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Abstract. Arctic methane (CHa) budgets are uncertain because field measurements often capture only fragments of the wet-to-
dry gradient that control tundra CHa fluxes. Wet hotspots are over-represented, while dry, net-sink sites are under-sampled. We
paired over 13,000 chamber flux measurements during peak growing season in July (2019-2024) from Trail Valley Creek in the
western Canadian Arctic with co-registered remotely sensed predictor variables to test how spatial resolution (1 m vs. 10 m) and
choice of machine-learning algorithm shape upscaled CH4 flux maps over our 3.1 km? study domain. Four algorithms for CHs
flux scaling (Random Forest (RF), Gradient Boosting Machine (GBM), Generalised Additive Model (GAM), and Support Vector
Regression (SVR)) were tuned using the same stack of multispectral indices, terrain derivatives and a six-class landscape
classification. Tree-based models such as RF and GBM offered the best balance of 10-fold cross-validated R? (< 0.75) and errors,
so RF and GBM were used in a subsequent step for upscaling to the study area. With 1 m resolution, GBM captured the full
range of microtopographic extremes and predicted a mean July flux of 99 mg CHs m™ month™". In contrast, RF, which smoothed
local extremes, yielded an average flux of 519 mg CHs m month™'. The disagreement between flux estimates using GBM and
RF correlated mainly with the Normalized Difference Water Index (NDWI), a moisture proxy, and was most pronounced in
waterlogged, low-lying areas. Aggregating predictors to 10 m averaged the sharp metre-scale flux highs in hollows and lows on
ridges, narrowing the GBM-RF difference to ~75 mg CHs m™ month™' while broadening the overall flux distribution with more
intermediate values. At 1 m, microtopography was the main driver. At 10 m, moisture proxies explained about half of the
variance. Our results demonstrate that: (i) metre predictors are indispensable for capturing the wet-dry microtopography and its
CHa signals, (ii) upscaling algorithm selection strongly controls prediction spread and uncertainty once that microrelief is
resolved, and (iii) coarser grids smooth local microtopographic details, resulting in flattened CHa4 flux peaks and wider
distribution. At 10 m, however, flux estimates became more consistent between models and better represented broad moisture-

driven patterns, suggesting improved generalisability despite some loss of detail. This is supported by findings for remote sensing

derived seasonal subsidence which reflects moisture gradients. All factors combined lead to potentially large differences in scaled

CHa flux budgets, calling for a careful selection of scaling approaches, spatial predictor layers (e.g., vegetation, moisture,
topography), and grid resolution. Future work should couple ultra-high-resolution imagery with temporally dynamic indices to

reduce upscaling bias along Arctic wetness gradients.

1 Introduction

The Arctic is warming nearly four times faster than the global average due to Arctic amplification feedbacks (Previdi et al., 2021;
AMAP, 2021; Rantanen et al., 2022; Ballinger et al., 2020). This rapid warming is of particular concern due to the substantial
quantities of organic carbon stored in wetland ecosystems of the circumpolar permafrost region (Hugelius et al., 2014; Schuur
et al., 2015; Turetsky et al., 2020; Olefeldt et al., 2016). Thaw exposure may mobilize part of the previously frozen carbon as
methane (CHa), a greenhouse gas 28-34 times more potent than CO2 over 100 years (Koven et al., 2011; Etminan et al., 2016;
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Nisbet et al., 2019; Saunois et al., 2020). Rising temperatures, therefore, risk to trigger a positive feedback in which permafrost
degradation elevates CHa emissions, further intensifying warming (Schuur et al., 2015; Walter Anthony et al., 2018; Turetsky et
al., 2020; Natali et al., 2021).

High-resolution CHs flux measurements in tundra ecosystems remain sparse even during the growing season due to the Arctic's
remoteness, harsh climate, and logistical challenges (e.g., lengthy travel times, high fieldwork costs, sparse infrastructure, and
challenging equipment maintenance), which limits the number of long-term monitoring sites. The primary tools for plot- to
ecosystem scale CHs flux observations are flux chambers (Subke et al., 2021) and eddy covariance techniques, respectively
(Matthes et al., 2014; Baldocchi, 2003); however, the time window to conduct growing season chamber campaigns is usually
limited to a few months between June and September, and locations in the Arctic featuring eddy covariance towers are few (Vogt
et al., 2025). As a consequence, most synthesis studies aiming at constraining CH4 budgets in the high northern latitudes must
rely on a limited database biased toward high-emitting sites near research stations and often overlooking areas with net CHs4
uptake (Mastepanov et al., 2013; Varner et al., 2021; Kuhn et al., 2021; Voigt et al., 2023¢c). Most tundra chamber campaigns
collect data only for short intervals, typically from a single day up to a few weeks during the growing season, and many are
conducted in just one growing season without repeated multi-year sampling or covering winter fluxes, which limits their value
for model benchmarking and interannual analysis (Varner et al., 2021; Kuhn et al., 2021; Résénen et al., 2021; Mastepanov et
al., 2013; Treat et al., 2018).

Even where flux data exist, CHa fluxes can shift within metres because the relative position and seasonal movement of the water
table and the frost table create mosaics of anoxic (CHa4 - producing) and oxic (CH4 - oxidising) soil (Frolking et al., 2011). These
redox contrasts are further modulated by microtopography, plant functional type, and surface moisture (Mastepanov et al., 2013;
Pirk et al., 2015; Olefeldt et al., 2021). Because the water table and frost table rarely coincide at the same depth across tundra
microtopography, neighbouring microsites can experience very different oxic—anoxic conditions. Across the Arctic tundra,
surface types range from water-saturated zones, such as sedge fens, polygon centres, troughs and thaw slumps, to better-drained
features like hummocky ridges, palsas and gravelly uplands. These elements cover the entire CHa flux range, with
microtopographically lower, wetter zones acting as strong sources and microtopographically elevated, better-aerated zones often
functioning as net sinks (Rdsénen et al., 2021; Bao et al., 2021; Yuan et al., 2024). Such small-scale heterogeneity frequently
occurs within a single 10 m pixel, so coarse maps or remote-sensing data products can combine zones of strong CHa emission
and neighbouring areas that act as net CHa sinks (Knox et al., 2019; Treat et al., 2018). Without spatially explicit methods that
resolve this fine-scale heterogeneity, upscaling can introduce systematic biases. It may overestimate CH4 emissions when dry
areas that act as sinks are overlooked or underestimate them when narrow wet trenches surrounding dry patches are missed
(Résénen et al., 2021; Treat et al., 2018).

Ultra-high-resolution (<1-2 m) imagery from drones or commercial satellites can directly resolve fine-scale vegetation patterns
and microtopographic features (e.g., hummocks and hollows) in heterogeneous tundra landscapes, for example mapping plant
communities on dry polygon rims versus wet sedge hollows and other microrelief features that correspond to CHa “hotspots”
and “cold spots”, respectively. Studies using sub-metre to metre-scale imagery and plot-based observations have shown that fine
spatial resolution is essential to capture local flux heterogeneity and microtopographic controls (Lehmann et al., 2016; Becker et
al., 2008; Strom et al., 2005; Ludwig et al., 2024; Davidson et al., 2017). However, working with spatially ultra-high-resolution
data presents significant challenges. The acquisition and processing of sub-metre or metre imagery through drones or advanced
satellites and LiDAR are both costly and labour-intensive; such datasets are rarely available as dense, multi-date image stacks
and cannot be easily collected over large areas (Scheller et al., 2022; Karim et al., 2024; Anderson & Gaston, 2013). Moreover,
ultra-high resolution can introduce noise from small-scale elevation artefacts and micro-relief features that do not represent real
hydrological connectivity, and thus may not lead to a better representation of environmental conditions (Riihimaki et al., 2021).
By contrast, high resolution (~10 m) predictors such as Sentinel-2 multispectral imagery and ArcticDEM terrain products are

freely available and cover the entire Arctic with regular revisits with a standardised approach (Drusch et al., 2012; Porter et al.,
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2023). However, the coarse 10 m resolution has a clear disadvantage because individual microtopographic features (e.g.,
hummocks, hollows) and landforms (e.g., dry palsas, wet trenches, etc.) that control small-scale variability in CH4 fluxes are
aggregated into single pixels, blurring the fine-scale patterns of emission and uptake (Résénen & Virtanen, 2019).
Data-driven approaches, including the machine-learning (ML) algorithms Random Forest (RF), Gradient Boosting Machine
(GBM), and Support Vector Regression (SVR), as well as the semi-parametric statistical model Generalised Additive Model
(GAM), can integrate predictors derived from remote sensing products with flux measurements to upscale CH4 from plot- and
ecosystem- to landscape scales (Yuan et al., 2024; Chen et al., 2024; Zhang et al., 2020, Ying et al. 2025). Tree ensembles (RF,
GBM) are particularly well suited for capturing complex interactions and handle multicollinearity, while GAMs have the
advantage of yielding interpretable smooth functions, and SVR excels with limited nonlinear data (Wood, 2017; Smola &
Scholkopf, 2004; Zhang et al., 2019). Model choice, predictor resolution and limited training data still generate large spreads in
upscaled Arctic tundra CHs fluxes, with ensemble estimates differing by roughly 25-50 % of the mean depending on the study
(Peltola et al., 2019; McNicol et al., 2023; Chen et al., 2024; Résénen et al., 2021). Quantifying and reducing these uncertainties
are essential for robust CHa budgets.
Here, we address these methodological challenges in a study aiming at upscaling CHs fluxes in a heterogeneous tundra landscape
in the western Canadian Arctic by pairing >13,000 peak growing season (July) chamber measurements collected over five years
with matched 1 m and 10 m remote sensing predictors and training three machine-learning algorithms (RF, GBM, SVR) and one
semi-parametric statistical model (GAM). Our overarching aim is to reduce uncertainties in peak-season (July) CH4 budgets for
the 3.1 km? heterogeneous tundra around the Trail Valley Creek Research Station. We address this aim through four specific
questions:
o Which remotely-sensed vegetation, moisture, and topographic characteristics best explain July CHa fluxes across a wet-
to-dry micro-site gradient?
o Does replacing freely available 10 m data (Sentinel-2, ArcticDEM) with metre imagery from drones and airborne lidar
lead to a detectable improvement in prediction accuracy and spatial detail?
o How do the four modelling approaches differ in predicted net flux magnitudes and spatial patterns?
o How do model choice, grid resolution, and their interaction shape the spatial patterns and uncertainty of our upscaled
CHa flux maps?
Optimising a data-driven upscaling approach based on these questions allows us to produce July CHa4 flux maps with pixel-level
uncertainty, improving peak-season emission estimates and guiding where additional measurements or higher-resolution imagery

would most reduce prediction error.

