Parameter RF 1 m RF 10 m GBM 1 m GBM 10 m 

Meteorological Drivers 

Air temperature 8.4 ± 2.9 7.7 ± 2.8 14.7 ± 4.2 8.4 ± 4.2 

PAR 6.1 ± 3 7.8 ± 2.3 6.6 ± 1.8 4.9 ± 1.3 

TDD 5.2 ± 1.7 3.6 ± 1.2 13.6 ± 3.6 9.1 ± 2.8 

Hydrology / Moisture 
Indicators  

NDWI 1.4 ± 1 24.5 ± 7.5 13.8 ± 5 24.6 ± 8.4 

TWI 0.8 ± 0.3 5.3 ± 1.9 2.6 ± 1.3 18.8 ± 7.5 

Topographical parameters 

Aspect 21.4 ± 5.7 3.3 ± 1.3 2.3 ± 0.8 6.5 ± 2.9 

Slope 17.6 ± 7.6 3.6 ± 2.4 15.8 ± 6.5 3.6 ± 1.1 

TPI 21.6 ± 6.6 7.5 ± 2.7 9.6 ± 2.7 1.9 ± 0.6 

Vegetation / Terrain 
NDVI 1.9 ± 1 11.7 ± 6.9 5.5 ± 2.3 11.3 ± 4.3 

Landscape class 15.7 ± 5.8 25 ± 7.7 15.5 ± 2.9 10.9 ± 3 
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