2 Materials and Methods
2.1 Study site

The study site is the undulating tundra landscape of the Trail Valley Creek (TVC) Research Station, about 55 km north of the
town of Inuvik, NT, in the western Canadian Arctic east of the Mackenzie River Delta (Fig. 1). TVC lies in the Southern Arctic
ecozone and contains continuous permafrost, with thickness ranging from 100 to 150 m (Marsh et al., 2008). Our analyses focus
on a ~3.1 km? section of this 57 km? basin with elevations ranging from 41 to 102 m a.s.l. The 1991 - 2020 climate normals for
Inuvik are a mean annual air temperature of =7 °C, mean annual precipitation of ~250 mm, and a frost-free period (the interval
with minimum air temperatures above 0 °C) of roughly 78 days (Environment and Climate Change Canada, 2024). The soils are
classified as organic cryosols, with an upper peat horizon approximately 0.2-0.5 m thick overlying mineral silty-clay subsoil
(Petrone et al., 2020). The vegetation at TVC is highly diverse, reflecting the microtopography and moisture gradients. Isolated
patches of white and black spruce (Picea glauca, P. mariana) occur in valley bottoms and on slopes. Tall shrub tundra, dominated

by green alder (Alnus alnobetula) and featuring scattered willows and dwarf birch, can be found on hill slopes and alongside
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streams. Riparian zones feature dense willow thickets reaching up to 2 metres in height. Upland areas support dwarf shrub tundra
with dense stands of dwarf birch (Betula glandulosa), Labrador tea (Ledum palustre) and mountain cranberry (Vaccinium vitis-
idaea), interspersed with mosses and lichens. Flat, poorly drained areas are dominated by tussock-forming sedges (Eriophorum
and Carex), alongside moss and scattered shrubs. Exposed uplands and polygon rims are covered by lichen mats and low dwarf
shrubs. Mosses, especially Sphagnum and Polytrichum species, are prevalent in wetter microhabitats. Snow depth and winter
soil temperatures are highest in the tall shrub and tussock zones and lowest in the lichen tundra (Griinberg et al., 2020; Marsh et
al., 2010). Although TVC represents a single site, its strong microtopographic and vegetation heterogeneity reflects the wet-dry
gradients typical of Arctic continuous-permafrost lowlands. Similar mosaics of sedge wetlands, dwarf-shrub uplands, and lichen
tundra occur across large parts of the western Canadian Arctic and other low-relief tundra landscapes, suggesting that the scale
effects we document are broadly transferable.

133°33.6'W 133°32.4'W 133°31.2'W 133°30.0'W 133°28.8'W

68°45.0'N
_—

BOW  120W  1OW 100W 90W 8OW 70W  60W
A TVC location
) Area of interest

@ CH4 measurements locations
A Location of research station

68°44.4'N

Figure 1. Map of the study area showing the location of the area of interest (outlined with white polygon), with CH4 flux measurement
locations marked with yellow circles. The inset map in the upper left corner highlights the region in which the Trail Valley Creek
(TVC) research station is located (marked with a yellow triangle on the overview map and a white triangle on the detailed map).
Background satellite imagery sources: © Maxar 2025, provided by Esri, acquired on 12 July 2024. Area of interest aerial imagery:
Rettelbach et al., 2024.

2.2 Data sources

This study combines field-based CH4 flux measurements with remotely sensed and meteorological data to build and evaluate
spatially explicit models of CH4 exchange. The chamber flux data provide the response variable for model training, while the
meteorological records include air temperature (AT), photosynthetically active radiation (PAR), and thawing degree days (TDD)
as dynamic atmospheric drivers. Remotely sensing datasets supply spatial predictors describing vegetation, surface moisture,
terrain structure, and landscape classification at two spatial resolutions (1 m and 10 m). The resulting predictor stacks were then

used to train and compare the four modelling approaches described in Sect. 2.3.

2.2.1 CHs flux data

We used a combination of continuous and campaign-based CHa flux measurements to capture spatial and temporal variability in
CHa. The dataset includes previously published automated chamber observations made in 2019 and 2021 (Voigt et al., 2023a),
and campaign-based manual chamber observations made in 2019 (Voigt et al., 2023b) and in 2022 to 2024 (Ivanova et al., 2025).
Manual chamber measurements from 2022 to 2024 were collected as part of this study. The main measurement protocols,
chamber specifications, instrumentation, and flux calculation methods for each campaign are summarized in Table 1.
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Table 1. Summary of CH, flux measurement protocols and instrumentation used at TVC, 2019-2024.

Year 2019, 2021 2019 2022-2024
Method Automated Manual Manual
Number of microsites 18 13 37

Chamber size and shape 30-45 L, hemispherical 17 L, cylindrical 17 L, cylindrical

Gas analyzer

Los Gatos Research Enhanced
Performance Greenhouse Gas
Analyser (Rackmount GGA-

Picarro G4301
GasScouter (Picarro,
Inc., Santa Clara, CA,

LI-COR LI-7810 Trace Gas
Analyzer (LI-COR
Biosciences, Lincoln, NE,

24EP 911-0010, Los Gatos) USA) USA)
Measurement frequency 1 Hz 1 Hz 1Hz
Enclosure time 3 min 5 min 2-4 min

Flux calculation method

Linear regression (default);
exponential fit for large fluxes

Linear or nonlinear
regression with the Math
Works Inc., Natick, MA,
USA)

Linear regression with
bootstrapping (R)

Reference

Voigt et al., 2023a

Voigt et al., 2023b

Ivanova & Gockede, 2025

The complete dataset included 13,384 CHs flux measurements collected between 1 July and 31 July (2019-2024) under both
light and dark conditions. Our chamber measurements cover the spatial heterogeneity of the ~3.1 km? study area, ensuring
representation of key CHa controlling gradients.

Flux measurements were collected across the full range of microtopographic and vegetation conditions within the AOL
Observations were distributed across tussock tundra, dwarf shrubs, lichen-dominated uplands, and sedge wetlands at both spatial
resolutions. The sampling distribution closely matched the mapped area fractions of these classes in the AOI (Fig. S1),
confirming robust ecological representativeness. Detailed percentages for both map area and flux sampling are provided in Fig.
S1. Repeated measurements under different meteorological conditions also provide independent temporal variability for model
training. On average, each microsite was measured 50-450 times depending on year and instrument type, resulting in a total of
13,384 individual chamber observations across 68 unique locations (microsites). Of these, 1,093 fluxes were measured manually
using closed chambers, while 12,291 were collected using an automated chamber system (Fig. 1). Manual chambers were
installed directly on the ground surface without boardwalk contact. Automated chamber plots were accessed via short boardwalks
located adjacent to chamber collars. These boardwalks did not overlap with chamber footprints and therefore did not influence
the spectral signal of the exact measurement location. For each flux measurement, ancillary data recorded include coordinates,
PAR (measured as photosynthetic photon flux density (PPFD; pmol m? s!), air temperature, land cover type, and time of day

(when available).

2.2.2 Climatic data

AT data were obtained from the Trail Valley Creek meteorological station operated by Environment and Climate Change Canada
— Meteorological Service of Canada (ECCC, 2024). The station is located within the study area at 68°44'46.8" N,
133°30'06.4" W, at an elevation of 85 m a.s.l. (Climate ID: 220N005; WMO ID: 71683; TC ID: XTV). The original data were
recorded at hourly resolution and were downsampled to 3-hour intervals to match the temporal resolution of the model
predictions. PAR data were obtained from the NASA POWER dataset (Langley Research Center, 2024) at a spatial resolution

of 1 km. These data provided temporally dynamic inputs for model training and prediction.

2.2.3 Remotely sensed data

We assembled two separate but equivalent predictor stacks, one with a cell size of 1 m and one with 10 m. Both cover the same
area of interest (AOI, Fig. 1), use the same map projection, and pass through the same preprocessing workflow (Ivanova et al.,
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2025). The AOI was delineated along natural drainage lines on three sides and the Inuvik-Tuktoyaktuk Highway on the west.
An image stack refers to a set of co-registered raster layers (multispectral indices and terrain derivatives) that share the same grid
and extent. E o facilitate comparison between datasets of different spatial resolutions, we summarized all predictors in Table A1.
It lists each variable with its data source, spatial resolution (1 m, 10 m, or constant), and whether it is static or dynamic. Variables
derived from UAV imagery are used at 1 m resolution, while Sentinel-2 and ArcticDEM products are used at 10 m.

The 1 m stack is based on the RGB + NIR drone orthomosaic captured on 22 August 2018 by Rettelbach et al. (2024) and the 1
m LiDAR-derived digital terrain model (DTM) from Lange et al. (2021). From these layers, we derived the Normalised
Difference Vegetation Index (NDVI; Rouse et al., 1974) and the Normalised Difference Water Index (NDWI; Gao, 1996;
McFeeters, 1996) as proxies for biomass and surface moisture, respectively. Topographic derivatives including slope, aspect,
the Topographic Position Index (TPI, 30 m window), and the Topographic Wetness Index (TWI) were calculated with Whitebox
Tools (Lindsay, 2016). A 30 m neighbourhood was used for TPI, as this scale best captured local elevation contrasts typical of
heterogeneous microtopography.

The 10 m stack contains the same set of variables but at coarser spatial resolution. It combines multispectral information from
Sentinel-2 Level-2A scenes collected between 2015 and 2024 (Copernicus, 2024) with topographic derivatives derived from the
2 m ArcticDEM, resampled to 10 m to match the Sentinel grid. Cloud-, shadow-, and snow-masked for AOI Sentinel-2 Level-
2A scenes from July-August 2018 (n = 6 cloud-free scenes) were composited using the mean to align with the 2018 drone
campaign in Google Earth Engine (Gorelick et al., 2017). For the time-specific analysis, NDVI and NDWI were extracted from
the nearest cloud-free scene within £10 days of each chamber measurement, with no temporal averaging and only cloud-free
pixels accepted. NDVI and NDWI were extracted from this composite, and the same set of terrain derivatives (slope, aspect,
TPI, TWI) was computed for consistency. A complete overview of all predictor variables, including data descriptions, resolution,
temporal variability, and references, is provided in Appendix Table Al. To link chamber measurements with remote sensing
inputs, predictor values were extracted directly from the raster cell covering the chamber footprint, without spatial buffering. No
spatial averaging or neighbourhood smoothing was applied to the pixel values at extraction. All chamber measurements were
kept as individual records, even when multiple chambers or repeated measurements fell within the same 1 m or 10 m grid cell,
to preserve sub-pixel heterogeneity in vegetation and soil conditions.

In a separate workflow, we used multispectral, terrain, and texture features to produce a site-specific landscape classification
map at both 1 m and 10 m resolution using a Random Forest approach (Breiman, 2001). The 1 m dataset was derived from RGB
+ NIR orthomosaic drone imagery collected by drone on 22 August 2018 (Rettelbach et al., 2024) and a co-registered 1 m
LiDAR-based digital terrain model (Lange et al., 2021). The 10 m dataset was based on Sentinel-2 multispectral imagery and
ArcticDEM-derived terrain parameters, representing the same area of interest. Six landscape classes were defined following
Griinberg et al. (2020): Water, Lichens, Tussock, Dwarf Shrubs, Tall Shrubs + Trees, and Sedges.

Training and validation points (n = 140 in total) were manually delineated from the drone orthomosaic. Eighty percent of the
points were used for model training and 20 % for accuracy assessment. The same training polygons were used for both the 1 m
and 10 m classifications in terms of geographic location and class label, while predictor values were extracted from the respective
remote-sensing datasets (drone + LiDAR for 1 m; Sentinel-2 + ArcticDEM for 10 m). This approach ensured that the two
classifications were comparable while reflecting the characteristics of their respective input data. Because the spatial resolution
and input data differ, the resulting landscape maps do not show identical boundaries or class proportions, but instead reflect the
surface characteristics captured at each scale. Both maps contained the same six land-cover classes. However, for the 1 m model
training, the Tall shrubs + trees class was merged with Dwarf shrubs because no chamber flux measurements overlapped that
class. Thus, five classes were used for flux modeling at 1 m, whereas all six were retained at 10 m. Water pixels were masked
prior to classification using a threshold of NDWI > 0 and manually checked against the drone orthomosaic to ensure the exclusion
of ponds and streams. All subsequent statistical analyses were restricted to terrestrial classes. A detailed description of the

classification workflow, feature set, and accuracy assessment is provided in Text Al and Table A2.
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For broader application, the 10 m predictor stack is directly reproducible across the Arctic (Sentinel-2 Level-2A + ArcticDEM).
In contrast, the 1 m stack depends on site-specific drone orthomosaics and LiDAR, which limits immediate circumpolar scaling
but is valuable for local calibration and bias assessment.

In addition, we also explored the potential of two datasets that are particularly relevant for Arctic-scale applications. The
Circumarctic Land cover Units (CALU) (Bartsch et al., 2024) provides a 10 m classification of vegetation physiognomy and soil
moisture regimes across the circumpolar Arctic tundra. The data product is based on the fusion of Sentinel-1 and Sentinel-2
imagery and was calibrated using over 3,500 field samples of soil and vegetation properties. One of the key strengths of CALU
is that it captures spatial gradients in surface wetness while using a consistent classification scheme across all Arctic regions.
This makes it possible to directly compare classes between distant sites across the Arctic, which is rarely achievable with site-
specific classifications. 20 of 23 land cover units are found across the AOI, but only 5 of those were covered by CHa
measurements. The complete legend of CALU classes used in this study, including definitions, their occurrence within the AOI,
and whether CH4 flux measurements are available for each class, is presented in Table A3. Additionally, we considered a radar
interferometric (INSAR) dataset derived from Sentinel-1 data for 2018 - 2023 (Widhalm et al. 2025), which captures seasonal
ground subsidence rates in thawing degree days domain associated with thaw table (the uppermost soil that freezes and thaws
each year). The magnitude of the subsidence rates reflects soil moisture gradients (Widhalm et al. 2025).

Finally, we assessed the benefit of incorporating time-specific spectral indices (NDVI and NDWI) extracted from Sentinel-2
scenes close to each chamber measurement. We compared the effect of using these time-matched indices versus a seasonal
composite (July — August 2018) to test whether short-term variability in vegetation and moisture status improves model skill.
Although this approach relies on satellite scenes taken within a limited time window and may not align perfectly with the exact
in situ measurement date, it still offers a more detailed representation of changes in surface conditions than seasonal averages.
All four additional predictors (CALU, InSAR, and temporally dynamic NDVI and NDWI) were tested in separate model runs to
assess how much they improved predictive performance (R?, RMSE) when added to the main predictor set. These sensitivity
analyses allowed us to evaluate their explanatory value without altering the resolution comparison, as each of these variables is
available only at a single spatial scale.

To specifically evaluate how spatial resolution influences model performance and predicted CH4 fluxes, we designed the analysis
so that the only factor differing between the two datasets was grid size (1 m vs. 10 m). All other parameters (predictors,
preprocessing steps, algorithms, and training data) were kept identical. This approach allowed us to isolate the effect of scale
from other potential sources of variation. As shown in Fig. 2, narrow, wet features such as polygonal trenches are captured at 1
m but blended at 10 m, which alters both the NDVI and the landscape classification. Since many high CHa fluxes originate from
these small wet zones, aggregation at a coarser resolution obscures their contribution. Some of the remaining model disagreement
may also be due to the limited representation of extremely wet or complex terrain in the training data, which reduces the model's

generalisability.
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Figure 2. Site-specific landscape classification (LC) and Normalized Difference Vegetation Index (NDVI) at two spatial resolutions:
1 m (panels A and C) and 10 m (panels B and D). Panels A and B show LC maps, while panels C and D show NDVI. Each panel includes
a black-framed inset highlighting a repr ive polygonal mire. Narrow, waterlogged microtopographic features such as wet
trenches remain distinct at 1 m resolution but blend into mixed pixels at 10 m. Background imagery: © Google Satellite Hybrid (Maxar,

2025).

2.3 Statistical analyses

The statistical analysis was structured into five sequential stages: (1) data preparation, (2) model training and evaluation, (3)
spatial prediction, (4) temporal aggregation and interpretation, and (5) variable importance analysis (Fig. 3). All steps were
applied identically to the 1 m and 10 m datasets to enable direct comparison of model behaviour and prediction outcomes across

spatial resolutions. The analysis was implemented in R 4.3.2 (R Core Team, 2024).

2.3.1 Data preparation

The first step consisted in the preparation of the predictor datasets to explain spatio-temporal variability in CHa fluxes. In total
ten predictors were used: AT, PAR, TDD, NDVI, NDWI, slope, aspect, TPI, TWI, and a six-class landscape classification (see
Appendix Table Al for details). The three meteorological variables (AT, PAR, and TDD) were treated as spatially uniform
across the ~3 km? study area, as it is covered by a single meteorological station. Their values varied only temporally, while all
other predictors were spatially distributed and static during each model run. To assess potential multicollinearity, pairwise

correlations among predictors were calculated separately for the 1 m and 10 m datasets using Spearman’s rank correlation.

2.3.2 Model training and evaluation

Second, we evaluated four modelling families for their ability to predict CH4 fluxes: random forests (RF), gradient-boosting
machines (GBM), generalized additive models (GAM), and support-vector regression (SVR). RF is a ML algorithm that builds
multiple decision trees on bootstrapped data. The mean of their outputs is then calculated. The averaging reduces noise and the
method reports easy-to-read variable-importance scores (Breiman 2001; Prasad et al. 2006). GBM also uses trees but adds them

one after another. Each new tree learns from the errors of the current ensemble, which often reduces bias but requires careful
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tuning to avoid over-fitting (Friedman 2001; Elith et al. 2008). Similar RF, GBM handles mixed predictor types, outliers, missing
values, and nonlinear relationships without preprocessing (Elith et al., 2008). GAM is a statistical technique that fits a smooth
curve to each predictor and then combines these curves to create a composite curve. The curves demonstrate how CHa changes
with each driver and provide reliable predictions beyond the training range (Hastie & Tibshirani, 1990; Wood, 2017). SVR is a
ML algorithm that fits a flexible line or surface that best follows the data while allowing small errors within a defined range. It
uses a mathematical function called a kernel to handle weak non-linear patterns, and is particularly effective when the dataset is
small or the relationships are not strongly linear (Cortes & Vapnik 1995; Smola & Scholkopf 2004). Each model was

implemented using the caret package in R (Kuhn 2008) for hyperparameter tuning yia stratified 10-fold cross-validation_on

individual measurements. We used the R-packages ranger for RF (Wright & Ziegler, 2017), gbm for GBM (Greenwell et al.
2022), kernlab for SVR (Karatzoglou et al. 2004), and mgcv for GAM (Wood, 2017). Model performance was assessed using

five-fold cross-validation based on out-of-fold predictions, without grouping by site or year of measurement. Three
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complementary metrics were used: the coefficient of determination (R?), root mean square error (RMSE), and mean absolute
error (MAE). R? describes how well model predictions capture the variability of observed CHa fluxes, RMSE emphasises large
deviations, and MAE quantifies the average absolute difference between observed and predicted values. R? and RMSE were the
main criteria for evaluating predictive performance and selecting the best model configurations, while MAE was reported as an
additional indicator of absolute error, given the low mean CHa fluxes. All metrics were computed from cross-validated
predictions using the yardstick package (Kuhn et al., 2025) to ensure consistent implementation across all model types.

We tuned the key parameters of RF, GBM, SVR, and GAM using five-fold cross-validation with RMSE as the evaluation metric
(Text S1). For SVR, several kernel functions were tested and the radial basis function kernel provided the best performance.
GAMs were fitted using thin-plate regression splines for numeric predictors and penalization of uninformative smooth terms.
Multicollinearity among predictors was assessed using Variance Inflation Factors (VIF/GVIF) and GAM concurvity diagnostics,
and no predictors exceeded commonly used concern thresholds (Text S2, Table S2). Therefore, the full predictor set was retained
at both spatial resolutions.

In addition to the main predictor set, models were also trained with additional variables available only at 10 m spatial resolution,
including CALU land cover, InSAR-derived surface subsidence, and temporally dynamic NDVI and NDWI extracted for dates
closest to each CHs flux measurement. These variables were tested in separate model runs to evaluate their explanatory power
but were not included in the main inter-resolution comparison, as they were unavailable at 1 m resolution and would otherwise
bias scale-related analyses.

To disentangle the effects of spatial resolution and data source, we additionally aggregated the 1 m input dataset to 10 m
resolution using the same workflow. Continuous predictors were averaged within each 10 m grid cell, and categorical variables
(LC) were assigned based on the majority class. These aggregated data were then used to train and evaluate all models using the

same hyperparameter settings and cross-validation strategy as for the main analysis.

2.3.3 Spatial prediction

Third, two best-performing models (RF and GBM) were applied to a complete spatial predictor stack, a multi-layer raster
covering the entire study area without gaps. The stack included two types of layers. Static layers, such as NDVI, NDWI, slope,
aspect, TPI 30 m, TWI, and land cover, remained unchanged throughout July. In contrast, the meteorological layers (AT, TDD,
PAR) were spatially uniform but temporally dynamic. A temporal loop progressed from 1 July at 00:00 to 31 July at 23:59 in
three-hour steps. At each time step, the corresponding values of AT, PAR, and TDD were inserted into their respective layers in
the stack. The model then generated an instantaneous CHa flux raster in mg CHa m h™! using the terra package (Hijmans 2023).
This routine resulted in 248 flux rasters for the whole month of July, produced per year and spatial resolution. To ensure
consistency, areas with missing input values (e.g., water bodies) were excluded from predictions. In total, 5,952 CHa flux rasters

were generated (248 time steps * 2 models x 2 resolutions x 6 years).
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2.3.4 Temporal aggregation and interpretation

Fourth, the predicted raster time series was aggregated using arithmetic operations in the terra package. Averaging over all time
steps resulted in July mean flux maps, while summing and multiplying by three converted instantaneous rates into cumulative
monthly fluxes. Six-year means and interannual variation (2019 to 2024) were calculated. To assess spatial mismatches related
to scale, the 1 m predictions were aggregated to 10 m resolution, and the aggregated 1 m maps were subtracted from the 10 m
maps pixel-by-pixel to compute spatial differences. In addition, differences between the two tree-based model families, RF and
GBM, were mapped to quantify structural uncertainty. To interpret these mismatches, Pearson correlations were calculated

between the difference maps (resolution- or model-based) and individual predictor layers.

2.3.5 Variable importance analysis

Fifth, we conducted a separate variable importance analysis to identify the most influential predictors in each model. Variable
importance scores were extracted from the cross-validated, hyperparameter-optimised RF and GBM models using permutation
importance (ranger package; Wright & Ziegler, 2017) and relative influence (ghm package; Greenwell et al., 2022), respectively.
These scores were used to assess the consistency of predictor relevance across models and spatial resolutions. Variable
importance scores for each model were normalized by dividing by the sum of all importance values within that model, resulting

in relative importance values ranging from 0 to 1.

1 Preparation 2 Model training 5 Variable importance

- Train RF, GBM, SVR, and
GAM with different settings.
- Assess model performance
with RMSE, MAE, and R? to

Extract predictor importance
> from all models to compare
relevance across methods and

NDVI, NDWI, Slope,
Aspect, LC, TWI, TPI

Dynamic inputs resolutions.
select best models.
AT, TDD, PAR
3 Spatial prediction 4 Temporal aggregation
- Apply best-performing models (RF and - Compute yearly and multi-year July
GBM) at both 1m and 10 m resolutions. CH, fluxes (2019-2024).

- Dynamic predictors updated every 3 hours > - Assess interannual variability and
for each day in July 2019-2024. model/resolution uncertainty.

- Total: 248 time steps x 2 models x 2 - Correlate flux differences with
resolutions x 6 years = 5,952 CH, flux rasters. predictor layers.

Figure 3. Workflow for modelling and upscaling CH, fluxes in the designated study area. The analysis was performed separately for
1 m and 10 m spatial resolutions and comprised five primary stages: (1) Predictor preparation. (2) The training and tuning of models.
(3) Spatial prediction. (4) Temporal aggregation and evaluation. (5) Variable importance.

3 Results and Discussion
3.1 Correlation between observed CH4 fluxes and single remote sensing parameters

This exploratory analysis examined how observed July CHs fluxes correlate with individual environmental variables at two

spatial scales (1 m and 10 m) to identify significant controls of CHa4 flux and how spatial resolution affects their predictive power.
10
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Although the observed associations were generally weak, several clear patterns emerged across landscape classes and
environmental gradients.

Seasonal subsidence showed the strongest positive correlation, underscoring the explanatory power of this parameter for moisture
availability and related enhancements in CH4 fluxes (Table 2). This is in line with observations linking InSAR-derived
subsidence to elevated CHa fluxes in Arctic ecosystems (Sjogersten et al., 2023). Several moisture-related indices (NDWI, TWI,
TPI) show higher correlations at 10 m than at 1 m, because 10 m aggregation smooths microtopographic noise while 1 m retains
over-detailed, heterogeneous signals. This indicates that coarser resolution better captures landscape-scale hydrological
gradients. This finding is supported by Ruhoff et al. (2011), who demonstrated that TWI values stabilise and become more
spatially coherent at coarser resolutions, and by Riihimaki et al. (2021), who showed that TWI’s ability to predict soil moisture
improves when derived from coarser DEMs (e.g., 10-30 m). Conversely, the correlation with aspect weakened at 10 m, compared
to 1 m resolution, likely due to the loss of microtopographic detail when pixels are aggregated, as shown previously (Schoorl et
al., 2000; Vaze et al., 2010).

Temporally matched NDVI and NDWI show weaker correlation with CHs fluxes compared to static indices. The reason may be
the limited effective temporal resolution of Sentinel-2: although the constellation has a nominal 5-day revisit, persistent Arctic
cloud cover often stretches the cloud-free gap well beyond 10 days (Runge & Grosse, 2019), producing a temporal mismatch

with chamber measurements.

Table 2. Spearman rank-correlation coefficients (p) between July CH4 flux and environmental predictors at 1 m and 10 m spatial
resolution. Positive values indicate that higher predictor values coincide with higher CH4 emissions, negative values indicate the
opposite. All correlations were computed using the full dataset. For vegetation and surface wetness predictors (NDVI, NDWI), both
static (July 2018) and temporally matched values (Sentinel-2 scenes within £10 days of each chamber measurement) are shown. The
column "10 m, temporal" reflects those temporally matched predictors. For predictors derived from static landscape characteristics
(e.g., TWI, Slope, TPI, Subsidence), 10 m and 10 m-temporal columns are merged as they do not vary in time. Significance levels:
**p <0.01, ***p <0.001.

Group Predictor I1m 10 m 10 m, temporal
Vegetation NDVI -0.289%#* -0.295%%* -0.082%*
NDWI 0.141%%** 0.24%%* -0.013
Surface wetness and soil
moisture
TWI 0.027%* 0.235%%*
Slope -0.187%%%* -0.238%**
Topography Aspect 0.14%** 0.035%**
TPI -0.162%%* -0.327%%*
Ground subsidence Cumulallve seasonal 0.534%***
subsidence

We examined CH4 flux variation across the landscape classes and CALU units (Fig. 4A and Table B1). For example, sedge-
dominated landscape classes had the highest mean CHs flux (0.87 — 0.94 mg CHs m™ h'). Elevated fluxes in these systems are
likely driven by plant transport through aerenchymatous tissue during which CH4 produced at depth bypasses the oxic zones,
and enhanced CHa4 production resulting from high plant productivity and increased substrate availability via root exudates
(Olefeldt et al., 2013; Kwon et al., 2017). Tussock areas displayed the lowest flux values, with on average minor uptake of CH4
(-0.02 mg CHa m h''). These patterns were consistent with observations by Voigt et al. (2023c).
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All pairwise differences between CHa flux distributions for the 1 m and 10 m products were statistically significant (Wilcoxon
rank-sum test, p < 0.0001). However, this result should be interpreted with caution due to the large sample sizes (even subtle
differences can appear significant). In some cases, the differences in median fluxes were small (e.g., sedges), while in others, the
resolution shift results in more substantial changes (e.g., dwarf shrubs: median increased from 0.05 to 0.19 mg CHsm? h™!). In
some cases, the flux sign even changed, for instance, lichen-dominated areas shift from weak uptake to weak emission. These

shifts likely reflect the effects of aggregation, where coarser resolution mixes surface types or blends microsites with different

flux patterns.
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Figure 4. Comparison of observed CHy fluxes across site-specific landscape classification at two spatial resolutions and CALU
Circumarctic Land cover Units) classes. The numbers above the boxplots indicate the total number of unique measurements followed
by the number of Sites of measurements in parentheses Panel A: CH4 fluxes across five site-specific landscape classes with existing
CH, flux measurements. Measurements were aggregated separately for 1 m and 10 m spatial resolution. Panel B: CH, fluxes grouped
by CALU glasses. CHy fluxes differed significantly between most CALU classes (p < 0.001, pairwise Wilcoxon test), except classes 10

and 3 (wetlands), where no significant difference was observed (p = 0.054). Boxplots show the distribution of fluxes for each group.
horizontal lines represent medians, boxes indicate the interquartile range, and whiskers extend to 1.5x the IQR. The red dashed lines
indicate zero fluxes.

To assess how well a pan-Arctic land-cover scheme captures CHs flux variation, we aligned our measurements with the CALU
map (Fig. 4B). CALU vegetation classes differed significantly in CHa flux, except between moist moss tundra, abundant moss,
prostrate to low shrubs (class 10) and permanent wetlands (class 3) (Fig. 4B, Table B2). Within CALU classes, average CHa
fluxes ranged from slight uptake in wetland class (-0.09 mg CHs m? h™!') to moderate emissions in moist tundra, abundant moss,
dwarf and low shrubs (CALU 11) (0.46 mg CHs m™ h'!). Unexpectedly, the permanent wetland class showed CHa uptake. This
category only included one area, where dry lichen areas dominate most of the area. Moreover, the 10 m resolution of CALU
likely leads to mixed pixels, where wetter spots were averaged with drier surroundings, reducing the apparent CH4 emissions. In
contrast, many wet areas at our site were too small to be resolved as wetlands in CALU and were instead classified into other
categories.

Overlay analysis between our site-specific landscape classification and the CALU (Fig. 5) showed that each of our landscape
classes included 6-11 CALU classes (with coverage > 1 %), typically dominated by moist tundra, abundant moss, dwarf and low
shrubs (CALU 11). This reflects differences in classification approaches: CALU aimed at representing vegetation diversity and
wetness gradients across the entire Arctic (Bartsch et al., 2024), whereas the site-specific landscape classification was explicitly

built for CHs flux modelling and therefore integrates fine-scale microtopography, surface-moisture patterns, and local vegetation.
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A similar degree of cross-class mixing was observed for the 1 m classification (Fig. S2), indicating that these differences are
primarily driven by conceptual distinctions between classification schemes rather than spatial resolution.

While both CALU and our site-specific classifications captured broad vegetation and wetness gradients, tall-shrub areas were
clearly underrepresented in the flux dataset (< 1.5 % of points vs. ~20-30 % of the mapped area (Fig. S1). These zones often
coincide with wetter micro-depressions and drainage areas (Griinberg et al., 2020), suggesting that the wettest conditions are not
fully captured in the current sampling. Increasing coverage of these habitats would improve the robustness of flux comparisons

and reduce residual variability in future models.

Sedges 17% 8% 68% 1% 5% 1%
Tall shrubs + trees 1% 1% 1% 36% 49% 2% 1% 1% 7% 1%
% within 10m
Dwarf shrubs 1% 2% 50% 43% 1% 1% LC class
£ o 100
‘Q_ 5
S 50
Tussock 1% 13% 18% 61% 2% 1% 3% o
0
Lichens 1% 12% 42% 82% 1% 1%
Water 5% B1% 7% 6% 4% 9% 2% 2% 1% 1% 1%

T T T R I N T ST U BN A B S\ TP R ST NI 4
CALU

Figure 5. Pixel-wise cross-comparison between two 10 m land-cover products for the TVC study area. LC 10 m (this study): a site-
specific Sentinel-2 + ArcticDEM classification built (see SI Text 1). CALU (Circumarctic Land cover Units): published pan-Arctic
landcover units (full legend in Table A3). Each tile shows the fraction of pixels of a given CALU class that fall into that LC 10 m class;
row totals, therefore, equal 100 %. Values > 0.5 % are printed inside the tiles. Tiles that are coloured but unlabelled occur (< 0.5 %),
while blank tiles indicate class pairs that do not intersect within the AOI.

However, even within each CALU or LC class, flux variance remained high, underlining that vegetation type alone cannot
capture the full pattern of CH4 fluxes without considering microtopography and moisture indices. Similar to the pan-Arctic
synthesis by Olefeldt et al. (2013), our findings support the view that the effects of key environmental parameters on CH4 flux
should be considered jointly rather than independently. Additionally, soil temperature and soil moisture, key controls of CHa
production and oxidation (Wille et al., 2008; Mastepanov et al., 2013), were not included as predictors in the present analysis

due to limited spatial coverage but are planned for integration in future model development.

3.2 Evaluation of Model Accuracy

Our cross-validated modelling framework achieved predictive performance (R? from 0.53 to 0.87, Table 2) comparable to recent
CHa4 upscaling studies in the Arctic-boreal region, including both chamber- (e.g., Virkkala et al., 2023; Résénen et al., 2021) and
eddy covariance-based studies (e.g., McNicol et al., 2023; Chen et al., 2024; Peltola et al., 2019; Tramontana et al., 2016).

Model evaluation at 1 m resolution revealed that SVR achieved the highest R? of 0.87, indicating strong predictive power.
However, this was accompanied by substantial errors (RMSE = 0.078, MAE = 0.019 of mean CHs flux), suggesting high
sensitivity to skewed distributions and outliers, a known limitation of SVR when modelling non-Gaussian ecological data (Smola
& Schélkopf, 2004). In contrast, RF showed both high accuracy and robustness, combining high R? with the lowest errors among
tested algorithms. This confirms the algorithm’s strength in capturing nonlinear interactions while being less sensitive to noise
and overfitting, as highlighted in ecological applications (Belgiu & Dragut, 2016; Résanen et al., 2021; Cutler et al., 2007). GBM
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also showed strong performance, with low errors and consistent R? values, reflecting its capability to efficiently leverage key
predictors (Kdmaérdinen et al., 2023; Natekin & Knoll, 2013). GAM, in contrast, had the weakest performance among all models
at 1 m resolution, with the lowest R? (0.62), highest RMSE (0.077), and highest MAE (0.025). This likely reflects the model’s
limited ability to capture sharp spatial variability in CHa4 fluxes when localized structure is strong. GAMs rely on detecting
smooth nonlinear effects, but when predictors become noisy or spatially complex, the fitted splines lack the detail needed for
accurate prediction (Wood, 2017).

At 10 m resolution, RF not only achieved the lowest mean absolute and root-mean-square errors, but its R? and error metrics
also changed the least when we varied resolution or added temporally dynamic predictors, indicating the most consistent
performance in our experiments (Table 3).

GBM showed similarly low errors but a slightly lower R? (0.57). SVR achieved the highest R? (0.68), but this was offset by
much higher prediction errors, indicating poor generalisation despite high apparent fit. GAM performed worst, with the lowest

R? (0.53) and the highest RMSE (0.13).

Table 3. Performance of four models at 1 m and 10 m spatial resolutions. Metrics include R? (coefficient of determination), MAE (mean
absolute error), and RMSE (root mean square error). Bold values represent the best score for each metric within each resolution. The
“10 m” scenario includes models with temporally stable normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI), while “10 m_temporal” refers to models using temporally dynamic indices, matched to the closest available date
of in-field CH4 flux measurements.

Model Type Resolution R? MAE RMSE
Im 0.616 0.025 0.077
GAM 10 m 0.527 0.027 0.126
10 m_temporal 0.645 0.022 0.084
Im 0.625 0.008 0.012
GBM 10 m 0.570 0.008 0.013
10 m_temporal 0.689 0.117 0.024
Im 0.744 0.006 0.010
RF 10 m 0.650 0.007 0.012
10 m_temporal 0.751 0.016 0.105
Im 0.868 0.019 0.078
SVR 10 m 0.682 0.022 0.117
10 m_temporal 0.668 0.022 0.124

The decrease in SVR and GAM performance at 10 m resolution likely reflects the loss of fine-scale spatial detail when data are
aggregated to coarser grids. At coarser resolution, each pixel represents a mixture of surface types and microtopographic
conditions, which reduces local variability in the predictors and weakens the model’s ability to capture small-scale relationships
with CHs fluxes. SVR models, which depend on detailed nonlinear patterns, become less stable when this localised structure is
smoothed out. Similarly, GAM performance declines when predictors become more homogeneous, since spline functions can
no longer represent fine spatial gradients. In contrast, RF and GBM were more robust to this loss of detail because their ensemble
structure allows them to generalise better under coarser input conditions. Based on these results, we selected RF and GBM for
further analysis as the most reliable combination of accuracy and cross-resolution stability. When cross-validation was grouped

by site or year, R? values dropped to ~0.1,- 0.2 and RMSE increased compared to the standard stratified 5-fold CV (Text S4, Fig.

S7)5This decline might reflect the heterogeneous sampling structure at Trail Valley Creek: because environmental conditions
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sites. Leaving such a site out removes these conditions from the training data and forces the models to extrapolate, rather than

revealing instability of the general models,

Including the temporal variability of the NDVI and NDWI values led to an average increase in R? of approximately 0.11 for the
GAM, GBM and RF models at a resolution of 10 m (Table 3). SVR was the exception, showing a slight decrease in R? with no
reduction in errors. For the GAM model, this increase in explanatory power was accompanied by lower RMSE and MAE values,
indicating more accurate and robust performance. In contrast, both RF and GBM showed a higher R?, but also exhibited increased
absolute errors, which may indicate overfitting to temporally dynamic predictors. This likely reflects the tendency of ensemble
models to capture noise in dynamic inputs when training data is limited (Barry and Elith, 2006; Chollet Ramampiandra et al.,
2023; Reichstein et al., 2019). Similar behaviour has been observed in other ecosystem carbon flux modelling studies, for
example, in neural network models that overfit to lagged meteorological inputs (Papale & Valentini, 2003). The GAM model
likely benefited from its ability to represent gradual ecological shifts through penalised smoothers, which reduces sensitivity to
noise (Berbesi & Pritchard, 2023). The limited improvement in performance for SVR may be due to its sensitivity to data

structure and lower flexibility when modelling smooth temporal trends in ecological datasets (Smola & Schélkopf, 2004).

3.3 Impact of model and resolution selection on CHs flux predictions

Because only meteorological variables changed over time, the interannual variation in the predicted maps arises from interactions
between the static landscape predictors and varying atmospheric conditions, rather than from spatial changes in surface
characteristics. Different data-driven models can produce distinct spatial predictions even when trained on the same input data.
Although well documented, most machine-learning algorithms are not easily interpretable, whereas statistical approaches such
as GAMs provide more transparent relationships between predictors and fluxes. We therefore compare their spatial predictions
and simple diagnostics to assess reliability and guide model choice for CH4 upscaling. Our comparison of upscaled CHs4 flux
fields produced by the RF and GBM models showed that algorithm choice remained an important influence on spatial variability
in predicted CHa fluxes (Fig. 6). The GBM model generated higher local contrast and more pronounced extremes, especially at
1 m resolution, with pronounced peaks in wet, topographically complex areas, reflecting its greater sensitivity to extreme values
and local predictor variation. RF produced smoother, noise-resistant distributions, aligning with its known strength in
generalising across heterogeneous landscapes (Risdnen et al., 2021; Cutler et al., 2007). While RF remains a robust and widely
applied method for spatial upscaling (Cutler et al., 2007), our findings demonstrate that algorithm choice still affects spatial
outcomes, with each model emphasising different aspects of landscape variability. This highlights the value of including multiple

model types, not only for optimising performance, but also for quantifying model-driven uncertainty in CHs flux upscaling.
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Figure 6. Predicted mean monthly CH, fluxes (mg CHs m™ month™) for July (averaged over 2019-2024), generated by two machine-
learning models: Random Forest (RF, panels A and B) and Gradient Boosting Machine (GBM, panels C and D). The panels A and C
shows predictions at 1 m resolution, and panels B and D right column at 10 m resolution. Each panel contains a black-framed zoom
window, which enlarges a representative section of the polygonal mire. Visual comparison of the two insets illustrates how the fine
wet-to-dry microtopography resolved at 1 m is smoothed when aggregated to 10 m. Background imagery: © Google Satellite Hybrid
(Maxar, 2025).

Interestingly, although GBM exhibited more spatial flux variability, the mean fluxes predicted by GBM were consistently lower
than those of RF. At 1 m, GBM averages 98.7 mg CHa m? month!, whereas RF averages 518.6 mg; at 10 m the values rise to
608.8 mg and 683.4 mg, respectively (Fig. 7A). This more than fivefold difference at 1 m resolution underscores the substantial
structural uncertainty that arises purely from algorithm selection, even when all predictors and training data are identical. At 10
m resolution, this discrepancy largely disappears because spatial aggregation smooths microtopographic extremes and reduces
the influence of local outliers, making both models converge toward similar mean fluxes. Net-sink pixels accounted for 10.0 %
(RF) and 9.5 % (GBM) of the 1 m domain, but only 4.9 % (RF) and 4.4 % (GBM) at 10 m. CHa sink areas were spatially limited
and highly sensitive to scale. Pixels acting as net CHa sinks (i.e. with negative monthly fluxes) were located on well-drained
polygon rims and other lichen-dominated uplands where oxygen remained available throughout the summer. This allowed highly
efficient methanotrophs to oxidise CH4 faster than it was produced (Biasi et al., 2008). Resolving these units at a scale of 1 m
showed that they covered around 10% of the scene and significantly reduced the landscape-mean flux. However, coarsening to
10 m mixed the aerobic patches with adjacent wet hollows, reducing their mapped extent to approximately 4.5% and erasing
many uptake pixels. A comparable effect has been observed when chamber data were averaged across broader physiographic
units, shifting site-level balances from weak sinks to slight sources (Zona et al., 2016). This pronounced scale effect is consistent
with pan-Arctic syntheses, indicating that, although they cover only a small fraction of the surface, aerated uplands can offset a
significant proportion of wetland emissions, yet they are often obscured in coarse products and regional budgets (Olefeldt et al.,
2013; Kuhn et al., 2021). Our findings support recent assessments that retaining metre-scale information on microtopography,
vegetation, and soil moisture is essential for capturing sink behaviour and ultimately for refining carbon budgets in permafrost

regions, which currently indicate a small terrestrial CO: sink and a wetland CHa source (Treat et al., 2024).
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Both models predict a comparable overall flux range, but the main disagreement occurs in the intensity and spatial extent of
intermediate values. GBM also tends to produce stronger negative extremes, indicating higher sensitivity to localized sink
conditions. The residual model disagreement is driven less by the number of sink pixels than by their intensity. Minimum fluxes
predicted by GBM were consistently more negative than those from RF, with extremes of -147 mg CHsm™ month ! (1 m) and -
330 mg CHs m?month™! (10 m), compared to -45 and -33 mg CHsm™?> month " in RF, respectively. This suggests that GBM may
emphasise CHa sink strength more than RF, even though the spatial extent of sinks is similar across models.

At 1 m, GBM often responds more strongly to localized environmental extremes. These include areas with much higher soil
moisture, surface temperature spikes, or abrupt changed in microtopography that may only occur at the metre scale. This is due
to its sequential learning process, which can emphasize subtle but high-impact predictors. RF, in contrast, smooths local extremes
and yields more conservative area means. Because GBM-1 m produced a markedly lower AOI mean than RF, we treat this
behaviour as a potential systematic bias toward stronger sinks and hotspots. We therefore use RF-1 m as the reference budget
estimate and retain GBM-1 m as a sensitivity case to bracket structural uncertainty. At 10 m, aggregation reduces fine-scale
contrasts and the RF-GBM predictions converge. Pixel-wise standard deviations (Fig. 7B) reveal that RF is temporally more
stable, while GBM is more sensitive to inter-annual variation, particularly in wet or geomorphically complex areas.

Spatial differences between models and resolutions were calculated as pixel-wise subtraction (RF — GBM and 1 m — 10 m),
ensuring consistent direction of comparison across all analyses. Additional analysis of spatial differences between models (Fig.
B2) showed that several predictors were moderately to strongly correlated with the differences between RF and GBM predictions.
At 1 m resolution, the strongest correlation was observed for NDWI (-0.53), indicating that model disagreement was most
pronounced in wetter areas. NDVI (0.49) and landscape type (0.41) also showed strong positive correlations with model
differences, suggesting greater divergence in vegetated zones and across cover transitions. For the 10 m products, aspect (0.43)
became the only predictor for model differences above 0.4, implying that model choice matters most on directionally exposed
terrain once fine micro-relief is lost. Across both resolutions, NDWT exhibited consistent negative correlations, implying that
divergences are magnified in wetter and concave landforms that tend to accumulate water or thaw differently. These findings are
in line with Tagesson et al. (2013), who showed that adding satellite-derived NDWI improves CH4 flux modelling by capturing
moisture-driven variability.

The full spatial difference maps for each model and resolution are provided in the supplementary Zotero dataset (Ivanova et al.,

2025a) to enable direct comparison with environmental layers and visual exploration of model- and scale-driven patterns.
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Figure 7. CH4 {luxes and their interannual variability across the study area. (A) Pixel-wise monthly mean CHj flux predicted by RF Cr leted: Mean )
and GBM models, for July 2019;2024. Each point in the boxplots represents the mean July CH, flux of a single pixel, illustrating the “. . ‘CD leted: 1 )
spatial distribution of fluxes across the study area. (B) Pixel-wise interannual standard deviation of predicted CH, fluxes for July eleted: flux
months from 2019 to 2024, calculated separately for each model and resolution. ;J'he box spans the interquartile range (IQR, 25th (Deleted: Mean )
75th percentile), the horizontal line jndi the median, yvhiskers extend to 1.5XIQR, and points beyond the whiskers represent .C,. leted: , averaged over the entire area of interest )
potential outliers. 2
’CDeleted: the period )
Part of the disagreement between the two models, particularly at 10 m resolution, can be attributed to limited training data in CDeIeted: to )
certain landscape types such as tall-shrub and complex wetland zones, which were sampled less intensively due to access ' '[Dt’-htEd: Each boxplot shows the distribution of values across all Pixelsij
the
constraints. These classes show higher prediction uncertainty and stronger divergence between RF and GBM, as GBM amplifies :(Delete a: )
: to
local extremes while RF tends to smooth them. E(Deleted: within the box )
Model performance based on the aggregated 1 m data (10 m from 1 m) was nearly identical to that of the original 10 m models, CDeIeted: and )
with only small differences across algorithms. GBM and SVR showed slightly improved accuracy after aggregation, while RF (Deleted: - Points )

performed marginally worse and GAM remained nearly unchanged. These results indicate that the performance differences
between the 1 m and 10 m models reported above are mainly attributable to spatial resolution rather than to differences between

sensor-based and aggregated input data (see Text S4, Fig. S5, and Fig. S6).

3.4 Parameters importance in CHs flux prediction

Analysis of the relative importance of the predictors revealed fundamental differences between the RF and GBM models, and
how these differences change when moving from 1 m to 10 m resolution (Table B3). Significance was assessed using the
permutation method for each model and scale combination.

At the 1 m resolution, RF distributed importance fairly evenly across the topographic parameters. TPI (~22 %), Aspect (~21 %),
and Slope (~18 %) showed comparably high influence, followed by landscape class (~16 %). All other predictors contributed
less than 10 %, and meteorological drivers collectively stayed below that level. This topography-centred profile is consistent
with the moderate intercorrelation among terrain metrics such as TPI, Slope, and TWI (Fig. B1), which share a common DEM

origin and partly capture overlapping relief and moisture patterns. Such behaviour aligns with the known tendency of random
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forests to distribute importance across correlated terrain drivers due to their random feature-selection mechanism (Résinen et
al., 2021; Cutler et al., 2007).

GBM showed a different pattern: again, no single parameter dominates, but five drivers spread across different input categories
(Slope, Landscape class, AT, TDD and NDWI) each explained about 14-16 % of the total, and none exceeds 20 %. This flatter
profile is based on the boosting process. Each new tree fixes the errors left by the previous one, so different predictors take turns
improving the model (Friedman, 2001). When several drivers reduce error by a similar amount, the model splits importance
among them (Kéméréinen et al., 2023).

When the resolution was coarsened to 10 m, pixel aggregation smoothed micro-relief, and both algorithms shifted toward
moisture-integrating drivers as primary explanatory influences. In RF, NDWI (~25 %) and Landscape class (~25 %) emerge as
joint leaders, NDVI rises to ~12 %, and all topographic parameters drop below 8 %. In GBM, the re-organisation is even stronger:
the moisture indicators NDWI (~25 %) and TWI (~19 %) together explained almost half of the total importance, while landscape
class follows at ~11 % and Slope and Aspect fall below 7 %. This pattern agrees with field evidence that moisture proxies
dominate CHa-flux prediction at coarser resolution, where fine-scale topographic details are lost (Tagesson et al., 2013; Wangari
et al., 2023). NDWI and TWI both integrate water content over several pixels, making them potential surrogates for local water-
table height and the extent of anoxic microsites that drive methanogenesis. NDWI is also sensitive to vegetation water and
phenology, allowing it to track water-table depth in peatlands (Meingast et al., 2014; Kalacska et al., 2018). TWI, which maps
landscape-scale water accumulation and thus redox and gas-diffusion controls, aligns with syntheses showing that water-table
fluctuations set the size of anoxic zones and largely govern CHa production and emission (Kaiser et al., 2018; Cui et al., 2024).
Landscape class and NDVI contributed complementary information on vegetation type and biomass, which modulate both
substrate supply and methane oxidation. In practical terms, upscaling to 10 m can still capture landscape-scale CHa patterns, but
only if robust moisture indices such as NDWI and TWI were included; purely geometric terrain drivers lose most of their
explanatory power once microtopography is averaged out.

The potential influence of CALU, subsidence, and temporally matched NDVI/NDWI indices was further examined in a separate
10 m model experiment (Text S3, Fig. S3).

RF1m RF10m GBM 1 m GBM 10 m
TOD | e . e o
MgteormoQIcal Air temperature e = & —o— —eo—
Drivers
PAR| e+ e o1 L]
. NDVI | ol —eo— e+ —o—
Vegetation /
Terrain Landscape class —e—i —e—i o+ e
TPI —e—i o e+ [}
Topographical Aspect —e— o " e
Drivers
Slope —e— 2 2l —e— [
Hydrology / W |@ o L] —e—
Moisture Indicators NDWI | 1l —e— —e—1 —eo—
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Mean relative importance [%] + SD

Figure 8 Mean relative importance (= SD) of environmental predictors for CH4 fluxes across two machine-learning models -Random
Forest (RF) and Gradient Boosting Machine (GBM) — evaluated at 1 m and 10 m spatial resolutions. Importance was estimated by
bootstrap resampling (n = 100) and is expressed as a percentage of total importance within each model. Predictors are grouped into
four categories: Meteorological drivers (thawing degree days, air temperature, photosynthetically active radiation),
Vegetation/Terrain (Normalized Difference Vegetation Index, landscape class), Topography (Topographic Position Index, aspect,
slope), and Hydrology/Moisture (Topographic Wetness Index, Normalized Difference Water Index). Abbreviations: TDD — thawing
degree days; PAR — photosynthetically active radiation; NDVI — Normalized Difference Vegetation Index; TPI — Topographic Position
Index; TWI — Topographic Wetness Index; NDWI — Normalized Difference Water Index.
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4 Conclusion

This study aimed to identify the key environmental and spectral drivers of CHa fluxes in heterogeneous Arctic tundra, evaluate
how both model performance and predictor importance change with spatial resolution and across different data-driven models,
and assess the implications for upscaling CHs fluxes.

Subsidence, derived from InSAR, showed the highest correlation with observed CHa fluxes of all the tested predictors,
emphasising its value as a spatial proxy for soil moisture. It should therefore be included directly in CH4 upscaling workflows,
particularly in permafrost landscapes where moisture conditions were key drivers of fluxes.

Although different models varied significantly in their estimates, RF and GBM provided the most consistent and reliable
upscaling results. At the highest spatial resolution, the two algorithms produced notably different flux magnitudes, reflecting
structural uncertainty linked to how each model handles local extremes. However, their robustness should be verified through
targeted sensitivity analyses, including tests with modified predictor sets, varied hyperparameters, and bootstrapped
subsampling, to assess the stability of variable importance and model performance. Significance of model predictors was found
to be strongly scale-dependent. At a resolution of 1 m, the models derived most of their explanatory power from
microtopographic metrics, which capture the detailed elevation contrasts that distinguish between hummocks and hollows, as
well as localising CH4 hotspots. However, after aggregation to 10 m, these relief cues were diluted, causing a change in ranking:
moisture proxies NDWI and TWI became the principal drivers, together accounting for almost half of the explained variance.
This transition from terrain- to moisture-controlled importance highlights the fact that fine-scale mapping requires detailed
topographic data, whereas regional upscaling must prioritize robust hydrological indices. For AOI budgets we report RF at 1 m
resolution as the reference and use GBM at 1 m resolution as a sensitivity bound due to its amplification of metre-scale extremes.
Spatial resolution emerged as the important factor determining the predictive power data-driven upscaled CHa flux patterns,
exerting a stronger influence than model choice. At a resolution of 1 m, fine-scale heterogeneity was captured at a high degree
of detail, making it possible for models to distinguish between local sources and sinks of CH4. At 10 m, micro features merge
into mixed pixels, boosting mean fluxes and variability. This resulted in fine-scale sinks and hotspots disappearing, and in some
cases, fluxes being misclassified as a source of CHa in dry areas. Consequently, 10 m models produced higher mean fluxes and
broader flux distributions. However, some of these high values may be due to mixed-pixel artefacts rather than true local
emissions.

Our study findings imply that resolution is not simply a case of ‘the higher, the better’, and similarly, more complex ML methods
may not necessarily yield better predictions. Although 1 m models captured fine-scale heterogeneity, 10 m models with
temporally dynamic predictors improve explanatory power but increase prediction errors, likely due to overfitting to short-term
fluctuations. This suggests that, in some cases, 10 m resolution models can outperform 1 m resolution ones, particularly when
enhanced with well-timed spectral information — though caution is needed to balance fine-scale accuracy with broader spatial
generalisability.

Although this study focuses on a single Arctic wetland complex at Trail Valley Creek, the workflow and findings are broadly
transferable to other tundra environments. Ten-metre inputs from Sentinel-2 and ArcticDEM reproduce dominant moisture-
control patterns typical of Arctic lowlands, while metre-scale (drone + LiDAR) layers reveal fine sink—source contrasts but
require intensive data collection. Scale effects may vary across Arctic landscapes depending on topographic and vegetation
complexity, and could differ in more homogeneous or highly dissected terrain. Because the models remain correlative and July-
specific, extending the workflow across seasons and additional sites would strengthen generality and test the stability of the
observed scale effects. Future work should expand sampling into underrepresented landscape and vegetation classes, high-
emission zones, methane uptake regions, and winter fluxes, and incorporate temporally dynamic predictors. Integrating theory-
guided time-series modelling approaches informed by ecological theory could enhance both the interpretability and accuracy of

CHas forecasts under complex seasonal dynamics, particularly when data availability is limited.
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Appendix A. Predictors from remote sensing and meteorological data

Table Al. Overview of predictor variables used in the CH4 flux models. This table lists all environmental predictor variables considered
in the modelling framework. For each parameter, the spatial resolution (for remote sensing layers), source, short description, and
formulas for calculations are pr d (where applicable). Parameters are grouped into six thematic categories: Meteorological
Drivers (e.g., PAR, AT, TDD), Vegetation / Land Cover (e.g., NDVI, landscape classification, CALU), Hydrology / Moisture Indicators
(e.g., NDWI, TWI), Topography (e.g., slope, aspect, TPI), and Surface Deformation (subsidence). Each variable is marked as either
static (unchanging during the study period) or dynamic (time-specific).

spatial . .. Temporal Parameter
Parameter resolution Derived from Description variability type
Photosynthetically | 1 km NASA Langley | Extracted as a predictor variable for | Dynamic | Meteorological
Active  Radiation Research CHy flux models. Drivers
(PAR) Center (2024)
NDVI Im Rettelbach et | Ultra-high resolution NDVI derived | Static Vegetation
al. (2024) from drone imagery. /Terrain
NDVI = MEZRed )
NIR + Red
NDWI Im Rettelbach et | Ultra-high resolution NDWI derived | Static Hydrology /
al. (2024) from drone imagery. Moisture
NDWI = Sreen=NIR 57y Indicators
Green + NIR
Landscape I m Rettelbach et | Landscape classification performed | Static Vegetation
classification al. (2024), using 1 m drone imagery & ALS- /Terrain
Lange et al., | derived DTM (Appendix B).
2021
NDVI 10 m Sentinel-2 Extracted from the composite Sentinel- | Static Vegetation
[2019 - 2024] | 2 image for July - August 2018. /Terrain
(mean for July -
August 2018). | ypyj = MEZRed )}y
NIR + Red
NDWI 10 m Sentinel-2 Extracted from the composite Sentinel- | Static Hydrology /
[2019 - 2024] | 2 image for July - August 2018. Moisture
(mean for July - | Npyj = SLeeR=NIR 55y Indicators
August 2018) Green + NIR
NDVI 10 m Sentinel-2 Extracted from single-date, closest to | Dynamic | Vegetation
[2019 - 2024] | flux measurement. /Terrain
(Single-date, NDVI = ME=Red iz
closest to flux NIR + Red
measurement).
NDWI 10 m Sentinel-2 Extracted from single-date, closest to | Dynamic Hydrology /
[2019 - 2024] | flux measurement. Moisture
(Single-date, NDWI = SLeen=NIR 55y Indicators
closest to flux Green+ NIR
measurement).
Landscape 10 m Copernicus Landscape classification performed | Static Vegetation
classification Sentinel-2 data | using Sentinel-2 indices (2018) and /Terrain
[2018], terrain  derivatives of ArcticDEM
ArcticDEM v4 | (Appendix B).
(Porter et al.,
2023)
Slope Im Lange et al., [Measures the rate of elevation change| Static Topographical
2021 along the steepest descent. It controls parameters
water and material flow, influences soil
moisture, erosion, and formation, and is a
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Parameter

spatial
resolution

Derived from

Description

Temporal
variability

Parameter

type

key hydrological and geomorphological
factor.
Derived from DTM.

Aspect

I m

Lange et al.,
2021

Represents the compass direction a slope
faces, measured in degrees clockwise]
from north. It influences microclimate,
solar radiation, snowmelt, and vegetation
patterns.

Derived from DTM.

Static

Topographical
parameters

TWI

Lange et al,
2021

TWI combines upslope catchment area
land slope to model potential soil moisture
accumulation. It is commonly used to
identify areas potentially prone to|
saturation and water accumulation.

TWI = In——,
tan b
- a = upslope contributing area per
unit contour length
- b= local slope angle

Derived from DTM.

Static

Topographical
parameters

TPI_30m

Lange et al.,
2021

The Topographic Position Index (TPI)
quantifies the elevation of a cell relative]
to the mean elevation of surrounding|
cells, allowing differentiation between
ridges, valleys, and flat areas. We
computed TPI using a 30m circular
moving window, meaning that for each
location, its elevation was compared to|
the average of all surrounding elevations,
within a 30 m radius. This window size|
smooths out small-scale variation and|
captures broader landform patterns.
Derived from DTM.

Static

Topographical
parameters

Slope

10m
(from 2 m)

ArcticDEM  v4
(Porter et al.,
2023)

Measures the rate of elevation change
along the steepest descent. It controls
water and material flow, influences soil
moisture, erosion, and formation, and is a
key hydrological and geomorphological
factor.

Derived from DTM.

Static

Topographical
parameters

Aspect

10m
(from 2 m)

ArcticDEM  v4
(Porter et al.,
2023)

Represents the compass direction a slope
faces, measured in degrees clockwise
from north. It influences microclimate,
solar radiation, snowmelt, and vegetation|
patterns.

Derived from DTM.

Static

Topographical
parameters

TWI

10m
(from 2 m)

ArcticDEM v4
(Porter et al.,
2023)

TWI combines upslope catchment area
land slope to model potential soil moisture
accumulation. It is commonly used to
identify areas potentially prone to|
saturation and water accumulation.

Static

Topographical
parameters
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Parameter spatla}l Derived from Description Tel.np(?l:al Parameter
resolution variability type
TWI = In—>—, (A3)
tan b
- a = upslope contributing area per
unit contour length
- b =local slope angle
Derived from DTM.
TPI_30m 10m ArcticDEM v4 |The Topographic Position Index (TPI)| Static Topographical
(from 2m) | (Porter et al., [quantifies the elevation of a cell relative| parameters

2023) to the mean elevation of surrounding
cells, allowing differentiation between
ridges, valleys, and flat areas. We
computed TPI using a 30m circular
moving window, meaning that for each
location, its elevation was compared to|
the average of all surrounding elevations
within a 30 m radius. This window size|
smooths out small-scale variation and
captures broader landform patterns.
Derived from DTM.

Subsidence 10 m Copernicus Seasonal deformation has been derived | Static Surface
Sentinel-1/2 from Sentinel-1 time series (2018 - Deformation
data 2023) using SAR Interferometry. Six

years have been averaged to reduce
noise. The seasonal deformation rates
in thawing degree days domain
represent near surface soil moisture
spatial patterns. (Widhalm et al., 2025)

CALU 10 m Static Vegetation

CALU The Circumarctic Landcover Units /Terrain
provide a consistent high-resolution

(Bartsch et al., [ land cover classification across the

2024) entire Arctic tundra. CALU defines 23
units of similar reflectance derived
from multispectral (Sentinel-2) and
C-band SAR (Sentinel-1) data. The
classification reflects wetness
gradients, shrub density, moss
abundance, and surface moisture
(Bartsch et al., 2024).

AT Point Trail ~ Valley Dynamic | Meteorological
Creek Hourly air temperature measured at Drivers
meteorological | 2 m above ground level. Used as a
station dynamic meteorological driver for
(Climate  ID: [ CH4 flux models.
220N005;

WMO ID:
71683; TC ID:
XTV).

Thawing  Degree | Point Trail ~ Valley |Cumulative positive air temperature Dynamic | Meteorological

Days (TDD) Creek sum (above 0 °C) used as a proxy for Drivers
meteorological |thaw energy and season length.
station Calculated per flux measurement period
(Climate  ID:
220N005;
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Parameter

spatial
resolution

Derived from

Description

Temporal
variability

Parameter

type

WMO ID:
71683; TC ID:
XTV).

based on air temperature from
meteorological station.

TDD = 3y Max(Tyeqni0)

(A4)

Tmeani = mean daily air
temperature on day i

n = number of days in the
accumulation period

The max function ensures only
temperatures above 0 °C are
counted
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Text Al. Landscape classification

To classify land cover in the TVC area, we employed a supervised classification approach using multi-source remote sensing
data at 1 m and 10 m resolutions. The classification process was implemented in Google Earth Engine (GEE), enabling large-
scale data processing. A Random Forest (RF) classifier was chosen due to its ability to handle high-dimensional data, its
resistance to overfitting, and its suitability for land cover mapping. By applying a consistent classification framework at both 1
m and 10 m resolutions, this study enables direct comparisons of classification performance across spatial scales,

Training and Validation Data

The classification was trained using manually collected validation points that were assigned to six distinct land cover classes:
Dwarf Shrub, Tall Shrub, Sedges, Tussock, Lichen, and Water. To ensure statistical robustness, 80 % of the validation points
were used for model training, while the remaining 20 % were reserved for accuracy assessment.

Remote Sensing Data and Feature Extraction

To optimise classification accuracy, we integrated spectral, texture, and topographic features derived from multiple remote
sensing sources. Sentinel-2 optical imagery at 10 m resolution was used for broad-scale classification, with images acquired
during the 2018 growing season (25 June - 4 September 2018) to ensure that differences in land cover classification were due to
spatial resolution rather than changing environmental conditions, matching the same summer period as the 1 m drone survey.
Topographic features were extracted from ArcticDEM (2 m resolution) (Porter et al., 2023). At finer spatial scales, we
incorporated ultra-high resolution drone imagery (I m and 10 cm) from Rettelbach et al. (2024) and a digital terrain model
(DTM) (Lange et al., 2021).

To further enhance classification accuracy, we performed a Gray-Level Co-occurrence Matrix (GLCM) texture analysis of
NDVI, allowing us to incorporate information on vegetation heterogeneity. A 2 x 2 kernel was used for 10 m classification,

while a 20 x 20 kernel was applied at 1 m resolution to capture 20 m spatial patterns.

Table A2. Parameters used for the landscape classification. Abbreviations in the table: NDVI — Normalized Difference Vegetation
Index, NDWI — Normalized Difference Water Index, EVI — Enhanced Vegetation Index, SAVI — Soil-Adjusted Vegetation Index,
GLCM - Gray-Level Co-occurrence Matrix, TPI — Topographic Position Index, TWI — Topographic Wetness Index, DEM — Digital
Elevation Model. Spectral indices were derived from Sentinel-2 (10 m spatial resolution) and drone imagery (1 m spatial resolution)
using the visible and near-infrared bands (Blue, Green, Red, NIR).

Spatial
Parameter IDescription [Formula (if applicable)
resolution
. NIR — RED
INDVI IMeasures vegetation greenness _ 10m, I m
NIR + RED
G — NIR
INDWI Identifies water and moisture content] green = WX 10m, I m
Green + NIR
. NIR — RED
EVI Improves sensitivity to high biomass| 2.5 x 10m, I m
NIR + 6 X RED — 7.5 X Blue +1
- . (NIR — RED) x (1 + L)’ where
SAVI IReduces soil brightness effects NIR +RED +L 10m, 1 m
L=0.5
Measures randomness in pixell
(GLCM Entropy | . Derived from NDVI 10m, 1 m
intensity
(GLCM Contrast  [Captures local texture variation Derived from NDVI 10m, 1 m
GLCM Measures  uniformity in image]
) Derived from NDVI 10m, 1 m
[Homogeneity texture
Slope IMeasures terrain steepness Derived from DEM 2 m, 1 m
Aspect [dentifies terrain orientation Derived from DEM 2m, | m
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Spatial

Parameter [Description [Formula (if applicable)
resolution
TPI 6m [Detects local terrain position Elevation - Mean(Elevation within 6m radius) [2m, 1 m
TPI 30m Identifies broader-scale landforms [Elevation - Mean(Elevation within 30m radius) [2m, 1 m
ln(#@), where
TWI [Estimates soil moisture potential ~ [5 — specific contributing area 2 m, | m

I8 = slope in radians

Captures spectral variation in [mean and sd for each pixel of RGB and NIR]
Band parameters . 10 m
different wavelengths bands

Captures spectral variation in
Band parameters . Ipixel value of RGB and NIR bands 10 m
different wavelengths

Classification Model and Accuracy Assessment

The Random Forest classifier was trained separately for 10 m Sentinel-2 data and 1 m drone-based data, with 200 decision trees
used in both cases. The trained models were then applied to classify the entire dataset. The overall accuracy was 0.76 for 1 m
resolution and 0.71 for 10 m resolution. Class-specific accuracies are provided in Table S1.

Export

Final classified maps at 10 m and 1 m resolutions were exported as GeoTIFF files for further analysis and comparison.

Table A3. Description of Circumarctic Land Cover Units (CALU) present in the study area. Class names and definitions are taken
from Bartsch et al. (2024). Additional columns indicate (i) whether the class is present within the area of interest (AOI), and (ii) whether
CHj flux measurements are available for this class.

CALU Description l.’resent CH4 mea.surements
class in AOI available
1 Water yes
2 shallow water/abundant macrophytes yes
3 wetland, permanent yes yes
4 wet to aquatic tundra (seasonal), abundant moss yes
5 moist to wet tundra, abundant moss, prostrate shrubs
6 dry to moist tundra, partially barren, prostrate shrubs yes
7 dry tundra, abundant lichen, prostrate shrubs
8 dry to aquatic tundra, dwarf shrubs (& sparse tree cover along treeline) yes
9 dry to moist tundra, prostrate to low shrubs yes yes
10 moist tundra, abundant moss, prostrate to low shrubs yes yes
11 moist tundra, abundant moss, dwarf and low shrubs yes yes
12 moist tundra, dense dwarf and low shrubs (& sparse tree cover along treeline) yes
13 moist to wet tundra, dense dwarf and low shrubs (& sparse tree cover along treeline)| yes
14 moist tundra, low shrubs yes
15 dry to moist tundra, partially barren yes yes
16 moist tundra, abundant forbs, dwarf to tall shrubs yes
17 recently burned or flooded, partially barren yes
18 forest (deciduous) with dwarf to tall shrubs yes
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19 forest (mixed) with dwarf to tall shrubs yes
20 forest (needle leave) with dwarf and low shrubs yes
21 partially barren yes
22 snow/ice

23 other (incl. shadow) yes
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Appendix B. Results

720 Table B1. Summary statistics of observed CHy4 fluxes (mg CHs m? h™) across site-specific landscape classes at 1 m and 10 m spatial
resolutions. The table reports the number of observations (N Obs), number of sites, where measurements were done (N sites), mean,
first quartile (Q1), third quartile (Q3), minimum, and maximum CHj flux values for each landscape class at both resolutions.

N N
Landscape class| Resolution| Obs |sites Mean Q1 Q3 Min Max

Im 1713 |22 0.002 -0.02 0 -0.48 1.62
Lichen

10 m 3690 |19 -0.011 -0.02 0 -0.48 0.62

Im 11372 |39 -0.016 -0.03 -0.01 -0.24 2.41
Tussock

10 m 9218 |30 -0.020 -0.03 -0.01 -0.18 0.68

1m 130 |4 0.053 -0.02 0.06 -0.18 0.89
Dwarf shrub

10 m 201 7 0.19 -0.01 0.13 -0.28 2.41
Tall shrub 10 m 71 3 0.024 -0.02 0.05 -0.12 0.54

Im 177 |3 0.94 0.06 1.09 -0.02 6.39
Sedges

10 m 204 |9 0.87 0.05 1.07 -0.03 6.39

Table B2. Summary statistics of observed CHy4 fluxes (mg CHy m? h') across CALU classes. The table reports the number of
725  observations (n), mean, first quartile (Q1), third quartile (Q3), minimum, and maximum CHj flux values for each landscape class at
both resolutions. Class descriptions are available in Bartsch et al. (2024).

CALU class n Mean Q1 Q3 Min Max
3. Permanent wetland 11 -0.09 -0.09 0 -0.48 0
9. Dry to moist tundra, prostrate to low shrubs, tussocks 6357 -0.01 -0.02 0 -0.19 0.61

10. Moist tundra, abundant moss, prostrate to low shrubs,
tussocks 6407 -0.02 -0.03 -0.01 -0.18 0.41

11. Moist tundra, abundant moss, dwarf and low shrubs,
tussocks 490 0.46 0.01 0.39 -0.28 6,39

15. Moist to wet tundra, abundant lichen, in some cases
partially barren (disturbed). 119 0 0 0.03 -0.24 0.06
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Figure B1. Spearman rank correlations between environmental predictors used in the CHy4 flux models at (left) 1 m and (right) 10
m resolution. Only statistically significant relationships (p < 0.05) with absolute correlation strength |p| > 0.1 are shown; non-
significant and weak correlations are blanked. Positive correlations are shown in blue and negative correlations in red, with color
intensity proportional to correlation strength (see scale bar, —1 to +1)
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Normalized Difference 0.49 0.23 0.36 0.23 017 0.11 -0.5
Vegetation Index (NDVI) -1.0
Landcover type 0.41 0.06 0.42 0.28 0.32 0.24
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Figure B2. Pearson correlation between spatial differences in CHy flux predictions and selected environmental predictors. “Model
influence” (left block) shows differences between RF and GBM predictions at the same resolution (RF — GBM). “Resolution
influence” (middle and right blocks) show differences between 1 m and 10 m predictions (1 m — 10 m), calculated using predictors
derived from (i) the 10 m products downscaled to 1 m (middle) and (ii) the 1 m predictors aggregated to 10 m (right). Positive
correlations indicate that higher predictor values coincide with stronger CH4 flux mismatches between models or resolutions. Each
cell represents Pearson’s r across 30 402 pixels (10 m) and 3 050 788 pixels (1 m).
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Table B3. Relative importance [%] of environmental predictors for CH, flux models across spatial resolutions and algorithms. The
table shows the variable importance (in %) for each predictor derived from Random Forest (RF) and Gradient Boosted Machine
(GBM) models at 1 m and 10 m spatial resolution. Predictors are grouped by thematic category (e.g., Meteorological, Topographic).
Importance values reflect the mean contribution of each predictor to the model performance and standard deviations (+ SD).

Group Parameter RF 1 m RF 10 m GBM 1m GBM 10 m
Air temperature 84+29 7.7+2.8 14.7+42 8.4+42
Meteorological Drivers PAR 6.1£3 7.8+£2.3 6.6+1.8 49+1.3
TDD 52+1.7 3612 13.6 £3.6 9.1+£2.8
Hydrology /  Moisture NDWI 141 245+75 [13.8%5 24.6+ 8.4
Indicators TWI 0.8+0.3 5319  [26=13 18.8+7.5
Aspect 21.4+5.7 33+13 23+0.8 6.5+2.9
Topographical parameters (Slope 17.6 +7.6 3.6+24 15.8+6.5 3.6+1.1
TPI 21.6+6.6 7.5+2.7 9.6+2.7 1.9+0.6
NDVI 19+1 11.7+£6.9 55+£23 11.3+43
Vegetation / Terrain
Landscape class 157+58 25+7.7 15529 109+3
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